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Abstract

In this paper we introduce the smallest equivalence relation ξ∗ on
a finite fuzzy hypergroup S such that the quotient group S/ξ∗, the set
of all equivalence classes, is a solvable group. The characterization of
solvable groups via strongly regular relation is investigated and several
results on the topic are presented.
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1 Introduction

In mathematics, more specifically in the field of group theory, a solvable
group or soluble group is a group that can be constructed from Abelian
groups using extensions. Equivalently, a solvable group is a group whose
derived series terminates in the trivial subgroup. All Abelian groups are
trivially solvable a subnormal series being given by just the group itself and
the trivial group. But non-Abelian groups may or may not be solvable. A
small example of a solvable, non-nilpotent group is the symmetric group S3.
In fact, as the smallest simple non-Abelian group is A5, (the alternating
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group of degree 5) it follows that every group with order less than 60 is
solvable. The study of fuzzy hyperstructures is an interesting research topic
for fuzzy sets. There are many works on the connections between fuzzy
sets and hyperstructures. This can be considered into three groups. A first
group of papers studies crisp hyperoperations defined through fuzzy sets.
This study was initiated by Corsini in [3, 4] and then continued by other
researchers. A second group of papers concerns the fuzzy hyperalgebras. This
is a direct extension of the concept of fuzzy algebras. This was initiated
by Zahedi in [12]. A third group was introduced by Corsini and Tofan in
[5]. The basic idea in this group of papers is the following: a multioperation
assigns to every pair of elements of S a non-empty subset of S, while a
fuzzy multioperation assigns to every pair of elements of S a nonzero fuzzy
set on S. This idea was continuated by Sen, Ameri and Chowdhury in [10]
where fuzzy semihypergroups are introduced. The fundamental relations are
one of the most important and interesting concepts in fuzzy hyperstructures
that ordinary algebraic structures are derived from fuzzy hyperstructures
by them. Fundamental relation α∗ on fuzzy hypersemigroups is studied in
[1].Also in [8], the smallest strongly regular equivalence relation γ∗ on a fuzzy
hypersemigroup S such that S/γ∗ is a commutative semigroup is studied. In
this paper, we introduce and study the fundamental relation ξ∗ of a finite
fuzzy hypergroup S such that S/ξ∗ is a solvable group. Finally, we introduce
the concept of ξ-part of a fuzzy hypergroup and we determines necessary and
sufficient conditions such that the relation ξ to be transitive.

2 Preliminary

Recall that for a non-empty set S, a fuzzy subset µ of S is a function from
S into the real unite interval [0, 1]. We denote the set of all nonzero fuzzy
subsets of S by F ∗(S). Also for fuzzy subsets µ1 and µ2 of S, then µ1 is smaller
than µ2 and write µ1 ≤ µ2 iff for all x ∈ S, we have µ1(x) ≤ µ2(x). Define
µ1 ∨ µ2 and µ1 ∧ µ2 as follows: ∀x ∈ S, (µ1 ∨ µ2)(x) = max{µ1(x), µ2(x)}
and (µ1 ∧ µ2)(x) = min{µ1(x), µ2(x)}.

A fuzzy hyperoperation on S is a mapping ◦ : S × S 7→ F ∗(S) written as
(a, b) 7→ a ◦ b = ab. The couple (S, ◦) is called a fuzzy hypergropoid.

Definition 2.1. A fuzzy hypergropoid (S, ◦) is called a fuzzy hypersemigroup
if for all a, b, c ∈ S, (a ◦ b) ◦ c = a ◦ (b ◦ c), where for any fuzzy subset µ of S

(a ◦ µ)(r) =


∨
t∈S

((a ◦ t)(r) ∧ µ(t)), µ 6= 0

0, µ = 0
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(µ ◦ a)(r) =


∨
t∈S

(µ(t) ∧ (t ◦ a)(r)), µ 6= 0

0, µ = 0

for all r ∈ S.

Definition 2.2. Let µ, ν be two fuzzy subsets of a fuzzy hypergropoid (S, ◦).

Then we define µ ◦ ν by (µ ◦ ν)(t) =
∨
p,q∈S

(µ(p) ∧ (p ◦ q)(t) ∧ ν(q)), for all

t ∈ S.

Definition 2.3. A fuzzy hypersemigroup (S, ◦) is called fuzzy hypergroup if
x ◦ S = S ◦ x = χS, for all x ∈ S, where χS is characteristic function of S.

Example 2.1. Consider a fuzzy hyperoperation ◦ on a non-empty set S by
a ◦ b = χ{a,b}, for all a, b ∈ S. Then (S, ◦) is a fuzzy hypersemigroup and
fuzzy hypergroup as well.

Theorem 2.1. Let (S, ◦) be a fuzzy hypersemigroup. Then χa ◦ χb = a ◦ b,
for all a, b ∈ S.

Definition 2.4. Let ρ be an equivalence relation on a fuzzy hypersemigroup
(S, ◦), we define two relations ρ and ρ on F ∗(S) as follows: for µ, ν ∈ F ∗(S);
µρν if µ(a) > 0 then there exists b ∈ S such that ν(b) > 0 and aρb, also if
ν(x) > 0 then there exists y ∈ S, such that µ(y) > 0 and xρy. µρν if for all
x ∈ S such that µ(x) > 0 and for all y ∈ S such that ν(y) > 0 , xρy.

Definition 2.5. An equivalence relation ρ on a fuzzy hypersemigroup (S, ◦) is
said to be (strongly) fuzzy regular if aρb, a′ρb′ implies a◦a′ ρ b◦b′(a◦a′ ρ b◦b′).

If ρ is a equivalence relation on a fuzzy hypersemigroup (S, ◦), then we
consider the following hyperoperation on the quotient set S/ρ as follows:

for every aρ, bρ ∈ S/ρ

aρ⊕ bρ = {cρ : (a′ ◦ b′)(c) > 0, aρa′, bρb′}

Theorem 2.2. [2] Let (S, ◦) be a fuzzy hypersemigroup and ρ be an equiva-
lence relation on S. Then

(i) the relation ρ is fuzzy regular on (S, ◦) iff (S/ρ,⊕) is a hypersemigroup.

(ii) the relation ρ is strongly fuzzy regular on (S, ◦) iff (S/ρ,⊕) is a semi-
group.
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3 New strongly regular relation ξ∗n

Now in this paper we introduce and analyze a new strongly regular re-
lation ξ∗n on a fuzzy hypergroup S such that the quotient group S/ξ∗n is
solvable.

Definition 3.1. Let (S, o) be a fuzzy hypergroup. We define
1) L0(S) = S
2) Lk+1(S) = {t ∈ S | (xy)(r) > 0, (tyx)(r) > 0, in which x, y ∈
Lk(S), for some r ∈ S}.
for all k ≥ 0. Suppose that n ∈ N and ξn = ∪m≥1ξm,n, where ξ1,n is the
diagonal relation and for every integer m > 1, ξm,n is the relation defined as
follows:
aξm,nb ⇐⇒ ∃x1, ..., xm ∈ H(m ∈ N),∃σ ∈ Sm : σ(i) = i, if zi 6∈ Ln(H) :
(x1o...oxm)(a) > 0 and (xσ1o...oxσm)(b) > 0.

It is clear that ξn is symmetric. Define for any a ∈ S, a(a) = (χa)(a) = 1,
thus ξn is reflexive. We take ξ∗n to be transitive closure of ξn. Then it is an
equivalence relation on H.

Corolary 3.1. For every n ∈ N, we have α∗ ⊆ ξ∗n ⊆ γ∗.

Theorem 3.1. For every n ∈ N, the relation ξ∗n is a strongly regular relation.

Proof. Suppose n ∈ N. Clearly, ξm,n is an equivalence relation. First
we show that for each x, y, z ∈ S

xξny ⇒ xzξnyz, zxξnzy (∗).

If xξny, then there exists m ∈ N such that xξm,ny, and so there exist

(z1, . . . , zm) ∈ Sm and σ ∈ Sm such that if zi 6∈ Ln(S) then
m∏
i=1

zi(x) >

0,
m∏
i=1

zσ(i)(y) > 0. Let z ∈ S, for any r, s such that (xz)(r) > 0 and

(yz)(s) > 0. We have ((
∏m

i=1 zi)z)(r) =
∨
p{(

m∏
i=1

zi)(p)∧ (pz)(r)}. Let p = x,

then ((
m∏
i=1

zi)(z))r > 0, σ(i) = i, if zi 6∈ Ln(S), ((
m∏
i=1

zσ(i))(z))(s) =

∨
q

{(
m∏
i=1

zσ(i))(q) ∧ (qz)(s)}. Let q = y, then ((
m∏
i=1

zσ(i))(z))(s) > 0, and

σ(i) = i, if zi 6∈ Ln(S). Now suppose that zm+1 = z and we define
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σ
′ ∈ Sm + 1: σ

′
(i) =

{
σ(i), ∀i ∈ {1, 2, . . . ,m}
m+ 1, i = m+ 1.

Thus for all r, s ∈ S;

(
m∏
i=1

zi)(r) > 0, (
m∏
i=1

z
′

σ)(s) > 0; σ
′
(i) = i if zi 6∈ Ln(S). Therefore xzξnyz.

Now if xξ∗ny, then there exists k ∈ N and u0 = x, u1, . . . , uk = y ∈ S
such that u0 = xξnu1ξnu2ξn . . . ξnum = y, by the above result we have

u0z = xzξnu1zξnu2zξn . . . ξnukz = yz and so xzξnyz. Similarly we can show

that zxξnzy. Therefore ξ∗n is a strongly regular relation on S. 2

Proposition 3.1. For every n ∈ N, we have ξ∗n+1 ⊆ ξ∗n.

Proof. Let xξn+1y so ∃(z1, ..., zm) ∈ Sm;∃δ ∈ Sm : δ(i) = i if zi 6∈

Ln+1(S), such that (
m∏
i=1

zi)(x) > 0, (
m∏
i=1

zδ(i))(y) > 0. Now let δ1 = δ, since

Ln+1(S) ⊆ Ln(S) so xξny.2

The next result immediately follows from previous theorem.

Corolary 3.2. If S is a commutative hypergroup, then β∗ = ξ∗n.

A group G is solvable if and only if G(n) = {e} for some n ≥ 1 in
which, G(0) = G, G(1) = G

′
, commutator subgroup of G, and inductively

G(i) = (G(i−1))
′
.

Theorem 3.2. If S is a fuzzy hypergroup and ϕ is a strongly regular relation
on S, then

Lk+1(S/ϕ)) = 〈t | t ∈ Lk(S)〉
for k ∈ N.

Proof. Suppose that G = S/ϕ and x = ϕ(x) for all x ∈ S. We prove the
theorem by induction on k. For k = 0 we have L1(G) = 〈t | t ∈ L0(S)〉. Now
suppose that a = t where t ∈ Lk+1(S) so there exist r1 ∈ S ; (xy)(r1) > 0,
(tyx)(r1) > 0 in which x, y ∈ Lk(S). Then xy = z1; (xy)(z1) > 0 and so
xy = r1. Also tyx = z2; (tyx)(z2) > 0 and tyx = r1 = xy which implies
that t = [x, y]. By hypotheses of induction we conclude that t ∈ Lk+1(G).
Hence a = [t, s] ∈ Lk+2(G). Conversely, let a ∈ Lk+2(G). Then a = [x, y],
where x, y ∈ Lk+1(G), so by hypotheses of induction we have x = u and
y = v, where u, v ∈ Lk(S). Let c ∈ S; (uv)(c) > 0 we show that there
exists t ∈ S such that (tvu)(c) > 0. Since S ◦ u = χS and c ∈ S then there
exists r ∈ S such that (ru)(c) > 0 and so by r ∈ S = S ◦ v there exist t ∈ S;
(tv)(r) > 0. Therefore (tvu)(c) =

∨
n((tv)(n)∧(nu)(c)) ≥ (tv)(r)∧(ru)(c) >

0. Thus (uv)(c) > 0, (tvu)(c) > 0 which implies that t ∈ Lk+1(S). Now since
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uv = c = tvu, then t = [u, v] = [x, y] = a and t ∈ Lk+1(S). Therefore,
a = t ∈ 〈t; t ∈ Lk+1(S)〉.2

Theorem 3.3. S/ξ∗n is a solvable group of class at most n+ 1.

Proof. Using Theorem 3.2, Lk(S/ξ
∗
n)is an Abelian group and Lk+1(S/ξ

∗
n) =

{e}. 2

4 On solvable groups derived from finite fuzzy

hypergroups

In this section we introduce the smallest strongly relation ξ∗ on a finite
fuzzy hypergroup S such that H/ξ∗ is a solvable group.

Definition 4.1. Let S be a finite fuzzy hypergroup. Then we define the
relation ξ∗ on S by

ξ∗ =
⋂
n≥1

ξ∗n.

Theorem 4.1. The relation ξ∗ is a strongly regular relation on a finite fuzzy
hypergroup S such that S/ξ∗ is a solvable group.

Proof. Since ξ∗ =
⋂
n≥1 ξ

∗
n, it is easy to see that ξ∗ is a strongly regular

relation on S. By using Proposition 3.1, we conclude that there exists k ∈ N
such that ξ∗k+1 = ξ∗k. Thus ξ∗ = ξ∗k for some k ∈ N. 2

Theorem 4.2. The relation ξ∗ is the smallest strongly regular relation on a
finite fuzzy hypergroup S such that S/ξ∗ is a solvable group.

Proof. Suppose ρ is a strongly regular relation on S such that K = S/ρ
is a solvable group of class c. Suppose that xξy. Then xξny, for some n ∈ N
and so there exists m ∈ N such that

xξmny ⇐⇒ ∃(z1, ..zm) ∈ Sm,∃δ ∈ Sm : δ(i) = i if zi 6∈ Ln(S) such that
(
∏m

i=1 zi)(x) > 0, (
∏m

i=1 zδ(i))(y) > 0,

Lc+1(S/ρ) = 〈ρ(t); t ∈ Lc(S)〉 = {ρ(e)},

and so ρ(zi) = ρ(e), for every zi ∈ Lc(S). Therefore ρ(x) = ρ(y), which
implies that xρy.2
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5 Transitivity of ξ∗

In this section we introduce the concept of ξ-part of a fuzzy hypergroup
and we determine necessary and sufficient condition such that the relation ξ
to be transitive.

Definition 5.1. Let X be a non-empty subset of S. Then we say that X is a
ξ-part of S if the following condition holds: for every k ∈ N and (z1, ..., zm) ∈
Hm and for every σ ∈ Sk such that σ(i) = i if zi 6∈ ∪n≥1Ln(S), and there

exists x ∈ X such that (
m∏
i=1

zi)(x) > 0, then for all y ∈ S\X, (
m∏
i=1

zσ(i))(y) =

0.

Theorem 5.1. Let X be a non-empty subset of a fuzzy hypergroup S. Then
the following conditions are equivalent:
1) X is a ξ-part of S,
2) x ∈ X, xξy =⇒ y ∈ X,
3) x ∈ X, xξ∗y =⇒ y ∈ X.

Proof. (1) =⇒ (2) if (x, y) ∈ S2 is a pair such that x ∈ X and xξy, then

there exist (z1, ..., zi) ∈ Sk; (
m∏
i=1

zi)(x) > 0, (
m∏
i=1

zσ(i))(y) > 0 and σ(i) = i if

zi 6∈ ∪n≥1Ln(S). Since X is a ξ-part of S, we have y ∈ X.
(2) =⇒ (3) Suppose that (x, y) ∈ S2 is a part such that x ∈ X and xξ∗y.
Then there is (z1, ..., zi) ∈ Sk such that x = z0ξz1ξ...ξzk = y. Now by using
(2) k-times we obtain y ∈ X.
(3) =⇒ (1) For every k ∈ N and (z1, ..., zi) ∈ Sk and for every σ ∈ Sk such

that σ(i) = i if zi 6∈ ∪n≥1Ln(S), then there exists x ∈ X; (
m∏
i=1

zi)(x) > 0 and

there exist y ∈ S\X ; (
∏

i=1 zσ(i))(y) > 0, then xξny and so xξy. Therefore
by (3) we have y ∈ X which is a contradiction.2

Theorem 5.2. The following conditions are equivalent:
1) for every a ∈ H, ξ(a) is a ξ-part of S,
2) ξ is transitive.

Proof. (1) =⇒ (2) Suppose that xξ∗y. Then there is (z1, ..., zi) ∈ Sk

such that x = z0ξz1ξ...ξzk = y, since ξ(zi) for all 0 ≤ i ≤ k, is a ξ-part, we
have zi ∈ ξ(zi−1), for all 1 ≤ i ≤ k. Thus y ∈ ξ(x), which means that xξy.
(2) =⇒ (1) Suppose that x ∈ S, z ∈ ξ(x) and zξy. By transitivity of ξ, we
have y ∈ ξ(x). Now according to the last theorem, ξ(x) is a ξ-part of S.2
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Definition 5.2. The intersection of all ξ-parts which contain A is called
ξ-closure of A in S and it will be denoted by K(A).

In what follows, we determine the set W (A), where A is a non-empty
subset of S. We set
1) W1(A) = A and

2) Wn+1(A) = {x ∈ S | ∃(z1, ..., zi) ∈ Sk : (
m∏
i=1

z(i))(x) > 0, ∃σ ∈ Sk such

that σ(i) = i, if zi 6∈ ∪n≥1Ln(S) and there exists a ∈ Wn(A); (
m∏
i=1

zσ(i))(a) >

0}.
We denote W (A) =

⋃
n≥1Wn(A).

Theorem 5.3. For any non-empty subset of S, the following statements
hold:
1) W (A) = K(A),
2) K(A) = ∪a∈AK(a).

Proof. 1) It is enough to prove:
a) W (A) i a ξ-part,
b) if A ⊆ B and B is a ξ-part, then W (A) ⊆ B.
In order to prove (a), suppose that a ∈ W (A) such that (

∏
i=1 zi)(a) > 0

and σ ∈ Sk such that σ(i) = i, if zi 6∈ ∪n≥1Ln(S). Therefore, there exists

n ∈ N such that (
m∏
i=1

zi)(a) > 0 a ∈ Wn(A). Now if there exists t ∈ S such

that (
∏

i=1 zσ(i))(t) > 0 we obtain t ∈ Wn+1(A). Therefore, t ∈ W (A) which

is a contradiction. Thus (
m∏
i=1

zσ(i))(t) = 0 and so W (A) is a ξ-part. Now

we prove (b) by induction on n. We have W1(A) = A ⊆ B. Suppose that
Wn(A) ⊆ B. We prove that Wn+1(A) ⊆ B. If z ∈ Wn+1(A), then there

exists k ∈ N; (z1, ..., zk) ∈ Sk; (
m∏
i=1

zi)(z) > 0 and there exists σ ∈ Sk such

that σ(i) = i,if zi 6∈ ∪t≥1Lt(S) and there exists t ∈ Wn(A) ; (
m∏
i=1

zσi)(t) > 0,

since Wn(A) ⊆ B we have t ∈ B and (
m∏
i=1

zσi)(t) > 0. Now since B is ξ-part

, (
m∏
i=1

zi)(z) > 0 then z ∈ B.
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2) It is clear that for all a ∈ A, K(a) ⊆ K(A). By part 1), we have K(A) =
∪n≥1Wn(A) and W1(A) = A = ∪a∈A{a}. It is enough to prove that Wn(A) =
∪a∈AWn(a), for all n ∈ N. We follow by induction on n. Suppose it is
true for n. We prove that Wn+1(A) = ∪a∈AWn+1(a). If z ∈ Wn+1(A),

then there exists k ∈ N, (z1, ..., zk) ∈ Sk; (
m∏
i=1

zi)z > 0 and there exists

σ ∈ Sk such that σ(i) = i, if zi 6∈ ∪t≥1Lt(S) and there exist a ∈ Wn(A);

(
m∏
i=1

zσ(i))(a) > 0. By the hypotheses of induction there exists a ∈ Wn(A) =

∪b∈AWn(b); (
m∏
i=1

zσ(i))(a
′
) > 0 for some a

′ ∈ Wn(b) in which b ∈ A. Therefore,

z ∈ Wn+1(b), and so Wn+1(A) ⊆ ∪b∈AWn+1(b). Hence K(A) = ∪a∈AK(a).2

Theorem 5.4. The following relation is equivalence relation on H.

xWy ⇐⇒ x ∈ W (y),

for every (x, y) ∈ S2, where W (y) = W ({y}).

Proof. It is easy to see that W is reflexive and transitive. We prove that
W is symmetric. To this, we check that:
1) for all n ≥ 2 and x ∈ S, Wn(W2(x)) = Wn+1(x),
2) x ∈ Wn(y) if and only if y ∈ Wn(x).
We prove (1) by induction on n.

W2(W2(x)) = {z | ∃q ∈ N, (a1, ..., aq) ∈ Sq; (
∏

i=1 ai)(z) > 0 and ∃σ ∈

Sk such that σ(i) = i, if zi 6∈ ∪s≥1Ls(S) and ∃y ∈ W2(x); (
m∏
i=1

aσ(i))(y) >

0} = W3(x). Now we proceed by induction on n. Suppose Wn(W2(x)) =
Wn+1(x) then

Wn+1(W2(x)) = {z | ∃q ∈ N, (a1, ..., aq) ∈ Sq; (
m∏
i=1

ai)(z) > 0 and ∃σ ∈

Sk such that σ(i) = i, if zi 6∈ ∪s≥1Ls(S) and ∃t ∈ Wn(W2(x)); (
∏
i=1

aσ(i))(t)

> 0} = Wn+2(x). Now we prove (2) by induction on n, too. It is clear
that x ∈ W2(y) if and only if y ∈ W2(x). Suppose x ∈ Wn(y) if and only
if y ∈ Wn(x). Let x ∈ Wn+1(y), then there exists q ∈ N, (a1, ..., aq) ∈

Sq; (
m∏
i=1

ai)(x) > 0 and ∃σ ∈ Sk such that σ(i) = i, if ai 6∈
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∪s≥1Ls(S) and ∃t ∈ Wn(y); (
m∏
i=1

aσ(i))t > 0. Now, (
m∏
i=1

ai)(x) > 0, x ∈ W1(x)

and (
m∏
i=1

aσ(i))(t) > 0 implies that t ∈ W2(x). Since t ∈ Wn(y), then by

hypotheses of induction y ∈ Wn(t) and we see that t ∈ W2(x), therefore
y ∈ Wn(W2(x)) = Wn+1(x). 2

Remark 5.1. If S is a fuzzy hypergroup, then S/ξ∗ is a group. We define
ωS = φ−1(1S/ξ∗), in which φ : S → S/ξ∗ is the canonical projection.

Lemma 5.1. If S is a fuzzy hypergroup and M is a non-empty subset of S,
then

(i) φ−1(φ(M)) = {x ∈ S : (ωSM)(x) > 0} = {x ∈ S : (MωS)(x) > 0}
(ii) If M is a ξ part of S, then φ−1(φ(M)) = M .

Proof. (i) Let x ∈ S and (t, y) ∈ ωS × M such that (ty)(x) > 0,
so φ(x) = φ(t) ⊕ φ(y) = 1S/ξ∗ ⊕ φ(y) = φ(y), therefore x ∈ φ−1(φ(y)) ⊂
φ−1(φ(M)). Conversely, for every x ∈ φ−1(φ(M)), there exists b ∈ M such
that φ(x) = φ(b). By reproducibility, a ∈ S exists such that (ab)(x) > 0, so
φ(b) = φ(x) = φ(a) ⊕ φ(b). This implies φ(a) = 1S/ξ∗ and a ∈ φ−1(1S/ξ∗) =
ωS. Therefore (ωSM)(x) > 0.

In the same way, we can prove that φ−1(φ(M)) = {x ∈ S : (MωS)(x) >
0}.
(ii) We know M ⊆ φ−1(φ(M)). If x ∈ φ−1(φ(M)), then there exists b ∈ M
such that φ(x) = φ(b). Therefore x ∈ ξ∗(x) = ξ∗(b). Since M is a ξ part of
S and b ∈M , by Lemma 5.1, we conclude ξ∗(b) ⊆M and x ∈M . 2

Definition 5.3. Let (S, ·) be a fuzzy hypergroup. K ⊆ S is called a fuzzy
subhypergroup of S if
i) (a · b) · c = a · (b · c), for all a, b, c ∈ S
ii) a ·K = χK, for all a ∈ K.

Theorem 5.5. ωS is a fuzzy subhypergroup of S, which is also a ξ-part of
S.

Proof. Clearly, ωS ⊆ S and so (a·b)·c = a·(b·c), for all a, b, c ∈ ωS. Now
we show that ωSy = χωS

for all y ∈ ωS. Let x, y ∈ ωS, then there exists u ∈ S
such that (uy)(x) > 0. Therefore, uy = x, which implies that u = 1. Thus
u ∈ ωS. Consequently, ωSy = χωS

. Hence, ωS is a fuzzy subhypergroup of S.
Now we prove that K(y) = φ−1(φ({y})) = {x ∈ S : (ωSy)(x) > 0} = ωS.
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z ∈ φ−1(φ({y})) ⇐⇒ ϕ(z) = ϕ(y)

⇐⇒ ξ∗(z) = ξ∗(y)

⇐⇒ zξ∗y

⇐⇒ z ∈ ξ∗(z) = ω({y}) = K(y).

Also since y ∈ ωS, then {x ∈ S : (ωSy)(x) > 0} = {x ∈ S : (χωS
)(x) >

0} = ωS. Therefore K(y) = ωS and so ωS is ξ part. 2
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