RATIO MATHEMATICA 26 (2014), 65–76

Recognizability in Stochastic Monoids

A. Kalampakas^a, O. Louscou-Bozapalidou^b, S. Spartalis^c

 ^{a,c}Department of Production Engineering and Management, Democritus University of Thrace, 67100, Xanthi, Greece
^bSection of Mathematics and Informatics,
Technical Institute of West Macedonia, 50100, Kozani, Greece
akalampakas@gmail.duth.gr

sspar@pme.duth.gr

Abstract

Stochastic monoids and stochastic congruences are introduced and the syntactic stochastic monoid M_L associated to a subset L of a stochastic monoid M is constructed. It is shown that M_L is minimal among all stochastic epimorphisms $h: M \to M'$ whose kernel saturates L. The subset L is said to be stochastically recognizable whenever M_L is finite. The so obtained class is closed under boolean operations and inverse morphisms.

Key words: recognizability, stochastic monoids, minimization.

MSC 2010: 68R01, 68Q10, 20M32.

1 Introduction

A stochastic subset of a set M is a function $F : M \to [0,1]$ with the additional property $\Sigma_{m \in M} F(m) = 1$, i.e., F is a discrete probability distribution. The corresponding class is denoted by Stoc(M). Our subject of study, in the present paper, are stochastic monoids which were introduced in [4]. A stochastic monoid is a set M equipped with a stochastic multiplication $M \times M \to Stoc(M)$ which is associative and unitary. It can be viewed as a nondeterministic monoid (cf. [1, 2, 3]) with multiplication $M \times M \to \mathcal{P}(M)$ such that for all $m_1, m_2 \in M$ a discrete probability distribution is assigned on the set $m_1 \cdot m_2$.

A congruence on a stochastic monoid M is an equivalence \sim on M such that $m_1 \sim m'_1$ and $m_2 \sim m'_2$ imply

$$\sum_{n \in C} (m_1 \cdot m_2)(n) = \sum_{n \in C} (m'_1 \cdot m'_2)(n)$$

for all \sim -classes C. The quotient M/ \sim admits a stochastic monoid structure rendering the canonical function $m \mapsto [m]$ an epimorphism of stochastic monoids. The classical Isomorphism Theorem of Algebra still holds in the stochastic setup, namely

for any epimorphism of stochastic monoids $h : M \to M'$ and every stochastic congruence \sim on M' its inverse image $h^{-1}(\sim)$ defined by

$$m_1 h^{-1}(\sim) m_2$$
 iff $h(m_1) \sim h(m_2)$,

is again a stochastic congruence and the quotient stochastic monoids $M/h^{-1}(\sim)$ and M'/\sim are isomorphic. In particular if \sim is the equality, then $h^{-1}(=)$ is the kernel congruence of h (denoted by \sim_h)

$$m_1 \sim_h m_2$$
 iff $h(m_1) = h(m_2)$,

and the stochastic monoids M/\sim_h and M' are isomorphic.

We show that stochastic congruences are closed under the join operation. This allows us to construct the greatest stochastic congruence included in an equivalence \sim . It is the join of all stochastic congruences on M included into \sim and it is denoted by \sim^{stoc} . The quotient stochastic monoid M/\sim^{stoc} is denoted by M^{stoc} and has the following universal property:

given an epimorphism of stochastic monoids $h: M \to M'$ whose kernel \sim_h saturates the equivalence \sim there exists a unique epimorphism of stochastic monoids $h': M' \to M^{stoc}$ such that $h' \circ h = h^{stoc}$, where $h^{stoc}: M \to M^{stoc}$ is the canonical epimorphism into the quotient.

This result states that h^{stoc} is minimal among all epimorphisms saturating \sim .

Let M be a stochastic monoid and $L \subseteq M$. Denote by \sim_L the greatest congruence of M included in the partition (equivalence) $\{L, M - L\}$, i.e., $\sim_L = \{L, M - L\}^{stoc}$. The quotient stochastic monoid $M_L = M / \sim_L$ will be called the syntactic stochastic monoid of L and it is characterized by the following universal property.

For every stochastic monoid M and every epimorphism $h: M \to M'$ verifying $h^{-1}(h(L)) = L$, there exists a unique epimorphism $h': M' \to M_L$ such that $h' \circ h = h_L$ where $h_L: M \to M_L$ is the canonical projection into the quotient.

A subset L of a stochastic monoid M is stochastically recognizable if there exist a finite stochastic monoid M' and a morphism $h: M \to M'$ such that $h^{-1}(h(L)) = L$. By taking into account the previous result we get that L is recognizable if and only if its syntactic stochastic monoid is finite. Moreover stochastically recognizable subsets are closed under boolean operations and inverse morphisms.

2 Stochastic Subsets

Some useful elementary facts are displayed. Let $(x_i)_{i \in I}, (x_{ij})_{i \in I, j \in J}, (y_j)_{j \in J}$ be families of nonnegative reals, then

$$\sup_{i \in I, j \in J} x_{ij} = \sup_{i \in I} \sup_{j \in J} x_{ij} = \sup_{j \in J} \sup_{i \in I} x_{ij}, \qquad \sup_{i \in I, j \in J} x_i y_j = \sup_{i \in I} x_i \cdot \sup_{j \in J} y_j,$$

provided that the above suprema exist. If $\sup_{I' \subseteq_{fin}I} \sum_{i \in I'} x_i$ exists, then we say that the sum $\sum_{i \in I} x_i$ exists and we put

$$\sum_{i \in I} x_i = \sup_{I' \subseteq_{fin} I} \sum_{i \in I'} x_i$$

where the notation $I' \subseteq_{fin} I$ means that I' is a finite subset of I.

It holds

$$\sum_{i \in I, j \in J} x_{ij} = \sum_{i \in I} \sum_{j \in J} x_{ij} = \sum_{j \in J} \sum_{i \in I} x_{ij}, \qquad \sum_{i \in I, j \in J} x_i y_j = \sum_{i \in I} x_i \sum_{j \in J} y_j.$$

Let M be a non empty set and [0, 1] the unit interval, a *stochastic subset* of M is a function $F: M \to [0, 1]$ with the additional property that the sum of its values exists and is equal to 1

$$\sum_{m \in M} F(m) = 1$$

We denote by Stoc(M) the set of all stochastic subsets of M.

r

Let $F_i : M \to \mathbb{R}_+, i \in I$, be a family of functions such that for every $m \in M$ the sum $\sum_{i \in I} F_i(m)$ exists. Then the assignment

$$m \mapsto \sum_{i \in I} F_i(m)$$

defines a function from M to \mathbb{R}_+ denoted by $\sum_{i \in I} F_i$, i.e.,

$$\left(\sum_{i\in I}F_i\right)(m) = \sum_{i\in I}F_i(m), \quad m\in M.$$

Now let $(\lambda_i)_{i \in I}$ be a family in [0, 1] such that $\sum_{i \in I} \lambda_i = 1$ and $F_i \in Stoc(M)$, $i \in I$. For any finite subset I' of I and any $m \in M$, we have

$$\sum_{i \in I} \lambda_i F_i(m) = \sup_{I' \subseteq_{fin} I} \sum_{i \in I'} \lambda_i F_i(m) \le 1.$$

Thus $\sum_{i \in I} \lambda_i F_i$ is defined and belongs to Stoc(M) because

$$\sum_{m \in M} \left(\sum_{i \in I} \lambda_i F_i \right)(m) = \sum_{m \in M} \sum_{i \in I} \lambda_i F_i(m) = \sum_{i \in I} \sum_{m \in M} \lambda_i F_i(m)$$
$$= \left(\sum_{i \in I} \lambda_i \right) \left(\sum_{m \in M} F_i(m) \right) = 1 \cdot 1 = 1.$$

Thus we can state:

Strong Convexity Lemma (SCL). The set Stoc(M) is a strongly convex set, i.e., for any stochastic family

$$\lambda_i \in [0,1], \ F_i \in Stoc(M), \ i \in I$$

the function $\sum_{i \in I} \lambda_i F_i$ is in Stoc(M).

For arbitrary sets M, M' any function $h: M \to Stoc(M')$ can be extended into a function $\bar{h}: Stoc(M) \to Stoc(M')$ by setting

$$\bar{h}(F) = \sum_{m \in M} F(m) \cdot h(m)$$

In particular, any function $h: M \to M'$ is extended into a function $\bar{h}: Stoc(M) \to Stoc(M')$ by the same as above formula. This formula is legitimate since by the strong convexity lemma

$$\sum_{m \in M} F(m) = 1$$

and h(m) is a stochastic subset of M.

Hence, for any stochastic subset $F: M \rightarrow [0,1]$ we have the expansion formula

$$F = \sum_{m \in M} F(m)\hat{m}$$

where $\hat{m}: M \to [0,1]$ stands for the singleton function

$$\hat{m}(n) = \begin{cases} 1, & \text{if } n = m; \\ 0, & \text{if } n \neq m. \end{cases}$$

Often \hat{m} is identified with m itself.

3 **Stochastic Congruences**

Our main interest is focused on equivalences in the stochastic setup. Any equivalence relation \sim on the set M, can be extended into an equivalence relation \approx on the set Stoc(M) as follows: for $F, F' \in Stoc(M)$ we set $F \approx F'$ if and only if for each \sim -class C it holds

$$\sum_{m \in C} F(m) = \sum_{m \in C} F'(m),$$

that is both F, F' behave stochastically on C in similar way. The above sums exist because F, F' are stochastic subsets of M:

$$\sum_{m \in C} F(m) \le \sum_{m \in M} F(m) = 1.$$

The equivalence \approx has a fundamental property, it is compatible with strong convex combinations.

Proposition 3.1. Assume that $(\lambda_i)_{i \in I}$ is a stochastic family of numbers in [0,1] and $F_i, F'_i \in Stoc(M)$, for all $i \in I$. Then

$$F_i \approx F'_i$$
, for all $i \in I$, implies $\sum_{i \in I} \lambda_i F_i \approx \sum_{i \in I} \lambda_i F'_i$.

Proof. By hypothesis we have

$$\sum_{m \in C} F_i(m) = \sum_{m \in C} F'_i(m)$$

for any \sim -class C in M, and thus

,

$$\sum_{m \in C} \left(\sum_{i \in I} \lambda_i F_i \right) (m) = \sum_{m \in C} \sum_{i \in I} \lambda_i F_i(m) = \sum_{i \in I} \lambda_i \sum_{m \in C} F_i(m)$$
$$= \sum_{i \in I} \lambda_i \sum_{m \in C} F_i'(m) = \sum_{m \in C} \sum_{i \in I} \lambda_i F_i'(m)$$
$$= \sum_{m \in C} \left(\sum_{i \in I} \lambda_i F_i' \right) (m)$$

that is

$$\sum_{i \in I} \lambda_i F_i \approx \sum_{i \in I} \lambda_i F'_i$$

as wanted.

4 Stochastic Monoids

A stochastic monoid is a set M equipped with a stochastic multiplication, i.e. a function

$$M \times M \to Stoc(M), \quad (m_1, m_2) \mapsto m_1 m_2$$

which is associative

$$\sum_{n \in M} (m_1 m_2)(n)(n m_3) = \sum_{n \in M} (m_2 m_3)(n)(m_1 n)$$

and unitary i.e. there is an element $e \in M$ such that

$$me = m = em$$
, for all $m \in M$.

For instance any ordinary monoid can be viewed as a stochastic monoid. In the present study it is important to have a congruence notion. More precisely, let M be a stochastic monoid and \sim an equivalence relation on the set M, such that: $m_1 \sim m'_1$ and $m_2 \sim m'_2$ implies

$$\sum_{m \in C} (m_1 m_2)(m) = \sum_{m \in C} (m'_1 m'_2)(m)$$

for all \sim -classes C, then \sim is called a *stochastic congruence* on M. This condition can be reformulated as follows: $m_1 \sim m'_1$ and $m_2 \sim m'_2$ implies

$$m_1 m_2 \approx m_1' m_2'.$$

Proposition 4.1. The quotient set $M/ \sim is$ structured into a stochastic monoid by defining the stochastic multiplication via the formula

$$([m_1][m_2])([n]) = \sum_{m \in [n]} (m_1 m_2)(m).$$

Proof. First observe that the above multiplication is well defined. Next for every \sim -class [b] we have

$$\begin{aligned} \left(\left([m_1][m_2] \right) [m_3] \right) ([b]) &= \sum_{[n] \in M/\sim} \left([m_1][m_2] \right) ([n]) ([n][m_3]) ([b]) \\ &= \sum_{[n] \in M/\sim} \sum_{n_1 \in [n]} \left(m_1 m_2 \right) (n_1) \sum_{b' \in [b]} (nm_3) (b') \end{aligned}$$

Since $n \sim n_1$ we get

$$= \sum_{[n]\in M/\sim} \sum_{n_1\in[n]} (m_1m_2)(n_1) \sum_{b'\in[b]} (n_1m_3)(b')$$

$$= \sum_{[n]\in M/\sim} \sum_{b'\in[b]} \sum_{n_1\in[n]} (m_1m_2)(n_1)(n_1m_3)(b')$$

$$= \sum_{b'\in[b]} \sum_{n_1\in M} (m_1m_2)(n_1)(n_1m_3)(b').$$

By taking into account the associativity of M we obtain:

$$= \sum_{b' \in [b]} \sum_{n_1 \in M} (m_2 m_3)(n_1)(m_1 n_1)(b')$$

= $([m_1]([m_2][m_3]))([b]).$

Congruences on an ordinary monoid M coincide with stochastic congruences when M is viewed as a stochastic monoid. The first question arising is whether stochastic congruence is a good algebraic notion. This is checked by the validity of the known isomorphism theorems in their stochastic variant.

Given stochastic monoids M and M', a strict morphism from M to M' is a function $h: M \to M'$ preserving stochastic multiplication and units, i.e.,

$$\bar{h}(m_1m_2) = h(m_1)h(m_2), \ h(e) = e',$$

for all $m_1, m_2 \in M$, where e, e' are the units of M, M' respectively, and $\bar{h}: Stoc(M) \to Stoc(M')$ the canonical extension of h defined in Section 2.

Theorem 4.1. Given an epimorphism of stochastic monoids $h : M \to M'$ and a stochastic congruence \sim on M', its inverse image $h^{-1}(\sim)$ defined by

$$m_1 h^{-1}(\sim) m_2$$
 if $h(m_1) \sim h(m_2)$

is also a stochastic congruence and the stochastic quotient monoids $M/h^{-1}(\sim)$ and M'/\sim are isomorphic.

Proof. Assume that

$$m_1 h^{-1}(\sim) m'_1$$
 and $m_2 h^{-1}(\sim) m'_2$

that is

$$h(m_1) \sim h(m'_1)$$
 and $h(m_2) \sim h(m'_2)$.

Then

$$\bar{h}(m_1m_2) = h(m_1)h(m_2) \approx h(m_1')h(m_2') = \bar{h}(m_1'm_2'),$$

that is for all $C \in M' / \sim$, we have

$$\sum_{c \in C} \bar{h}(m_1 m_2)(c) = \sum_{c \in C} \bar{h}(m_1' m_2')(c),$$

 but

$$\sum_{c \in C} \bar{h}(m_1 m_2)(c) = \sum_{c \in C} \sum_{m \in M} (m_1 m_2)(m) h(m)(c) = \sum_{m \in M} (m_1 m_2)(m) \sum_{c \in C} h(m)(c)$$
$$= \sum_{m \in h^{-1}(C)} (m_1 m_2)(m).$$

Recall that all $h^{-1}(\sim)$ -classes are of the form $h^{-1}(C), C \in M' / \sim$. Consequently,

$$= \sum_{m \in h^{-1}(C)} (m_1 m_2)(m) = \sum_{m \in h^{-1}(C)} (m'_1 m'_2)(m)$$

which shows that $h^{-1}(\sim)$ is indeed a congruence of the stochastic monoid M. The desired isomorphism $\hat{h}: M/h^{-1}(\sim) \to M'/\sim$ is given by

 $\hat{h}([m]_{h^{-1}(\sim)}) = [h(m)]_{\sim}.$

Corolary 4.1. Let $h: M \to M'$ be an epimorphism of stochastic monoids. Then the kernel equivalence

 $m_1 \sim_h m_2$ if $h(m_1) = h(m_2)$

is a congruence on M and the stochastic quotient monoid M/\sim_h is isomorphic to M'.

Given stochastic monoids M_1, \ldots, M_k the stochastic multiplication

$$[(m_1, \dots, m_k) \cdot (m'_1, \dots, m'_k)](n_1, \dots, n_k) = (m_1 m'_1)(n_1) \cdots (m_k m'_k)(n_k)$$

structures the set $M_1 \times \cdots \times M_k$ into a stochastic monoid so that the canonical projection

$$\pi_i: M_1 \times \cdots \times M_k \to M_i, \quad \pi_i(m_1, \dots, m_k) = m_i$$

becomes a morphism of stochastic monoids. Notice that the above multiplication is stochastic because

$$\sum_{\substack{n_i \in M_i \\ 1 \le i \le k}} (m_1 m'_1)(n_1) \cdots (m_k m'_k)(n_k) = \sum_{n_1 \in M_1} (m_1 m'_1)(n_1) \cdots \sum_{n_k \in M_k} (m_k m'_k)(n_k)$$
$$= 1 \cdots 1 = 1.$$

Theorem 4.2. Let \sim_i be a stochastic congruence on the stochastic monoid M_i $(1 \leq i \leq k)$. Then $\sim_1 \times \cdots \times \sim_k$ is a stochastic congruence on the stochastic monoid $M_1 \times \cdots \times M_k$ and the stochastic monoids $M_1 \times \cdots \times M_k / \sim_1 \times \cdots \times \sim_k$ and $M_1 / \sim_1 \times \cdots \times M_k / \sim_k$ are isomorphic.

5 Greatest Stochastic Congruence Saturating an Equivalence

First observe that, due to the symmetric property which an equivalence relation satisfies, the sumability condition in the definition of a congruence can be replaced by the weaker condition: $m_1 \sim m'_1$ and $m_2 \sim m'_2$ implies

$$\sum_{m \in C} (m_1 m_2)(m) \le \sum_{m \in C} (m'_1 m'_2)(m)$$

for all \sim -classes C.

Lemma 5.1. The equivalence \sim on the stochastic monoid M is a congruence if and only if the following condition is fulfilled: $m \sim m'$, implies

$$\sum_{b \in C} (m \cdot n)(b) \le \sum_{b \in C} (m' \cdot n)(b) \quad and \quad \sum_{b \in C} (n \cdot m)(b) \le \sum_{b \in C} (n \cdot m')(b).$$

Proof. One direction is immediate whereas for the opposite direction we have: $m_1 \sim m'_1$ and $m_2 \sim m'_2$ imply

$$\sum_{b \in C} (m_1 \cdot m_2)(b) \le \sum_{b \in C} (m'_1 \cdot m_2)(b) \le \sum_{b \in C} (m'_1 \cdot m'_2)(b).$$

Next we demonstrate that stochastic congruences are closed under the join operation. We recall that the join $\bigvee_{i \in I} \sim_i$ of a family of equivalences $(\sim_i)_{i \in I}$ on a set A is the reflexive and transitive closure of their union:

$$\bigvee_{i\in I}\sim_i=\left(\bigcup_{i\in I}\sim_i\right)^*.$$

Theorem 5.1. If $(\sim_i)_{i \in I}$ is a family of stochastic congruences on M, then their join $\bigvee_{i \in I} \sim_i$ is also a stochastic congruence.

Proof. Let \sim_1, \sim_2 be two congruences on M and $\sim = \sim_1 \lor \sim_2$. First we show that $m \sim_1 m'$ implies

$$\sum_{b \in C} (m \cdot n)(b) \le \sum_{b \in C} (m' \cdot n)(b),$$

for all \sim -classes C. From the inclusion $\sim_1 \subseteq \sim$ we get that C is the disjoint union

$$C = \bigcup_{j=1}^{m} C_j^1$$

where C_j^1 denote \sim_1 -classes. Then

$$\sum_{b \in C} (m \cdot n)(b) = \sum_{j=1}^{m} \sum_{b \in C_j^1} (m \cdot n)(b) \le \sum_{j=1}^{m} \sum_{b \in C_j^1} (m' \cdot n)(b) = \sum_{b \in C} (m' \cdot n)(b).$$

By a similar argument we show that $m \sim_2 m'$ implies

$$\sum_{b \in C} (m \cdot n)(b) \le \sum_{b \in C} (m' \cdot n)(b).$$

for all \sim -classes C. Now, if $m \sim m'$, without any loss we may assume that

$$m \sim_1 m_1 \sim_2 m_2 \sim_1 \cdots \sim_1 m_{2\lambda-1} \sim_2 m'$$

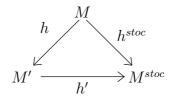
for some elements $m_1, \ldots, m_{2\lambda-1} \in M$. Applying successively the previous facts, we obtain

$$\sum_{b \in C} (m \cdot n)(b) \le \sum_{b \in C} (m_1 \cdot n)(b) \le \dots \le \sum_{b \in C} (m_{2\lambda - 1} \cdot n)(b) \le \sum_{b \in C} (m' \cdot n)(b).$$

For an arbitrary set of congruences we proceed in a similar way.

The previous result leads us to introduce the greatest stochastic congruence included into an equivalence ~ of M. It is the join of all stochastic congruences on M included into ~ and it is denoted by \sim^{stoc} . The quotient stochastic monoid M/\sim^{stoc} is denoted by M^{stoc} and has the following universal property

Theorem 5.2. Given an epimorphism of stochastic monoids $h : M \to M'$ whose kernel \sim_h saturates the equivalence \sim there exists a unique epimorphism of stochastic monoids $h' : M' \to M^{stoc}$ rendering commutative the triangle



where $h^{stoc}: M \to M^{stoc}$ is the canonical projection $m \mapsto [m]_{stoc}$ sending every element $m \in M$ on its \sim^{stoc} -class.

Proof. By virtue of the Isomorphism Theorem the stochastic monoid M' is isomorphic to the quotient M/\sim_h . Since by assumption $\sim_h \subseteq \sim^{stoc}$, h' is the following composition

$$M' \xrightarrow{\sim} M/ \sim_h \xrightarrow{f} M/ \sim^{stoc} = M^{stoc},$$

with $f([m]_h) = [m]_{stoc}, [m]_h$ being the \sim_h -class of m.

The previous result states that h^{stoc} is minimal among all epimorphisms saturating \sim .

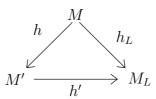
6 Syntactic Stochastic Monoids

Let M be a stochastic monoid and $L \subseteq M$. Denote by \sim_L the greatest congruence of M included in the partition (equivalence) $\{L, M - L\}$, i.e.,

$$\sim_L = \{L, M - L\}^{stoc}$$

The quotient stochastic monoid $M_L = M / \sim_L$ will be called the *syntactic stochastic monoid* of L and it is characterized by the following universal property.

Theorem 6.1. For every stochastic monoid M and every epimorphism $h : M \to M'$ verifying $h^{-1}(h(L)) = L$, there exists a unique epimorphism $h' : M' \to M_L$ rendering commutative the triangle



where h_L is the canonical morphism sending every element $m \in M$ to its \sim_L -class.

Proof. The hypothesis $h^{-1}(h(L)) = L$ means that \sim_h saturates L and so the statement follows immediately by Theorem 5.2.

Given stochastic monoids M, M' we write M' < M if there is a stochastic monoid \overline{M} and a situation

$$M' \xleftarrow{h} \bar{M} \xrightarrow{i} M$$

where i (resp. h) is a monomorphism (resp. epimorphism).

Theorem 6.2. Given subsets L_1, L_2, L of a stochastic monoid M it holds

- i) $M_{L_1 \cap L_2} < M_{L_1} \times M_{L_2}$,
- ii) $M_L = M_{\bar{L}}$, where \bar{L} designates the set theoretic complement of L,
- *iii*) $M_{L_1 \cup L_2} < M_{L_1} \times M_{L_2}$,
- iv) If $h: M \to N$ is an epimorphism of ND-monoids and $L \subseteq N$, then $M_{h^{-1}(L)} = M_L$.

Proof. The proof follows by applying Theorem 6.1.

A subset L of a stochastic monoid M is stochastically recognizable if there exist a finite stochastic monoid M' and a morphism $h: M \to M'$ such that $h^{-1}(h(L)) = L$. The class of stochastically recognizable subsets of M is denoted by StocRec(M). By taking into account Theorem 6.1 we get

Proposition 6.1. $L \subseteq M$ is recognizable if and only if its syntactic stochastic monoid is finite, $card(M_L) < \infty$.

Putting this result together with Theorem 6.2 we yield

Proposition 6.2. The class StocRec(M) is closed under boolean operations and inverse morphisms.

References

- I.P. Cabrera, P. Cordero, M. Ojeda-Aciego, Non-deterministic Algebraic Structures for Soft Computing, Advances in Computational Intelligence, Lecture Notes in Computer Science 6692(2011) 437-444.
- [2] J. S. Golan, Semirings of Formal Series over Hypermonoids: Some Interesting Cases, Kyungpook Math. J. 36(1996) 107-111.
- [3] A. Kalampakas and O. Louskou-Bozapalidou, Syntactic Nondeterministic Monoids, submitted in Pure Mathematics and Applications.
- [4] O. Louskou-Bozapalidou, Stochastic Monoids, Applied Mathematical Sciences 3(2007) 443-446.