RATIO MATHEMATICA 25 (2013), 15–28

ISSN:1592-7415

Classification of Hyper *MV*-algebras of Order 3

R. A. Borzooei^{*}, A. Radfar^{**}

*Department of Mathematics, Shahid Beheshti University, G. C., Tehran, Iran **Department of Mathematics, Payame Noor University, Tehran, Iran borzooei@sbu.ac.ir, Ateferadfar@yahoo.com

Abstract

In this paper, we investigated the number of hyper MV-algebras of order 3. In fact, we prove that there are 33 hyper MV-algebras of order 3, up to isomorphism.

Key words: hyper *MV*-algebra

MSC 2010: 97U99.

1 Introduction

The concept of MV-algebras was introduced by Chang in [1] in order to show Lukasiewicz logic to be standard complete, i.e. complete with respect to evaluations of propositional variables in the real unit interval [0, 1]. In [6], Mundici showed that any MV-algebra is an interval of an Abelian lattice ordered group with a strong unit. Also, he introduced the concept of state on MV-algebra. Georgescu and Iorgulescu [2] introduced a new noncommutative algebraic structures, which were called pseudo MV-algebras. It can be obtained by dropping commutative axioms in MV-algebras, which are a generalization of MV-algebras. The hyper structure theory was introduced by F. Marty [5] at the 8th congress of Scandinavian Mathematicians in 1934. Since then many researches have worked in these areas. Recently in [4], Sh. Ghorbani, A. Hasankhni and E. Eslami applied the hyper structure to MV-algebras and introduced the concept of a hyper MV-algebra which is a generalization of an MV-algebra and investigated some related results. Now, in this paper we find all hyper MV-algebras of order 3.

2 Preliminary

Definition 2.1. [1] An *MV*-algebra $(X, \oplus, *, 0)$ is a set X equipped with a binary operation \oplus , a unary operation * and a constant 0 satisfying the following equations:

- (MV_1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z,$
- $(MV_2) \quad x \oplus y = y \oplus x,$
- $(MV_3) \quad x \oplus 0 = x,$
- $(MV_4) \quad (x^*)^* = x,$
- $(MV_5) \quad x \oplus 0^* = 0^*,$
- $(MV_6) \quad (x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x,$

for all $x, y, z \in X$.

Definition 2.2. [3]

A hyperalgebra $(M, \oplus, *, 0)$ with a hyperoperation $\oplus : M \times M \longrightarrow \mathcal{P}^*(M)$, a unary operation $* : M \longrightarrow M$ and a constant 0, is said to be a hyper MV-algebra if and only if satisfies the following axioms, for all $x, y, z \in M$:

 $(HMV_1) \ x \oplus (y \oplus z) = (x \oplus y) \oplus z,$ $(HMV_2) \ x \oplus y = y \oplus x,$ $(HMV_3) \ (x^*)^* = x,$ $(HMV_4) \ 0^* \in x \oplus 0^*,$ $(HMV_5) \ (x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x,$ $(HMV_6) \ 0^* \in x \oplus x^*,$ $(HMV_7) \ \text{If} \ x \leq y \ \text{and} \ y \leq x, \ \text{then} \ x = y,$

where $x \leq y$ is defined by $0^* \in x^* \oplus y$. For every $X, Y \subseteq M, X \leq Y$ if there exist $x \in X$ and $y \in Y$ such that $x \leq y$. We define $1 = 0^*$

Theorem 2.3. [3] Let $(M, \oplus, *, 0)$ be a hyper-MV algebra. Then for all $x, y, z \in M$ and for all non-empty subsets A, B and C of M the following hold:

(i) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$, (ii) $0 \leq x \leq 1$, $x \leq x$ and $A \leq A$, (iii) If $x \leq y$ then $y^* \leq x^*$ and $A \leq B$ implies $B^* \leq A^*$, (iv) If $x \leq 0$ or $1 \leq x$, then x = 0 or x = 1, respectively, (v) $0 \oplus 0 = \{0\}$, (vi) $x \in x \oplus 0$, (vii) If $x \oplus 0 = y \oplus 0$, then x = y. Classification of Hyper MV-algebras of Order 3

3 Classification of hyper *MV*-algebras of order 3

In this section we try to find all hyper MV-algebras of order 3, up to isomorphism.

Theorem 3.1. Let M be a hyper MV-algebra and x be an element of M such that $0 \oplus x = \{x\}$ and $x^* = x$. Then the following statements hold:

 $(i) \ (1 \oplus x)^* \oplus x = \{x\},$

 $(ii) \ (1 \oplus x)^* \oplus 1 = x \oplus x,$

(*iii*) $x \notin 1 \oplus x$ and $0 \notin 1 \oplus x$.

Proof. Since $0^* = 1$, then by hypothesis and (HMV5);

 $(1 \oplus x)^* \oplus x = (0^* \oplus x)^* \oplus x = (x^* \oplus 0)^* \oplus 0 = (x \oplus 0)^* \oplus 0 = x^* \oplus 0 = x \oplus 0 = \{x\}$

$$(1 \oplus x)^* \oplus 1 = (x \oplus 1)^* \oplus 1 = ((x^*)^* \oplus 1)^* \oplus 1 = = (1^* \oplus x^*)^* \oplus x^* = (0 \oplus x)^* \oplus x^* = x^* \oplus x^* = x \oplus x$$

and so (i) and (ii) hold.

(*iii*) If $x \in 1 \oplus x$, then $x = x^* \in (1 \oplus x)^*$ and so $x \oplus x = x^* \oplus x \subseteq (1 \oplus x)^* \oplus x$. By (*i*), $x \oplus x \subseteq \{x\}$. Hence $x \oplus x = \{x\}$. Now, since by (HMV_6) , $1 = 0^* \in x \oplus x^* = x \oplus x = \{x\}$, then x = 1 and so $0 = 1^* = x^* = x = 1$, which is a contradiction. Hence $x \notin 1 \oplus x$. Now, let $0 \in 1 \oplus x$. Then $1 = 0^* \in (1 \oplus x)^*$ and so $1 \oplus x \subseteq (1 \oplus x)^* \oplus x$. By (*i*), $1 \oplus x \subseteq \{x\}$. Thus $1 \oplus x = \{x\}$, which is a contradiction. Hence $0 \notin 1 \oplus x$.

Note. From now one in this paper, we let $M = \{0, a, 1\}$ be a hyper MV-algebra of order 3.

Theorem 3.2. (i) $1 \le 1$, $0 \le 0$, $a \le a$, $0 \le 1$ and $0 \le a$,

(ii) $a \not\leq 0$, (iii) $a^* = a$, (iv) $1 \in 1 \oplus a$.

Proof. (i). By Theorem 2.3(ii), the proof is clear.

(*ii*). By Theorem 2.3(iv), the proof is clear.

(*iii*). By Definition 2.2, $0^* = 1$ and by (HMV_3) , $0 = (0^*)^* = 1^*$. Now, if $a^* = 1$, then $0 = 1^* = (a^*)^* = a$, which is a contradiction. By similar way, if $a^* = 0$, then $1 = 0^* = (a^*)^* = a$, which is a contradiction. Hence, $a^* = a$. (*iv*). By (HMV_4) , $1 = 0^* \in 0^* \oplus a = 1 \oplus a$.

Theorem 3.3. If $0 \oplus a = \{a\}$ or $1 \oplus a = \{1\}$, then M is an MV-algebra.

Proof. Let $0 \oplus a = \{a\}$. Since $a^* = a$, then by Theorem 3.1(*iii*), $a \notin 1 \oplus a$ and $0 \notin 1 \oplus a$ and so $1 \oplus a = \{1\}$.

Moreover, By Theorem 3.1(*iii*) and (*i*), $0 \notin 1 \oplus 0$ and $(1 \oplus 0)^* \oplus 0 = \{0\}$. Since $0 \notin \{a\} = 0 \oplus a$ and $0 \notin 1 \oplus 0$, then $(1 \oplus 0)^* = \{0\}$ and so $1 \oplus 0 = \{1\}$. By Theorem 3.1(*i*) and (*ii*), $0 \oplus 1 = \{1\} = (1 \oplus a)^* \oplus 1 = a \oplus a$. Hence $a \oplus a = \{1\}$. Now, by (HMV_1) ,

$$1 \oplus 1 = (a \oplus a) \oplus 1 = a \oplus (1 \oplus a) = a \oplus 1 = \{1\}.$$

Therefore, $x \oplus y$ is singleton for all $x, y \in M$ and so M is an MV-algebra. \Box

Now, if $1 \oplus a = \{1\}$, then $\{0\} = \{1^*\} = (1 \oplus a)^*$ and so $0 \oplus a = (1 \oplus a)^* \oplus a$. By (HMV_5) ,

$$0 \oplus a = (1 \oplus a)^* \oplus a = 0 \oplus (0 \oplus a)^*$$

By Theorem 3.2, $a \neq 0, 1 \notin 0 \oplus a$. If $0 \in 0 \oplus a$, then $0 \oplus a = \{0, a\}$ and

$$\{0, a\} = 0 \oplus a = 0 \oplus (0 \oplus a)^* = 0 \oplus \{0, a\}^* = 0 \oplus \{1, a\} = (0 \oplus 1) \cup (0 \oplus a) = (0 \oplus 1) \cup \{0, a\}.$$

Hence $0 \oplus 1 \subseteq \{0, a\}$. By (HMV4), $1 \in 0 \oplus 1$. Thus $1 \in \{0, a\}$, which is a contradiction. Thus $0 \notin 0 \oplus a$ and so $0 \oplus a = \{a\}$. Therefore, M is a same MV-algebra, which is as follows:

\oplus_1	0	a	1
0	{0}	$\{a\}$	{1}
a	$\{a\}$	$\{1\}$	$\{1\}$
1	{1}	$\{1\}$	$\{1\}$

Definition 3.4. We call a hyper MV-algebra is proper, if it is not an MV-algebra.

Lemma 3.5. Let $M = \{0, a, 1\}$ be a proper hyper MV-algebra of order 3. Then

(i) $0 \oplus a = \{0, a\},$ (ii) $0 \oplus 1 = \{1\}, \{0, 1\} \text{ or } M,$ (iii) $a \oplus a = \{1\}, \{0, 1\}, \{1, a\} \text{ or } M,$ (iv) $1 \oplus a = \{0, 1\}, \{1, a\} \text{ or } M,$ (v) $1 \oplus 1 = \{1\}, \{0, 1\} \{1, a\} \text{ or } M,$ (vi) If $a \oplus a = \{1\}, \text{ then } 0 \oplus 1 = M.$ **Proof.** (i). Since $a \not\leq 0$, then $1 \not\in 0 \oplus a$. By Theorem 2.3 (vi), $a \in 0 \oplus a$. Thus $0 \oplus a = \{a\}$ or $\{0, a\}$. If $0 \oplus a = \{a\}$, then by Theorem 3.3, M is not proper. Thus $0 \oplus a = \{0, a\}$

(*ii*). Since $0 \leq 0$, then $1 = 0^* \in 0^* \oplus 0 = 1 \oplus 0 = 0 \oplus 1$. Hence it is sufficient to show that $0 \oplus 1 \neq \{1, a\}$. Let $0 \oplus 1 = \{1, a\}$, by the contrary. Then by (HMV_1) ,

$$\{1, a\} = 0 \oplus 1 = (0 \oplus 0) \oplus 1 = (0 \oplus 1) \oplus 0 = \{1, a\} \oplus 0 = \{0, a, 1\},\$$

which is impossible. Therefore, $0 \oplus 1 \neq \{1, a\}$ and so $0 \oplus 1 = \{1\}$, $\{0, 1\}$ or M.

(*iii*), (v). Since $a \le a$ and $0 \le 1$, then $1 \in a \oplus a$ and $1 \in 1 \oplus 1$ and so (v) and (*iii*) are hold.

(*iv*). Since $0 \le a$, then $1 \in 1 \oplus a$. By Theorem 3.3, if $a \oplus 1 = \{1\}$, then M is an MV algebra which is impossible. Hence $1 \oplus a = \{0, 1\}$, $\{1, a\}$ or M.

(vi). Let $a \oplus a = \{1\}$. Then by (HMV_1) ,

$$0 \oplus 1 = 0 \oplus (a \oplus a) = (0 \oplus a) \oplus a = \{0, a\} \oplus a = (0 \oplus a) \cup (a \oplus a) = M.$$

By Lemma 3.5 (*ii*), we know that $0 \oplus 1 = \{1\}, \{0, 1\}$ or M. So, for the classification of all hyper MV-algebras of order 3, we consider the following three cases.

Case 1:
$$0 \oplus 1 = \{1\}$$

Lemma 3.6. Let $M = \{0, a, 1\}$ be a proper hyper MV-algebra of order 3 and $0 \oplus 1 = \{1\}$. Then

(i) $a \oplus a = \{1, a\}$ or M, (ii) $1 \oplus 1 = \{1\}$, (iii) $1 \oplus a = M$.

Proof. (i). By Lemma 3.5 (i) and (iii), $0 \oplus a = \{0, a\}$ and $1 \in a \oplus a$. Hence

$$(0 \oplus a) \oplus a = \{0, a\} \oplus a = (0 \oplus a) \cup (a \oplus a) = \{0, a\} \cup (a \oplus a) = M.$$

Since by (HMV_1) , $(0 \oplus a) \oplus a = 0 \oplus (a \oplus a)$, then $0 \oplus (a \oplus a) = M$. By Lemma 3.5(*iii*), $a \oplus a = \{1\}$, $\{0,1\}$, $\{1,a\}$ or M. If $a \oplus a = \{1\}$, then $0 \oplus (a \oplus a) = 0 \oplus 1 = \{1\}$, which is a contradiction.

If $a \oplus a = \{0, 1\}$, then by Theorem 2.3(v), $0 \oplus (a \oplus a) = 0 \oplus \{0, 1\} = (0 \oplus 0) \cup (0 \oplus 1) = \{0, 1\}$, which is a contradiction. Hence, $a \oplus a = \{1, a\}$ or M.

(*ii*). By (HMV_5) , and Theorem 2.3(v),

$$(1\oplus 1)^* \oplus 1 = (0^* \oplus 1)^* \oplus 1 = (1^* \oplus 0)^* \oplus 0 = (0\oplus 0)^* \oplus 0 = 1 \oplus 0 = \{1\}.$$

If $0 \in 1 \oplus 1$, then $1 \oplus 1 \subseteq (1 \oplus 1)^* \oplus 1 = \{1\}$ and so $0 \notin 1 \oplus 1$, which is a contradiction. If $a \in 1 \oplus 1$, then $a \oplus 1 \subseteq (1 \oplus 1)^* \oplus 1 = \{1\}$. Thus $a \oplus 1 = \{1\}$ and so by Theorem 3.3, M is an MV-algebra, which is a contradiction. Hence, $1 \oplus 1 = \{1\}$.

(*iii*). By Lemma 3.5, $1 \oplus a = \{0, 1\}$, $\{1, a\}$ or M. If $1 \oplus a = \{0, 1\}$, since by (HMV_1) , $1 \oplus (1 \oplus a) = (1 \oplus 1) \oplus a = 1 \oplus a$, then $1 \oplus (1 \oplus a) = \{1\}$, which is a contradiction. If $1 \oplus a = \{1, a\}$, since by (HMV_1) , $0 \oplus (1 \oplus a) = (0 \oplus 1) \oplus a = 1 \oplus a$, then $0 \oplus (1 \oplus a) = (0 \oplus 1) \cup (0 \oplus a) = M$, which is a contradiction. Hence, $1 \oplus a = M$.

Theorem 3.7. There are two non-isomorphic proper hyper MV-algebras of order 3 such that $0 \oplus 1 = \{1\}$.

Proof. According Theorem 3.6, if M is a proper hyper MV-algebra of order 3 and $0 \oplus 1 = \{1\}$, then we must investigate two following tables, which both of them are non-isomorphic hyper MV-algebras.

\oplus_2	0	a	1	\oplus_3	0	a	1
0	{0}	$\{0,a\}$	{1}	0	{0}	$\{0,a\}$	{1}
a	$\{0,a\}$	$\{1, a\}$	$\{0, a, 1\}$	a	$\{0,a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{1\}$	$\{0, a, 1\}$	$\{1\}$	1	$\{1\}$	$\{0, a, 1\}$	$\{1\}$

Case 2:	$0 \oplus 1 = \{$	$\left[0,1 ight]$	}
---------	-------------------	-------------------	---

Lemma 3.8. Let $M = \{0, a, 1\}$ be a proper hyper MV-algebra of order 3 and $0 \oplus 1 = \{0, 1\}$. Then

(i) $(a \oplus a) \cup (1 \oplus a) = M$, (ii) $a \oplus 1 = \{a, 1\}$ or M, (iii) $a \oplus a = \{a, 1\}$ or M, (iv) $1 \oplus 1 = \{0, 1\}$ or $\{1\}$.

Proof. (i). Let $0 \oplus 1 = \{0, 1\}$. By Theorem 3.5(iv), since $1 \in 1 \oplus a$, by (HMV_1) ,

$$(0 \oplus a) \oplus 1 = (0 \oplus 1) \oplus a = \{0, 1\} \oplus a = (0 \oplus a) \cup (1 \oplus a) = \{0, a\} \cup (1 \oplus a) = M.$$

On the other hands

$$(0 \oplus a) \oplus 1 = \{0, a\} \oplus 1 = (0 \oplus 1) \cup (a \oplus 1) = \{0, 1\} \cup (a \oplus 1)$$

Thus $\{0,1\} \cup (a \oplus 1) = M$ and so $a \in a \oplus 1$. New, we consider two cases $0 \in a \oplus 1$ or $0 \neq a \oplus 1$. If $0 \in a \oplus 1$, since by Theorem 3.5, $1 \in a \oplus 1$, then $a \oplus 1 = M$ and so $(a \oplus a) \cup (1 \oplus a) = M$. Now, if $0 \neq a \oplus 1$, then by Theorem 3.5, $a \in a \oplus 1$. Hence by Theorem 3.2(*iv*), $\{1, a\} \subseteq a \oplus 1$. Thus

$$M = (0 \oplus 1) \cup (a \oplus 1) = \{0, a\} \oplus 1 = \{1, a\}^* \oplus 1 \subseteq (a \oplus 1)^* \oplus 1 \subseteq M$$

and so $(a \oplus 1)^* \oplus 1 = M$. On the other hands, by (HMV_5) , $(a \oplus 1)^* \oplus 1 = (0 \oplus a)^* \oplus a$. Hence $(0 \oplus a)^* \oplus a = M$. Since $0 \oplus a = \{0, a\}$, then

$$M = (0 \oplus a)^* \oplus a = \{1, a\} \oplus a = (1 \oplus a) \cup (a \oplus a).$$

(*ii*). By Lemma 3.5(*iv*), it is enough to show that $1 \oplus a = \{0, 1\}$. Let $0 \in a \oplus 1$, by the contrary. Since by Lemma 3.5(*iv*) and (*i*), $0 \oplus a = \{0, a\}$ and $1 \in 1 \oplus a$, then

$$(0 \oplus 1) \oplus a = \{0, 1\} \oplus a = (0 \oplus a) \cup (1 \oplus a) = M.$$

Thus by (HMV_1) ,

$$M = (0 \oplus 1) \oplus a = (0 \oplus a) \oplus 1 = \{0, 1\} \cup (1 \oplus a).$$

and so $a \in 1 \oplus a$. Hence $a \oplus 1 \neq \{0, 1\}$ and so by lemma $3.5(iv), a \oplus 1 = \{a, 1\}$ or M.

(*iii*). By Lemma 3.5(*i*), $0 \oplus a = \{0, a\}$. Now, since $1 \in a \oplus a$, then

$$(0 \oplus a) \oplus a = \{0, a\} \oplus a = (0 \oplus a) \cup (a \oplus a) = M.$$

Hence, by (HMV_1) , $0 \oplus (a \oplus a) = (0 \oplus a) \oplus a = M$. Since $a \notin 0 \oplus 0$ and $a \notin 0 \oplus 1$, then $a \in a \oplus a$. Hence $a \oplus a = \{a, 1\}$ or M.

(*iv*). Let $a \in 1 \oplus 1$. By (HMV_5) ,

$$a \oplus 1 = a^* \oplus 1 \subseteq (1 \oplus 1)^* \oplus 1 = (0 \oplus 0)^* \oplus 0 = \{0, 1\}.$$

which is a contradiction by (i). Hence $a \notin 1 \oplus 1$ and so by Lemma 3.5(v), $1 \oplus 1 = \{0, 1\}$ or $\{1\}$.

Theorem 3.9. There are 6 non-isomorphic proper hyper MV-algebras of order 3 such that $0 \oplus 1 = \{0, 1\}$.

Proof. By Lemma 3.8 (*iii*), $a \oplus a = \{a, 1\}$ or M. If $a \oplus a = \{a, 1\}$, then by Lemma 3.8 (*ii*), $a \oplus 1 = \{a, 1\}$ or M. By Lemma 3.8 (*i*), if $a \oplus a = \{a, 1\}$,

then $a \oplus 1 \neq \{a, 1\}$. Hence we must investigate 2 following tables which both of them are hyper MV-algebras.

\oplus_4	0	a	1	\oplus_5	0	a	1
0	{0}	$\{0,a\}$	$\{0,1\}$	0	{0}	$\{0,a\}$	$\{0, 1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0, a, 1\}$	a	$\{0,a\}$	$\{a, 1\}$	$\{0, a, 1\}$
1	$\{0,1\}$	$\{0, a, 1\}$	$\{1\}$	1	$\{1\}$	$\{0, a, 1\}$	$\{0, 1\}$

Now, if $a \oplus a = M$, then by Lemma 3.8 (*ii*) and (*iv*), $a \oplus 1 = \{a, 1\}$ or M and $1 \oplus 1 = \{0, 1\}$ or $\{1\}$. Thus we must investigate 4 following tables, which all of them are hyper MV-algebras.

\oplus	$ _{6} _{0}$	a	1	\oplus_7	0	a	1
		$\{0,a\}$		0	{0}	$\{ 0, a \} \\ \{ 0, a, 1 \} \\ \{ a, 1 \}$	$\{0,1\}$
a	$\{0,a\}$	$\{0, a, 1\}$	$\{a, 1\}$	a	$\{0,a\}$	$\{0, a, 1\}$	$\{a, 1\}$
1	$\{0,1\}$	$ \{ \begin{array}{c} \{0, a, 1 \\ \{a, 1\} \end{array} \} $	$\{1\}$	1	{1}	$\{a,1\}$	$\{0, 1\}$
~	0		1	<i>•</i>			1
\oplus_8	0	a	1	\oplus_9	0	a	1
0	$\{0\}$	$\frac{a}{\{0,a\}}$	$\{0,1\}$	Θ_9	0 {0}	$\frac{a}{\{0,a\}}$	$\frac{1}{\{0,1\}}$
0	$\{0\}$	$\{0, a\}$	$\{0,1\}$	$\frac{\oplus_9}{0}$	$ \begin{array}{c} 0 \\ \{0\} \\ \{0, a\} \end{array} $	$a \\ \{0, a\} \\ \{0, a, 1\}$	$\frac{1}{\{0,1\}}\\\{0,a,1\}$
0	$\{0\}$	$ \frac{a}{\{0,a\}}\\\{0,a,1\}\\\{0,a,1\} $	$\{0,1\}$	$\begin{array}{c} \oplus_9 \\ \hline 0 \\ a \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ \{0\} \\ \{0,a\} \\ \{0,1\} \end{array} $	$\begin{array}{c} a \\ \{0, a\} \\ \{0, a, 1\} \\ \{0, a, 1\} \end{array}$	$ \frac{1}{\{0,1\}}\\ \{0,a,1\}\\ \{0,1\} $

Case 3:
$$0 \oplus 1 = M$$

Lemma 3.10. Let $M = \{0, a, 1\}$ be a proper hyper MV-algebra of order 3 such that $0 \oplus 1 = M$. Then

 $(i) \ (a \oplus a) \cup (1 \oplus a) = M,$

(*ii*) If $a \oplus a = \{1\}$, then $a \oplus 1 = 1 \oplus 1 = M$,

(*iii*) If $a \oplus a = \{0, 1\}$, then $a \oplus 1 = \{a, 1\}$ or M and if $a \oplus 1 = \{a, 1\}$, then $1 \oplus 1 = \{1\}, \{0, 1\}$ or M,

(iv) If $a \oplus a = \{a, 1\}$, then $a \oplus 1 = \{0, 1\}$ or M and if $a \oplus 1 = \{0, 1\}$, then $1 \oplus 1 = \{a, 1\}$ or M,

(v) If $a \oplus a = M$ and $a \oplus 1 = \{1, a\}$, then $1 \oplus 1 = \{1\}, \{0, 1\}$ or M,

(vi) If $a \oplus a = M$ and $a \oplus 1 = \{0, 1\}$, then $1 \oplus 1 = \{0, 1\}, \{a, 1\}$ or M.

Proof.

(*i*). Since by Lemma 3.5(*iv*), $1 \in 1 \oplus a$, then $M = 0 \oplus 1 = 1^* \oplus 1 \subseteq (a \oplus 1)^* \oplus 1$ and so $(a \oplus 1)^* \oplus 1 = M$. Hence by (HMV_5) , $(0 \oplus a)^* \oplus a = (a \oplus 1)^* \oplus 1 = M$ and so by Lemma 3.5(*i*),

$$M = (0 \oplus a)^* \oplus a = \{0, a\}^* \oplus a = \{1, a\} \oplus a = (1 \oplus a) \cup a \oplus a$$

(*ii*). Let $a \oplus a = \{1\}$. Since $1 \in 1 \oplus a$, then by (HMV_5) and Lemma 3.5(i),

$$1 \oplus a = (1 \oplus a) \cup (a \oplus a) = \{1, a\} \oplus a = \{0, a\}^* \oplus a = (0 \oplus a)^* \oplus a$$

= $(a \oplus 0)^* \oplus 0 = \{1, a\} \oplus 0 = (1 \oplus 0) \cup (a \oplus 0)$
= M

Now, since $a \oplus a = \{1\}$ and $1 \oplus a = M$, then by (HMV_1) ,

$$1 \oplus 1 = (a \oplus a) \oplus (a \oplus a) = a \oplus (a \oplus (a \oplus a))$$
$$= a \oplus (a \oplus 1) = a \oplus M = (a \oplus 1) \cup (a \oplus a) \cup (a \oplus 0) = M.$$

(*iii*). If $a \oplus a = \{0, 1\}$, then by (*i*) and Lemma 3.5(*iv*), $a \oplus 1 = \{a, 1\}$ or M. Let $a \oplus 1 = \{a, 1\}$. If $1 \oplus 1 = \{a, 1\}$, then by (HMV_1) and (i),

$$M = (a \oplus a) \cup (1 \oplus a) = \{a, 1\} \oplus a = (1 \oplus 1) \oplus a$$
$$= 1 \oplus (1 \oplus a) = 1 \oplus \{1, a\} = (1 \oplus 1) \cup (1 \oplus a)$$
$$= (1 \oplus 1) \cup \{1, a\}$$

Hence $0 \in 1 \oplus 1 = \{a, 1\}$, which is a contradiction. Thus $1 \oplus 1 \neq \{a, 1\}$ and so by Lemma 3.5(v), $1 \oplus 1 = \{1\}, \{0, 1\}$ or M.

(*iv*). By (*i*), if $a \oplus a = \{a, 1\}$, then $a \oplus 1 = \{0, 1\}$ or M. If $a \oplus 1 = \{0, 1\}$, then by (HMV_1) ,

$$M = \{0, a\} \cup (1 \oplus a) = \{0, 1\} \oplus a = (1 \oplus a) \oplus a$$

= $1 \oplus (a \oplus a) = 1 \oplus \{a, 1\} = (1 \oplus a) \cup (1 \oplus 1)$
= $\{0, 1\} \cup (1 \oplus 1)$

Hence $a \in 1 \oplus 1$. By Lemma 3.5(v), $1 \oplus 1 = \{1, a\}$ or M. (v). Let $a \oplus a = M$ and $1 \oplus a = \{1, a\}$. If $1 \oplus 1 = \{a, 1\}$, then by (HMV_1) ,

$$M = (a \oplus a) \cup (1 \oplus a) = \{1, a\} \oplus a = (1 \oplus 1) \oplus a = 1 \oplus (1 \oplus a)$$

= 1 \operatorname{} \{1, a\} = (1 \operatorname{} 1) \cup (1 \operatorname{} a)
= (1 \operatorname{} 1) \cup \{1, a\}

Hence $0 \in 1 \oplus 1 = \{a, 1\}$, which is impossible. Thus $1 \oplus 1 \neq \{1, a\}$ and so by Lemma $3.5(v), 1 \oplus 1 = \{1\}, \{0, 1\}$ or M.

(vi). Let $a \oplus a = M$ and $1 \oplus a = \{0, 1\}$. Then by (HMV_1) ,

$$(1 \oplus 1) \oplus a = 1 \oplus (1 \oplus a) = 1 \oplus \{0, 1\} = (0 \oplus 1) \cup (1 \oplus 1) = M.$$

Now, if $1 \oplus 1 = \{1\}$, then $1 \oplus a = (1 \oplus 1) \oplus a = M$, which is a contradiction. Hence $1 \oplus 1 \neq \{1\}$ and so by Theorem $3.5(v), 1 \oplus 1 = \{0, 1\}, \{a, 1\}$ or M

R. A. Borzooei, A. Radfar

Theorem 3.11. There are 24 non-isomorphic proper hyper MV-algebras of order 3 such that $0 \oplus 1 = M$.

Proof. By Lemma 3.5 (*iii*), $a \oplus a = \{1\}, \{0, 1\}, \{1, a\}$ or M. If $a \oplus a = \{1\}$, then by Lemma 3.10 (*ii*), $a \oplus 1 = 1 \oplus 1 = M$ and so we must investigate the following table, which is a hyper MV-algebra.

(\mathbb{D}_{10}	0	a	1
()	{0}	$\{0,a\}$	$\{0, a, 1\}$
0		$\{0,a\}$	$\{1\}$	$\{0, a, 1\}$
]	L	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0, a, 1\}$

If $a \oplus a = \{0, 1\}$, then by Lemma 3.10 (*iii*), $a \oplus 1 = \{a, 1\}$ or M and if $a \oplus 1 = \{a, 1\}$, then $1 \oplus 1 = \{1\}$, $\{0, 1\}$ or M. Thus we must investigate the following 3 cases which all of them are hyper MV-algebras.

\oplus_{11}	0	a	1	\oplus_{12}	0	a	1
0	{0}	$\{0,a\}$	$\{0, a, 1\}$	0	{0}	$\{0,a\}$	$\{0, a, 1\}$
a	$\{0,a\}$	$\{0, 1\}$	$\{a,1\}$	a	$\{0,a\}$	$\{0, 1\}$	$\{a, 1\}$
1	$\{0, a\} \\ \{0, a, 1\}$	$\{a,1\}$	$\{1\}$	1	$\{0, a\}\ \{0, a, 1\}$	$\{a,1\}$	$\{0, 1\}$

\oplus_{13}	0	a	1
	{0}	$\{0,a\}$	$\{0, a, 1\}$
	$\{0,a\}$	$\{0, 1\}$	$\{a,1\}$
1	$\{0, a, 1\}$	$\{a, 1\}$	$\{0, a, 1\}$

If $a \oplus 1 = M$, then by Lemma 3.5 (v), $1 \oplus 1 = \{1\}$, $\{0, 1\}$, $\{1, a\}$ or M. Hence we must investigate the following 4 cases which all of them are hyper MV-algebras.

	\oplus_{14}	0	a	1	\oplus_{15}	0	a	1
	0	{0}	$\{0, a\}$	$\{0, a, 1\}$	0	{0}	$\{0, a\}$	$\{0, a, 1\}$
	a	$\{0, a\}\ \{0, a, 1\}$	$\{0, 1\}$	$\{0, a, 1\}$	a	$\{0, a\}$	$\{0, 1\}\$ $\{0, a, 1\}$	$\{0, a, 1\}$
	1	$\{0, a, 1\}$	$\{0, a, 1\}$	{1}	1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0, 1\}$
	\oplus_{16}	0	a	1	\oplus_{17}	0	a	1
	0	{0}	$\{0, a\}$	$\{0, a, 1\}$	0	{0}	$\{0,a\}$	$\{0, a, 1\}$
-	0	{0}	$\{0, a\}$	$\{0, a, 1\}$	0	{0}	$\{0,a\}$	$\{0, a, 1\}$
-	0	{0}	$\{0, a\}$		0	{0}		$\{0, a, 1\}$

Now, if $a \oplus a = \{a, 1\}$, then by Lemma 3.10 (*iv*), $a \oplus 1 = \{0, 1\}$ or M and if $a \oplus 1 = \{0, 1\}$, then $1 \oplus 1 = \{a, 1\}$ or M. Hence we must investigate the following 2 cases which both of them are hyper MV-algebras.

\oplus_{18}	0	a	1	\oplus_{19}	0	a	1
0	{0}	$\{0,a\}$	$\{0, a, 1\}$	0	{0}	$\{0,a\}$	$\{0, a, 1\}$
a	$\{0, a\} \\ \{0, a, 1\}$	$\{a, 1\}$	$\{0, 1\}$	a	$\{0,a\}$	$\{a, 1\}$	$\{0, 1\}$
1	$\{0, a, 1\}$	$\{0, 1\}$	$\{a,1\}$	1	$\{0, a, 1\}$	$\{0, 1\}$	$\{0, a, 1\}$

If $a \oplus 1 = M$, then by Lemma 3.5 (v), $1 \oplus 1 = \{1\}, \{0, 1\}, \{a, 1\}$ or M and so we must investigate the following 4 cases which all of them are hyper MV-algebras.

\oplus_{20}	0	a	1	\oplus_{21}	0	a	1
0	{0}	$\{0,a\}$	$\{0, a, 1\}$	0	{0}	$\{0,a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0, a, 1\}$	a	$\{0,a\}$	$\{a, 1\}$	$\{0, a, 1\}$
1	$ \begin{array}{c} \{0, a\} \\ \{0, a, 1\} \end{array} $	$\{0, a, 1\}$	$\{1\}$	1	$\{0, a\} \\ \{0, a, 1\}$	$\{0, a, 1\}$	$\{0, 1\}$
	1						
\oplus_{22}	0	a	1	\oplus_{23}	0	a	1
0	{0}	$\{0, a\}$	$\{0, a, 1\}$	0	{0}	$\{0, a\}$	$\{0, a, 1\}$
$\begin{array}{c} 0 \\ a \end{array}$		$\{0, a\}$ $\{a, 1\}$	$ \begin{array}{c} \{0, a, 1\} \\ \{0, a, 1\} \end{array} $	0		$\{0, a\}$	$\{0, a, 1\}$

Now, let $a \oplus a = M$. Then by Lemma 3.10 (v), $a \oplus 1 = \{1, a\}$, $\{0, 1\}$ or M. If $a \oplus 1 = \{1, a\}$, then $1 \oplus 1 = \{1\}, \{0, 1\}$ or M. Thus we must investigate the following 3 cases which all of them are hyper MV-algebras.

\oplus_{24}	0	a	1	\oplus_2	25	0	a	1
	{0}					$\{0\}$		
a	$\{0,a\}$	$\{0, a, 1\}$	$\{a, 1\}$	a		$\{0,a\}$	$\{0, a, 1\}$	$\{a, 1\}$
1	$\{0, a, 1\}$	$\{a,1\}$	$\{1\}$	1		$\{0, a, 1\}$	$\{a,1\}$	$\{0, 1\}$

\oplus_{26}	0	a	1
0	{0}	$\{0,a\}$	$\{0, a, 1\}$
	$\{0,a\}$	$\{0, a, 1\}$	$\{a,1\}$
1	$\{0, a, 1\}$	$\{a,1\}$	$\{0, a, 1\}$

Also by Lemma 3.10 (v), if $a \oplus 1 = \{0, 1\}$, then $1 \oplus 1 = \{0, 1\}, \{a, 1\}$ or M. Hence we must investigate the following 3 cases which all of them are hyper

R. A. Borzooei, A. Radfar

MV-algebras.

\oplus_{27}	0	a	1	\oplus_{28}	0	a	1
0	{0}	$\{0,a\}$	$\{0, a, 1\}$	0	{0}	$\{0,a\}$	$\{0, a, 1\}$
a	$\{0,a\}$	$\{0, a, 1\}$	$\{0, 1\}$	a	$\{0,a\}$	$\{0, a, 1\}$	$\{0, 1\}$
1	$\{0, a, 1\}$	$\{0, 1\}$	$\{0, 1\}$	1	$\{0, a, 1\}$	$\{0, 1\}$	$\{a,1\}$

\oplus_{29}	0	a	1
0	{0}	$\{0,a\}$	$\{0, a, 1\}$
a		$\{0, a, 1\}$	$\{0, 1\}$
1	$\{0, a, 1\}$	$\{0, 1\}$	$\{0, a, 1\}$

Finally, if $a \oplus 1 = M$, then by Lemma 3.5 (v), $1 \oplus 1 = \{1\}, \{0, 1\}, \{a, 1\}$ or M. Hence we must investigate the following 4 cases which all of them are hyper MV-algebras.

\oplus_{30}	0	a	1	\oplus_{31}	0	a	1
			$\{0, a, 1\}$		{0}		
a	$\{0,a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$	a	$\{0, a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	{1}	1	$\{0, a\} \\ \{0, a, 1\}$	$\{0, a, 1\}$	$\{0, 1\}$
	L .				L .		
\oplus_{32}	0	a	1	\oplus_{33}	0	a	1
0	{0}	$\{0, a\}$	$\{0, a, 1\}$	0	{0}	$\{0,a\}$	$\{0, a, 1\}$
0	{0}	$\{0, a\}$	$\{0, a, 1\}$	0	{0}	$\{0,a\}$	$\{0, a, 1\}$
$\begin{array}{c} 0 \\ a \end{array}$		$\{0, a\} \\ \{0, a, 1\}$	$\{ 0, a, 1 \} \\ \{ 0, a, 1 \}$	0		$\{0,a\}$	$\{0, a, 1\}$

Corolary 3.12. There are 33 non-isomorphic hyper MV-algebras of order 3.

Proof. By Theorems 3.3, 3.7, 3.9 and 3.11, we have 33 non-isomorphic hyper MV-algebras of order 3.

References

- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc, 88 (1958), 467–490.
- [2] G. Georgescu, A. Iorgulescu, *Pseudo-MV algebras*, Multi Valued Logic, 6, (2001), 95-135.

- [3] S. Ghorbani, E. Eslami and A. Hasankhani, *Quotient hyper MV-algebras*, Scientiae Mathematicae Japonicae, 3 (2007) 371–386.
- [4] Sh. Ghorbani, A. Hasankhani, and E. Eslami, *Hyper MV-algebras*, Set-Valued Math. Appl, 1 (2008), 205–222.
- [5] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandin aves, Stockholm (1934), 45–49.
- [6] D. Mundici, Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal, 65, (1986), 15–63.