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1 Introduction

Burst errors are the type of errors that occur quite frequently in several
communication channels. Codes developed to detect and correct such
errors have been studied extensively by many authors. Abramson [1959]
developed codes which dealt with the correction of single and double
adjacent errors, which was extended by Fire [1959] as a more general

concept called ‘burst errors’. A burst of length b is defined as follows:

Definition 1. A burst of length b is a vector whose only non-zero
components are among some b consecutive components, the first and the

last of which is non-zero.

The nature of burst errors differs from channel to channel depending
upon the kind of channel. Chien and Tang [1965] proposed a modification
in the definition of a burst and they defined a burst of length b, which
shall be called as CT-burst of length b, as follows:

Definition 2. A CT-burst of length b is a vector whose only non-zero
components are confined to some b consecutive positions, the first of which

1S non-zero.

Channels due to Alexander, Gryb and Nast [1960] fall in this

category. This definition was further modified by Dass [1980] as follows:

Definition 3. A burst of length b(fixed) is an n-tuple whose only non-zero
components are confined to b consecutive positions, the first of which is
non-zero and the number of its starting positions is among the first n—b+1

components.
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This definition is useful for channels not producing errors near the
end of a code word. In very busy communication channels errors repeat
themselves. So is a situation when errors occur in the form of bursts. Dass,
Garg and Zannetti [2008] studied this kind of repeated burst errors. They
termed such errors as m-repeated burst errors of length b(fixed) which has

been defined as follows:

Definition 4. An m-repeated bursts of length b(fixed) is an n-tuple whose
only non-zero components are confined to m distinct sets of b consecutive
digits, the first component of each set is non-zero and the number of its

starting positions is among the first n — mb + 1 components.

In particular a 2-repeated bursts of length b(fixed) has been defined
by Dass and Garg [2009(a)] as follows:

Definition 5. A 2-repeated bursts of length b(fixed) is an n-tuple whose
only non-zero components are confined to 2 distinct sets of b consecutive
digits, the first component of each set is non-zero and the number of its

starting positions is among the first n — 2b + 1 components.

During the process of transmission some disturbances cause occur-
rence of burst errors in such a way that over a given length, some digits are
received correctly while others get corrupted i.e. not all the digits inside

a burst are in error. Such bursts are termed as low-density bursts [Wyner

(1963)].

A low-density burst of length b(fixed) with weight w or less has been

defined as follows:
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Definition 6. A low-density burst of length b(fixed) with weight w or
less is an n-tuple whose only non-zero components are confined to some b
consecutive positions, the first of which is non-zero with at most w (w < b)
non-zero components within such b consecutive digits and the number of

starting positions of the burst is among the first n — b+ 1 components.

Dass and Garg [2009(b)] studied codes which are capable to detect
and/or correct m-repeated low-density bursts of length b(fixed) with

weight w or less. They defined such codes as follows:

Definition 7. An m-repeated low-density burst of length b(fixed) with
weight w or less is an n-tuple whose only non-zero components are confined
to m distinct sets of b consecutive positions, the first component of each
set is non-zero where each set can have at most w non-zero components
(w < b), and the number of its starting positions in an n-tuple is among

the first n —mb + 1 positions.

In particular, a 2-repeated low-density burst of length b(fixed) with

weight w or less has been defined as follows:

Definition 8. A 2-repeated low-density burst of length b(fixed) with
weight w or less is an n-tuple whose only non-zero components are confined
to two distinct sets of b consecutive positions, the first component of each
set is non-zero where each set can have at most w non-zero components
(w < b), and the number of its starting positions in an n-tuple is among

the first n — 2b + 1 positions.
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As an illustration, (21010000102000) is a 2-repeated low-density
burst of length up to 6(fixed) with weight 3 or less over GF(3) whereas
(001000011110) is a 2-repeated low-density burst of length at most 5(fixed)
with weight 4 or less over GF(2).

In this paper we have presented a study of codes dealing with the
location of such kind of errors occurring within a sub-block. The concept
of error-locating codes, lying midway between error detection and error
correction, was introduced by Wolf and Elspas [1963]. In this technique
the block of received digits is to be regarded as subdivided into mutually
exclusive sub-blocks and while decoding it is possible to detect the error
and in addition the receiver is able to identify which particular sub-block
contains error. Such codes are referred to as Error-Locating codes (EL-
codes). Wolf and Elspas [1963] studied binary codes which are capable
of detecting and locating a single sub-block containing random errors. A
study of codes locating burst errors of length b(fixed) has been made by
Dass and Kishanchand [1986]. Dass and Arora [2010] obtained bounds for
codes capable of locating repeated burst errors of length b(fixed) occurring

within a sub-block.

In this paper we have obtained bounds on the number of check digits
required to locate 2-repeated low-density bursts of length b(fixed), and
m-repeated low-density bursts of length b(fixed). An illustration of such
a code has also been given. Development of such codes will economize in
the number of parity-check digits required in comparison to the usual low-
density burst error locating codes while considering such repeated bursts

as single bursts.
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The paper has been organized as follows. In section 2 the necessary
condition for the detection and location of 2-repeated low-density burst of
length b(fixed) with weight w or less has been derived. This is followed
by a sufficient condition for the existence of such a code. An illustration
of 2-repeated low-density burst of length b(fixed) with weight w or less
over GF(2) has also been given. In section 3 a necessary condition for the
detection and location of m-repeated low-density burst of length b(fixed)
with weight w or less has been given followed by a sufficient condition for

the existence of such a code.

In what follows we shall consider a linear code to be a subspace of n-
tuples over GF(q). The block of n digits, consisting of r check digits and
k = n — r information digits, is considered to be divided into s mutually

exclusive sub-blocks. Each sub-block contains ¢t = n/s digits.

2 2-Repeated Low-density Burst Error
Locating Codes

In this section, we consider (n, k) linear codes over GF(q) that are capable
of detecting and locating all 2-repeated low-density burst of length b(fixed)

with weight w or less within a single sub-block.

It may be noted that an EL-code capable of detecting and locating
a single sub-block containing an error which is in the form of a 2-repeated
low-density bursts of length b(fixed) with weight w or less must satisfy the

following conditions:

(a) The syndrome resulting from the occurrence of a 2-repeated low-

density burst of length b(fixed) with weight w or less within any one
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sub-block must be distinct from the all zero syndrome.

(b) The syndrome resulting from the occurrence of any 2-repeated low-
density burst of length b(fixed) with weight w or less within a single
sub-block must be distinct from the syndrome resulting likewise from
any 2-repeated low-density burst of length b(fixed) with weight w or

less within any other sub-block.

In this section we shall derive two results. The first result derives a
lower bound on the number of check digits required for the existence of a
linear code over GF(q) capable of detecting and locating a single sub-block
containing errors that are 2-repeated low-density burst of length b(fixed)
with weight w or less. In the second result, an upper bound on the number

of check digits which ensures the existence of such a code has been derived.

As the code is divided into several blocks of length ¢ each and we wish
to detect a 2-repeated low-density burst of length b(fixed) with weight w
or less, we may come across with a situation when the difference between 2b
and t (b+w and t) becomes narrow. We note that if t —b+1 < b+w and
if we consider any two 2-repeated low-density bursts x; and x, of length
b(fixed) with weight w or less such that their non-zero components are
confined to first ¢ — b+ 1 positions with w components confining to some
fixed w positions out of first b consecutive positions then their difference
xr1 - X9 is again a 2-repeated low-density burst of length b(fixed) with
weight w or less. However if we do not restrict ourselves to first t — b+ 1
positions then we may not get a 2-repeated burst of length b(fixed) with
weight w or less. This may be better understood with the help of the

following examples:
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Example 1. Let t =9, b=4, w=3 and ¢g=2. Sothat t —b+1=6 <
b+w(=T7).
Let z; = (101101001) and x5 = (100101011).

Then z; and xy are 2-repeated low-density burst of length 4(fixed) with
weight 3 or less whereas x; — xo = (001000010) is not a 2-repeated burst
of length 4(fixed).

Example 2. Let t =11, b =5, w =3 and ¢ = 2.
Let z; = (10101010010) and x2 = (10101010001)

Then z; and x9 are 2-repeated low-density burst of length 5(fixed) with
weight 3 or less whereas x; — x5 = (00000000011) which is not even a
2-repeated burst of length 4(fixed) what to talk of its weight.

So, accordingly we discuss the following cases:

Case 1: When t —b+1 > 2b.

Let X be the collection of all those vectors in which all the non-
zero components are confined to some fixed w positions out of two sets of
b consecutive positions each i.e. [-th to (I 4 b)-th position and j-th to
(j + b)-th position where j > [+ b.

We observe that the syndromes of all the elements of X should be
different; else for any x1,zs belonging to X having the same syndrome
would imply that the syndrome of x; — x5 which is also an element of X
and hence a 2-repeated low density burst of length b(fixed) with weight w
or less within the same sub-block becomes zero; in violation of condition
(a). Also, since the error locates a single sub-block containing errors that

are 2-repeated low-density bursts of length b(fixed) of weight w or less,
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the syndromes produced by similar vectors in different sub-blocks must be
distinct by condition (b).

Thus the syndromes of vectors which are 2-repeated low-density burst
of length b(fixed) with weight w or less in fixed positions, whether in the
same sub-block or in different sub-blocks, must be distinct. (It may be
noted that the choice of different fixed components in different sub-blocks

will also yield the same result).

As there are (¢** — 1) distinct non-zero syndromes corresponding to
the vectors in any one sub-block and there are s sub-blocks in all, so we
must have atleast (1+s(¢** —1)) distinct syndromes counting the all zero

syndrome.

As maximum number of distinct syndromes available using r check

bits is ¢", so there are ¢ distinct syndromes in all, therefore we must have

¢ > {1+s(¢™ 1)} (1)
where t — b+ 1 > 2b.

Case 2: When b+w <t—>b+1<2b.

Let X be the collection of all those vectors in which all the non-
zero components are confined to some w fixed positions out of first b
components i.e first and b-th position and another set of w fixed positions

out of (b+ 1)-th to (¢ — b+ 1)-th positions.

As discussed in case 1 the syndromes of all the elements of X is

different.

In this case also, there are (¢** — 1) distinct non-zero syndromes

corresponding to the vectors in any one sub-block and there are s sub-
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blocks in all, so we must have atleast (1+ s(¢** — 1)) distinct syndromes

counting the all zero syndrome.

So, in this case also, we must have

¢ > {1+s(¢* - 1)} (2)
where b+w <t—b+1 < 2b.

Case 3: When t —b+1<b+w.

In this case consider X to be collection of all those vectors in which
all the non-zero components are confined to some w fixed positions out of
first b positions and ¢ — 2b+ 1 components from (b+ 1)-th to (t —b+1)-
th positions. In this case there are (¢T(¢~2*1) — 1) distinct non-zero
syndromes corresponding to the vectors in any one sub-block. As and
there are s sub-blocks in all, so we must have atleast (1+s(g®+=2+1) 1))

distinct syndromes counting the all zero syndrome.

Therefore in this case, we must have
qr > {1 + S(qw+(t72b+1) o 1)} (3)

where t —b+1 < b+ w.

From (1), (2), and (3) we have

log {1+ s(¢® —1)} where t —b+ 1> 2b
r> and b+w<t—b+1<2b
log {1+ s(¢”t=#t) — 1)}  where ¢t —b+1<b+w.

Thus we have proved:

Theorem 1. The number of parity check digits r in an (n,k) linear code

subdivided into s sub-blocks of length t each, that locates a single corrupted
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sub-block containing errors that are 2-repeated low density burst of length

b (fired) with weight w or less is at least

log {1+ s(¢** — 1)} where t—b+12>2b
and b+w <t—->b+1<2b.
log, {1+ s(q“ =2+ — 1)} where t—b+1<b+w
Remark 1. For w = b, the weight consideration over the burst becomes

redundant and the result coincides with Theorem 1[Dass and Arora [2010]],

when the bursts considered are 2-repeated bursts of length b(fixed).

In the following result we derive another bound on the number of
check digits required for the existence of such a code. The proof is based
on the technique used to establish Varshomov-Gilbert Sacks bound by
constructing a parity check matrix for such a code [refer Sacks[1958], also
Theorem 4.7 Peterson and Weldon[1972]]. This technique not only ensures
the existence of such a code but also gives a method for the construction

of such a code.

Theorem 2. An (n,k) linear EL-code over GF(q) capable of detecting
a 2-repeated low density burst of length b (fived) with weight w or less
(w < b) within a single sub-block and of locating that sub-block can always

be constructed provided that
¢ > [+ (g = DI+ (g = D =20+ DL+ (¢ — D]

- {1 t-1DY (t o ) (a— DL+ (a - 1)1“’-171”-”}@} (4)

; i
=1
where [1 + )™ denotes the incomplete binomial expansion of (1 4+ x)™

up to the term " in ascending power of x, viz.

[1+z)m) =1+ <m)x+ (m)x2+...+ (m>x’“.
1 2 T
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Proof. The existence of such a code will be shown by constructing an
appropriate (n — k x n) parity check matrix H by a synthesis procedure.
For that we first construct a matrix H; from which the requisite parity
check matrix H shall be obtained by reversing the order of the columns of

each sub-block.

After adding (s—1)t columns appropriately corresponding to the first
(s — 1) sub-blocks, suppose that we have added the first j — 1 columns
hi,ho, ... hj_1 of the s-th sub-block also, out of which the first b — 1
columns hq, ha, ..., hy—; may be chosen arbitrarily (non-zero). We now lay

down the condition to add the j-th column h; to H; as follows:

According to condition (a), for the detection of 2-repeated low-
density burst of length b(fixed) with weight w or less in the s-th sub-block
h; should not be a linear combination of any w—1 or fewer columns among
the immediately preceding b — 1 columns h;_py1,hj—pi2, ... hj—1 together
with any w or fewer columns from amongst some b consecutive columns

from the first 7 — b columns of the s-th sub-block.
i.e.
hy # (o hy +aghg+ - Fag, by, ) +(Bn b+ Bl =+ -+ 6, a,) (5)

where hj,, hj,, ..., h;, , are any w—1 columns among hj_p41, hj_pio, ... hj—q
and h;’s are any w columns from a set of b consecutive columns among the
first j —b columns of the s-th sub-block such that either all the coefficients
B,’s are zero or if the p-th coefficient 3, is the last non-zero coefficients

then b < p < j—0b;

aj’s, 4,’s € GF(q).
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The number of ways in which the coefficients «a;’s can be selected is
[1+4 (¢ — )] 5»=D . To enumerate the coefficients f3;’s is equivalent to
enumerate the number of bursts of length b(fixed) with weight w or less

in a vector of length j —b.

This number including the vector of all zeros [refer Theorem 1, Dass

[1983]] is
L+ (G =20+ 1)(g = DL+ (g - D)7V
So, the number of linear combinations on the right hand side of (5) is
L+ (=D I+ (G - 20+ D(g— DL+ (g = DI (6)

According to condition (b), for the location of 2-repeated low-density
bursts of length b(fixed) with weight w or less, h; should not be a
linear combination of any w — 1 or fewer columns among the immediately
preceding the b—1 columns and any w columns from a set of b consecutive
columns from the remaining j — b columns of the s-th sub-block along
with any w or less columns each from any of the two sets of b consecutive
columns out of any one of the previously chosen s — 1 sub-blocks, the
coefficient of the last column of either both or one of the sets being non-

Zero.

The number of 2-repeated low-density bursts of length b(fixed) with
weight w or less in a sub-block of length ¢ [refer Dass and Garg [2009(b)]]
is

2L (t— zb +1
S (70T - v - ey ")
i=1

Since there are (s—1) previous sub-blocks, therefore number of such linear
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combinations becomes
2 . :
t—1b +2 i —1,w— %
-0 (T e v - pee ey
i=1
So, for the location of 2-repeated low-density burst of length b(fixed) with
weight w or less the number of linear combinations to which h; can not

be equal to is the product of expr.(6) and expr.(8)
i.e. expr.(6) x expr.(8) (9)

Thus the total number of linear combinations to which h; can not be equal
to is the sum of exp.(6) and exp.(9) At worst all these combinations might

yield distinct sum.

Therefore h; can be added to the s-th sub-block provided that

¢ > (L4 (= DI (= D = 2+ D[+ - D)

- {1 +(s—=1)) (t - ib i Z) (=11 + (¢~ 1)](“’“’”}"}

i=1
To obtain the length of the block as t we replace j by t in the above

expression.

The required parity-check matrix H can be obtained from H; by

reversing the order of the columns in each sub-block.

Remark 2. For w = b, the weight consideration over the burst becomes

redundant and the inequality in Theorem 2 reduces to

s I+ (g -1t —-20+ 1))

x {1 e (T - 1>iqi<“>}

i=1
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which coincides with the condition for the location of 2-repeated burst of

length b(fixed) [refer Theorem 2, Dass and Arora [2010]].

We conclude this section with the following example:

Example 3. For an (27,15) linear code over GF(2) consider the following

12 x 27 matrix H which has been constructed by the synthesis procedure

given in the proof of theorem 2 by taking s =3, t =9, b=3, w = 2.

(000000001
000000010
000000100
000001000
000010000
000100000
001000000
010000000
100000000
000000000
000000000
000000000

111111000
110111000
111000000
100000000
111100000
110100000
011000000
000000000
011100000
010100001
011010010
000010100

101000111 ]
100010110
100011110
100010000
101001100
100000100
100000100
101101100
111110000
001111110
011110110
001100111

The null space of this matrix can be used as a code to locate a sub-
block of length ¢ = 9 containing 2-repeated burst of length 3(fixed). From

the error pattern syndrome Table 1 we observe that:

The syndromes of 2-repeated burst of length 3(fixed) within any sub-
block are all non-zero showing thereby that the code detects all 2-repeated
low-density bursts of length 3(fixed) with weight 2 or less occurring within
a sub-block.
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It has been verified through MS-Excel program that the syndromes
of the 2-repeated bursts of length 3(fixed) with weight 2 or less in any
sub-block is different from the syndrome of a 2-repeated burst of length

3(fixed) with weight 2 or less within any other sub-block.

Table 1
Low density 2-repeated bursts of length 3(fixed) Syndromes
Sub-block - 1
1 100100000 000000000 000000000 0000 0100 1000
2 100101000 000000000 000000000 0001 0100 1000
3 100110000 000000000 000000000 0000 1100 1000
4 101100000 000000000 000000000 0000 0110 1000
5 101101000 000000000 000000000 0001 0110 1000
6 101110000 000000000 000000000 0000 1110 1000
7 110100000 000000000 000000000 0000 0101 1000
8 110101000 000000000 000000000 0001 0101 1000
9 110110000 000000000 000000000 0000 1101 1000
10 100010000 000000000 000000000 0000 1000 1000
11 100010100 000000000 000000000 0010 1000 1000
12 100011000 000000000 000000000 0001 1000 1000
13 101010000 000000000 000000000 0000 1010 1000
14 101010100 000000000 000000000 0010 1010 1000
15 101011000 000000000 000000000 0001 1010 1000
16 110010000 000000000 000000000 0000 1001 1000
17 110010100 000000000 000000000 0010 1001 1000
18 110011000 000000000 000000000 0001 1001 1000
19 100001000 000000000 000000000 0001 0000 1000
20 100001010 000000000 000000000 0101 0000 1000
21 100001100 000000000 000000000 0011 0000 1000
22 101001000 000000000 000000000 0001 0010 1000
23 101001010 000000000 000000000 0101 0010 1000
24 101001100 000000000 000000000 0011 0010 1000
25 110001000 000000000 000000000 0001 0001 1000
26 110001010 000000000 000000000 0101 0001 1000
27 110001100 000000000 000000000 0011 0001 1000
28 100000100 000000000 000000000 0010 0000 1000
29 100000101 000000000 000000000 1010 0000 1000
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30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
a0
o1
52
93
o4
%)
56
o7
98
59
60
61
62
63
64
65
66

100000110
101000100
101000101
101000110
110000100
110000101
110000110
010010000
010010100
010011000
010110000
010110100
010111000
011010000
011010100
011011000
010001000
010001010
010001100
010101000
010101010
010101100
011001000
011001010
011001100
010000100
010000101
010000110
010100100
010100101
010100110
011000100
011000101
011000110
001001000
001001010
001001100
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Sub-block - 1
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
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0110 0000 1000
0010 0010 1000
1010 0010 1000
0110 0010 1000

0010
1010
0110
0000
0010
0001
0000
0010
0001
0000
0010
0001
0001
0101
0011
0001
0101
0011
0001
0101
0011
0010
1010
0110
0010
1010
0110
0010
1010
0110

0001
0001
0001
1001
1001
1001
1101
1101
1101
1011
1011
1011
0001
0001
0001
0101
0101
0101
0011
0011
0011
0001
0001
0001
0101
0101
0101
0011
0011
0011

1000
1000
1000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0001 0010 0000
0101 0010 0000
0011 0010 0000
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67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

001011000
001011010
001011100
001101000
001101010
001101100
001000100
001000101
001000110
001010100
001010101
001010110
001100100
001100101
001100110
000100100
000100101
000100110
000101100
000101101
000101110
000110100
000110101
000110110
100000000
101000000
110000000
010000000
010100000
011000000
001000000
001010000
001100000
000100000
000101000
000110000
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Sub-block - 1
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
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0001 1010 0000
0101 1010 0000
0011 1010 0000
0001 0110 0000
0101 0110 0000
0011 0110 0000
0010 0010 0000
1010 0010 0000
0110 0010 0000
0010 1010 0000
1010 1010 0000
0110 1010 0000
0010 0110 0000
1010 0110 0000
0110 0110 0000
0010 0100 0000
1010 0100 0000
0110 0100 0000
0011 0100 0000
1011 0100 0000
0111 0100 0000
0010 1100 0000
1010 1100 0000
0110 1100 0000
0000 0000 1000
0000 0010 1000
0000 0001 1000
0000 0001 0000
0000 0101 0000
0000 0011 0000
0000 0010 0000
0000 1010 0000
0000 0110 0000
0000 0100 0000
0001 0100 0000
0000 1100 0000



Low density 2-repeated bursts of length 3(fixed)

103
104
105
106
107
108
109
110
111

Low density 2-repeated bursts of length 3(fixed)

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

000010000
000010100
000011000
000001000
000001010
000001100
000000100
000000101
000000110

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
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Sub-block - 1
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000
000000000 000000000

Sub-block - 2
100100000 000000000
100101000 000000000
100110000 000000000
101100000 000000000
101101000 000000000
101110000 000000000
110100000 000000000
110101000 000000000
110110000 000000000
100010000 000000000
100010100 000000000
100011000 000000000
101010000 000000000
101010100 000000000
101011000 000000000
110010000 000000000
110010100 000000000
110011000 000000000
100001000 000000000
100001010 000000000
100001100 000000000
101001000 000000000
101001010 000000000
101001100 000000000
110001000 000000000
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Syndromes

0000 1000 0000
0010 1000 0000

0001
0001
0101
0011

1000 0000
0000 0000
0000 0000
0000 0000

0010 0000 0000
1010 0000 0000
0110 0000 0000

Syndromes

0011
1111
1111
1001
0101
0101
1101
0001
0001
0011
0011
1111
1001
1001
0101
1101
1101
0001
0011
0011
0011
1001
1001
1001
1101

0000 1100
0000 1100
0000 1111
1010 0110
1010 0110
1010 0101
1110 0010
1110 0010
1110 0001
1100 0011
1100 0010
1100 0011
0110 1001
0110 1000
0110 1001
0010 1101
0010 1100
0010 1101
1100 0000
1100 0010
1100 0001
0110 1010
0110 1000
0110 1011
0010 1110



Low density 2-repeated bursts of length 3(fixed)

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
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Sub-block - 2
110001010 000000000
110001100 000000000
100000100 000000000
100000101 000000000
100000110 000000000
101000100 000000000
101000101 000000000
101000110 000000000
110000100 000000000
110000101 000000000
110000110 000000000
010010000 000000000
010010100 000000000
010011000 000000000
010110000 000000000
010110100 000000000
010111000 000000000
011010000 000000000
011010100 000000000
011011000 000000000
010001000 000000000
010001010 000000000
010001100 000000000
010101000 000000000
010101010 000000000
010101100 000000000
011001000 000000000
011001010 000000000
011001100 000000000
010000100 000000000
010000101 000000000
010000110 000000000
010100100 000000000
010100101 000000000
010100110 000000000
011000100 000000000
011000101 000000000
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Syndromes

1101 0010 1100
1101 0010 1111
1111 1100 0001
1111 1100 0101
1111 1100 0011
0101 0110 1011
0101 0110 1111
0101 0110 1001
0001 0010 1111
0001 0010 1011
0001 0010 1101
0010 1110 1101
0010 1110 1100
1110 1110 1101
1110 0010 0001
1110 0010 0000
0010 0010 0001
1000 0100 0111
1000 0100 0110
0100 0100 0111
0010 1110 1110
0010 1110 1100
0010 1110 1111
1110 0010 0010
1110 0010 0000
1110 0010 0011
1000 0100 0100
1000 0100 0110
1000 0100 0101
1110 1110 1111
1110 1110 1011
1110 1110 1101
0010 0010 0011
0010 0010 0111
0010 0010 0001
0100 0100 0101
0100 0100 0001



Low density 2-repeated bursts of length 3(fixed)

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
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Sub-block - 2
011000110 000000000
001001000 000000000
001001010 000000000
001001100 000000000
001011000 000000000
001011010 000000000
001011100 000000000
001101000 000000000
001101010 000000000
001101100 000000000
001000100 000000000
001000101 000000000
001000110 000000000
001010100 000000000
001010101 000000000
001010110 000000000
001100100 000000000
001100101 000000000
001100110 000000000
000100100 000000000
000100101 000000000
000100110 000000000
000101100 000000000
000101101 000000000
000101110 000000000
000110100 000000000
000110101 000000000
000110110 000000000
100000000 000000000
101000000 000000000
110000000 000000000
010000000 000000000
010100000 000000000
011000000 000000000
001000000 000000000
001010000 000000000
001100000 000000000
000100000 000000000
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Syndromes

0100 0100 0111

0110
0110
0110
1010
1010
1010
1010
1010
1010
1010
1010
1010
0110
0110
0110
0110
0110
0110
1100
1100
1100
0000
0000
0000
0000
0000
0000
1111
0101
0001

1010
1010
1010
1010
1010
1010

1010
1000
1011
1001
1011
1000

0110 0110
0110 0100
0110 0111

1010
1010
1010
1010
1010
1010

1011
1111
1001
1000
1100
1010

0110 0111
0110 0011
0110 0101

1100
1100
1100
1100
1100
1100
1100
1100
1100

1101
1001
1111
1101
1001
1111
1110
1010
1100

1100 0000

0110
0010

1010
1110

1110 1110 1110
0010 0010 0010
0100 0100 0100
1010 1010 1010
0110 1010 1001
0110 0110 0110
1100 1100 1100



Low density 2-repeated bursts of length 3(fixed)

212
213
214
215
216
217
218
219
220
221
222

Low density 2-repeated bursts of length 3(fixed)

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
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Sub-block - 2
000101000 000000000
000110000 000000000
000010000 000000000
000010100 000000000
000011000 000000000
000001000 000000000
000001010 000000000
000001100 000000000
000000100 000000000
000000101 000000000
000000110 000000000

Sub-block - 3
000000000 100100000
000000000 100101000
000000000 100110000
000000000 101100000
000000000 101101000
000000000 101110000
000000000 110100000
000000000 110101000
000000000 110110000
000000000 100010000
000000000 100010100
000000000 100011000
000000000 101010000
000000000 101010100
000000000 101011000
000000000 110010000
000000000 110010100
000000000 110011000
000000000 100001000
000000000 100001010
000000000 100001100
000000000 101001000
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Syndromes

0000 1100 1100
0000 1100 1111
1100 0000 0011
1100 0000 0010
0000 0000 0011
1100 0000 0000
1100 0000 0010
1100 0000 0001
0000 0000 0001
0000 0000 0101
0000 0000 0011

Syndromes

1111 1110 0111
1101 0111 0011
1000 1110 1001
0111 0111 1000
0101 1110 1100
0000 0111 0110
1111 1110 1101
1101 0111 1001
1000 1110 0011
1000 1111 0110
0110 0000 0001
1010 0110 0010
0000 0110 1001
1110 1001 1110
0010 1111 1101
1000 1111 1100
0110 0000 1011
1010 0110 1000
1101 0110 1100
0011 0110 1011
0011 1001 1011
0101 1111 0011



Low density 2-repeated bursts of length 3(fixed)

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
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Sub-block - 3
000000000 101001010
000000000 101001100
000000000 110001000
000000000 110001010
000000000 110001100
000000000 100000100
000000000 100000101
000000000 100000110
000000000 101000100
000000000 101000101
000000000 101000110
000000000 110000100
000000000 110000101
000000000 110000110
000000000 010010000
000000000 010010100
000000000 010011000
000000000 010110000
000000000 010110100
000000000 010111000
000000000 011010000
000000000 011010100
000000000 011011000
000000000 010001000
000000000 010001010
000000000 010001100
000000000 010101000
000000000 010101010
000000000 010101100
000000000 011001000
000000000 011001010
000000000 011001100
000000000 010000100
000000000 010000101
000000000 010000110
000000000 010100100
000000000 010100101
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Syndromes

1011
1011
1101
0011
0011
0001
1001
1111
1001
0001
0111
0001
1001
1111
0111
1001
0101
0111
1001
0101
1111
0001
1101
0010
1100
1100
0010
1100
1100
1010
0100
0100
1110
0110
0000
1110
0110

1111
0000
0110
0110
1001
0000
0000
0000
1001
1001
1001
0000
0000
0000
0000
1111
1001
0001
1110
1000
1001
0110
0000
1001
1001
0110
1000
1000
0111
0000
0000
1111
1111
1111
1111
1110
1110

0100
0100
0110
0001
0001
1111
1110
1000
0000
0001
0111
0101
0100
0010
0100
0011
0000
1011
1100
1111
1011
1100
1111
1110
1001
1001
0001
0110
0110
0001
0110
0110
1101
1100
1010
0010
0011



Low density 2-repeated bursts of length 3(fixed)

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
000000000
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Sub-block - 3
000000000 010100110
000000000 011000100
000000000 011000101
000000000 011000110
000000000 001001000
000000000 001001010
000000000 001001100
000000000 001011000
000000000 001011010
000000000 001011100
000000000 001101000
000000000 001101010
000000000 001101100
000000000 001000100
000000000 001000101
000000000 001000110
000000000 001010100
000000000 001010101
000000000 001010110
000000000 001100100
000000000 001100101
000000000 001100110
000000000 000100100
000000000 000100101
000000000 000100110
000000000 000101100
000000000 000101101
000000000 000101110
000000000 000110100
000000000 000110101
000000000 000110110
000000000 100000000
000000000 101000000
000000000 110000000
000000000 010000000
000000000 010100000
000000000 011000000
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Syndromes

0000 1110 0101
0110 0110 0010
1110 0110 0011
1000 0110 0101

1010
0100
0100
1101
0011
0011
1010
0100
0100
0110
1110
1000
0001
1001
1111
0110
1110
1000
1110
0110
0000
1100
0100
0010
1001
0001
0111
1111
0111
1111
0000
0000

0000
0000
1111
0000
0000
1111
0001
0001
1110
0110
0110
0110
0110
0110
0110
0111
0111
0111
1110
1110
1110
0111
0111
0111
1110
1110
1110
1111
0110
1111
0000
0001

1011
1100
1100
0101
0010
0010
0100
0011
0011
1000
1001
1111
0110
0111
0001
0111
0110
0000
1000
1001
1111
1100
1101
1011
0110
0111
0001
1000
0111
0010
1010
0101

1000 1001 0101
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Low density 2-repeated bursts of length 3(fixed) Syndromes

Sub-block - 3
319 000000000 000000000 001000000 1000 1001 1111
320 000000000 000000000 001010000 1111 1001 0001
321 000000000 000000000 001100000 1000 1000 0000
322 000000000 000000000 000100000 0000 0001 1111
323 000000000 000000000 000101000 0010 1000 1011
324 000000000 000000000 000110000 0111 0001 0001
325 000000000 000000000 000010000 0111 0000 1110
326 000000000 000000000 000010100 1001 1111 1001
327 000000000 000000000 000011000 0101 1001 1010
328 000000000 000000000 000001000 0010 1001 0100
329 000000000 000000000 000001010 1100 1001 0011
330 000000000 000000000 000001100 1100 0110 0011
331 000000000 000000000 000000100 1110 1111 0111
332 000000000 000000000 000000101 0110 1111 0110
333 000000000 000000000 000000110 0000 1111 0000

Remark 3. The space visible between vectors in the first column in Table 1
has been given to distinguish between different sub-blocks whereas the

space given in the syndrome vector is for convenience.

Observation. Syndromes of some of the 2-repeated bursts of length
3(fixed) occurring within the second sub-block are same. For coding
efficiency it is desired that the syndromes of the error patterns within

any sub-block is identical whenever possible.

3 Location of m-Repeated Low-density burst
of length b(fixed)

In this section a necessary and sufficient condition for the location of an
m-repeated low-density burst of length b(fixed) with weight w or less has

been given.
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It may be noted that an EL-code capable of detecting and locating a
single sub-block containing an error which is in the form of an m-repeated
low-density burst of length b(fixed) with weight w or less (w < b) must

satisfy the following conditions:

(¢) The syndrome resulting from the occurrence of an m-repeated low-
density burst of length b(fixed) with weight w or less within any one

sub-block must be distinct from the all zero syndrome.

(d) The syndrome resulting from the occurrence of any m-repeated low-
density burst of length b(fixed) with weight w or less within a single
sub-block must be distinct from the syndrome resulting likewise from
any m-repeated low-density burst of length b(fixed) with weight w or

less within any other sub-block.

In this section we shall derive two results. The first result gives a
lower bound on the number of check digits required for the existence of a
linear code over GF(q) capable of detecting and locating a single sub-block
containing errors that are m-repeated low-density bursts of length b(fixed)
with weight w or less. In the second result, we derive an upper bound on

the number of check digits which ensures the existence of such a code.

Theorem 3. The number of parity check digits r in an (n,k) linear code
subdivided into s sub-blocks of length t each, that locates a single corrupted
sub-block containing errors that are 2-repeated low density bursts of length
b (fired) with weight w or less is at least

log {1+ s(¢™ —1)} where t —b+12>mb

and (m—1)b+w<t—b+1<mb (10)
log, {1+ s(gm=Dwrlt=mbth) — 1)} where t —b+1 < (m—1)b+w.
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The proof of this result is on the similar lines as that of proof of

Theorem 1 so we omit the proof.

Remark 4. For m = 2 the result coincides with that of Theorem 1 when
2-repeated low-density bursts of length b(fixed) with weight w or less are

considered.

Remark 5. For m = 1, the result obtained in (10) reduces to

log {1+ s(¢” —1)} where t —b+12>b
and w<t—b+1<b.
log {1+ s(¢" "™ —1)} where t—b+1<w

which is a case of detecting and locating a sub-block containing errors
which are usual low-density bursts of length b(fixed) with weight w or

less.

Remark 6. For w = b, the result obtained in (10) reduces to

- log, {1+ s(¢™ —1)} where t —b+ 1> mb
r
~ |log, {1+ s(¢" Y — 1)}  where t—b+1 < mb
which coincides with the result due to Dass and Arora [Theorem 3,
2010].

In the following result we derive another bound on the number of
check digits required for the existence of such a code. As earlier the proof
is based on the technique used to establish Varshomov-Gilbert Sacks bound
by constructing a parity check matrix for such a code (refer Sacks, Theorem

4.7 Peterson and Weldon(1972)).

Theorem 4. An (n,k) linear EL-code over GF(q) capable of detecting

an m-repeated low density burst of length b (fived) with weight w or less
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(w < b) within a single sub-block and of locating that sub-block can always

be constructed provided that

" > 1+ (g 1>J<b*“"*1>
-1

{ (t — (3 —|— 1)b+ 2) (q— 1)1+ (g — 1)](1)—1,11}—1)}

1=

- {1 +(s— 1)Z<t —h Z) (¢ —1)'{[1+ (q—l)](”‘l’“’_”}i} (11)

; i
i=1
where [1 + )™ denotes the incomplete binomial expansion of (1 4 x)™

up to the term x” in ascending power of x, viz.

L+a]™ =14 (™ )e+ (M)a2+ .+ (")
1 2 r

As in theorem 3 we omit the proof because proof of this result is on

the similar lines as that of proof of Theorem 2.

Remark 7. For m = 2 the result coincides with that of Theorem 2 when
2-repeated low-density bursts of length b(fixed) with weight w or less are

considered.
Remark 8. For m = 1, the result obtained in (11) reduces to
¢" >4 (g - D]+ (s = (- b+ D)(g — DL+ (¢ — 1YY

which is a necessary condition for detecting and locating a sub-block
containing errors which are usual low-density bursts of length b(fixed) with

weight w or less.
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Remark 9. For w = b, the result obtained in (11) reduces to

s {z_: (j — (i #; 1)b+ Z) (g— 1)iqz’(b—1)}

=0

.{1+(3_1)Z (j—(i—:l)b—l—i)(q_l)iqi(b—l)}

i=1

which coincides with the result due to Dass and Arora [Theorem 4, 2010].
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