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Abstract 

 

    This paper proposes an expression of the value of an annuity with payments of 1 

unit each when the interest rate is random. In order to attain this objective, we 

proceed on the assumption that the non-central moments of the capitalization factor 

are known. Specifically, to calculate the value of these annuities, we propose two 

different expressions. First, we suppose that the random interest rate is normally 

distributed; then, we assume that it follows the beta distribution. A practical 

application of these two methodologies is also implemented using the R statistical 

software. 
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1 Introduction 
 

This study aims to determine an approximate expression for the present, or 

final, value of an annuity when the interest rate is random. In the context of 

annuities assessment, the interest rate has a great relevance because even small 

changes may cause major changes in the total annuity value. Thus, the 

determination of the value of the interest rate should be carried out as accurately 

as possible. 

The traditional approach treats interest rates deterministically; indeed, in 

contexts of certainty, the use of a single possible value for each period may be 

enough [8]. However, for those operations developed in uncertain environments, 

it is more reasonable the formulation of potential scenarios, which are 

subsequently reduced to one by statistical treatment [2]. 

The determination of the interest rate value must be based on the current 

situation, as well as on its possible future evolution, of both companies and 

environment. In this way, if prospects are unfavorable, interest rates must be 

higher, compared to more favorable situations, and hence to reduce the 

operation value as a consequence of the risk attached to it. However, in most 

cases, determining the interest rate of a financial operation is subject to the 

propensity/aversion to risk of the agent to be responsible for the assessment. In 

this sense, the adopted interest rate would be affected by a degree of subjectivity 

that may over/undervalue the project [7]. 

In this paper, we consider the interest rate as a random variable that is 

represented as X. Therefore, the capitalization factor, i1 , is also a random 

variable represented as U. Obviously, it is verified that XU 1 , thus, the 

relationship between the mean and standard deviation of both variables is as 

follows: 

As a result, if X is defined in an interval ],[ ba , then U will be in the interval 

]1,1[  ba . Henceforth, when the mean and standard deviation are mentioned 

we will refer, unless otherwise specified, to the random variable U. 

In this case, the final value of an n-payment annuity, with payments of 1 

unit each made at the end of every year (annuity-immediate), valued at the rate 

X, would be the following random variable: 

Thus, its expected value is: 

XU
 1  and XU

  .  

12

1
1 


 n

Un
UUUs  .  (1) 
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On the other hand, the final expected value of an n-payment annuity, with 

payments of 1 unit each made at the beginning of every year (annuity-due), 

valued at the rate X, would be: 

being )( r

r
UE  the moment of order r, with respect to the origin, of the 

random variable U; hence, if the random variable is discrete, it adopts the 

following expression [1]: 

being i
p  the probability that the random variable takes the value iu . In the 

continuous case, the expression of the moment of order r is: 

for all values of r, being )(uf  the density function of the random variable U.  

As indicated, this paper proposes a mathematical expression of the final 

value of an annuity, immediate or due; specifically, we compute it using a 

random interest rate and suppose that the non-central moments of the 

capitalization factor are known. Section 2 shows the case of interest rates 

following the normal distribution. Section 3 takes into account the beta 

distribution, as an example of distribution with finite range. Section 4 shows a 

practical application using the R statistical software. Lastly, the conclusions are 

presented. 

 

 

2  The expression of the final value of an annuity 

when the interest rate follows a normal 

distribution 
 

The successive non-central moments of order r, with respect to the normal 

distribution, can be computed according to its mean   and variance
2  [4]: 

.1

)()()()1()(
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 1
0
 ; 

  
1 ; 

 
22

2
  ; 

 
23

3
3  ; 

 
4224

4
36   ; 

 
4235

5
1510   ; 

 
642246

6
154515   ; 

 
643257

7
10510521   ; 

 
86244268

8
10542021028   . 

  
Therefore, the final value of an n-payment annuity, with payments of 1 unit 

each made at the end of every year (annuity-immediate) that is the sum of the n 

first non-central moments




1

0

n

r

r , is composed of the following partial sums: 

 .
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1
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This can be written as 
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The coefficients of successive powers of , in parentheses, are the numbers 

in red in the following Tartaglia’s triangle (Figure 1): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Tartaglia’s triangle. 
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The coefficients of successive powers of , enclosed in the parentheses, are 

the numbers in green of the previous Tartaglia’s triangle. 
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whose coefficients are in blue. 

 

 And so forth. 

In short, the sum of the n first non-central moments is: 
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which can also be written as follows: 
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This method is used to calculate the final value of an n-payment annuity, 

with payments of 1 unit each made at the end of every year (annuity-

immediate), with a random interest rate. Whereas, the calculation of the final 

value of an n-payment annuity, with payments of 1 unit each made at the 

beginning of every year (annuity-due), has the following expression: 
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(6) 

 

In equations (5) and (6), the function )(E x  represents the integer part of x. 

To carry out the calculations in a comfortable and orderly manner, we propose 

to refer to Table 1. 
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3 The expression of the final value of an annuity 

when the interest rate follows a beta 

distribution 
 

The best known random variable with a bounded range is the beta 

distribution. The expression of the non-central moments of the standard beta 

distribution of parameters   and   is the following ( Nr ) [3]: 

 

.
)1()1)((

)1()1(
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)()(
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
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r

r

r

r
r
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
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


 (7) 

 

In this case, it is not feasible to give a closed expression of the sum of the n 

first non-central moments, but, having in mind that )()1(   , we can 

write the following recurrence relation [5]: 
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Table 1. Tabular organization for calculations (the number that occupies the 

place ),( sr  in Tartaglia’s triangle is equal to the sum of those in places 

)1,1(  sr  and ),1( sr  . 

 

However, it should be considered that the above mentioned moments refer 

to the standard beta distribution, Z, of parameters,   and  , that is, with range 

].1,0[  Furthermore, to obtain the moments r
  corresponding to the distribution 

U without normalize, that is to say, the beta distribution of parameters  and , 
with range ],[ ba : 

 

,)( ZabaU   (9) 

 

it is necessary to consider the relationship between its moment-generating 

functions [6]: 
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Therefore, having in mind the expression of the nth derivative of a product 

of functions, we can write: 
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4 Calculation of the value of an annuity, with 

payments of 1 unit each: an R application 
 

Next, we are going to obtain the final value of an annuity, with payments of 

1 unit each for five years through the different expressions developed in this 

work. In its calculus we consider that the payments are made at the end, or the 
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beginning, of each period. Present value calculation has been omitted provided it 

can be carried out similarly. 

Given that in this work it has been contemplate that non-central moments of 

the capitalization factor are known, two possible options have been considered, 

where discount rate, X, follows: 

 a normal distribution; 

 a beta distribution. 

 

Discount rate with a normal distribution 

 

To estimate the mean and variance of the normal distribution, we consider 

Euribor’s data containing the estimated annual Euribor of different banks (Table 

2), available at http://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html. 

Specifically, the Euribor at 12 months is considered on 27/07/2016. 

 

Estimates Euribor in 1 year (%) 
BNP-Paribas 0.00 

Banca Monte Dei Paschi Di Siena 0.05 

Banco Bilbao Vizcaya Argentaria 0.05 

Banco Santander 0.06 

Banque et Caisse d'Épargne de l'État 0.06 

Barclays Bank 0.02 

Belfius 0.06 

CECABANK 0.05 

Caixa Geral De Depósitos 0.04 

CaixaBank S.A. 0.05 

Crédit Agricole s.a. 0.03 

DZ Bank 0.06 

Deutsche Bank 0.04 

HSBC France 0.05 

ING Bank 0.08 

Intesa Sanpaolo 0.05 

Table 2: Euribor distribution at 27/07/2016. 

Source: http://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html. 

 

To enter the data in the R environment, it is necessary to create a vector as 

follows: 

http://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html
http://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html
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>data=c(0.00,-0.05,-0.05,-0.06,-0.06,0.02,-0.06,-0.05,-0.04,-0.05,-0.03,-

0.06,0.04,-0.05,-0.08,-0.05,-0.12,-0.03,-0.05,-0.04,-0.06) 

 

To check for normality of the data, we need the R package “tseries”; thus, 

the Jarque-Bera Test is implemented: 

 

> library(tseries) 

> jarque.bera.test(data) 

We can accept the normality of the data because the p-value is greater than 

0.05 (X-squared = 3.559, df = 2, p-value = 0.1687). 

 

Following a preliminary analysis, we obtain 0.0442  and 

0.0332 using the following scripts: 

 

> mean(data) 

> sd(data) 

 

The expressions formulated in Section 2 allow computing the expected final 

value when the expression of the non-central moments of the capitalization 

factor is known.  

Now, we suppose to compute the final value of an annuity, with payments 

of 1 unit each for five years using the estimated mean and variance. Thus, if the 

payments of the annuity are at the end of each period, the final value is: 

4.958541.
4

0





r

r  

It is possible to check this result building a function to compute the sum of 

the non-central moments of the normal distribution for annuities whose 

payments are at the end of each period, with a duration of k years (however, 

firstly, we need to load the “moments” library): 

 

>library(moments) 

>sum_k_moments_post=function(data,k){ 

  app.moments_post=rep(NA,k) 

  for (i in 0:(k-1)) app.moments_post[i+1]=moment(data, central = FALSE, 

absolute = FALSE, order =i) 

  sum_moments_post=sum(app.moments_post)+(k-1) 

  return(sum_moments_post) } 

>sum_k_moments_post(data,5) 
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Instead, in case the final value of an annuity, with payments of 1 unit each 

at the beginning of every year, for five years, we obtain: 

4.958539.
5

1





r

r  

Also in this case, we can check the result by creating a function to compute 

the sum of the non-central moments of the normal distribution for annuities 

whose payments are at the beginning of each period, with a duration of k years: 

 

> sum_k_moments_ant=function(data,k){ 

  app.moments_ant=rep(NA,k) 

  for (i in 1:k) app.moments_ant[i]=moment(data, central = FALSE, 

absolute = FALSE, order =i) 

  sum_moments_ant=sum(app.moments_ant)+k 

  return(sum_moments_ant)  } 

>sum_k_moments_ant(data,5) 

 

Using the formulation proposed in equation 5 (annuities with payments at 

the end of each period) and equation 6 (annuities with payments at the beginning 

of each period), we reach the same results (replacing the values of the mean and 

the standard deviation, it is simple to demonstrate this identity). 

 

Discount rate with a beta distribution 

 

Because the beta distribution is suitable to approximate also the data of 

Table 2, we refer to the same data of Euribor with the aim to compare it with the 

results obtained in the previous paragraph. 

At this purpose we load the data of Table 2 and the R packages “actuar” and 

“EnvStats” as follows: 

 

>library(actuar) 

>library(EnvStats) 

 

Then, we create a function to normalize data and we apply it to the data of 

Table 2 as follows: 

 

>nor=function(x){(x-min(x))/(max(x)-min(x))} 

>data2=nor(data) 

 

Afterwards, we estimate the shapes of the beta distribution with the function 

“ebeta”: 

 

>ebeta(data2, method = "mle") 
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Following this approach, we get the shapes parameters a = 2.394501 and b 

= 2.66557. Then, we build a function to compute the mean and the standard 

deviation: 

 

>mean_beta=function(a,b){a/(a+b)} 

>mean_beta(2.394501,2.665577) 

    0.4732142 

 

>var_beta=function(a,b){a*b/((a+b)^2*(a+b+1))} 

>var_beta(2.394501,2.665577) 

  0.0411352 

 

As known, a generic moment of the standard beta distribution is given by: 

( )

( )

r
r

r




 



                          (12) 

where ).1(1)()(  rr    

To compute the moments of the standard beta distribution using this 

method, we need a function to calculate the factorial: 

 

>fattoriale_crescente=function(n,f){n*factorial(x=n+f-1)/factorial(x=n)} 

 

In this way, we can compute the moments as: 

 

>momento_beta=function(a,b,f){fattoriale_crescente(a,f)/fattoriale_cresce

nte((a+b),f)} 

 

where a and b are the shapes parameters and f represents the order of the 

moment. 

 

Using these codes, it is simple to calculate the sum of the moments of the 

standard beta distribution. However, we need the non-central moments of the 

original beta distribution (without normalize). At this purpose, we build a 

function to perform Equation (11) and obtain the non-central moments of the 

original beta distribution. 

We set a as the lower bound of our interest rates, b as the upper bound of 

our interest rates, c and d as the parameters of the standard beta distribution, n as 

the number of years: 

 

>c=2.394501 

>d=2.665577 



Cruz Rambaud S., Maturo F. and Sánchez Pérez A.M. 

26 

 

>a=-0.12 

>b=0.04 

>n=5 

 

>momento_nn_normalizzato=function(n,a,b,c,d){for(k in 0:n) { 

m=mbeta(n-k, c, d) 

    moment_nn_norm=sum( 

    choose(n,k)*(a^k)*((b-a)^(n-k))*m 

      )} return(moment_nn_norm)} 

 

Afterwards, we present two functions: the first one computes the final value 

of an n-payment annuity, with payments of 1 unit each made at the end of every 

year (annuity-immediate); the second one calculates the final value of an n-

payment annuity, with payments of 1 unit each made at the beginning of every 

year (annuity-due). 

The first function is built as follows: 

 

>sum_n_moments_non_norm_beta_pag_anticip=function(n,a,b,c,d){ 

app=rep(NA,n) 

 for (i in 1:n) app[i]=(momento_nn_normalizzato(i,a,b,c,d)+1) 

  return(sum(app))} 

>sum_n_moments_non_norm_beta_pag_anticip(5,a,b,c,d) 

 

    Thus, the final value of an n-payment annuity, with payments of 1 unit 

each made at the end of every year (annuity-immediate) for five years is:  
5

1

4.892854r

r




  . 

The second function is provided by the following code: 

>sum_n_moments_non_norm_beta_pag_post=function(n,a,b,c,d){ 

app2=rep(NA,n) 

 for (i in 0:(n-1)) app2[i+1]=momento_nn_normalizzato(i,a,b,c,d) 

 app2[2:n]=app2[2:n]+1 

 return(sum(app2))} 

>sum_n_moments_non_norm_beta_pag_post(5,a,b,c,d) 

 

Therefore, with our data, the final value of an n-payment annuity, with 

payments of 1 unit each made at the beginning of every year (annuity-

immediate) for five years is: 
4

0

4.892879r

r




  . 
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5 Conclusions 

 
In this paper we have presented two methodologies to obtain the value of an 

annuity whose discount rate is a variable known in terms of random. Once the 

expected value of the discount rate has been analyzed through the non-central 

moments of the discount factor, the expression for determining the expected 

final value of an n-payment annuity has been deduced.  

Specifically, the theoretical development of this methodology has been 

carried out in two different ways: by supposing that the interest rate follows a 

normal distribution, and considering that it follows a beta distribution. 

Furthermore, we provided the code to reproduce our results with the R 

statistical software (available in Appendix 1). 

Our results show slight differences between the estimates of the same data, 

approximating these with different distributions. This shows how the choice of 

the distribution of the approximation of data is important for the calculation of 

the value of an annuity when interest rates are represented by random variables. 
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Appendix 1: Replication material 

data=c(0.00,-0.05,-0.05,-0.06,-0.06,0.02,-0.06,-0.05,-0.04,-0.05,-0.03,-

0.06,0.04,-0.05,-0.08,-0.05,-0.12,-0.03,-0.05,-0.04,-0.06) 

 

library(tseries) 

jarque.bera.test(data) 

mean(data) 

sd(data) 

 

library(moments) 

 

sum_k_moments_post=function(data,k){ 

  app.moments_post=rep(NA,k) 

  for (i in 0:(k-1)) app.moments_post[i+1]=moment(data, central = FALSE, 

absolute = FALSE, order =i) 

 

  sum_moments_post=sum(app.moments_post)+(k-1) 

  return(sum_moments_post)} 

 

sum_k_moments_post(data,5) 

 

sum_k_moments_ant=function(data,k){ 

  app.moments_ant=rep(NA,k) 

  for (i in 1:k) app.moments_ant[i]=moment(data, central = FALSE, 

absolute = FALSE, order =i) 

 

  sum_moments_ant=sum(app.moments_ant)+k 

  return(sum_moments_ant)} 

 

sum_k_moments_ant(data,5) 

 

library(actuar) 

library(EnvStats) 

 

nor=function(x){(x-min(x))/(max(x)-min(x))} 

 

data2=nor(data) 

ebeta(data2, method = "mle") 

mean_beta=function(a,b){a/(a+b)} 

 

mean_beta(2.394501,2.665577) 
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var_beta=function(a,b){a*b/((a+b)^2*(a+b+1))} 

 

var_beta(2.394501,2.665577) 

fattoriale_crescente=function(n,f){n*factorial(x=n+f-1)/factorial(x=n)} 

 

momento_beta=function(a,b,f){fattoriale_crescente(a,f)/fattoriale_crescente

((a+b),f)} 

 

momento_nn_normalizzato=function(n,a,b,c,d){ 

  for(k in 0:n) {   m=mbeta(n-k, c, d) 

    moment_nn_norm=sum( 

      choose(n,k)*(a^k)*((b-a)^(n-k))*m 

    ) } 

  return(moment_nn_norm)} 

 

sum_n_moments_non_norm_beta_pag_anticip=function(n,a,b,c,d){app=rep

(NA,n) 

  for (i in 1:n) app[i]=(momento_nn_normalizzato(i,a,b,c,d)+1) 

  return(sum(app))} 

 

sum_n_moments_non_norm_beta_pag_anticip(5,a,b,c,d) 

sum_n_moments_non_norm_beta_pag_post=function(n,a,b,c,d){  

app2=rep(NA,n) 

  for (i in 0:(n-1)) app2[i+1]=momento_nn_normalizzato(i,a,b,c,d) 

  app2[2:n]=app2[2:n]+1 

  return(sum(app2))} 

 

sum_n_moments_non_norm_beta_pag_post(5,a,b,c,d) 
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