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Abstract

In this paper we show that a partition {P, : a € A} of a non-
empty set S, where A is an ordered set with the least element o and
P,, is a singleton set, induces a hyperaddition + such that (S, +) is
a commutative hypermonoid. Also by using a collection of subsets of
S, induced by the partition of the set S, we define hypermultiplication
on S so that (S, +,-) is a semihyperring.
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1 Introduction

The theory of hyperstructures has been introduced by the French Math-
ematician Marty [11] in 1934 at the age of 23 during the 8congress of Scan-
dinavian Mathematicians held in Stockholm. Since then many researchers
have worked on this new area and developed it.

The theory of hyperstructure has been subsequently developed by Corsini
[4, 5, 6], Mittas [13], Stratigopoulos [16] and various authors. Basic defini-
tions and results about the hyperstructures are found in [5, 6]. Some re-
searchers, namely, Davvaz [7], Massouros [12], Vougiouklis [18] and others
developed the theory of algebraic hyperstructures.

There are different notions of hyperrings (R, +,-). If the addition + is a
hyperoperation and the multiplication - is a binary operation then we say
the hyperring is an Krasner (additive) hyperring [10]. Rota [15] introduced
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a multiplicative hyperring, where + is a binary operation and - is a hy-
peroperation. De Salvo [8] introduced a hyperring in which addition and
multiplication are hyperoperations. These hyperrings are studied by Rahna-
mani Barghi [14] and by Asokkumar and Velrajan [1, 2, 17]. Chvalina [3]
and Hoskova [3, 9], studied hv-groups, Hv-rings.

In this paper, by using different partitions of a set, we construct different
semihyperrings (S, +, -) where both 4 and - are hyperoperations.

2 Preliminaries

This section explains some basic definitions that have been used in the
sequel.

A hyperoperation o on a non-empty set H is a mapping of H x H into
the family of non-empty subsets of H (i.e., zoy C H, for every z,y € H). A
hypergroupoid is a non-empty set H equipped with a hyperoperation o. For
any two subsets A, B of a hypergroupoid H, the set Ao B means Uggg (aob).

A hypergroupoid (H, o) is called a semihypergroup if xo(yoz) = (zoy)oz
for all x,y,z € H(the associative axiom). A semihypergroup H is said to
be regular (in the sense of Von Neumann) if a € a o H o a for every a € H.
A hypergroupoid (H, o) is called a quasihypergroup if to H = Hox = H
for every x € H(the reproductive axiom). A reproductive semihypergroup
is called a hypergroup(in the sense of Marty).A comprehensive review of the
theory of hypergroups appears in [5].

Definition 2.1. A semihyperring is a non-empty set R with two hyperop-
erations + and - satisfying the following axioms:
(1) (R,+) is a commutative hypermonoid, that is,
(@) (x+y)+z=a+(y+z) foralz,yzeR,
(b) there exists 0 € R, such that © 4+ 0 =0+ z = {z} for all z € R,
(¢c)x+y=y+xforal z,y €R.
(2) (R,-)is a semihypergroup, that is, z-(y-z) = (z-y)-z for all z,y, z € R.
(3) The hyperoperation - is distributive with respect to hyperoperation '+’
that is, - (y +2) =z -y+x-zand (r+vy) -2 =z -2+ 7y 2z for all
x,y,z € R.
(4) There exists element 0 € R, such that x-0=0-2 =0 for all x € R.

Definition 2.2. Let S be a semihyperring, An element a € S is said to be
regular if there exists an element y € S such that x € xyx. A semihyperring
S is said to be regular if each element of S is regular.



Class of Semihyperrings from Partitions of a Set

3 Semihyperring constructed from
a x-collection.

In this section, for a given commutative hypermonoid (S, +), we define
hyperoperation - on S suitably so that (S, +,-) is a regular semihyperring.

Definition 3.1. Let S be a commutative hypermonoid. A collection of non-
empty subsets {S, : a € S} of S satisfying the following conditions is called a
s-collection if (i) S, = {0} if and only if @ = 0, (ii) if a # 0 then {0,a} C S,,
(iil) U,eg, Sz = Sq for every a € S, (iv) S, + S, = S, for every a € S and
v)U Sy = Sy + Sy for every a,b € S.

r€a+b T

Example 3.2. Consider the set S = {0,a,b}. If we define a hyperoperation
+ on S as in the following table, then (S,+) is a commutative hypermonoid.

+[0 a b
010 a b
a|a {ab} {ab}
b |b {ab} {ab}

Now it is easy to see that Sy = {0}; S, = 5; S, = S is a x-collection.

Example 3.3. Consider the set S={0,a,b}. If we define a hyperoperation +
on S as in the following table, then (S,4) is a commutative hypermonoid.

+[0 a b

010 a b

a|a {a} {ab}

b |b {ab} {b}
Now it is easy to see that Sy = {0}; S, = S; S, = S is a *-collection. Now
we show that Sy = {0}; S, = {a,0}; S, = {b,0} is another x-collection.
For each a € S, U,cs, S = Useqaoy Oo = SaU S0 = {a,0} U{0} = {a,0} =
Sa- Also Sy + Sp = {0} + {0} = {0} = Sp; 5. + Su = {0,a} +{0,a} =
{0,a} = S4; S, + S, = {0,b} + {0,0} = {0,b} = S,. Further, for a,b € S, we
get U:cea—i-b Sﬂ? = U:ce{a,b} SZ = Sa U Sb - {07 a, b} = Sa + Sb‘

Example 3.4. Consider the set S={0,a,b}. If we define a hyperoperation +
on S as in the following table, then (S,+) is a commutative hypermonoid.

+ ‘ 0 a b
010 a b
a|a {0a} S
b|b S {0b}
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It is easy to show that Sy = {0} ; S, = S for every a # 0 € S, is a *-collection
and Sy = {0} ; S, = {a,0} for every a # 0 € S is another *-collection

Example 3.5. Consider the set S={0,a,b,c}. If we define a hyperoperation
+ on S as in the following table, then (S,+) is a commutative hypermonoid.

+1 0 a b C

0 {0} {a} {b}  {c}
a |{a} {a} {a, b} {a c}
b | {b} {a, b} {b} {b,c}
c | {ct {a;c} {b,c} {c}

In this commutative hypermonoid, each one of the following is a *-collection.
So = {0} ; S, = {a,0} for every a A0 € S,
So={0} ; S, =S for every a #0 € S,
So=40}; S, ={0,a}; Sy ={0,b,a}; S. ={0,¢,a},
So =10}; S, ={0,a,b}; S, ={0,b}; S. = {0, ¢, b},
So =40}; S, ={0,a,c}; Sy, ={0,b,¢}; S. = {0, c}.

Theorem 3.6. Let S be a commutative hypermonoid with the additive iden-
tity 0 with the condition that x + vy = {0} for x,y € S implies either x = 0
ory=20. Let {S, : a € S} be a x-collection on S. For a,b € S, if we define a
hypermultiplication on S as

b Se if a#0,b#0,
a-b=

0 otherwise
then (S,+,.) is a reqular semihyperring.

Proof. From the definition of the hypermultiplication, a-0 = 0-a = 0 for all
a € S. Let a,b,c € S. If any one of a,b,cis 0, then a-(b-c) = {0} = (a-b) - c.
Ifa#0,b#0and ¢ # 0, thena-(b-¢c) =a-S, = S,. Also, (a-b)-c=5,-¢c=
Uses, (7 - ¢) = U,es, Se = Sa- Thus (a-b) -c=a- (b-c). Therefore, (S,-) is
a semihypergroup.

Let a,b,c € S. If a = 0 or b = 0 or ¢ = 0, then it is obvious that
a-(b+c¢)=a-b+a-c Suppose a # 0,b # 0 and ¢ # 0. If 0 € b+ ¢,
thena-(b+¢) = SoUS, =S, =8,+Sa=a-b+a-c. If0¢&b+c, then
a-(b+c)=8,=8S.+S,=a-b+a-c. Thusa-(b+c)=a-b+a-c.

Now we prove (a +b)-c=a-c+b-c For, (a+0b) c=J,cppr.c=
Uscass Sz = Sa + Sp = a-c+b-c. Therefore, (a+b)-c=a-c+0b-c. Thus
(S, 4+, ) is a semihyperring.

Let  #0 € S. Now, forany y #0 € S, wehavez € S, =2z-y Cz- S5, =
x - (y - ). Hence the semihyperring is regular. O
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Example 3.7. The semihyperring obtained by using the Theorem 3.1 in the
Example 3.1 is as follows.
+ ‘ 0 a b . ‘
010 a b
a |a {ab} {ab}
b | b {ab} {ab}

T o O

o O OO
n n ol
n n oo

Example 3.8. The semihyperrings obtained by using the Theorem 3.1 in
the Example 3.2 are as follows.

+]0 a b

010 a b

a|a {a} {ab}

b |b {ab} {b}
. ‘O a b . ‘O a b
00 0 O 010 0 0
al0 S S a|0 {0,a} {0,a}
b0 S S b0 {0b} {0b}

Example 3.9. The semihyperrings obtained by using the Theorem 3.1 in
the Example 3.3 are as follows.

+]0 a b

00 a b

a|a {0a} S

b|b S {0,b}
.‘O a b .‘0 a b
0j]0 0 O 00 0 0
al0 S S a|0 {0,a} {0,a}
b0 S S b0 {0b} {0b}

Theorem 3.10. Let S be a commutative hypermonoid with the additive iden-
tity 0 with the condition that x +vy = 0 for x,y € S implies either x =0 or
y=0. Let {S, : a € S} be a *x-collection on S. For a,b € S, if we define a
hypermultiplication on S as
wb_{& if a#0,b+0,
0 otherwise
then (S,4+,.) is a reqular semihyperring.

Proof. The proof follows by the same lines as in the Theorem 3.1. Let x #
0€S. Now, foranyy#0€ S, wehavexr € S, =y-x C Sy-z=(r-y) -z
Hence the semihyperring is regular. O]
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Theorem 3.11. Let S be a commutative hypermonoid with the additive iden-
tity 0 such that v +vy = 0 for x,y € S implies either x = 0 or y = 0.
Let {S, : a € S} be a *-collection on S such that S, NS, = X for all
a # 0,b # 0 € S where X is a subset of S such that X + X = X. For
a,b € S, if we define a hypermultiplication on S as

o fsansi=Xxif at0b#0,

0 otherwise
then (S,+,.) is a reqular semihyperring.

Proof. Since 0 € S, and 0 € Sy, we get 0 € S,NS,. This implies that the set X
is non-empty. From the definition of hypermultiplication, a-0 =0-a = 0 for
alla € S. Let a,b,c € S. If any one of a, b, ¢ is 0, then a-(b-c) = {0} = (a-b)-c.
Ifa+#0,b# 0and ¢ # 0, then a-(b-c) = X = (a-b)-c. Thus (a-b)-c = a-(b-c).
Therefore, (S,-) is a semihypergroup.

Ifa=0o0rb=0orc=0, then it is obvious that a- (b+¢) =a-b+a-c.
Suppose a # 0,b# 0 and ¢ # 0 then, a- (b+¢) =X =X+X=a-b+a-c.
Similarly we have (a+b)-c = X = a-c+b-c. Thus (S, +, -) is a semihyperring.
Let + 20 € S. Since x € S,, we havex € S, =z-2Cz-S, =z (x-x).
Hence the semihyperring is regular. O

Example 3.12. Using the Theorem 3.3 in the commutative hypermonoid
given in the Example 3.4 and by using the following each *-collection

So ={0}; S, ={0,a}; S, ={0,b,a}; S. = {0,¢c,a} with X = {0, a},

So = {0}; S, = {0,a,b}; S, = {0,b}; S. = {0, ¢, b} with X = {0, b},

So = {0}; S, = {0,a,c}; Sy, = {0,b,¢}; S. = {0, ¢} with X = {0, ¢}, we
get three hypermultiplications so that we get three semihyperrings.

4 Semihyperrings induced by a Partition.

In this section we show that a partition of a non-empty set S induces a
hyperaddition + such that, (.5, +) is a commutative hypermonoid and also
the partition induces a *-collection. Using this *-collection,we define hyper-
multiplication - on the set S, so that (S, +,.) a regular semihyperring.

Theorem 4.1. Let S be any non-empty set and {P,}aca be a partition of
S, where A is an ordered set with the least element oy € A and P,, be a
singleton set, say, {0}. Define a hyperaddition "+” on S as follows: For all
aesS, 0+a=a+0={a}. Fora#0,b#0¢€ S, suppose a € P, andb € Pg
and v = maz {«, B},
a -+ b= P’Y Zf a 7é ﬁv
P,=PFP; if a=p

8
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Then (i) (S,4) is a commutative monoid and (ii) the partition {Pp}aea

induces a *-collection.

Proof. 1t is clear that a +b = b+ a for all a,b € S. Let a,b,c € S. Suppose

that a € P,, b € Pg and c € P,, where o, 8,7 € A.

Case 1 : Suppose «a < <.

Then a+ (b+¢) =a+ P, = P,. Also, (a+b)+c=Ps+c=P,.

a+(b+c)=(a+b)+ec
Case 2 : Suppose (< a <.

Then a+ (b+¢) =a+ P, = P,. Also, (a+b) +c=P,+c=P,.

a+(b+c)=(a+b)+c
Case 3 : Suppose «a <y <f.

Then a+ (b+¢) = a+ Pz = Ps. Also, (a+b) +c= P+ c= Pj.

a+(b+c)=(a+0b)+ec.
Case 4 : Suppose v < a < f3.

Then a+ (b+c¢) = a+ Ps = Ps. Also, (a+b)+c= Pz +c= Ps.

a+(b+c)=(a+b)+ec
Case 5 : Suppose v < [ < a.

Then a+ (b+c¢) =a+ Pg = P,. Also, (a+b)+c= P, +c=P,.

a+(b+c)=(a+b)+c
Case 6 : Suppose [ <7y < a.

Then a+ (b+c¢)=a+ P, = P,. Also, (a+b)+c=PFP,+c=P,.

a+(b+c)=(a+b)+c
Case 7 : Suppose «a=/[ <.

Then a+ (b+¢) =a+ P, =P,. Also, (a+b)+c=Ps+c=P,.

a+(b+c)=(a+b)+ec
Case 8 : Suppose v <a=(.

Then a+ (b+¢)=a+ P, = P,. Also, (a+b)+c= P, +c=PF,.

a+(b+c)=(a+b)+c
Case 9 : Suppose «a =7y < [.

Then a+ (b+¢) = a+ Pz = Ps. Also, (a+b) +c= Pz +c= Pjs.

a+(b+c)=(a+b)+c
Case 10 : Suppose (< a=n1.

Then a+ (b+c¢) =a+ P, = P, Also, (a+b)+c= P, +c=P,.

a+(b+c)=(a+b)+c
Case 11 : Suppose (=7 <a.

Then a+ (b+c¢) =a+ Py, = P,. Also, (a+b)+c=PFP,+c=P,.

a+(b+c)=(a+b)+c
Case 12 : Suppose a < f=1.

Then a+ (b+¢) = a+ P, = P,. Also, (a+b) +¢= P3+c= P,.

a+(b+c)=(a+b)+ec.

Therefore,

Therefore,

Therefore,

Therefore,

Therefore,

Therefore,

Therefore,

Therefore,

Therefore,

Therefore,

Therefore,

Therefore,
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Case 13 : Suppose a=[(="1.
Then a+(b+c) = P, = Ps = P, = (a+b)+-c. Therefore, a+(b+c) = (a+b)+c.

Thus the hyperoperation + is associative. So, (S,+) is a commutative
hypermonoid. Let Sy = Pu, = {0}. For a # 0 € S, then S, = U, <;<o It
where a € P,. It is clear that S, = (J,cg. Sz- For a # 0 € S, and a € P,
then S, + 5, = UaoStSa P, + Uaogtga P, = UaoStSa P, =S,. Also Sy + Sy =
{0} + {0} = {0} = Sy. If either a = 0 or b = 0, then J, ., Se = Sa + Sb.
Let a # 0,0 # 0 € S. Then a € P, and b € P3 for some a, 3 € A.

Case 1 : Suppose a # 3, say a < 3, then a +b = P3. Now x € a + b
implies « € P3. Therefore, S, = Uao <1<p P;. Hence

Js=U(U n=U r=U 2+ U R=S.+5

rEa+b r€a+b ap<t<p ap<t<a ap<t<a ap<t<p

Case 2 : Suppose a = (3 then a + b = P,. Therefore, Uxeﬁb S, =
U.ep, Sz = Sa + Sp. Therefore, (J Sy =S4+ Sp. Thus {S, :a € S} is a

r€a+b %
x-collection.

]

Remark 4.2. Let S be any non-empty set and xzy € S. Let Py = {zo}
and {Py, Ps, P3,- -+, P,,- - -} be a partition of S\ {zo}. Then the partition
{Py, P, Py, -+, P,, -} of S induces a hyperoperation + on S so that (S5, +) is a
commutative hypermonoid and { Py, P, Py, -+, Py, --+} induces a x-collection.

Theorem 4.3. Let S be any non-empty set and {Py}aca be a partition of
S, where A is an ordered set with the least element oy and P,, is a singleton
set. Then the partition induces a semihyperring.

Proof. By the Theorem 4.1, the partition induces a hyperaddition + such
that (S, 4) is a commutative hypermonoid and it also induces a *-collection.
Hence by the Theorem 3.1, we get a regular semihyperring. [

Example 4.4. We illustrate the construction of semihyperrings from the
following examples. Let S = {0,a,b}. Consider a partition P, = {0}, P, =
{a}, P; = {b} of S. Here, the indexing set is A = {1, 2,3} which is an ordered
set. The commutative hypermonoid induced by this partition is given by the
following Caley table.

+ ‘ 0 a b
0|0 a b
a|a {a} {b}
b |b {b} {b}

10
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The x-collection induced by this partition is Sy = {0},S, = {0,a},S, =
{0, a,b} and the hypermultiplication induced by the x-collection is given in
the Caley table.

. ‘ 0 a b
010 0 0
a|0 {0,a}  {0,a}

b |0 {0,ab} {0,ab}

Example 4.5. Let S = {0,a,b}. Consider a partition P, = {0}, P, =
{b}, P; = {a} of S. Here, the indexing set is A = {1, 2,3} which is an ordered
set. The commutative hypermonoid induced by this partition is given by the
following Caley table.
‘ 0 a b

0 a b

a {a} {a}

b {a} {b}
The #-collection induced by this partition is Sy = {0}, S5, = {0,a,b}, S, =
{0,b} and the hypermultiplication induced by the *-collection is given in the
Caley table. ‘

0
a
b

T O+

a b

0 0
{0,a,b} {0,a,b}
{0,b} {0,b}

Example 4.6. Let S = {0, a,b}. Consider a partition P, = {0}, P, = {a, b}
of S. Here, the indexing set is A = {1,2} which is an ordered set. The
commutative hypermonoid induced by this partition is given by the following
Caley table.

0
0
0
0

+[0 a b
010 a b
a|a {ab} {ab}

b |b {ab} {ab}

The s#-collection induced by this partition is Sy = {0}, S, = {0,a,b}, S, =
{0,a,b} and the hypermultiplication induced by the x-collection is given in
the Caley table.

. ‘ a b
0 0

0
010
a|0 {0ab} {0,ab}
b |0 {0,ab} {0,ab}

Thus we have a regular semihyperring.

11
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Conclusion : In the section 3 of this paper, for the given commutative
hypermonoid, given *-collection, we construct three semihyperrings. In the
section 4, by the Theorem 4.1, a partition of a set S induces a hyperaddition
+ such that (S, +) is a commutative hypermonoid and it also induces a *-
collection. Hence by the Theorem 3.1, we get a semihyperring. Thus we get
semihyperrings depending on the partitions of the set satisfies the conditions
of the Theorem 4.2. All the semihyperrings so constructed are regular.
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