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Abstract

In this paper, we introduce the notion of (implicative) neutrosophic filters
in BE-algebras. The relation between implicative neutrosophic filters and
neutrosophic filters is investigated and we show that in self distributive BE-
algebras these notions are equivalent.
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1 Introduction
Neutrosophic set theory was introduced by Smarandache in 1998 ([10]). Neu-

trosophic sets are a new mathematical tool for dealing with uncertainties which
are free from many difficulties that have troubled the usual theoretical approaches.
Research works on neutrosophic set theory for many applications such as infor-
mation fussion, probability theory, control theory, decision making, measurement
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theory, etc. Kandasamy and Smarandache introduced the concept of neutrosophic
algebraic structures ([3, 4, 5]). Since then many researchers worked in this area
and lots of literatures had been produced about the theory of neutrosophic set. In
the neutrosophic set one can have elements which have paraconsistent information
(sum of components > 1), others incomplete information (sum of components
< 1), others consistent information (in the case when the sum of components =1)
and others interval-valued components (with no restriction on their superior or
inferior sums).

H.S. Kim and Y.H. Kim introduced the notion of a BE-algebra as a generaliza-
tion of a dual BCK-algebra ([6]). B.L. Meng give a procedure which generated a
filter by a subset in a transitive BE-algebra ([7]). A. Walendziak introduced the no-
tion of a normal filter in BE-algebras and showed that there is a bijection between
congruence relations and filters in commutative BE-algebras ([11]). A. Borumand
Saeid and et al. defined some types of filters in BE-algebras and showed the re-
lationship between them ([1]). A. Rezaei and et al. discussed on the relationship
between BE-algebras and Hilbert algebras ([9]). Recently, A. Rezaei and et al.
introduced the notion of hesitant fuzzy (implicative) filters and get some results
on BE-algebras ([8]).

In this paper, we introduce the notion of (implicative) neutrosophic filters and
study it in details. In fact, we show that in self distributive BE-algebras concepts
of implicative neutrosophic filter and neutrosophic filter are equivalent.

2 Preliminaries
In this section, we cite the fundamental definitions that will be used in the

sequel:

Definition 2.1. [6] By a BE-algebra we shall mean an algebra X = (X; ∗, 1) of
type (2, 0) satisfying the following axioms:

(BE1) x ∗ x = 1,

(BE2) x ∗ 1 = 1,

(BE3) 1 ∗ x = x,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.

From now on, X is a BE-algebra, unless otherwise is stated. We introduce a
relation “≤” on X by x ≤ y if and only if x ∗ y = 1. A BE-algebra X is said to be
self distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X . A BE-algebra
X is said to be commutative if satisfies:
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(x ∗ y) ∗ y = (y ∗ x) ∗ x, for all x, y ∈ X .

Proposition 2.1. [11] If X is a commutative BE-algebra, then for all x, y ∈ X ,

x ∗ y = 1 and y ∗ x = 1 imply x = y.

We note that “≤” is reflexive by (BE1). If X is self distributive then relation “≤”
is a transitive ordered set on X , because if x ≤ y and y ≤ z, then

x ∗ z = 1 ∗ (x ∗ z) = (x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z) = x ∗ 1 = 1.

Hence x ≤ z. If X is commutative then by Proposition 2.1, relation “≤” is anti-
symmetric. Hence if X is a commutative self distributive BE-algebra, then relation
“≤” is a partial ordered set on X.

Proposition 2.2. [6] In a BE-algebra X, the following hold:

(i) x ∗ (y ∗ x) = 1,

(ii) y ∗ ((y ∗ x) ∗ x) = 1, for all x, y ∈ X.

A subset F of X is called a filter of X if it satisfies: (F1) 1 ∈ F, (F2) x ∈ F
and x ∗ y ∈ F imply y ∈ F . Define

A(x, y) = {z ∈ X : x ∗ (y ∗ z) = 1},

which is called an upper set of x and y. It is easy to see that 1, x, y ∈ A(x, y), for
any x, y ∈ X. Every upper set A(x, y) need not be a filter of X in general.

Definition 2.2. [1] A non-empty subset F of X is called an implicative filter if
satisfies the following conditions:

(IF1) 1 ∈ F ,

(IF2) x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F imply that x ∗ z ∈ F , for all x, y, z ∈ X.

If we replace x of the condition (IF2) by the element 1, then it can be easily
observed that every implicative filter is a filter. However, every filter is not an
implicative filter as shown in the following example.
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Example 2.1. Let X = {1, a, b} be a BE-algebra with the following table:

∗ 1 a b
1 1 a b
a 1 1 a
b 1 a 1

Then F = {1, a} is a filter of X , but it is not an implicative filter, since
1 ∗ (a ∗ b) = 1 ∗ a = a ∈ F and 1 ∗ a = a ∈ F but 1 ∗ b = b /∈ F .

Definition 2.3. [10] Let X be a set. A neutrosophic subset A of X is a triple
(TA, IA, FA) where TA : X → [0, 1] is the membership function, IA : X → [0, 1]
is the indeterminacy function and FA : X → [0, 1] is the nonmembership function.
Here for each x ∈ X , TA(x), IA(x) and FA(x) are all standard real numbers in
[0, 1].

We note that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3, for all x ∈ X. The set of
neutrosophic subset of X is denoted by NS(X).

Definition 2.4. [10] Let A and B be two neutrosophic sets on X . Define A ≤ B
if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x), for all x ∈ X.

Definition 2.5. Let X1 = (X1; ∗, 1) and X2 = (X2; ◦, 1′) be two BE-algebras.
Then a mapping f : X1 → X2 is called a homomorphism if, for all x1, x2 ∈ X1

f(x1 ∗ x2) = f(x1) ◦ f(x2). It is clear that if f : X1 → X2 is a homomorphism,
then f(1) = 1′.

3 Neutrosophic Filters
Definition 3.1. A neutrosophic set A of X is called a neutrosophic filter if satisfies
the following conditions:

(NF1) TA(x) ≤ TA(1), IA(x) ≥ IA(1) and FA(x) ≥ FA(1),

(NF2) min{TA(x ∗ y), TA(x)} ≤ TA(y), min{IA(x ∗ y), IA(x)} ≥ IA(y) and
min{FA(x ∗ y), FA(x)} ≥ FA(y), for all x, y ∈ X .
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The set of neutrosophic filter of X is denoted by NF(X).

Example 3.1. In Example 2.1, put TA(1) = 0.9, TA(a) = TA(b) = 0.5,
IA(1) = 0.2, IA(a) = IA(b) = 0.35 and FA(1) = 0.1, FA(a) = FA(b) = 0.
Then A = (TA, IA, FA) is a neutrosophic filter.

Proposition 3.1. Let A ∈ NF(X). Then

(i) if x ≤ y, then TA(x) ≤ TA(y), IA(x) ≥ IA(y) and FA(x) ≥ FA(y),

(ii) TA(x) ≤ TA(y ∗ x), IA(x) ≥ IA(y ∗ x) and FA(x) ≥ FA(y ∗ x),

(iii) min{TA(x), TA(y)} ≤ TA(x ∗ y), min{IA(x), IA(y)} ≥ IA(x ∗ y) and
min{FA(x), FA(y)} ≥ FA(x ∗ y),

(iv) TA(x) ≤ TA((x∗y)∗y), IA(x) ≥ IA((x∗y)∗y) and FA(x) ≥ FA((x∗y)∗y),

(v) min{TA(x), TA(y)} ≤ TA((x ∗ (y ∗ z)) ∗ z),
min{IA(x), IA(y)} ≥ IA((x ∗ (y ∗ z)) ∗ z) and
min{FA(x), FA(y)} ≥ FA((x ∗ (y ∗ z)) ∗ z),

(vi) if min{TA(y), TA((x ∗ y) ∗ z)} ≤ TA(z ∗ x), then TA is order reversing and
IA, FA are order (i.e. if x ≤ y, then TA(y) ≤ TA(x), IA(y) ≥ IA(x) and
FA(y) ≥ FA(x))

(vii) if z ∈ A(x, y), then min{TA(x), TA(y)} ≤ TA(z),
min{IA(x), IA(y)} ≥ IA(z) and min{FA(x), FA(y)} ≥ FA(z)

(viii) if
n∏

i=1

ai ∗ x = 1, then
n∧

i=1

TA(ai) ≤ TA(x),
n∧

i=1

IA(ai) ≥ IA(x) and

n∧
i=1

FA(ai) ≥ FA(x) where
n∏

i=1

ai ∗ x = an ∗ (an−1 ∗ (. . . (a1 ∗ x) . . . )).

Proof. (i). Let x ≤ y. Then x ∗ y = 1 and so

TA(x) = min{TA(x), TA(1)} = min{TA(x), TA(x ∗ y)} ≤ TA(y),

IA(x) = min{IA(x), IA(1)} = min{IA(x), IA(x ∗ y)} ≥ IA(y),

FA(x) = min{FA(x), FA(1)} = min{FA(x), FA(x ∗ y)} ≥ FA(y).

(ii). Since x ≤ y ∗ x, by using (i) the proof is clear.
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(iii). By using (ii) we have

min{TA(x), TA(y)} ≤ TA(y) ≤ TA(x ∗ y),

min{IA(x), IA(y)} ≥ IA(y) ≥ IA(x ∗ y),
min{FA(x), FA(y)} ≥ FA(y) ≥ FA(x ∗ y).

(iv). It follows from Definition 3.1,

TA(x) = min{TA(x), TA(1)}
= min{TA(x), TA((x ∗ y) ∗ (x ∗ y))}
= min{TA(x), TA(x ∗ ((x ∗ y) ∗ y))}
≤ TA((x ∗ y) ∗ y).

Also, we have

IA(x) = min{IA(x), IA(1)}
= min{IA(x), IA((x ∗ y) ∗ (x ∗ y))}
= min{IA(x), IA(x ∗ ((x ∗ y) ∗ y))}
≥ IA((x ∗ y) ∗ y)

and

FA(x) = min{FA(x), FA(1)}
= min{FA(x), FA((x ∗ y) ∗ (x ∗ y))}
= min{FA(x), FA(x ∗ ((x ∗ y) ∗ y))}
≥ FA((x ∗ y) ∗ y).

(v). From (iv) we have

min{TA(x), TA(y)} ≤ min{TA(x), TA((y ∗ (x ∗ z)) ∗ (x ∗ z))}
= min{TA(x), TA((x ∗ (y ∗ z)) ∗ (x ∗ z))}
= min{TA(x), TA(x ∗ (x ∗ (y ∗ z)) ∗ z))}
≤ TA((x ∗ (y ∗ z)) ∗ z)),

min{IA(x), IA(y)} ≥ min{IA(x), IA((y ∗ (x ∗ z)) ∗ (x ∗ z))}
= min{IA(x), IA((x ∗ (y ∗ z)) ∗ (x ∗ z))}
= min{IA(x), IA(x ∗ (x ∗ (y ∗ z)) ∗ z))}
≥ IA((x ∗ (y ∗ z)) ∗ z))
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and

min{FA(x), FA(y)} ≥ min{FA(x), FA((y ∗ (x ∗ z)) ∗ (x ∗ z))}
= min{FA(x), FA((x ∗ (y ∗ z)) ∗ (x ∗ z))}
= min{FA(x), FA(x ∗ (x ∗ (y ∗ z)) ∗ z))}
≥ FA((x ∗ (y ∗ z)) ∗ z)).

(vi). Let x ≤ y, that is, x ∗ y = 1.

TA(y) = min{TA(y), TA(1∗1)} = min{TA(y), TA((x∗y)∗1)} ≤ TA(1∗x) = TA(x),

IA(y) = min{IA(y), IA(1∗1)} = min{IA(y), IA((x∗y)∗1)} ≥ IA(1∗x) = IA(x),

FA(y) = min{FA(y), FA(1 ∗ 1)} = min{FA(y), FA((x ∗ y) ∗ 1)} ≥ FA(1 ∗ x) =

FA(x).

(vii). Let z ∈ A(x, y). Then x ∗ (y ∗ z) = 1. Hence

min{TA(x), TA(y)} = min{TA(x), TA(y), TA(1)}
= min{TA(x), TA(y), TA(x ∗ (y ∗ z))}
≤ min{TA(y), TA(y ∗ z)}
≤ TA(z).

Also, we have

min{IA(x), IA(y)} = min{IA(x), IA(y), IA(1)}
= min{IA(x), IA(y), IA(x ∗ (y ∗ z))}
≥ min{IA(y), IA(y ∗ z)}
≥ IA(z),

and

min{FA(x), FA(y)} = min{FA(x), FA(y), FA(1)}
= min{FA(x), FA(y), FA(x ∗ (y ∗ z))}
≥ min{FA(y), FA(y ∗ z)}
≥ FA(z).

(viii). The proof is by induction on n. By (vii) it is true for n = 1, 2. Assume
that it satisfies for n = k, that is,
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k∏
i=1

ai∗x = 1⇒
k∧

i=1

TA(ai) ≤ TA(x),
k∧

i=1

IA(ai) ≥ IA(x) and
k∧

i=1

FA(ai) ≥ FA(x)

for all a1, . . . , ak, x ∈ X.

Suppose that
k+1∏
i=1

ai ∗ x = 1, for all a1, . . . , ak, ak+1, x ∈ X. Then

k+1∧
i=2

TA(ai) ≤ TA(a1 ∗ x),
k+1∧
i=2

IA(ai) ≥ IA(a1 ∗ x), and
k+1∧
i=2

FA(ai) ≥ FA(a1 ∗ x).

Since A is a neutrosophic filter of X, we have

k+1∧
i=1

TA(ai) = min{(
k+1∧
i=2

TA(ai)), TA(a1)} ≤ min{TA(a1 ∗ x), TA(a1)} ≤ TA(x),

k+1∧
i=1

IA(ai) = min{(
k+1∧
i=2

IA(ai)), IA(a1)} ≥ min{IA(a1 ∗ x), IA(a1)} ≥ IA(x)

and
k+1∧
i=1

FA(ai) = min{(
k+1∧
i=2

FA(ai)), FA(a1)} ≥ min{FA(a1 ∗ x), FA(a1)} ≥ FA(x).

2

Theorem 3.1. If {Ai}i∈I is a family of neutrosophic filters in X, then
⋂
i∈I

Ai is too.

Theorem 3.2. Let A ∈ NF(X). Then the sets

(i) XTA
= {x ∈ X : TA(x) = TA(1)},

(ii) XIA = {x ∈ X : IA(x) = IA(1)},

(iii) XFA
= {x ∈ X : FA(x) = FA(1)},

are filters of X.

Proof. (i). Obviously, 1 ∈ XhA
. Let x, x ∗ y ∈ XTA

. Then
TA(x) = TA(x ∗ y) = TA(1). Now, by (NF1) and (NF2), we have

TA(1) = min{TA(x), TA(x ∗ y)} ≤ TA(y) ≤ TA(1).

Hence TA(y) = TA(1). Therefore, y ∈ XTA
.

The proofs of (ii) and (iii) are similar to (i).2
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Definition 3.2. A neutrosophic set A of X is called an implicative neutrosophic
filter of X if satisfies the following conditions:

(INF1) TA(1) ≥ TA(x),

(INF2) TA(x ∗ z) ≥ min{TA(x ∗ (y ∗ z)), TA(x ∗ y)},
IA(x ∗ z) ≤ min{IA(x ∗ (y ∗ z)), IA(x ∗ y)} and
FA(x ∗ z) ≤ min{FA(x ∗ (y ∗ z)), FA(x ∗ y)}, for all x, y, z ∈ X .

The set of implicative neutrosophic filter of X is denoted by INF(X). If we
replace x of the condition (INF2) by the element 1, then it can be easily observed
that every implicative neutrosophic filter is a neutrosophic filter. However, ev-
ery neutrosophic filter is not an implicative neutrosophic filter as shown in the
following example.

Example 3.2. Let X = {1, a, b, c, d} be a BE-algebra with the following table:

∗ 1 a b c d
1 1 a b c d
a 1 1 b c b
b 1 a 1 b a
c 1 a 1 1 a
d 1 1 1 b 1

Then X = (X; ∗, 1) is a BE-algebra. Define a neutrosophic set A on X as
follows:

TA(x) =

{
0.85 if x = 1, a
0.12 otherwise

and IA(x) = FA(x) = 0.5, for all x ∈ X .
Then clearly A = (TA, IA, FA) is a neutrosophic filter of X, but it is not an

implicative neutrosophic filter of X, since

TA(b ∗ c) 6≥ min{TA(b ∗ (d ∗ c)), TA(b ∗ d)}.

Theorem 3.3. Let X be a self distributive BE-algebra. Then every neutrosophic
filter is an implicative neutrosophic filter.

Proof. Let A ∈ NF(X) and x ∈ X . Obvious that TA(x) ≤ TA(1), IA(x) ≥
IA(1) and FA(x) ≥ FA(1). By self distributivity and (NF2), we have

min{TA(x∗(y∗z)), TA(x∗y)} = min{TA((x∗y)∗(x∗z)), TA(x∗y)} ≤ TA(x∗z),
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min{IA(x∗(y∗z)), IA(x∗y)} = min{IA((x∗y)∗(x∗z)), IA(x∗y)} ≥ IA(x∗z)
and

min{FA(x∗(y∗z)), FA(x∗y)} = min{FA((x∗y)∗(x∗z)), FA(x∗y)} ≥ FA(x∗z).

Therefore A ∈ INF(X).2
Let t ∈ [0, 1]. For a neutrosophic filter A of X, t-level subset which denoted

by U(A; t) is defined as follows:

U(A; t) := {x ∈ A : t ≤ TA(x), IA(x) ≤ t and FA(x) ≤ t}

and strong t-level subset which denoted by U(A; t)> as

U(A; t)> := {x ∈ A : t < TA(x), IA(x) < t and FA(x) < t}.

Theorem 3.4. Let A ∈ NS(X). The following are equivalent:

(i) A ∈ NF(X),

(ii) (∀t ∈ [0, 1]) U(A; t) 6= ∅ imply U(A; t) is a filter of X.

Proof. (i)⇒(ii). Let x, y ∈ X be such that x, x ∗ y ∈ U(A; t), for any
t ∈ [0, 1]. Then t ≤ TA(x) and t ≤ TA(x∗y). Hence t ≤ min{TA(x), TA(x∗y)} ≤
TA(y). Also, IA(x) ≤ t and IA(x ∗ y) ≤ t and so t ≥ min{IA(x), IA(x ∗ y)} ≥
IA(y). By a similar argument we have t ≥ min{FA(x), FA(x ∗ y)} ≥ FA(y).
Therefore, y ∈ U(A; t).

(ii)⇒(i). Let U(A; t) be a filter of X, for any t ∈ [0, 1] with U(A; t) 6= ∅. Put
TA(x) = IA(x) = FA(x) = t, for any x ∈ X. Then x ∈ U(A; t). Since U(A; t)
is a filter of X, we have 1 ∈ U(A; t) and so TA(x) = t ≤ TA(1). Now, for any
x, y ∈ X , let TA(x ∗ y) = IA(x ∗ y) = FA(x ∗ y) = tx∗y and
TA(x) = IA(x) = FA(x) = tx. Put t = min{tx∗y, tx}. Then x, x ∗ y ∈ U(A; t),
so y ∈ U(A; t). Hence t ≤ TA(y), t ≥ IA(y), t ≥ FA(y) and so

min{TA(x ∗ y), TA(x)} = min{tx∗y, tx} = t ≤ TA(y),

min{IA(x ∗ y), IA(x)} = min{tx∗y, tx} = t ≥ IA(y),

and
min{FA(x ∗ y), FA(x)} = min{tx∗y, tx} = t ≥ FA(y).

Therefore, A ∈ NF(X).2
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Theorem 3.5. Let A ∈ NF(X). Then we have

(∀a, b ∈ X) (∀t ∈ [0, 1]) (a, b ∈ U(A; t) ⇒ A(a, b) ⊆ U(A; t)).

Proof. Assume that A ∈ NF(X). Let a, b ∈ X be such that a, b ∈ U(A; t).
Then t ≤ TA(a) and t ≤ TA(b). Let c ∈ A(a, b). Hence a ∗ (b ∗ c) = 1. Now, by
Proposition 3.1(v) and (BE3), we have

t ≤ min{TA(a), TA(b)} ≤ TA((a ∗ (b ∗ c) ∗ c)) = TA(1 ∗ c) = TA(c),

t ≥ min{IA(a), IA(b)} ≥ IA((a ∗ (b ∗ c) ∗ c)) = IA(1 ∗ c) = IA(c)

and

t ≥ min{FA(a), FA(b)} ≥ FA((a ∗ (b ∗ c) ∗ c)) = FA(1 ∗ c) = FA(c).

Then c ∈ U(A; t). Therefore, A(a, b) ⊆ U(A; t)).2

Corolary 3.1. Let A ∈ NF(X). Then

(∀t ∈ [0, 1]) (U(A; t) 6= ∅ ⇒ U(A; t) =
⋃

a,b∈U(A;t)

A(a, b)).

Proof. It is sufficient prove that U(A; t) ⊆
⋃

a,b∈U(A;t)

A(a, b). For this, assume

that x ∈ U(A; t). Since x ∗ (1 ∗ x) = 1, we have x ∈ A(x, 1). Hence

U(A; t) ⊆ A(x, 1) ⊆
⋃

x∈U(A;t)

A(x, 1) ⊆
⋃

x,y∈U(A;t)

A(x, y).

2

Theorem 3.6. Let X be a self distributive BE-algebra and A ∈ NF(X). Then the
following conditions are equivalent:

(i) A ∈ INF(X),

(ii) TA(y ∗ (y ∗ x)) ≤ TA(y ∗ x), IA(y ∗ (y ∗ x)) ≥ IA(y ∗ x) and
FA(y ∗ (y ∗ x)) ≥ FA(y ∗ x),

(iii) min{TA((z ∗ (y ∗ (y ∗ x))), TA(z)} ≤ TA(y ∗ x),
min{IA((z ∗ (y ∗ (y ∗ x))), IA(z)} ≥ IA(y ∗ x) and
min{FA((z ∗ (y ∗ (y ∗ x))), FA(z)} ≥ FA(y ∗ x).
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Proof. (i)⇒(ii). Let A ∈ NF(X). By (INF1) and (BE1) we have

TA(y ∗ (y ∗ x)) = min{TA(y ∗ (y ∗ x)), TA(1)}
= min{TA(y ∗ (y ∗ x)), TA(y ∗ y)}
≤ TA(y ∗ x),

IA(y ∗ (y ∗ x)) = min{IA(y ∗ (y ∗ x)), IA(1)}
= min{IA(y ∗ (y ∗ x)), IA(y ∗ y)}
≥ IA(y ∗ x)

and

FA(y ∗ (y ∗ x)) = min{FA(y ∗ (y ∗ x)), FA(1)}
= min{FA(y ∗ (y ∗ x)), FA(y ∗ y)}
≥ FA(y ∗ x).

(ii)⇒(iii). Let A be a neutrosophic filter of X satisfying the condition (ii). By
using (NF2) and (ii) we have

min{TA(z ∗ (y ∗ (y ∗ x))), TA(z)} ≤ TA(y ∗ (y ∗ x))
≤ TA(y ∗ x),

min{IA(z ∗ (y ∗ (y ∗ x))), IA(z)} ≥ IA(y ∗ (y ∗ x))
≥ IA(y ∗ x)

and

min{FA(z ∗ (y ∗ (y ∗ x))), FA(z)} ≥ FA(y ∗ (y ∗ x))
≥ FA(y ∗ x).

(iii)⇒(i). Since

x ∗ (y ∗ z) = y ∗ (x ∗ z) ≤ (x ∗ y) ∗ (x ∗ (x ∗ z)),

we have TA(x ∗ (y ∗ z)) ≤ TA((x ∗ y) ∗ (x ∗ (x ∗ z))),
IA(x ∗ (y ∗ z)) ≥ IA((x ∗ y) ∗ (x ∗ (x ∗ z))) and
FA(x ∗ (y ∗ z)) ≥ FA((x ∗ y) ∗ (x ∗ (x ∗ z))), by Proposition 3.1(i). Thus

min{TA(x ∗ (y ∗ z)), TA(x ∗ y)} ≤ min{TA((x ∗ y) ∗ (x ∗ (x ∗ z))), TA(x ∗ y)}
≤ TA(x ∗ z).
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min{IA(x ∗ (y ∗ z)), IA(x ∗ y)} ≥ min{IA((x ∗ y) ∗ (x ∗ (x ∗ z))), IA(x ∗ y)}
≥ IA(x ∗ z)

and

min{FA(x ∗ (y ∗ z)), FA(x ∗ y)} ≥ min{FA((x ∗ y) ∗ (x ∗ (x ∗ z))), FA(x ∗
y)} ≥ FA(x ∗ z).

Therefore, A ∈ INF(X). Let f : X → Y be a homomorphism of BE-algebras

and A ∈ NS(X).
Define tree maps TAf : X → [0, 1] such that TAf (x) = TA(f(x)),
IAf : X → [0, 1] such that IAf (x) = IA(f(x)) and FAf : X → [0, 1] such that
FAf (x) = FA(f(x)), for all x ∈ X. Then TAf , IAf and FAf are well-define and
Af = (TAf , IAf , FAf ) ∈ NS(X).2

Theorem 3.7. Let f : X → Y be an onto homomorphism of BE-algebras and
A ∈ NS(Y). Then A ∈ NF(Y) (resp. A ∈ INF(Y)) if and only if Af ∈ NF(X)
(resp. Af ∈ INF(X)).

Proof. Assume that A ∈ NF(Y). For any x ∈ X , we have

TAf (x) = TA(f(x)) ≤ TA(1Y ) = TA(f(1X)) = TAf (1X),

IAf (x) = IA(f(x)) ≥ IA(1Y ) = IA(f(1X)) = IAf (1X)

and
FAf (x) = FA(f(x)) ≥ FA(1Y ) = FA(f(1X)) = FAf (1X).

Hence (NF1) is valid. Now, let x, y ∈ X . By (NF1) we have

min{TAf (x ∗ y), TAf (x)} = min{TA(f(x ∗ y)), TA(f(x))}
= min{TA(f(x) ∗ f(y)), TA(f(x))}
≤ TA(f(y))

= TAf (y)

Also,

min{IAf (x ∗ y), IAf (x)} = min{IA(f(x ∗ y)), IA(f(x))}
= min{IA(f(x) ∗ f(y)), IA(f(x))}
≥ IA(f(y))

= IAf (y).
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By a similar argument we have min{FAf (x ∗ y), FAf (x)} ≥ FAf (y). Therefore,
Af ∈ NF(X).

Conversely, Assume that Af ∈ NF(X). Let y ∈ Y . Since f is onto, there
exists x ∈ X such that f(x) = y. Then

TA(y) = TA(f(x)) = TAf (x) ≤ TAf (1X) = TA(f(1X)) = TA(1Y ),

IA(y) = IA(f(x)) = IAf (x) ≥ IAf (1X) = IA(f(1X)) = IA(1Y )

and

FA(y) = FA(f(x)) = FAf (x) ≥ FAf (1X) = FA(f(1X)) = FA(1Y ),

Now, let x, y ∈ Y . Then there exists a, b ∈ X such that f(a) = x and
f(b) = y. Hence we have

min{TA(x ∗ y), TA(x)} = min{TA(f(a) ∗ f(b)), TA(f(a))}
= min{TA(f(a ∗ b)), TA(f(a))}
= min{TAf (a ∗ b), TAf (a)}
≤ TAf (b)

= TA(f(b))

= TA(y).

Also, we have

min{IA(x ∗ y), IA(x)} = min{IA(f(a) ∗ f(b)), IA(f(a))}
= min{IA(f(a ∗ b)), IA(f(a))}
= min{IAf (a ∗ b), IAf (a)}
≥ IAf (b)

= IA(f(b))

= IA(y).

By a similar argument we have min{FA(x ∗ y), FA(x)} ≥ FA(y).
Therefore, A ∈ NF(Y).2

4 Conclusion
F. Smarandache as an extension of intuitionistic fuzzy logic introduced the

concept of neutrosophic logic and then several researchers have studied of some
neutrosophic algebraic structures. In this paper, we applied the theory of neu-
trosophic sets to BE-algebras and introduced the notions of (implicative) neutro-
sophic filters and many related properties are investigated.
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