Classification of Hyper $M V$-algebras of Order 3

R. A. Borzooei*, A. Radfar**
*Department of Mathematics, Shahid Beheshti University, G. C.,Tehran, Iran
${ }^{* *}$ Department of Mathematics, Payame Noor University, Tehran, Iran
borzooei@sbu.ac.ir, Ateferadfar@yahoo.com

Abstract

In this paper, we investigated the number of hyper $M V$-algebras of order 3. In fact, we prove that there are 33 hyper $M V$-algebras of order 3 , up to isomorphism.

Key words: hyper $M V$-algebra
MSC 2010: 97U99.

1 Introduction

The concept of $M V$-algebras was introduced by Chang in [1] in order to show Lukasiewicz logic to be standard complete, i.e. complete with respect to evaluations of propositional variables in the real unit interval $[0,1]$. In [6], Mundici showed that any $M V$-algebra is an interval of an Abelian lattice ordered group with a strong unit. Also, he introduced the concept of state on $M V$-algebra. Georgescu and Iorgulescu [2] introduced a new noncommutative algebraic structures, which were called pseudo $M V$-algebras. It can be obtained by dropping commutative axioms in $M V$-algebras, which are a generalization of $M V$-algebras. The hyper structure theory was introduced by F. Marty [5] at the 8th congress of Scandinavian Mathematicians in 1934. Since then many researches have worked in these areas. Recently in [4], Sh. Ghorbani, A. Hasankhni and E. Eslami applied the hyper structure to $M V$-algebras and introduced the concept of a hyper $M V$-algebra which is a generalization of an $M V$-algebra and investigated some related results. Now, in this paper we find all hyper $M V$-algebras of order 3 .

R. A. Borzooei, A. Radfar

2 Preliminary

Definition 2.1. [1] An $M V$-algebra $\left(X, \oplus,{ }^{*}, 0\right)$ is a set X equipped with a binary operation \oplus, a unary operation $*$ and a constant 0 satisfying the following equations:
$\left(M V_{1}\right) \quad x \oplus(y \oplus z)=(x \oplus y) \oplus z$,
$\left(M V_{2}\right) \quad x \oplus y=y \oplus x$,
$\left(M V_{3}\right) \quad x \oplus 0=x$,
$\left(M V_{4}\right)\left(x^{*}\right)^{*}=x$,
$\left(M V_{5}\right) x \oplus 0^{*}=0^{*}$,
$\left(M V_{6}\right) \quad\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$,
for all $x, y, z \in X$.
Definition 2.2. [3]
A hyperalgebra $\left(M, \oplus,{ }^{*}, 0\right)$ with a hyperoperation $\oplus: M \times M \longrightarrow$ $\mathcal{P}^{*}(M)$, a unary operation ${ }^{*}: M \longrightarrow M$ and a constant 0 , is said to be a hyper $M V$-algebra if and only if satisfies the following axioms, for all $x, y, z \in M$:
$\left(H M V_{1}\right) x \oplus(y \oplus z)=(x \oplus y) \oplus z$,
$\left(H M V_{2}\right) x \oplus y=y \oplus x$,
$\left(H M V_{3}\right)\left(x^{*}\right)^{*}=x$,
$\left(H M V_{4}\right) 0^{*} \in x \oplus 0^{*}$,
$\left(H M V_{5}\right)\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$,
$\left(H M V_{6}\right) 0^{*} \in x \oplus x^{*}$,
$\left(H M V_{7}\right)$ If $x \leqslant y$ and $y \leqslant x$, then $x=y$,
where $x \leqslant y$ is defined by $0^{*} \in x^{*} \oplus y$. For every $X, Y \subseteq M, X \leqslant Y$ if there exist $x \in X$ and $y \in Y$ such that $x \leqslant y$. We define $1=0^{*}$

Theorem 2.3. [3] Let $\left(M, \oplus,{ }^{*}, 0\right)$ be a hyper-MV algebra. Then for all $x, y, z \in M$ and for all non-empty subsets A, B and C of M the following hold:
(i) $(A \oplus B) \oplus C=A \oplus(B \oplus C)$,
(ii) $0 \leqslant x \leqslant 1, x \leqslant x$ and $A \leqslant A$,
(iii) If $x \leqslant y$ then $y^{*} \leqslant x^{*}$ and $A \leqslant B$ implies $B^{*} \leqslant A^{*}$,
(iv) If $x \leqslant 0$ or $1 \leqslant x$, then $x=0$ or $x=1$, respectively,
(v) $0 \oplus 0=\{0\}$,
(vi) $x \in x \oplus 0$,
(vii) If $x \oplus 0=y \oplus 0$, then $x=y$.

3 Classification of hyper $M V$-algebras of order 3

In this section we try to find all hyper $M V$-algebras of order 3, up to isomorphism.

Theorem 3.1. Let M be a hyper $M V$-algebra and x be an element of M such that $0 \oplus x=\{x\}$ and $x^{*}=x$. Then the following statements hold:
(i) $(1 \oplus x)^{*} \oplus x=\{x\}$,
(ii) $(1 \oplus x)^{*} \oplus 1=x \oplus x$,
(iii) $x \notin 1 \oplus x$ and $0 \notin 1 \oplus x$.

Proof. Since $0^{*}=1$, then by hypothesis and (HMV5);

$$
\begin{aligned}
& (1 \oplus x)^{*} \oplus x=\left(0^{*} \oplus x\right)^{*} \oplus x=\left(x^{*} \oplus 0\right)^{*} \oplus 0=(x \oplus 0)^{*} \oplus 0=x^{*} \oplus 0=x \oplus 0=\{x\} \\
& \begin{aligned}
(1 \oplus x)^{*} \oplus 1 & =(x \oplus 1)^{*} \oplus 1=\left(\left(x^{*}\right)^{*} \oplus 1\right)^{*} \oplus 1= \\
& =\left(1^{*} \oplus x^{*}\right)^{*} \oplus x^{*}=(0 \oplus x)^{*} \oplus x^{*}=x^{*} \oplus x^{*}=x \oplus x
\end{aligned}
\end{aligned}
$$

and so (i) and (ii) hold.
(iii) If $x \in 1 \oplus x$, then $x=x^{*} \in(1 \oplus x)^{*}$ and so $x \oplus x=x^{*} \oplus x \subseteq(1 \oplus x)^{*} \oplus x$. By $(i), x \oplus x \subseteq\{x\}$. Hence $x \oplus x=\{x\}$. Now, since by $\left(H M V_{6}\right), 1=0^{*} \in$ $x \oplus x^{*}=x \oplus x=\{x\}$, then $x=1$ and so $0=1^{*}=x^{*}=x=1$, which is a contradiction. Hence $x \notin 1 \oplus x$. Now, let $0 \in 1 \oplus x$. Then $1=0^{*} \in(1 \oplus x)^{*}$ and so $1 \oplus x \subseteq(1 \oplus x)^{*} \oplus x$. By $(i), 1 \oplus x \subseteq\{x\}$. Thus $1 \oplus x=\{x\}$, which is a contradiction. Hence $0 \notin 1 \oplus x$.

Note. From now one in this paper, we let $M=\{0, a, 1\}$ be a hyper $M V$-algebra of order 3.

Theorem 3.2. (i) $1 \leq 1,0 \leq 0, a \leq a, 0 \leq 1$ and $0 \leq a$,
(ii) $a \not \leq 0$,
(iii) $a^{*}=a$,
(iv) $1 \in 1 \oplus a$.

Proof. (i). By Theorem 2.3(ii), the proof is clear.
(ii). By Theorem 2.3(iv), the proof is clear.
(iii). By Definition 2.2, $0^{*}=1$ and by $\left(H M V_{3}\right), 0=\left(0^{*}\right)^{*}=1^{*}$. Now, if $a^{*}=1$, then $0=1^{*}=\left(a^{*}\right)^{*}=a$, which is a contradiction. By similar way, if $a^{*}=0$, then $1=0^{*}=\left(a^{*}\right)^{*}=a$, which is a contradiction. Hence, $a^{*}=a$.
(iv). By $\left(H M V_{4}\right), 1=0^{*} \in 0^{*} \oplus a=1 \oplus a$.

Theorem 3.3. If $0 \oplus a=\{a\}$ or $1 \oplus a=\{1\}$, then M is an $M V$-algebra.

R. A. Borzooei, A. Radfar

Proof. Let $0 \oplus a=\{a\}$. Since $a^{*}=a$, then by Theorem 3.1(iii), $a \notin 1 \oplus a$ and $0 \notin 1 \oplus a$ and so $1 \oplus a=\{1\}$.

Moreover, By Theorem 3.1(iii) and $(i), 0 \notin 1 \oplus 0$ and $(1 \oplus 0)^{*} \oplus 0=\{0\}$. Since $0 \notin\{a\}=0 \oplus a$ and $0 \notin 1 \oplus 0$, then $(1 \oplus 0)^{*}=\{0\}$ and so $1 \oplus 0=\{1\}$. By Theorem 3.1 (i) and $(i i), 0 \oplus 1=\{1\}=(1 \oplus a)^{*} \oplus 1=a \oplus a$. Hence $a \oplus a=\{1\}$. Now, by $\left(H M V_{1}\right)$,

$$
1 \oplus 1=(a \oplus a) \oplus 1=a \oplus(1 \oplus a)=a \oplus 1=\{1\} .
$$

Therefore, $x \oplus y$ is singleton for all $x, y \in M$ and so M is an $M V$-algebra.
Now, if $1 \oplus a=\{1\}$, then $\{0\}=\left\{1^{*}\right\}=(1 \oplus a)^{*}$ and so $0 \oplus a=(1 \oplus a)^{*} \oplus a$. $\mathrm{By}\left(H M V_{5}\right)$,

$$
0 \oplus a=(1 \oplus a)^{*} \oplus a=0 \oplus(0 \oplus a)^{*} .
$$

By Theorem 3.2, $a \nless 0,1 \notin 0 \oplus a$. If $0 \in 0 \oplus a$, then $0 \oplus a=\{0, a\}$ and

$$
\begin{aligned}
\{0, a\} & =0 \oplus a=0 \oplus(0 \oplus a)^{*}=0 \oplus\{0, a\}^{*}= \\
& =0 \oplus\{1, a\}=(0 \oplus 1) \cup(0 \oplus a)=(0 \oplus 1) \cup\{0, a\}
\end{aligned}
$$

Hence $0 \oplus 1 \subseteq\{0, a\}$. $\mathrm{By}(H M V 4), 1 \in 0 \oplus 1$. Thus $1 \in\{0, a\}$, which is a contradiction. Thus $0 \notin 0 \oplus a$ and so $0 \oplus a=\{a\}$. Therefore, M is a same $M V$-algebra, which is as follows:

\oplus_{1}	0	a	1
0	$\{0\}$	$\{a\}$	$\{1\}$
a	$\{a\}$	$\{1\}$	$\{1\}$
1	$\{1\}$	$\{1\}$	$\{1\}$

Definition 3.4. We call a hyper $M V$-algebra is proper, if it is not an $M V$ algebra.

Lemma 3.5. Let $M=\{0, a, 1\}$ be a proper hyper $M V$-algebra of order 3 . Then
(i) $0 \oplus a=\{0, a\}$,
(ii) $0 \oplus 1=\{1\}, \quad\{0,1\}$ or M,
(iii) $a \oplus a=\{1\}, \quad\{0,1\}, \quad\{1, a\}$ or M,
(iv) $1 \oplus a=\{0,1\}, \quad\{1, a\}$ or M,
(v) $1 \oplus 1=\{1\},\{0,1\}\{1, a\}$ or M,
(vi) If $a \oplus a=\{1\}$, then $0 \oplus 1=M$.

Proof. (i). Since $a \nless 0$, then $1 \notin 0 \oplus a$. By Theorem $2.3(v i), a \in 0 \oplus a$. Thus $0 \oplus a=\{a\}$ or $\{0, a\}$. If $0 \oplus a=\{a\}$, then by Theorem 3.3, M is not proper. Thus $0 \oplus a=\{0, a\}$
(ii). Since $0 \leq 0$, then $1=0^{*} \in 0^{*} \oplus 0=1 \oplus 0=0 \oplus 1$. Hence it is sufficient to show that $0 \oplus 1 \neq\{1, a\}$. Let $0 \oplus 1=\{1, a\}$, by the contrary. Then by $\left(H M V_{1}\right)$,

$$
\{1, a\}=0 \oplus 1=(0 \oplus 0) \oplus 1=(0 \oplus 1) \oplus 0=\{1, a\} \oplus 0=\{0, a, 1\}
$$

which is impossible. Therefore, $0 \oplus 1 \neq\{1, a\}$ and so $0 \oplus 1=\{1\}, \quad\{0,1\}$ or M.
(iii), (v). Since $a \leq a$ and $0 \leq 1$, then $1 \in a \oplus a$ and $1 \in 1 \oplus 1$ and so (v) and (iii) are hold.
(iv). Since $0 \leq a$, then $1 \in 1 \oplus a$. By Theorem 3.3, if $a \oplus 1=\{1\}$, then M is an $M V$ algebra which is impossible. Hence $1 \oplus a=\{0,1\}, \quad\{1, a\}$ or M.
$(v i)$. Let $a \oplus a=\{1\}$. Then by $\left(H M V_{1}\right)$,

$$
0 \oplus 1=0 \oplus(a \oplus a)=(0 \oplus a) \oplus a=\{0, a\} \oplus a=(0 \oplus a) \cup(a \oplus a)=M
$$

By Lemma 3.5 (ii), we know that $0 \oplus 1=\{1\},\{0,1\}$ or M. So, for the classification of all hyper $M V$-algebras of order 3 , we consider the following three cases.

Case 1: $0 \oplus 1=\{1\}$

Lemma 3.6. Let $M=\{0, a, 1\}$ be a proper hyper $M V$-algebra of order 3 and $0 \oplus 1=\{1\}$. Then
(i) $a \oplus a=\{1, a\}$ or M,
(ii) $1 \oplus 1=\{1\}$,
(iii) $1 \oplus a=M$.

Proof. (i). By Lemma $3.5(i)$ and (iii), $0 \oplus a=\{0, a\}$ and $1 \in a \oplus a$. Hence

$$
(0 \oplus a) \oplus a=\{0, a\} \oplus a=(0 \oplus a) \cup(a \oplus a)=\{0, a\} \cup(a \oplus a)=M .
$$

Since by $\left(H M V_{1}\right),(0 \oplus a) \oplus a=0 \oplus(a \oplus a)$, then $0 \oplus(a \oplus a)=M$. By Lemma 3.5(iii), $a \oplus a=\{1\}, \quad\{0,1\}, \quad\{1, a\}$ or M. If $a \oplus a=\{1\}$, then $0 \oplus(a \oplus a)=0 \oplus 1=\{1\}$, which is a contradiction.

If $a \oplus a=\{0,1\}$, then by Theorem 2.3(v), $0 \oplus(a \oplus a)=0 \oplus\{0,1\}=$ $(0 \oplus 0) \cup(0 \oplus 1)=\{0,1\}$, which is a contradiction. Hence, $a \oplus a=\{1, a\}$ or M.

R. A. Borzooei, A. Radfar

(ii). By $\left(H M V_{5}\right)$, and Theorem 2.3(v),

$$
(1 \oplus 1)^{*} \oplus 1=\left(0^{*} \oplus 1\right)^{*} \oplus 1=\left(1^{*} \oplus 0\right)^{*} \oplus 0=(0 \oplus 0)^{*} \oplus 0=1 \oplus 0=\{1\}
$$

If $0 \in 1 \oplus 1$, then $1 \oplus 1 \subseteq(1 \oplus 1)^{*} \oplus 1=\{1\}$ and so $0 \notin 1 \oplus 1$, which is a contradiction. If $a \in 1 \oplus 1$, then $a \oplus 1 \subseteq(1 \oplus 1)^{*} \oplus 1=\{1\}$. Thus $a \oplus 1=\{1\}$ and so by Theorem 3.3, M is an $M V$-algebra, which is a contradiction. Hence, $1 \oplus 1=\{1\}$.
(iii). By Lemma 3.5, $1 \oplus a=\{0,1\}, \quad\{1, a\}$ or M. If $1 \oplus a=\{0,1\}$, since by $\left(H M V_{1}\right), 1 \oplus(1 \oplus a)=(1 \oplus 1) \oplus a=1 \oplus a$, then $1 \oplus(1 \oplus a)=\{1\}$, which is a contradiction. If $1 \oplus a=\{1, a\}$, since by $\left(H M V_{1}\right), 0 \oplus(1 \oplus a)=$ $(0 \oplus 1) \oplus a=1 \oplus a$, then $0 \oplus(1 \oplus a)=(0 \oplus 1) \cup(0 \oplus a)=M$, which is a contradiction. Hence, $1 \oplus a=M$.

Theorem 3.7. There are two non-isomorphic proper hyper $M V$-algebras of order 3 such that $0 \oplus 1=\{1\}$.

Proof. According Theorem 3.6, if M is a proper hyper $M V$-algebra of order 3 and $0 \oplus 1=\{1\}$, then we must investigate two following tables, which both of them are non-isomorphic hyper $M V$-algebras.

\oplus_{2}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{1\}$
a	$\{0, a\}$	$\{1, a\}$	$\{0, a, 1\}$
1	$\{1\}$	$\{0, a, 1\}$	$\{1\}$

\oplus_{3}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{1\}$	$\{0, a, 1\}$	$\{1\}$

Case 2: $0 \oplus 1=\{0,1\}$
Lemma 3.8. Let $M=\{0, a, 1\}$ be a proper hyper $M V$-algebra of order 3 and $0 \oplus 1=\{0,1\}$. Then
(i) $(a \oplus a) \cup(1 \oplus a)=M$,
(ii) $a \oplus 1=\{a, 1\}$ or M,
(iii) $a \oplus a=\{a, 1\}$ or M,
(iv) $1 \oplus 1=\{0,1\}$ or $\{1\}$.

Proof. $\quad(i)$. Let $0 \oplus 1=\{0,1\}$. By Theorem $3.5(i v)$, since $1 \in 1 \oplus a$, by (HMV1),
$(0 \oplus a) \oplus 1=(0 \oplus 1) \oplus a=\{0,1\} \oplus a=(0 \oplus a) \cup(1 \oplus a)=\{0, a\} \cup(1 \oplus a)=M$.
On the other hands

$$
(0 \oplus a) \oplus 1=\{0, a\} \oplus 1=(0 \oplus 1) \cup(a \oplus 1)=\{0,1\} \cup(a \oplus 1) .
$$

Thus $\{0,1\} \cup(a \oplus 1)=M$ and so $a \in a \oplus 1$. New, we consider two cases $0 \in a \oplus 1$ or $0 \neq a \oplus 1$. If $0 \in a \oplus 1$, since by Theorem $3.5,1 \in a \oplus 1$, then $a \oplus 1=M$ and so $(a \oplus a) \cup(1 \oplus a)=M$. Now, if $0 \neq a \oplus 1$, then by Theorem $3.5, a \in a \oplus 1$. Hence by Theorem $3.2(i v),\{1, a\} \subseteq a \oplus 1$. Thus

$$
M=(0 \oplus 1) \cup(a \oplus 1)=\{0, a\} \oplus 1=\{1, a\}^{*} \oplus 1 \subseteq(a \oplus 1)^{*} \oplus 1 \subseteq M
$$

and so $(a \oplus 1)^{*} \oplus 1=M$. On the other hands, by $\left(H M V_{5}\right),(a \oplus 1)^{*} \oplus 1=$ $(0 \oplus a)^{*} \oplus a$. Hence $(0 \oplus a)^{*} \oplus a=M$. Since $0 \oplus a=\{0, a\}$, then

$$
M=(0 \oplus a)^{*} \oplus a=\{1, a\} \oplus a=(1 \oplus a) \cup(a \oplus a)
$$

(ii). By Lemma 3.5(iv), it is enough to show that $1 \oplus a=\{0,1\}$. Let $0 \in a \oplus 1$, by the contrary. Since by Lemma 3.5(iv) and $(i), 0 \oplus a=\{0, a\}$ and $1 \in 1 \oplus a$, then

$$
(0 \oplus 1) \oplus a=\{0,1\} \oplus a=(0 \oplus a) \cup(1 \oplus a)=M
$$

Thus by $\left(H M V_{1}\right)$,

$$
M=(0 \oplus 1) \oplus a=(0 \oplus a) \oplus 1=\{0,1\} \cup(1 \oplus a)
$$

and so $a \in 1 \oplus a$. Hence $a \oplus 1 \neq\{0,1\}$ and so by lemma 3.5(iv), $a \oplus 1=\{a, 1\}$ or M.
(iii). By Lemma 3.5(i), $0 \oplus a=\{0, a\}$. Now, since $1 \in a \oplus a$, then

$$
(0 \oplus a) \oplus a=\{0, a\} \oplus a=(0 \oplus a) \cup(a \oplus a)=M
$$

Hence, by $\left(H M V_{1}\right), 0 \oplus(a \oplus a)=(0 \oplus a) \oplus a=M$. Since $a \notin 0 \oplus 0$ and $a \notin 0 \oplus 1$, then $a \in a \oplus a$. Hence $a \oplus a=\{a, 1\}$ or M.
(iv). Let $a \in 1 \oplus 1$. By $\left(H M V_{5}\right)$,

$$
a \oplus 1=a^{*} \oplus 1 \subseteq(1 \oplus 1)^{*} \oplus 1=(0 \oplus 0)^{*} \oplus 0=\{0,1\} .
$$

which is a contradiction by (i). Hence $a \notin 1 \oplus 1$ and so by Lemma 3.5(v), $1 \oplus 1=\{0,1\}$ or $\{1\}$.

Theorem 3.9. There are 6 non-isomorphic proper hyper $M V$-algebras of order 3 such that $0 \oplus 1=\{0,1\}$.

Proof. By Lemma $3.8(i i i), a \oplus a=\{a, 1\}$ or M. If $a \oplus a=\{a, 1\}$, then by Lemma $3.8(i i), a \oplus 1=\{a, 1\}$ or M. By Lemma $3.8(i)$, if $a \oplus a=\{a, 1\}$,

R. A. Borzooei, A. Radfar

then $a \oplus 1 \neq\{a, 1\}$. Hence we must investigate 2 following tables which both of them are hyper $M V$-algebras.

\oplus_{4}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0,1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0, a, 1\}$
1	$\{0,1\}$	$\{0, a, 1\}$	$\{1\}$

\oplus_{5}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0,1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0, a, 1\}$
1	$\{1\}$	$\{0, a, 1\}$	$\{0,1\}$

Now, if $a \oplus a=M$, then by Lemma $3.8(i i)$ and $(i v), a \oplus 1=\{a, 1\}$ or M and $1 \oplus 1=\{0,1\}$ or $\{1\}$. Thus we must investigate 4 following tables, which all of them are hyper $M V$-algebras.

\oplus_{6}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0,1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{a, 1\}$
1	$\{0,1\}$	$\{a, 1\}$	$\{1\}$

\oplus_{7}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0,1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{a, 1\}$
1	$\{1\}$	$\{a, 1\}$	$\{0,1\}$

\oplus_{8}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0,1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{0,1\}$	$\{0, a, 1\}$	$\{1\}$

\oplus_{9}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0,1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{0,1\}$	$\{0, a, 1\}$	$\{0,1\}$

Case 3: $0 \oplus 1=M$
Lemma 3.10. Let $M=\{0, a, 1\}$ be a proper hyper $M V$-algebra of order 3 such that $0 \oplus 1=M$. Then
(i) $(a \oplus a) \cup(1 \oplus a)=M$,
(ii) If $a \oplus a=\{1\}$, then $a \oplus 1=1 \oplus 1=M$,
(iii) If $a \oplus a=\{0,1\}$, then $a \oplus 1=\{a, 1\}$ or M and if $a \oplus 1=\{a, 1\}$, then $1 \oplus 1=\{1\},\{0,1\}$ or M,
(iv) If $a \oplus a=\{a, 1\}$, then $a \oplus 1=\{0,1\}$ or M and if $a \oplus 1=\{0,1\}$, then $1 \oplus 1=\{a, 1\}$ or M,
(v) If $a \oplus a=M$ and $a \oplus 1=\{1, a\}$, then $1 \oplus 1=\{1\},\{0,1\}$ or M,
(vi) If $a \oplus a=M$ and $a \oplus 1=\{0,1\}$, then $1 \oplus 1=\{0,1\},\{a, 1\}$ or M.

Proof.

(i). Since by Lemma $3.5(i v), 1 \in 1 \oplus a$, then $M=0 \oplus 1=1^{*} \oplus 1 \subseteq$ $(a \oplus 1)^{*} \oplus 1$ and so $(a \oplus 1)^{*} \oplus 1=M$. Hence by $\left(H M V_{5}\right),(0 \oplus a)^{*} \oplus a=$ $(a \oplus 1)^{*} \oplus 1=M$ and so by Lemma 3.5(i),

$$
M=(0 \oplus a)^{*} \oplus a=\{0, a\}^{*} \oplus a=\{1, a\} \oplus a=(1 \oplus a) \cup a \oplus a .
$$

(ii). Let $a \oplus a=\{1\}$. Since $1 \in 1 \oplus a$, then by $\left(H M V_{5}\right)$ and Lemma $3.5(i)$,

$$
\begin{aligned}
1 \oplus a & =(1 \oplus a) \cup(a \oplus a)=\{1, a\} \oplus a=\{0, a\}^{*} \oplus a=(0 \oplus a)^{*} \oplus a \\
& =(a \oplus 0)^{*} \oplus 0=\{1, a\} \oplus 0=(1 \oplus 0) \cup(a \oplus 0) \\
& =M
\end{aligned}
$$

Now, since $a \oplus a=\{1\}$ and $1 \oplus a=M$, then by $\left(H M V_{1}\right)$,

$$
\begin{aligned}
1 \oplus 1 & =(a \oplus a) \oplus(a \oplus a)=a \oplus(a \oplus(a \oplus a)) \\
& =a \oplus(a \oplus 1)=a \oplus M=(a \oplus 1) \cup(a \oplus a) \cup(a \oplus 0)=M
\end{aligned}
$$

(iii). If $a \oplus a=\{0,1\}$, then by (i) and Lemma 3.5(iv), $a \oplus 1=\{a, 1\}$ or M. Let $a \oplus 1=\{a, 1\}$. If $1 \oplus 1=\{a, 1\}$, then by $\left(H M V_{1}\right)$ and (i),

$$
\begin{aligned}
M & =(a \oplus a) \cup(1 \oplus a)=\{a, 1\} \oplus a=(1 \oplus 1) \oplus a \\
& =1 \oplus(1 \oplus a)=1 \oplus\{1, a\}=(1 \oplus 1) \cup(1 \oplus a) \\
& =(1 \oplus 1) \cup\{1, a\}
\end{aligned}
$$

Hence $0 \in 1 \oplus 1=\{a, 1\}$, which is a contradiction. Thus $1 \oplus 1 \neq\{a, 1\}$ and so by Lemma $3.5(v), 1 \oplus 1=\{1\},\{0,1\}$ or M.
(iv). By (i), if $a \oplus a=\{a, 1\}$, then $a \oplus 1=\{0,1\}$ or M.

If $a \oplus 1=\{0,1\}$, then by $\left(H M V_{1}\right)$,

$$
\begin{aligned}
M & =\{0, a\} \cup(1 \oplus a)=\{0,1\} \oplus a=(1 \oplus a) \oplus a \\
& =1 \oplus(a \oplus a)=1 \oplus\{a, 1\}=(1 \oplus a) \cup(1 \oplus 1) \\
& =\{0,1\} \cup(1 \oplus 1)
\end{aligned}
$$

Hence $a \in 1 \oplus 1$. By Lemma $3.5(v), 1 \oplus 1=\{1, a\}$ or M.
(v). Let $a \oplus a=M$ and $1 \oplus a=\{1, a\}$. If $1 \oplus 1=\{a, 1\}$, then by $\left(H M V_{1}\right)$,

$$
\begin{aligned}
M & =(a \oplus a) \cup(1 \oplus a)=\{1, a\} \oplus a=(1 \oplus 1) \oplus a=1 \oplus(1 \oplus a) \\
& =1 \oplus\{1, a\}=(1 \oplus 1) \cup(1 \oplus a) \\
& =(1 \oplus 1) \cup\{1, a\}
\end{aligned}
$$

Hence $0 \in 1 \oplus 1=\{a, 1\}$, which is impossible. Thus $1 \oplus 1 \neq\{1, a\}$ and so by Lemma $3.5(v), 1 \oplus 1=\{1\},\{0,1\}$ or M.
$(v i)$. Let $a \oplus a=M$ and $1 \oplus a=\{0,1\}$. Then by $\left(H M V_{1}\right)$,

$$
(1 \oplus 1) \oplus a=1 \oplus(1 \oplus a)=1 \oplus\{0,1\}=(0 \oplus 1) \cup(1 \oplus 1)=M
$$

Now, if $1 \oplus 1=\{1\}$, then $1 \oplus a=(1 \oplus 1) \oplus a=M$, which is a contradiction. Hence $1 \oplus 1 \neq\{1\}$ and so by Theorem $3.5(v), 1 \oplus 1=\{0,1\},\{a, 1\}$ or M

R. A. Borzooei, A. Radfar

Theorem 3.11. There are 24 non-isomorphic proper hyper $M V$-algebras of order 3 such that $0 \oplus 1=M$.

Proof. By Lemma 3.5 (iii), $a \oplus a=\{1\},\{0,1\},\{1, a\}$ or M. If $a \oplus a=\{1\}$, then by Lemma $3.10(i i), a \oplus 1=1 \oplus 1=M$ and so we must investigate the following table, which is a hyper $M V$-algebra.

\oplus_{10}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0, a, 1\}$

If $a \oplus a=\{0,1\}$, then by Lemma $3.10(i i i), a \oplus 1=\{a, 1\}$ or M and if $a \oplus 1=\{a, 1\}$, then $1 \oplus 1=\{1\}, \quad\{0,1\}$ or M. Thus we must investigate the following 3 cases which all of them are hyper $M V$-algebras.

\oplus_{11}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0,1\}$	$\{a, 1\}$
1	$\{0, a, 1\}$	$\{a, 1\}$	$\{1\}$

\oplus_{12}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0,1\}$	$\{a, 1\}$
1	$\{0, a, 1\}$	$\{a, 1\}$	$\{0,1\}$

\oplus_{13}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0,1\}$	$\{a, 1\}$
1	$\{0, a, 1\}$	$\{a, 1\}$	$\{0, a, 1\}$

If $a \oplus 1=M$, then by Lemma $3.5(v), 1 \oplus 1=\{1\}, \quad\{0,1\}, \quad\{1, a\}$ or M. Hence we must investigate the following 4 cases which all of them are hyper $M V$-algebras.

\oplus_{14}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0,1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{1\}$

\oplus_{15}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0,1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0,1\}$

\oplus_{16}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0,1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{a, 1\}$

\oplus_{17}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0,1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0, a, 1\}$

Now, if $a \oplus a=\{a, 1\}$, then by Lemma $3.10(i v), a \oplus 1=\{0,1\}$ or M and if $a \oplus 1=\{0,1\}$, then $1 \oplus 1=\{a, 1\}$ or M. Hence we must investigate the following 2 cases which both of them are hyper $M V$-algebras.

\oplus_{18}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0,1\}$
1	$\{0, a, 1\}$	$\{0,1\}$	$\{a, 1\}$

\oplus_{19}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0,1\}$
1	$\{0, a, 1\}$	$\{0,1\}$	$\{0, a, 1\}$

If $a \oplus 1=M$, then by Lemma $3.5(v), 1 \oplus 1=\{1\},\{0,1\},\{a, 1\}$ or M and so we must investigate the following 4 cases which all of them are hyper $M V$-algebras.

\oplus_{20}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{1\}$

\oplus_{21}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0,1\}$

\oplus_{22}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{a, 1\}$

\oplus_{23}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0, a, 1\}$

Now, let $a \oplus a=M$. Then by Lemma $3.10(v), a \oplus 1=\{1, a\},\{0,1\}$ or M. If $a \oplus 1=\{1, a\}$, then $1 \oplus 1=\{1\},\{0,1\}$ or M. Thus we must investigate the following 3 cases which all of them are hyper $M V$-algebras.

\oplus_{24}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{a, 1\}$
1	$\{0, a, 1\}$	$\{a, 1\}$	$\{1\}$

\oplus_{25}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{a, 1\}$
1	$\{0, a, 1\}$	$\{a, 1\}$	$\{0,1\}$

\oplus_{26}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{a, 1\}$
1	$\{0, a, 1\}$	$\{a, 1\}$	$\{0, a, 1\}$

Also by Lemma $3.10(v)$, if $a \oplus 1=\{0,1\}$, then $1 \oplus 1=\{0,1\},\{a, 1\}$ or M. Hence we must investigate the following 3 cases which all of them are hyper

R. A. Borzooei, A. Radfar

$M V$-algebras.

\oplus_{27}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0,1\}$
1	$\{0, a, 1\}$	$\{0,1\}$	$\{0,1\}$

\oplus_{28}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0,1\}$
1	$\{0, a, 1\}$	$\{0,1\}$	$\{a, 1\}$

\oplus_{29}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0,1\}$
1	$\{0, a, 1\}$	$\{0,1\}$	$\{0, a, 1\}$

Finally, if $a \oplus 1=M$, then by Lemma $3.5(v), 1 \oplus 1=\{1\},\{0,1\},\{a, 1\}$ or M. Hence we must investigate the following 4 cases which all of them are hyper $M V$-algebras.

\oplus_{30}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{1\}$

\oplus_{31}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0,1\}$

\oplus_{32}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{a, 1\}$

\oplus_{33}	0	a	1
0	$\{0\}$	$\{0, a\}$	$\{0, a, 1\}$
a	$\{0, a\}$	$\{0, a, 1\}$	$\{0, a, 1\}$
1	$\{0, a, 1\}$	$\{0, a, 1\}$	$\{0, a, 1\}$

Corolary 3.12. There are 33 non-isomorphic hyper $M V$-algebras of order 3 .
Proof. By Theorems 3.3, 3.7, 3.9 and 3.11, we have 33 non-isomorphic hyper $M V$-algebras of order 3 .

References

[1] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc, 88 (1958), 467-490.
[2] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Multi Valued Logic, 6, (2001), 95-135.
[3] S. Ghorbani, E. Eslami and A. Hasankhani, Quotient hyper MValgebras, Scientiae Mathematicae Japonicae, 3 (2007) 371-386.
[4] Sh. Ghorbani, A. Hasankhani, and E. Eslami, Hyper MV-algebras, SetValued Math. Appl, 1 (2008), 205-222.
[5] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandin aves, Stockholm (1934), 45-49.
[6] D. Mundici, Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal, 65, (1986), 15-63.

