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Abstract

The aime of this paper is the study of residual mappings and con-
vexity in hyperlattices. To get this point, we study principal down set
in hyperlattices and we give some conditions for a mapping between
two hyperlattices to be equivalent with a residual maping. Also, we
investigate convex subsets in A-hyperlattices.
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1 Introduction

Hyperalgebras (multialgebra) are generalization of classical algebras that
are introduced by F. Marty in the eighth congress of Scandinavian in 1934
[11].

In [4], Ameri and M. M. Zahedi introduced and studied notion of hyperal-
gebraic systems. In [2], Ameri and Nozari Studied relationship between the
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categories of multialgebra and algebra. C. Pelea and I. Purdea have been
proved that complete hyperalgebra can be obtained from a universal algebra
and a appropriate congruence on it. Also, Pelea and others studied multial-
gebra, direct limit, and identities, for more details see [16, 17, 18, 19].

Hyperalgebras (multialgebra) are generalization of classical algebras that
are introduced by F. Marty in the eighth congress of Scandinavian in 1934
[11].

In [4], Ameri and M. M. Zahedi introduced and studied notion of hyperal-
gebraic systems. In [2], Ameri and Nozari Studied relationship between the
categories of multialgebra and algebra. C. Pelea and I. Purdea have been
proved that complete hyperalgebra can be obtained from a universal algebra
and a appropriate congruence on it. Also, Pelea and others studied multial-
gebra, direct limit, and identities, for more details see [16, 17, 18, 19].
Theory of hyperlattices introduced by Konstantinidou and J. Mittas in 1977[9].
In [10], G. A. Moghani and A.R. Ashrafi proved that in some cases the set
of all subhypergroups G has a hyperlattice structure . In [24], X. L. Xin and
X. G. Li studied hyperlattices and quotient hyperlattices. In [5], A. Asokku-
mar in 2007 proved that under certain conditions, the idempotent elements
of a hyperring form a hyperlattice and the orthogonal idempotent elements
form a quassi-distributive hyperboolean algebra. In [1], R. Ameri, M. Amiri
Bideshki, and A. Borumand Said studied prime hyperfilters (hyperideals) in
hyperlattices. Also, they gave some examples of A-hyperlattices and dual
distributive A-hyperlattices.

In section 3, down set and residual maps in hyperlattices are studied and
some properties of them are given. In section 4, convex subsets of a hyper-
lattice and some properties of them are given.

2 Preliminary

In this section we give some results of hyperlattices that we need to de-
velop our paper.

Definition 2.1. [1] Let L be a nonempty set. L is called a A— hyperlattice
if

(i) e€aNna,aVa=a,
(ii) aNb=bAa,aVb=10bV a,
(iii) an(bAc)=(aANb)Ac,aV (bVe)=(aVDb) Ve,
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(iv) a€(an(aVd)n(aV (aAb)),
(v) a€anb=aVb=hb,

for all a,b,c € L.
Let A, B C L. Then:

ANB=U{aAbla € Abe B};
AV B={aVblaec A be B}.

Example 2.2. Let (L, V,A) be a lattice and define a ® b = {z | x < a A b}.
Then (L, V,®) is a A— hyperlattice.

Definition 2.3. [1] Let L be a A—hyperlattice. We say that L is bounded
If there exist 0,1 € L, such that 0 < x < 1, for all x € L. We say that 0 is
the least element of L and 1 is the greatest element of L.

Example 2.4. Let L = {0,a,1}, and define A-hyper operation and V-
operation on L with tables 3. Then (L, A, V) is a bounded A-hyperlattice.

AlO a 1 V|0 a 1
0 {0} {0} {0} 0/0 a 1
a | {0} {a,0} {a,0} ala a 1
1| {0} {a,0} L 1011 1
(a) (b)
Table 1

Definition 2.5. [1] Let [ and F' are nonempty subsets of L. Then:
(i) I is called hyperideal if the following conditions hold.

(a) If z,y € I, then zVy €I,
(b) If z € I and @ € L, such that a < z, then a € I.

(ii) F is called hyperfilter if the following conditions hold.

(a) f z,y € F, then x ANy C F,
(b) If x € F and a € L, such that x < a, then a € F.

(iii) A hyperideal [ is called prime if xt Ay € I, then z € [ or y € I, for all
x,y € L.

(iv) A hyperfilter F is called prime if x € F or y € F, where (x Ay)NF # (),
for all x,y € L.
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3 Resedual Mappings in A-Hyperlattices

In this section, we are going to introduce down-set and resedual mapping
in A-hyperlattice. Let L be a A-hyperlattice.

Definition 3.1. Let ) # A C L. A is called a down-set, if v € A and y < x,
then y € A.

Example 3.2. every hyperideal of L is a down-set that is called principal
down-set.

Example 3.3. Let L = {0,a,b,1}. A and V are given by Table 2 and 3.

Al 0O a b 1
01]{o} | {0} | {o} | {0}
a | {0} | {0,a} | {0} |{0,a}
b1 {0} | {0} |{0,0} | {0,0}
1| {0} | {0,a} | {0,0} | {1}
Table 2:
VI i0O|jlalb|l
010]al|b|1l
alalal|l]|l
b|b|1|b]|1
1 (11|11
Table 3:

I ={0,a,b} is a down-set, but it is not a hyperideal. We have a,b € I and
avVb=1¢1.

Let z € Land 2t ={y € Lly € x Ay}.
Proposition 3.4. Vo € L, 2 is a down set.
x* is called a principal down-set.

Proposition 3.5. Let L be a dual distributive N\-hyperlattice. Then every
principal down-set is a hyperideal.

Proof. ]
IfAC LandaVbCA, forall a,be L, then A is called join-closed.
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Corollary 3.6. Let [ C L. Then I is an ideal if and only if I is a down-set
and 1t 1s a join-closed set.

Proposition 3.7. Let L and K be hyperlattice. If f: L — K is a isotone
map and A C L is a down-set, then f(A) is a down-set.

Proof. Since A is a down-set, there exists x € L such that A = z+. It is
sufficient set f(A) = f(x)*. O

Let L and K be hyperlattices and f : L — K is a mapping. We
define two map f~ and f* that f— is called direct image map and f* is
called inverse image map. [~ : P(L) — P(K) is defined by f7(X) =
{f(x)]z € L}, for all X C L, and f< : P(K) — P(L) is defined by
fEY)={x{e L|f(x) e Y} forallY C K.

Definition 3.8. A mapping F' : L. — K is called residuated if the inverse
image under F' of every principal down-set of K is a principal down-set of L.

Example 3.9. Let L be a A-hyperlattice and A C L. We define f4 :
P(L) — P(L) by fa(B) = ANB, for all B € P(L). Then f# is a residuated
and residual g is given by ¢g#(C) = C U A’, where that A’ = L\ A.

Example 3.10. Let L be a A-hyperlattice. Mapping f : P(L) — P(L)
that is defined by f(A) = A, for all A € P(L), is a residuated mapping.

Theorem 3.11. Let L and K be two hyperlattices. A mapping f: L — K
15 a residuated iff f is a is isotone and there exists an isotone mapping
g: K — L such that gof > idy and fog < idg.

Proof. Forallz € L, x € f<[f(x)¥]. If y < x, then y € f~[f(x)*]. We have:
Fe)r = {yly < f()} and FoIf(2)!] = {t € LIf(2) € f(2)

y € f[f(x)"], so f(y) < f(z). Then f is isotone. By assumption we have
(Vy € K)(3z € L) such that f<(y%) = *. Now, for every given y € K, this
element x is clearly unique. So we can define a mapping g : K — L by
g(y) = x. Since f* is isotone, it follow that so is g. For this mapping g, we
have:

9(y) € gly)r =2t = [ (y").

So, flg(y)] <y, forally € K and therefore fog < idg. Also, z € f[f(x)}] =
glf(z)]*, so that x < g[f(x)], for all x € L, and therefore gof > id, .
Conversely, Since ¢ is isotone, we have:

flz) <y =2 < g[f(2)]-
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Also, we have:

r<gly) = fx) < flg(@)] <y
It follows from these observations that f(x) < y iff z < g(y) and therefore
o) = 9y)* O
Proposition 3.12. The residual of f is unique.

Proof. Suppose that g and ¢’ are residual of f. Then we have: g = idyog <
(g'of)og = g'o(fog) < g'oidkx = ¢'. Similarly, ¢’ < g, then g = ¢'. ]

We shall denote residual of f, by f*.

Proposition 3.13. Mapping f : L = K is residuated iff for every y € K,
there exists g(y) = maxf<(y*) = mazx{x € L|f(z) < y}. Moreover, fTof >
idy, and fof™ < idg.

Definition 3.14. Let f : L — K be a residuated mapping. Then f is
called range closed if I'm(f) is a down-set of K.

Example 3.15. Let L be a A-hyperlattice with a top element 1. Given
a € L, consider the mapping f, : L — L given by:

fa(x) = f, is residuated. Clearly, I'm(f,) is the down-set a* of L then f, is
a range closed.

Remark 3.16. In Example 3.15, L must have top element 1.

Example 3.17. Let N be the set of natural numbers. We define A-hyperoperation
and V operation by:

aAb={m e Nim < min{a,b}};

aVb=maz{a,b}, foralla,b € N.
Then (L, A, V) is a A-hyperlattice. Consider f : N — N by f(z) = z, for

all x € N. f is a residated mapping, but it is not range closed.

Theorem 3.18. Let f : L — K be a residuated mapping. Then f = f iff
f2 == ZdL

Proof. == It is obvious. <= Since f is residuated, then f? = id;. By
% =idy, we have fof <idy and fof >idy. So f = f*. O

Theorem 3.19. Let L and K be two A-hyperlattices and Let L has a top
element 1. If f : L — K be a residuated mapping, then the following
statements are equivalent.
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(1) [ is range closed.
(ii) forally € K inf{y, f(1)} there exists and it equal to ff+(y).

Proof. (i — 4i):We have fT(y) <1, for all y € L and by isotonic f, ffT(y) <
f(1). Also fft(y) <y, forall y € K. So ff*(y) is a lower bound of f(1)
and y. We must show that ff*(y) is the greatest lower bound of f(1) and
y. Suppose that x € K is such that x < y and = < f(1). By (i), we have
x = f(z), for some z € L and f(z) < y; Since fT is isotone, f*f(z) < fT(y).
We have z < f*f(x), so 2 < fT(y). By isotonic f, f(z) < ff"(y), Then
v < ff+ (). Thus infly, F()) = £1+(y).

(it — 4): We claim that Im(f) = f(1)*. We have x < 1, for all x € L, then
f(x) < f(1), for all x € L. So Im(f) C f(1)*. Let y € K be such that y <

7(1). Then'by (id), £/ (y) = inf{y, (1)} = y. We Know f1*(y) € Im(}),
soy € Im(f). Thus f(1)* C Im(f). Therefore Im(f) = f(1)*. O

Proposition 3.20. Let f: L — K and g : K ——— M be residual map.
Then gof so is, also (gof)t = ftog™.

4 Convexity In A-hyperlattice

In this section, we are going to introduce convex subsets in A-hyperlattices
and we are going to give some properties of convex subsets.

Proposition 4.1. Let I C L. Then F' s a hyperfilter of L, if and only if
(i) a,b € F implies that a Nb € F.
(ii) Ya€ F andVzx € L,aVz € F.

Proof. Since F is a filter, Va,b € F', a ANb € F. We know a < a V x, then
aVax e F. So (i) and (ii) hold.

Conversely, Let a € F and a < z. So, aVx =z, by (ii) aVx € F, then
xeF. O]

Proposition 4.2. Every hyperfilter of a N-hyperlattice L is a A-subhyperlattice.

Remark 4.3. Converse of the above proposition does not hold. Consider
hyperlattice in the Example 3.2. A = {0,a} is a subhyperlattice. We have
a<land1¢ A, then A is not a filter.

Remark 4.4. Every hyperideal of L is not a subhyperlattice. Also, every
subhyperlattice is not an ideal.
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Definition 4.5. Let () # K C L. We say K to be convex subset, if a,b € K
and ¢ € L such that a < ¢ <b, then c € K.

Example 4.6. Consider hyperlattice L in Example 3.2. Then A = {0,a} is
a convex subset, but B = {0, 1} is not a convex subset. we have 0 < a <1
and a ¢ B.

Proposition 4.7. Every hyperideal (hyperfilter) of L is a convexr subset of
L.

Remark 4.8. Every convex subset of L is not a hyperideal (a filter). Con-
sider hyperlattice L in Example 3.2. Then K = {a,b, 1} is a convex subset,
but it is not a hyperideal (0 ¢ K). Also, K is not a hyperfilter (a A b = {0}
and 0 ¢ K).

Theorem 4.9. Let L has a bottom element 0 and let K be a convexr subset
of L. If K is a chain and 0 € K, then K is a hyperideal of L.

Remark 4.10. In Example 4.9, K must be a chain; also K must contain
bottom element 0.

Example 4.11. Let L be hyperlattice in Example3.2

(i) K; = {a,b,0} is a convex subset, but it is a not chain(a,b are not
comparable). Since a V b ¢ K;, K is not a hyperideal.

(ii) Ky = {a,b,1} is a convex subset, but it is not a hyperideal (0 ¢ K5).

Example 4.12. Consider hyperlattice L in Example 3.17. ThenK = {2,3,4, ...

is a convex subset; Since K does not has bottom element 1, it is not a hy-
perideal.

Proposition 4.13. FEvery principal down-set of L is a convex subset.

Theorem 4.14. Let I be a hyperideal and F be a hyperfiler of L, such that
INFE # 0, then INF is a convex sub-hyperlattice if and only if for all
a,belNF,aNbC 1.

Proposition 4.15. If K;, Vi € [ is a convexr sub-hyperlattice of L, then
Nicr K; is so.

Theorem 4.16. Let K; and Ky be convexr sub-hyperlattices of L and let
0 € K1NKy. Then Ki U Ky is a conver sub-hyperlattice if and only if
K1 g KQ or K2 g Kl-
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Proof. Let K1 U K5 be a convex subhyperlattice, but K; Q K5 or K5 ,CZ K.
So, there exist a,b € L, such that a € K; \ Ky and K; \ Ks. Since a,b €
K1 U K, and Ky U Ks is a sub-hyperlattice, a V b € Ky U Kj; it implies that
aVbe KioravVbe Ky. If avbe Ki, 0 <a<aVb, then a € K5, which
is a contradiction; if a V b € Ks, then we conclude that b € K7, which is a
contradiction.

The converse is obvious. O
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