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Abstract

In this paper we show that a partition {Pα : α ∈ Λ} of a non-
empty set S, where Λ is an ordered set with the least element α0 and
Pα0 is a singleton set, induces a hyperaddition + such that (S,+) is
a commutative hypermonoid. Also by using a collection of subsets of
S, induced by the partition of the set S, we define hypermultiplication
on S so that (S,+, ·) is a semihyperring.
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1 Introduction

The theory of hyperstructures has been introduced by the French Math-
ematician Marty [11] in 1934 at the age of 23 during the 8thcongress of Scan-
dinavian Mathematicians held in Stockholm. Since then many researchers
have worked on this new area and developed it.

The theory of hyperstructure has been subsequently developed by Corsini
[4, 5, 6], Mittas [13], Stratigopoulos [16] and various authors. Basic defini-
tions and results about the hyperstructures are found in [5, 6]. Some re-
searchers, namely, Davvaz [7], Massouros [12], Vougiouklis [18] and others
developed the theory of algebraic hyperstructures.

There are different notions of hyperrings (R,+, ·). If the addition + is a
hyperoperation and the multiplication · is a binary operation then we say
the hyperring is an Krasner (additive) hyperring [10]. Rota [15] introduced
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a multiplicative hyperring, where + is a binary operation and · is a hy-
peroperation. De Salvo [8] introduced a hyperring in which addition and
multiplication are hyperoperations. These hyperrings are studied by Rahna-
mani Barghi [14] and by Asokkumar and Velrajan [1, 2, 17]. Chvalina [3]
and Hoskova [3, 9], studied hν-groups, Hν-rings.

In this paper, by using different partitions of a set, we construct different
semihyperrings (S,+, ·) where both + and · are hyperoperations.

2 Preliminaries

This section explains some basic definitions that have been used in the
sequel.

A hyperoperation ◦ on a non-empty set H is a mapping of H × H into
the family of non-empty subsets of H (i.e., x ◦ y ⊆ H, for every x, y ∈ H). A
hypergroupoid is a non-empty set H equipped with a hyperoperation ◦. For
any two subsets A, B of a hypergroupoid H, the set A◦B means

⋃
a∈A
b∈B

(a◦b).
A hypergroupoid (H, ◦) is called a semihypergroup if x◦(y◦z) = (x◦y)◦z

for all x, y, z ∈ H(the associative axiom). A semihypergroup H is said to
be regular (in the sense of Von Neumann) if a ∈ a ◦H ◦ a for every a ∈ H.
A hypergroupoid (H, ◦) is called a quasihypergroup if x ◦ H = H ◦ x = H
for every x ∈ H(the reproductive axiom). A reproductive semihypergroup
is called a hypergroup(in the sense of Marty).A comprehensive review of the
theory of hypergroups appears in [5].

Definition 2.1. A semihyperring is a non-empty set R with two hyperop-
erations + and · satisfying the following axioms:
(1) (R,+) is a commutative hypermonoid, that is,

(a) (x+ y) + z = x+ (y + z) for all x, y, z ∈ R,
(b) there exists 0 ∈ R, such that x+ 0 = 0 + x = {x} for all x ∈ R,
(c) x+ y = y + x for all x, y ∈ R.

(2) (R, ·) is a semihypergroup, that is, x ·(y ·z) = (x ·y) ·z for all x, y, z ∈ R.
(3) The hyperoperation · is distributive with respect to hyperoperation ’+’,

that is, x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z for all
x, y, z ∈ R.
(4) There exists element 0 ∈ R, such that x · 0 = 0 · x = 0 for all x ∈ R.

Definition 2.2. Let S be a semihyperring, An element a ∈ S is said to be
regular if there exists an element y ∈ S such that x ∈ xyx. A semihyperring
S is said to be regular if each element of S is regular.

4



Class of Semihyperrings from Partitions of a Set

3 Semihyperring constructed from

a ∗-collection.

In this section, for a given commutative hypermonoid (S,+), we define
hyperoperation · on S suitably so that (S,+, ·) is a regular semihyperring.

Definition 3.1. Let S be a commutative hypermonoid. A collection of non-
empty subsets {Sa : a ∈ S} of S satisfying the following conditions is called a
∗-collection if (i) Sa = {0} if and only if a = 0, (ii) if a 6= 0 then {0, a} ⊆ Sa,
(iii)

⋃
x∈Sa Sx = Sa for every a ∈ S, (iv) Sa + Sa = Sa for every a ∈ S and

(v)
⋃
x∈a+b Sx = Sa + Sb for every a, b ∈ S.

Example 3.2. Consider the set S = {0, a, b}. If we define a hyperoperation
+ on S as in the following table, then (S,+) is a commutative hypermonoid.

+ 0 a b
0 0 a b
a a {a,b} {a,b}
b b {a,b} {a,b}

Now it is easy to see that S0 = {0};Sa = S;Sb = S is a ∗-collection.

Example 3.3. Consider the set S={0,a,b}. If we define a hyperoperation +
on S as in the following table, then (S,+) is a commutative hypermonoid.

+ 0 a b
0 0 a b
a a {a} {a,b}
b b {a,b} {b}

Now it is easy to see that S0 = {0};Sa = S;Sb = S is a ∗-collection. Now
we show that S0 = {0};Sa = {a, 0};Sb = {b, 0} is another ∗-collection.
For each a ∈ S,

⋃
x∈Sa Sx =

⋃
x∈{a,0} Sx = Sa

⋃
S0 = {a, 0}

⋃
{0} = {a, 0} =

Sa. Also S0 + S0 = {0} + {0} = {0} = S0;Sa + Sa = {0, a} + {0, a} =
{0, a} = Sa;Sb + Sb = {0, b}+ {0, b} = {0, b} = Sb. Further, for a, b ∈ S, we
get

⋃
x∈a+b Sx =

⋃
x∈{a,b} Sx = Sa

⋃
Sb = {0, a, b} = Sa + Sb.

Example 3.4. Consider the set S={0,a,b}. If we define a hyperoperation +
on S as in the following table, then (S,+) is a commutative hypermonoid.

+ 0 a b
0 0 a b
a a {0,a} S
b b S {0,b}
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It is easy to show that S0 = {0} ; Sa = S for every a 6= 0 ∈ S, is a ∗-collection
and S0 = {0} ; Sa = {a, 0} for every a 6= 0 ∈ S is another ∗-collection

Example 3.5. Consider the set S={0,a,b,c}. If we define a hyperoperation
+ on S as in the following table, then (S,+) is a commutative hypermonoid.

+ 0 a b c
0 {0} {a} {b} {c}
a {a} {a} {a, b} {a, c}
b {b} {a, b} {b} {b, c}
c {c} {a, c} {b, c} {c}

In this commutative hypermonoid, each one of the following is a ∗-collection.

S0 = {0} ; Sa = {a, 0} for every a 6= 0 ∈ S,
S0 = {0} ; Sa = S for every a 6= 0 ∈ S,
S0 = {0};Sa = {0, a};Sb = {0, b, a};Sc = {0, c, a},
S0 = {0};Sa = {0, a, b};Sb = {0, b};Sc = {0, c, b},
S0 = {0};Sa = {0, a, c};Sb = {0, b, c};Sc = {0, c}.

Theorem 3.6. Let S be a commutative hypermonoid with the additive iden-
tity 0 with the condition that x + y = {0} for x, y ∈ S implies either x = 0
or y = 0. Let {Sa : a ∈ S} be a ∗-collection on S. For a, b ∈ S, if we define a
hypermultiplication on S as

a · b =

{
Sa if a 6= 0, b 6= 0,

0 otherwise

then (S,+, .) is a regular semihyperring.

Proof. From the definition of the hypermultiplication, a · 0 = 0 · a = 0 for all
a ∈ S. Let a, b, c ∈ S. If any one of a, b, c is 0, then a · (b · c) = {0} = (a · b) · c.
If a 6= 0, b 6= 0 and c 6= 0, then a · (b · c) = a ·Sb = Sa. Also, (a · b) · c = Sa · c =⋃
x∈Sa(x · c) =

⋃
x∈Sa Sx = Sa. Thus (a · b) · c = a · (b · c). Therefore, (S, ·) is

a semihypergroup.

Let a, b, c ∈ S. If a = 0 or b = 0 or c = 0, then it is obvious that
a · (b + c) = a · b + a · c. Suppose a 6= 0, b 6= 0 and c 6= 0. If 0 ∈ b + c,
then a · (b + c) = S0 ∪ Sa = Sa = Sa + Sa = a · b + a · c. If 0 /∈ b + c, then
a · (b+ c) = Sa = Sa + Sa = a · b+ a · c. Thus a · (b+ c) = a · b+ a · c.

Now we prove (a + b) · c = a · c + b · c. For, (a + b) · c =
⋃
x∈a+b x.c =⋃

x∈a+b Sx = Sa + Sb = a · c + b · c. Therefore, (a + b) · c = a · c + b · c. Thus
(S,+, ·) is a semihyperring.

Let x 6= 0 ∈ S. Now, for any y 6= 0 ∈ S, we have x ∈ Sx = x · y ⊆ x ·Sy =
x · (y · x). Hence the semihyperring is regular.
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Example 3.7. The semihyperring obtained by using the Theorem 3.1 in the
Example 3.1 is as follows.

+ 0 a b
0 0 a b
a a {a,b} {a,b}
b b {a,b} {a,b}

. 0 a b
0 0 0 0
a 0 S S
b 0 S S

Example 3.8. The semihyperrings obtained by using the Theorem 3.1 in
the Example 3.2 are as follows.

+ 0 a b
0 0 a b
a a {a} {a,b}
b b {a,b} {b}

. 0 a b
0 0 0 0
a 0 S S
b 0 S S

. 0 a b
0 0 0 0
a 0 {0, a} {0,a}
b 0 {0,b} {0,b}

Example 3.9. The semihyperrings obtained by using the Theorem 3.1 in
the Example 3.3 are as follows.

+ 0 a b
0 0 a b
a a {0,a} S
b b S {0,b}

. 0 a b
0 0 0 0
a 0 S S
b 0 S S

. 0 a b
0 0 0 0
a 0 {0, a} {0,a}
b 0 {0,b} {0,b}

Theorem 3.10. Let S be a commutative hypermonoid with the additive iden-
tity 0 with the condition that x + y = 0 for x, y ∈ S implies either x = 0 or
y = 0. Let {Sa : a ∈ S} be a ∗-collection on S. For a, b ∈ S, if we define a
hypermultiplication on S as

a · b =

{
Sb if a 6= 0, b 6= 0,

0 otherwise

then (S,+, .) is a regular semihyperring.

Proof. The proof follows by the same lines as in the Theorem 3.1. Let x 6=
0 ∈ S. Now, for any y 6= 0 ∈ S, we have x ∈ Sx = y · x ⊆ Sy · x = (x · y) · x.
Hence the semihyperring is regular.
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Theorem 3.11. Let S be a commutative hypermonoid with the additive iden-
tity 0 such that x + y = 0 for x, y ∈ S implies either x = 0 or y = 0.
Let {Sa : a ∈ S} be a ∗-collection on S such that Sa ∩ Sb = X for all
a 6= 0, b 6= 0 ∈ S where X is a subset of S such that X + X = X. For
a, b ∈ S, if we define a hypermultiplication on S as

a · b =

{
Sa ∩ Sb = X if a 6= 0, b 6= 0,

0 otherwise

then (S,+, .) is a regular semihyperring.

Proof. Since 0 ∈ Sa and 0 ∈ Sb, we get 0 ∈ Sa∩Sb. This implies that the set X
is non-empty. From the definition of hypermultiplication, a · 0 = 0 · a = 0 for
all a ∈ S. Let a, b, c ∈ S. If any one of a, b, c is 0, then a·(b·c) = {0} = (a·b)·c.
If a 6= 0, b 6= 0 and c 6= 0, then a·(b·c) = X = (a·b)·c. Thus (a·b)·c = a·(b·c).
Therefore, (S, ·) is a semihypergroup.

If a = 0 or b = 0 or c = 0, then it is obvious that a · (b+ c) = a · b+ a · c.
Suppose a 6= 0, b 6= 0 and c 6= 0 then, a · (b+ c) = X = X +X = a · b+ a · c.
Similarly we have (a+b)·c = X = a·c+b·c. Thus (S,+, ·) is a semihyperring.
Let x 6= 0 ∈ S. Since x ∈ Sx, we have x ∈ Sx = x · x ⊆ x · Sx = x · (x · x).
Hence the semihyperring is regular.

Example 3.12. Using the Theorem 3.3 in the commutative hypermonoid
given in the Example 3.4 and by using the following each ∗-collection

S0 = {0};Sa = {0, a};Sb = {0, b, a};Sc = {0, c, a} with X = {0, a},
S0 = {0};Sa = {0, a, b};Sb = {0, b};Sc = {0, c, b} with X = {0, b},
S0 = {0};Sa = {0, a, c};Sb = {0, b, c};Sc = {0, c} with X = {0, c}, we

get three hypermultiplications so that we get three semihyperrings.

4 Semihyperrings induced by a Partition.

In this section we show that a partition of a non-empty set S induces a
hyperaddition + such that, (S,+) is a commutative hypermonoid and also
the partition induces a ∗-collection. Using this ∗-collection,we define hyper-
multiplication · on the set S, so that (S,+, .) a regular semihyperring.

Theorem 4.1. Let S be any non-empty set and {Pα}α∈Λ be a partition of
S, where Λ is an ordered set with the least element α0 ∈ Λ and Pα0 be a
singleton set, say, {0}. Define a hyperaddition ”+” on S as follows: For all
a ∈ S, 0 +a = a+ 0 = {a}. For a 6= 0, b 6= 0 ∈ S, suppose a ∈ Pα and b ∈ Pβ
and γ = max {α, β},

a+ b =

{
Pγ if α 6= β,

Pα = Pβ if α = β
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Then (i) (S,+) is a commutative monoid and (ii) the partition {Pα}α∈Λ

induces a ∗-collection.

Proof. It is clear that a + b = b + a for all a, b ∈ S. Let a, b, c ∈ S. Suppose
that a ∈ Pα, b ∈ Pβ and c ∈ Pγ, where α, β, γ ∈ Λ.

Case 1 : Suppose α < β < γ.
Then a+ (b+ c) = a+ Pγ = Pγ. Also, (a+ b) + c = Pβ + c = Pγ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 2 : Suppose β < α < γ.
Then a+ (b+ c) = a+ Pγ = Pγ. Also, (a+ b) + c = Pα + c = Pγ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 3 : Suppose α < γ < β.
Then a+ (b+ c) = a+ Pβ = Pβ. Also, (a+ b) + c = Pβ + c = Pβ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 4 : Suppose γ < α < β.
Then a+ (b+ c) = a+ Pβ = Pβ. Also, (a+ b) + c = Pβ + c = Pβ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 5 : Suppose γ < β < α.
Then a+ (b+ c) = a+ Pβ = Pα. Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 6 : Suppose β < γ < α.
Then a+ (b+ c) = a+ Pγ = Pα. Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 7 : Suppose α = β < γ.
Then a+ (b+ c) = a+ Pγ = Pγ. Also, (a+ b) + c = Pβ + c = Pγ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 8 : Suppose γ < α = β.
Then a+ (b+ c) = a+ Pα = Pα. Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 9 : Suppose α = γ < β.
Then a+ (b+ c) = a+ Pβ = Pβ. Also, (a+ b) + c = Pβ + c = Pβ. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 10 : Suppose β < α = γ.
Then a+ (b+ c) = a+ Pα = Pα Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 11 : Suppose β = γ < α.
Then a+ (b+ c) = a+ Pγ = Pα. Also, (a+ b) + c = Pα + c = Pα. Therefore,
a+ (b+ c) = (a+ b) + c.

Case 12 : Suppose α < β = γ.
Then a+ (b+ c) = a+ Pγ = Pγ. Also, (a+ b) + c = Pβ + c = Pγ. Therefore,
a+ (b+ c) = (a+ b) + c.
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Case 13 : Suppose α = β = γ.
Then a+(b+c) = Pα = Pβ = Pγ = (a+b)+c. Therefore, a+(b+c) = (a+b)+c.

Thus the hyperoperation + is associative. So, (S,+) is a commutative
hypermonoid. Let S0 = Pα0 = {0}. For a 6= 0 ∈ S, then Sa =

⋃
α0≤t≤α Pt

where a ∈ Pα. It is clear that Sa =
⋃
x∈Sa Sx. For a 6= 0 ∈ S, and a ∈ Pα,

then Sa + Sa =
⋃
α0≤t≤α Pt +

⋃
α0≤t≤α Pt =

⋃
α0≤t≤α Pt = Sa. Also S0 + S0 =

{0} + {0} = {0} = S0. If either a = 0 or b = 0, then
⋃
x∈a+b Sx = Sa + Sb.

Let a 6= 0, b 6= 0 ∈ S. Then a ∈ Pα and b ∈ Pβ for some α, β ∈ Λ.

Case 1 : Suppose α 6= β, say α < β, then a + b = Pβ. Now x ∈ a + b
implies x ∈ Pβ. Therefore, Sx =

⋃
α0≤t≤β Pt. Hence⋃

x∈a+b

Sx =
⋃

x∈a+b

(
⋃

α0≤t≤β

Pt) =
⋃

α0≤t≤α

Pt =
⋃

α0≤t≤α

Pt +
⋃

α0≤t≤β

Pt = Sa + Sb.

Case 2 : Suppose α = β then a + b = Pα. Therefore,
⋃
x∈a+b Sx =⋃

x∈Pα Sx = Sa + Sb. Therefore,
⋃
x∈a+b Sx = Sa + Sb. Thus {Sa : a ∈ S} is a

∗-collection.

Remark 4.2. Let S be any non-empty set and x0 ∈ S. Let P0 = {x0}
and {P1, P2, P3, · · ·, Pn, · · ·} be a partition of S \ {x0}. Then the partition
{P0, P1, P2, ···, Pn, ···} of S induces a hyperoperation + on S so that (S,+) is a
commutative hypermonoid and {P0, P1, P2, · · ·, Pn, · · ·} induces a ∗-collection.

Theorem 4.3. Let S be any non-empty set and {Pα}α∈Λ be a partition of
S, where Λ is an ordered set with the least element α0 and Pα0 is a singleton
set.Then the partition induces a semihyperring.

Proof. By the Theorem 4.1, the partition induces a hyperaddition + such
that (S,+) is a commutative hypermonoid and it also induces a ∗-collection.
Hence by the Theorem 3.1, we get a regular semihyperring.

Example 4.4. We illustrate the construction of semihyperrings from the
following examples. Let S = {0, a, b}. Consider a partition P1 = {0}, P2 =
{a}, P3 = {b} of S. Here, the indexing set is Λ = {1, 2, 3} which is an ordered
set. The commutative hypermonoid induced by this partition is given by the
following Caley table.

+ 0 a b
0 0 a b
a a {a} {b}
b b {b} {b}
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The ∗-collection induced by this partition is S0 = {0}, Sa = {0, a}, Sb =
{0, a, b} and the hypermultiplication induced by the ∗-collection is given in
the Caley table.

. 0 a b
0 0 0 0
a 0 {0,a} {0,a}
b 0 {0,a,b} {0,a,b}

Example 4.5. Let S = {0, a, b}. Consider a partition P1 = {0}, P2 =
{b}, P3 = {a} of S. Here, the indexing set is Λ = {1, 2, 3} which is an ordered
set. The commutative hypermonoid induced by this partition is given by the
following Caley table.

+ 0 a b
0 0 a b
a a {a} {a}
b b {a} {b}

The ∗-collection induced by this partition is S0 = {0}, Sa = {0, a, b}, Sb =
{0, b} and the hypermultiplication induced by the ∗-collection is given in the
Caley table.

. 0 a b
0 0 0 0
a 0 {0,a,b} {0,a,b}
b 0 {0,b} {0,b}

Example 4.6. Let S = {0, a, b}. Consider a partition P1 = {0}, P2 = {a, b}
of S. Here, the indexing set is Λ = {1, 2} which is an ordered set. The
commutative hypermonoid induced by this partition is given by the following
Caley table.

+ 0 a b
0 0 a b
a a {a,b} {a,b}
b b {a,b} {a,b}

The ∗-collection induced by this partition is S0 = {0}, Sa = {0, a, b}, Sb =
{0, a, b} and the hypermultiplication induced by the ∗-collection is given in
the Caley table.

. 0 a b
0 0 0 0
a 0 {0,a,b} {0,a,b}
b 0 {0,a,b} {0,a,b}

Thus we have a regular semihyperring.
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Conclusion : In the section 3 of this paper, for the given commutative
hypermonoid, given ∗-collection, we construct three semihyperrings. In the
section 4, by the Theorem 4.1, a partition of a set S induces a hyperaddition
+ such that (S,+) is a commutative hypermonoid and it also induces a ∗-
collection. Hence by the Theorem 3.1, we get a semihyperring. Thus we get
semihyperrings depending on the partitions of the set satisfies the conditions
of the Theorem 4.2. All the semihyperrings so constructed are regular.
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