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Abstract

In this paper, we investigate some results on hoop algebras and hyper
hoop-algebras. We construct a hoop and a hyper hoop on any countable set.
Then using the notion of the fundamental relation we define the fundamental
hoop and we show that any hoop is a fundamental hoop and then we con-
struct a fundamental hoop on any non-empty countable set.
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1 Introduction
Hoop-algebras are naturally ordered commutative residuated integral monoids

were originally introduced by Bosbach in [7] under the name of complementary
semigroups. It was proved that a hoop is a meet-semilattice. Hoop-algbras then
investigated by Büchi and Owens in an unpublished manuscript [8] of 1975, and
they have been studied by Blok and Ferreirim[2],[3], and Aglianò et.al.[1]. The
study of hoops is motivated by researchers both in universal algebra and algebraic
logic.In recent years, hoop theory was enriched with deep structure theorems.

Many of these results have a strong impact with fuzzy logic. Particularly, from
the structure theorem of finite basic hoops one obtains an elegant short proof of
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the completeness theorem for propositional basic logic(see Theorem 3.8 of [1])
introduced by Hájek in [13]. The algebraic structures corresponding to Hájek’s
propositional (fuzzy) basic logic, BL-algebras, are particular cases of hoops and
MV-algebras, product algebras and Gödel algebras are the most known classes of
BL-algebras. Recent investigations are concerned with non-commutative gener-
alizations for these structures.

Hypersructure theory was introduced in 1934[15], by Marty. Some fields of
applications of the mentioned structures are lattices, graphs, coding, ordered sets,
median algebra, automata, and cryptography[9]. Many researchers have worked
on this area. The authors applied hyper structure theory on hyper hoop and intro-
duced and studied hyper hoop algebras in [17]and[16].

In this paper, we investigate some new results on hoop-algebras and hyper
hoop-algebras. We construct a hoop and a hyper hoop on any countable set. Then
using the notion of the fundamental relation we define the fundamental hoop.

2 Preliminaries

First, we recall following basic notions of the hypergroup theory from[10]:
Let A be a non-empty set. A hypergroupoid is a pair (A,�), where � : A ×
A −→ P (A) − {∅} is a binary hyperoperation on A. If associativity low holds,
then (A,�) is called a semihypergroup, and it is said to be commutative if � is
commutative. An element 1 ∈ A is called a unit, if a ∈ 1 � a ∩ a � 1, for all
a ∈ A and is called a scaler unit, if 1� a = a� 1 = {a}, for all a ∈ A. Note that
if B,C ⊆ A, then we consider B � C by B � C =

⋃
b∈B,c∈C

(b� c). (See [10])

Definition 2.1. [3] A hoop-algebra or briefly hoop is an algebra (A,�,→, 1) of
type (2, 2, 0) such that, (HP1): (A,�, 1) is a commutative monoid and for all
x, y, z ∈ A, (HP2): x → x = 1, (HP3): (x � y) → z = x → (y → z) and
(HP4): (x → y) � x = (y → x) � y. On hoop A we define ”x ≤ y” if and only
if x→ y = 1. It is easy to see that ≤ is a partial order relation on A.

Definition 2.2. [17] A hyper hoop-algebra or briefly, a hyper hoop is a non-
empty set A endowed with two binary hyperoperations �,→ and a constant 1
such that, for all x, y, z ∈ A satisfying the following conditions,
(HHA1) (A,�, 1) is a commutative semihypergroup with 1 as the unit,
(HHA2) 1 ∈ x→ x,
(HHA3) (x→ y)� x = (y → x)� y,
(HHA4) x→ (y → z) = (x� y)→ z,
(HHA5) 1 ∈ x→ 1,
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(HHA6) if 1 ∈ x→ y and 1 ∈ y → x then x = y,
(HHA7) if 1 ∈ x→ y and 1 ∈ y → z then 1 ∈ x→ z.

In the sequel we will refer to the hyper hoop (A,�,→, 1) by its universe A.
On hyper hoop A, we define x ≤ y if and only if 1 ∈ x→ y. If A is a hyper hoop,
it is easy to see that ≤ is a partial order relation on A. Moreover, for all B,C ⊆ A
we define B � C iff there exist b ∈ B and c ∈ C such that b ≤ c and define
B ≤ C iff for any b ∈ B there exists c ∈ C such that b ≤ c. A hyper hoop A is
bounded if there is an element 0 ∈ A such that 0 ≤ x, for all x ∈ A.

Proposition 2.3. In any hyper hoop (A,�,→, 1), if x � y and x → y are sin-
gletons, for any x, y ∈ A, then (A,�,→, 1) is a hoop. Then hyper hoops are a
generalization of hoops and every hoop is a trivial hyper hoop.

Proposition 2.4. [17] Let A be a hyper hoop. Then for all x, y, z ∈ A and
B,C,D ⊆ A, the following hold,
(HHA8) x� y � z ⇔ x ≤ y → z,
(HHA9) B � C � D ⇔ B � C → D,
(HHA10) z → y ≤ (y → x)→ (z → x),
(HHA11) z → y � (x→ z)→ (x→ y),
(HHA12) 1� 1 = {1}.

Notations: Let R be an equivalence relation on hyper hoop A and B,C ⊆ A.
Then BRC, BRC and BRC denoted as follows,
(i) BRC if there exist b ∈ B and c ∈ C such that bRc,
(ii) BRC if for all b ∈ B there exists c ∈ C such that bRc and for all c ∈ C there
exists b ∈ B such that bRc,
(iii) BRC if for all b ∈ B and c ∈ C, we have bRc.

Remark 2.5. It is clear that BRC and CRD imply that BRD, for all B,C,D ⊆
A.

Definition 2.6. [17] Let R be an equivalence relation on hyper hoop A. Then R
is called a regular relation on A if and only if for all x, y, z ∈ A,
(i) if xRy, then x� zRy � z,
(ii) if xRy, then x→ zRy → z and z → xRz → y,
(iii) if x→ yR{1} and y → xR{1}, then xRy.

Definition 2.7. [17] Let R be an equivalence relation on hyper hoop A. Then R
is called a strong regular relation on A if and only if, for all x, y, z ∈ A,
(i) if xRy, then x� zRy � z,
(ii) if xRy, then x→ zRy → z and z → xRz → y,
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Theorem 2.8. [17] Let R be a regular relation on hyper hoopA and A
R be the set of

all equivalence classes respect to R, that is A
R = {[x]|x ∈ A}. Then (AR ,⊗, ↪→, [1])

is a hyper hoop, which is called the quotient hyper hoop of A respect to R, where
for all [x], [y] ∈ A

R ,

[x]⊗ [y] = {[t]|t ∈ x� y} and [x] ↪→ [y] = {[z]|z ∈ x→ y}

Theorem 2.9. [17] Let R be a strong regular relation on hyper hoop A. Then
(AR ,⊗, ↪→, [1]) is a hoop which is called the quotient hoop of A respect to R.

Theorem 2.10. [4] Let X and Y be two sets such that |X| = |Y |. If (Y,≤, 0) is
a well-ordered set, then there exists a binary order relation on X and x0 ∈ X ,
such that (X,≤, x0) is a well-ordered set.

Lemma 2.11. [14] Let X be an infinite set. Then for any set {a, b}, we have
|X × {a, b}| = |X|.

3 Constructing of hoops
In this section, we show that we can construct a hoop on any non-empty count-

able set.

Lemma 3.1. Let A and B be two sets such that |A| = |B|. If A is a hoop, then
we can construct a hoop on B by using of A.

Proof. Since |A| = |B|, there exists a bijection ϕ : A → B. For any b1, b2 ∈
B. We define the binary operations �B and→B on B by,

b1 �B b2 = ϕ(a1 �A a2) and b1 →B b2 = ϕ(a1 →A a2)

where b1 = ϕ(a1), b2 = ϕ(a2) and a1, a2 ∈ A. It is easy to show that�B and→B

are well-defined. Moreover, for any b ∈ B we define 1B as 1B = ϕ(1A). Now, by
some modification we can show that (B,�B,→B, 1B) is a hoop.2

Lemma 3.2. For any k ∈ N, we can construct a hoop on Wk = {0, 1, 2, 3, ..., k−
1}.

Proof. Let k ∈ N. We define the operations ”�” and ”→”, on Wk as follows,
for all a, b ∈Wk,

a� b=

{
0 if a+ b ≤ k − 1,

a+ b− k + 1 otherwise

a→ b =

{
k − 1 if a ≤ b,

k − 1− a+ b otherwise
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Now, we show that (Wk,�,→, k − 1) is a hoop,
(HP1): Since, + is commutative, hence � is commutative. Now, we show that �
is associative on Wk. For all a, b, c ∈Wk,
Case 1: If a+ b ≤ k − 1 and b+ c ≤ k − 1, then (a� b)� c = (0)� c = 0 and
a� (b� c) = a� 0 = 0 and so (a� b)� c = a� (b� c).
Case 2: If a + b > k − 1 and b + c ≤ k − 1, since a + b + c ≤ 2(k − 1) and so
a+ b+ c− k + 1 ≤ k− 1, we get (a� b)� c = (a+ b− k + 1)� c = 0. On the
other hand, a� (b� c) = a� 0 = 0 and then (a� b)� c = a� (b� c).
Case 3: If a+b > k−1 and b+c > k−1, then (a�b)�c = (a+b−k+1)�c and
a�(b�c) = a�(b+c−k+1). If a+b+c ≤ 2k then (a�b)�c = a�(b�c) = 0
and if a+ b+ c > 2k then (a� b)� c = a� (b� c) = a+ b+ c− 2k + 2.
Case 4: Let a+ b ≤ k − 1 and b+ c > k − 1. This case is similar to the Case 2.
Now, we have 0� k− 1 = 0 and if 0 6= a ∈Wk, we have a+(k− 1) > k− 1 and
so a� (k − 1) = a+ k − 1− k + 1 = a. Then (k − 1) is the identity of (Wk,�)
and so (Wk,�, k − 1) is a commutative monoid.
(HP2): It is clear that, for all a ∈Wk, a→ a = k − 1.
(HP3): Let a, b, c ∈Wk. We show that (a� b)→ c = a→ (b→ c).
Case 1: If a+ b ≤ k − 1 and a ≤ b ≤ c, then (a� b)→ c = 0→ c = k − 1 and
a→ (b→ c) = a→ (k − 1) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 2: If a + b ≤ k − 1 and a ≤ c < b, (a � b) → c = 0 → c = k − 1 and
since k − 1− b + c ≥ a, a → (b → c) = a → (k − 1− b + c) = k − 1. Hence,
(a� b)→ c = a→ (b→ c).
Case 3: If a+ b ≤ k − 1 and b ≤ a ≤ c, then (a� b)→ c = 0→ c = k − 1 and
a→ (b→ c) = a→ (k − 1) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 4: If a+ b ≤ k − 1 and b ≤ c < a, then (a� b)→ c = 0→ c = k − 1 and
a→ (b→ c) = a→ (k − 1) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 5: If a+ b ≤ k − 1 and c ≤ b ≤ a, then (a� b)→ c = 0→ c = k − 1. On
the other hand since a+b ≤ k−1, we get a+b−c ≤ k−1, a ≤ (k−1−b+c) and
a→ (k− 1− b+ c) = k− 1. Then a→ (b→ c) = a→ (k− 1− b+ c) = k− 1.
Hence, (a� b)→ c = a→ (b→ c).
Case 6: If a+b ≤ k−1 and c ≤ a < b, then (a�b)→ c = 0→ c = k−1. On the
other hand since a+ b ≤ k− 1, we get a+ b− c ≤ k− 1, a ≤ (k− 1− b+ c) and
a→ (k− 1− b+ c) = k− 1. Then a→ (b→ c) = a→ (k− 1− b+ c) = k− 1.
Hence, (a� b)→ c = a→ (b→ c).
Case 7: Let a + b > k − 1 and a ≤ b ≤ c. Since a ≤ b ≤ c, we get a + b − c ≤
a ≤ k − 1 and so a + b − k + 1 ≤ c. Then (a � b) → c = (a + b − k + 1) →
c = k − 1. On the other hand, a → (b → c) = a → (k − 1) = k − 1. Hence,
(a� b)→ c = a→ (b→ c).
Case 8: Let a+ b > k− 1 and a ≤ c < b. Since a ≤ c < b we get a+ b− c ≤ b ≤
k− 1 and so a+ b−k+1 ≤ c. Then (a� b)→ c = (a+ b−k+1)→ c = k− 1.
On the other hand, since k − 1 − b + c ≥ c ≥ a, we get a → (b → c) = a →
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(k − 1− b+ c) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 9: Let a+b > k−1 and b ≤ a ≤ c. Since b ≤ a ≤ c, we get a+b−c ≤ a ≤
k− 1 and so a+ b−k+1 ≤ c. Then (a� b)→ c = (a+ b−k+1)→ c = k− 1.
On the other hand since k − 1 − b + c ≥ c ≥ a, we get a → (b → c) = a →
(k − 1− b+ c) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 10: Let a+ b > k − 1 and b ≤ c < a. Since b ≤ c < a, we get a+ b− c ≤
a ≤ k − 1 and so a + b − k + 1 ≤ c. Then (a � b) → c = (a + b − k + 1) →
c = k − 1. On the other hand a → (b → c) = a → (k − 1) = k − 1. Hence,
(a� b)→ c = a→ (b→ c).
Case 11: If a+ b > k− 1 and c ≤ b ≤ a, then (a� b)→ c = (a+ b−k+1)→ c
and a → (b → c) = a → (k − 1 − b + c). Hence, if a + b − c ≤ k − 1,
then (a � b) → c = a → (b → c) = k − 1 and if a + b − c > k − 1, then
(a� b)→ c = a→ (b→ c) = 2k − 2− a− b+ c.
Case 12: If a+ b > k− 1 and c ≤ a < b, then (a� b)→ c = (a+ b−k+1)→ c
and a → (b → c) = a → (k − 1 − b + c). Hence, if a + b − c ≤ k − 1,
then (a � b) → c = a → (b → c) = k − 1 and if a + b − c > k − 1, then
(a� b)→ c = a→ (b→ c) = 2k − 2− a− b+ c
(HP4): Now, we show that (a→ b)� a = (b→ a)� b, for all a, b ∈Wk.
Case 1: If a ≤ b, then (a → b) � a = (k − 1) � a = a and (b → a) � b =
(k−1−b+a)�b = k−1−b+a+b−k+1 = a. Hence, (a→ b)�a = (b→ a)�b.
Case 2: If a > b, then (a→ b)�a = (k−1−a+b)�a = k−1−a+b+a−k+1 = b
and (b→ a)� b = (k − 1)� b = b. Hence, (a→ b)� a = (b→ a)� b.
Therefore, (Wk,�,→, k − 1) is a hoop.2

Theorem 3.3. Let A be a finite set. Then there exist binary operations � and→
and constant 1 on A, such that (A,�,→, 1), is a hoop.

Proof. Let A be a finite set. Then, there exists k ∈ N such that |A| = |Wk|.
Now, by Lemma 3.2, (Wk,�,→, 1) is a hoop and so by Lemma 3.1, there exist
binary operations � and →, and constant 1 on A , such that (A,�,→, 1) is a
hoop.2

Lemma 3.4. Let 1 < n ∈ Q. Then there exist binary operations � and → on
E = Q ∩ [1, n], such that (E,�,→, n) is a hoop.

Proof. For any 1 < n ∈ E, we define the binary operations � and→ on E
as follows, for all a, b ∈ E,

a� b=

{
1 if ab ≤ n,
ab
n

otherwise
a→ b =

{
n if a ≤ b,
nb
a

otherwise

Clearly, � and→ are well-defined on E. Now, we show that (E,�,→, n) is
a hoop.
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(HP1): For all a ∈ E, if a 6= 1, since an > n we have a � n= n � a = an
n

= a
and if a = 1, we have a � n = 1 � n = 1 = a. Then n is the identity element of
(E,�). Now, we show that � is associative on E. Let a, b, c ∈ E,
Case 1: If ab ≤ n and bc ≤ n, then (a� b)� c = 1� c = 1. On the other hand
a� (b� c) = a� (1) = 1. Then (a� b)� c = a� (b� c).
Case 2: If ab ≤ n and bc > n, then (a � b) � c = 1� c = 1. On the other hand
b � c = bc

n
and then a � (b � c) = a � ( bc

n
). Since abc

n
= ab

n
c ≤ c ≤ n, we get

a� (b� c) = 1 and so (a� b)� c = a� (b� c).
Case3: If ab > n and bc > n, then (a � b) � c = (ab

n
) � c. On the other hand

a � (b � c) = a � ( bc
n
). If abc

n
≤ n, then (a � b) � c = a � (b � c) = 1 and if

abc
n
> n, then (a� b)� c = a� (b� c) = abc

n2 . Hence, (a� b)� c = a� (b� c).
Case 4: Let ab > n and bc ≤ n. This case is similar to the Case 2.
It is clear that, for all a, b ∈ E, a� b = b� a. Hence, (E,�, n) is a commutative
monoid.
(HP2): It is clear that, for all a ∈ E, we have a→ a = n.
(HP3): For all a, b, c ∈ E, we have the following cases,
Case 1: If b ≤ c and ab ≤ n, then a → (b → c) = a → n = n and (a � b) →
c = 1→ c = n. Then a→ (b→ c) = (a� b)→ c.
Case 2: If b ≤ c and ab > n, then a → (b → c) = a → n = n and since
a
n
< 1 , we get ab

n
< b ≤ c and so (a � b) → c = ab

n
→ c = n. Then

a→ (b→ c) = (a� b)→ c.
Case 3: If b > c and ab ≤ n, since ab ≤ n ≤ nc and so a ≤ nc

b
, then a →

(b → c) = a → nc
b
= n. On the other hand, (a � b) → c = 1 → c = n. Then

a→ (b→ c) = (a� b)→ c.
Case 4: If b > c and ab > n, then a → (b → c) = a → nc

b
and (a � b) → c =

ab
n
→ c. We have, a ≤ nc

b
if and only if ab

n
≤ c, and so a→ (b→ c) = (a�b)→ c.

HP4: For all a, b ∈ E, we have the following cases,
Case 1: If a ≤ b, then a � (a → b) = a � n = an

n
= a and b � (b → a) =

b� na
b
= bna

bn
= a and so a� (a→ b) = b� (b→ a).

Case 2: If a > b, then a � (a → b) = a � nb
a

= anb
an

= b and b � (b → a) =
b� n = bn

n
= b and so a� (a→ b) = b� (b→ a).

Therefore, (E,�,→, n) is a hoop.2

Theorem 3.5. Let A be an infinite countable set. Then there exist binary opera-
tions � and→ and constant 1 on A, such that (A,�,→, 1) is a hoop.

Proof. Let A be an infinite countable set and E = Q∩ [1, n]. Then by Lemma
3.4, (E,�,→, 1) is an infinite countable hoop and |A| = |E|. Hence, by Lemma
3.1, there exist binary operations� and→ and constant 1, such that (A,�,→, 1)
is a hoop.2

Corollary 3.6. For any non-empty countable set A, we can construct a hoop on
A.
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Proof. Let A be a non-empty countable set. Then, A is a finite set, or an
infinite countable set . Then by the Theorems 3.3 and 3.5, the proof is clear.2

4 Constructing of some hyper hoops
In this section first we show that the Cartesian product of hoops is a hyper

hoop and then we construct a hyper hoop by any non-empty countable set.

Theorem 4.1. Let (A,�A,→A, 1A) and (B,�B,→B, 1B) be two hoops. Then
there exist hyperoperations �, → and constant 1 on A × B such that (A ×
B,�,→, 1) is a hyper hoop.

Proof. For any (a1, b1), (a2, b2) ∈ A × B, we define the binary hyperopera-
tions �,→ on A×B by,

(a1, b1)� (a2, b2) = {(a1 �A a2, b1), (a1 �A a2, b2)},

(a1, b1)→ (a2, b2) =

{
{(a1 →A a2, b2), (a1 →A a2, 1B)} if b1 = b2,

{(a1 →A a2, b2)} otherwise

and constant 1 = (1A, 1B). It is easy to show that the hyperoperations are well-
defined. Now, we show that (A×B,�,→, 1) is a hyper hoop.
(HHA1): Since �A , is associative and commutative, we get � is associative and
commutative. Moreover, for all (a, b) ∈ A × B, we have (a, b) � (1A, 1B) =
{(a�A 1A, b), (a�A 1A, 1B)} 3 (a, b). Then (A× B,�,→, 1) is a commutative
semihypergroup with 1 as the unit, where 1 = (1A, 1B).
(HHA2): For all (a, b) ∈ A×B, we have

(a, b)→ (a, b) = {(a→A a, b), (a→A a, 1B)} =

{(a→A a, b), (1A, 1B)} 3 (1A, 1B) = 1

(HHA3): For all (a1, b1), (a2, b2) ∈ A×B, we have the following cases,
Case 1: If b1 6= b2, then,

((a1, b1)→ (a2, b2))� (a1, b1) = {(a1 → a2, b2)} � (a1, b1)

= {((a1 → a2)�A a1, b1), ((a1 → a2)�A a1,
b2)}

= {((a2 → a1)�A a2, b1), ((a2 → a1)�A a2,
b2)}

= ((a2, b2)→ (a1, b1))� (a2, b2)
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Case 2: If b1 = b2, then,

((a1, b1)→ (a2, b2))� (a1, b1) = {(a1 → a2, b2), (a1 → a2, 1B)} � (a1, b1)

= {((a1 → a2)�A a1, b1), ((a1 → a2)�A a1,
b2), ((a1 → a2)�A a1, 1B)}

= {((a2 → a1)�A a2, b1), ((a2 → a1)�A a2,
b2), ((a2 → a1)�A a2, 1B)}

= ((a2, b2)→ (a1, b1))� (a2, b2)

(HHA4): For all (a1, b1), (a2, b2), (a3, b3) ∈ A×B, we have the following cases,
Case 1: If b1 = b2 = b3,

(a1, b1)→ ((a2, b2)→ (a3, b3)) = (a1, b1)→ {((a2 →A a3), b3), ((a2 →A a3),

1B)}
= {(a1 →A (a2 →A a3), 1B), (a1 →A (a2 →A

a3), b3)}
= {((a1 �A a2)→A a3, 1B), ((a1 �A a2)→A

a3), b3)}
= ((a1, b1)� (a2, b2))→ (a3, b3)

Case 2: If b1 6= b2 = b3,

(a1, b1)→ ((a2, b2)→ (a3, b3)) = (a1, b1)→ {((a2 →A a3), b3), ((a2 →A a3),

1B)}
= {(a1 →A (a2 →A a3), 1B), (a1 →A (a2 →A

a3), b3)}
= {(a1 �A a2)→A (a3, 1B), ((a1 �A a2)→A

a3), b3)}
= ((a1, b1)� (a2, b2))→ (a3, b3)

Case 3: If b1 = b2 6= b3,

(a1, b1)→ ((a2, b2)→ (a3, b3)) = (a1, b1)→ {((a2 →A a3), b3)}
= {a1 →A (a2 →A a3), b3)}
= {((a1 �A a2)→A a3, b3)}
= ((a1, b1)� (a2, b2))→ (a3, b3)
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Case 4: If b1 6= b2 6= b3,

(a1, b1)→ ((a2, b2)→ (a3, b3)) = (a1, b1)→ {((a2 →A a3), b3)}
= {(a1 →A (a2 →A a3), b3)}
= {((a1 �A a2)→A a3, b3)}
= ((a1, b1)� (a2, b2))→ (a3, b3)

(HHA5): For all (a, b) ∈ A×B, we have the following cases,
Case 1: If b = 1B, then (a, b) → (1A, 1B) = {(a → 1A, 1B), (a → 1A, b →
1B)} = {(1A, 1B)} 3 (1A, 1B).
Case 2: If b 6= 1B, then (a, b) → (1A, 1B) = {(a → 1A, 1B)} = {(1A, 1B)} 3
(1A, 1B).
(HHA6): For all (a1, b1), (a2, b2) ∈ A× B, if (1A, 1B) ∈ (a1, b1)→ (a2, b2) and
(1A, 1B) ∈ (a2, b2)→ (a1, b1), then we have the following cases,
Case 1: If b1 6= b2, then (1A, 1B) ∈ {(a1 →A a2, b2)} and (1A, 1B) ∈ {(a2 →A

a1, b1)}. Hence, 1A = a1 →A a2 and 1A = a2 → a1 and 1B = b1 = b2. Since A
is a hoop, we get a1 = a2 and so (a1, b1) = (a2, b2)
Case 2: If b1 = b2, then (1A, 1B) ∈ {(a1 →A a2, b2), (a1 →A a2, 1B)} and
(1A, 1B) ∈ {(a2 →A a1, b1), (a2 →A a1, 1B)}. Hence 1A = a1 →A a2 and
1A = a2 → a1. Since A is a hoop, we get a1 = a2 and by assumption, we have
b1 = b2. So (a1, b1) = (a2, b2).
(HHA7): For all (a1, b1), (a2, b2), (a3, b3) ∈ A × B, let (1A, 1B) ∈ (a1, b1) →
(a2, b2) and (1A, 1B) ∈ (a2, b2)→ (a3, b3). Then we consider the following cases:
Case 1: If b1 = b2 = b3, then (1A, 1B) ∈ {(a1 →A a2, 1B), (a1 →A a2, b2)} and
(1A, 1B) ∈ {(a2 →A a3, 1B), (a2 →A a3, b3)}. Hence 1A = a1 →A a2 and
1A = a2 → a3. Since A is a hoop, we get 1A = a1 →A a3. Hence, (a1, b1) →
(a3, b3) = {(a1 →A a3, b3), (a1 →A a3, 1B)} = {(1A, b3), (1A, 1B)} 3 (1A, 1B).
Case 2: If b1 6= b2 = b3, then (1A, 1B) ∈ {(a1 →A a2, b2)} and (1A, 1B) ∈
{(a2 →A a3, 1B), (a2 →A a3, b3)}. Hence 1A = a1 →A a2 and 1A = a2 → a3
and b2 = b3 = 1B. Since A is a hoop, we get 1A = a1 →A a3. Hence,
(a1, b1)→ (a3, b3) = {(a1 →A a3, b3)} = {(1A, 1B)} 3 (1A, 1B).
Case 3: Let b1 = b2 6= b3. Then proof is similar to the Case 2.
Case 4: If b1 6= b2 6= b3, then (1A, 1B) ∈ {(a1 →A a2, b2)} and (1A, 1B) ∈
{(a2 →A a3, b3)}. Hence, 1A = a1 →A a2 and 1A = a2 → a3 and b2 = b3 = 1B.
Since A is a hoop, we get 1A = a1 →A a3. Hence, (a1, b1)→ (a3, b3) = {(a1 →A

a3, b3)} = {(1A, 1B)} 3 (1A, 1B).

Therefore,(A×B,�,→, 1) is a hyper hoop, where 1 = (1A, 1B).2

Lemma 4.2. LetA andB be two sets such that |A| = |B|. If (A,�A,→A, 1A) is a
hyper hoop, then there exist hyperoperations�B ,→B and constant 1B onB, such
that (B,�B,→B, 1B) is a hyper hoop and (A,�A,→A, 1A) ∼= (B,�B,→B, 1B).

34



Fundamental hoop-algebras

Proof. Since |A| = |B|, then there exists a bijection ϕ : A → B . For any
b1, b2 ∈ B, there exist a1, a2 ∈ A such that b1 = ϕ(a1) and b2 = ϕ(a2). Then
we define the hyperoperations �B,→B on B by, b1 �B b2 = {ϕ(a)|a ∈ a1 � a2},
and b1 →B b2 = {ϕ(a)|a ∈ a1 → a2}. It is easy to show that �B,→B are
well-defined and (B,�B,→B, 1B) is a hyper hoop, where 1B = ϕ(1A). Now, we
define the map θ : (A,�A,→A, 1A) → (B,�B,→B, 1B) by θ(x) = ϕ(x). Since
ϕ is a bijection then θ is a bijection and it is easy to see that θ is a homomorphism
and so it is an isomorphism.2

Corollary 4.3. For any non-empty countable set A and any hoop B, we can con-
struct a hyper hoop on A×B.

Proof. By Corollary 3.6, we can construct a hoop on A and by Theorem 4.1,
we can construct a hyper hoop on A×B.2

Corollary 4.4. Let A be an infinite countable set. We can construct a hyper hoop
on A.

Proof. Let A be an infinite countable set. Then by Corollary 3.6, we can
construct a hoop on A. Now, By Theorem 3.3, for arbitrary elements x, y not
belonging to A, we can define operations � and → on the set {x, y}, such that
({x, y},�,→) is a hoop. Then by Theorem 4.1, we can construct a hyper hoop
on A× {x, y}. Then by Lemma 2.11 and 4.2, there exists a hyper hoop on A.2

5 Fundametal hoops
In this section we apply the β∗ relation to the hyper hoops and obtain some

results. Then we show that any hoop is a fundamental hoop.

Let (A,�,→, 1) be a hyper hoop and U(A) denote the set of all finite com-
binations of elements of A with respect to � and→. Then, for all a, b ∈ A, we
define aβb if and only if {a, b} ⊆ u, where u ∈ U(A), and aβ∗b if and only if there
exist z1, ..., zm+1 ∈ A with z1 = a, zm+1 = b such that {zi, zi+1} ⊆ ui ⊆ U(A),
for i = 1, ...,m (In fact β∗ is the transitive closure of the relation β).

Theorem 5.1. Let A be a hyper hoop. Then β∗ is a strong regular relation on A.
Proof. Let aβ∗b, for a, b ∈ A. Then there exist x1, ..., xn+1 ∈ A with

x1 = a, xn+1 = b and ui ∈ U(A) such that {xi, xi+1} ⊆ ui, for 1 ≤ i ≤ n. Let
zi ∈ xi → c, for all 1 ≤ i ≤ n+ 1, c ∈ A. Then we have,

{zi, zi+1} ⊆ (xi → c) ∪ (xi+1 → c) ⊆ ui → c ⊆ U(A), for all 1 ≤ i ≤ n.

Hence, z1β∗zn+1, where z1 ∈ a → c and zn+1 ∈ b → c and so a → cβ∗b → c.
Similarly, we can show that c → aβ∗c → b. Now, by the same way we can prove
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that aβ∗b implies a�cβ∗b�c, for all c ∈ A. Hence, β∗ is a strong regular relation
on A.2

Corollary 5.2. Let A be a hyper hoop. Then ( A
β∗
,⊗, ↪→) is a hoop, where ⊗ and

↪→ are defined by Theorem 2.8.
Proof. By Theorem 2.9 the proof is clear.2

Theorem 5.3. Let A be a hyper hoop. Then the relation β∗ is the smallest equiv-
alence relations γ defined on A such that the quotient A

γ
is a hoop with operations

γ(x)⊗ γ(y) = γ(t) : t ∈ x� y and γ(x) ↪→ γ(y) = γ(z) : z ∈ x→ y

where γ(x) is equivalence class of x with respect to the relation γ.
Proof. By Corollary 5.2, A

β∗
is a hoop. Now, let γ be an equivalence relation

on A such that A
γ

is a hoop. Let xβy, for x, y ∈ A and π : A→ A
γ

be the natural
projection such that π(x) = γ(x). It is clear that π is a homomorphism of hyper
hoops. Then there exists u ∈ U(A) such that {x, y} ⊆ u. Since π is a homomor-
phism of hyper hoops, we get |π(u)| = |γ(u)| = 1. Since {π(x), π(y)} ⊆ π(u)
and |π(u)| = 1, we get π(x) = π(y) and so γ(x) = γ(y) i.e. xγy. Hence,
β ⊆ γ. Now, let aβ∗b, for a, b ∈ A. Then there exist x1, ..., xn+1 ∈ A, such that
a = x1βx2, ..., βxn+1 = b. Since β ⊆ γ, we get a = x1γx2, ..., γxn+1 = b. Then
since γ is a transitive relation on A, we get aγb and so β∗ ⊆ γ.2

Corollary 5.4. The relation β∗ is the smallest strong regular relation on hyper
hoop A.

Proof. The proof is straightforward.2

Lemma 5.5. If A1 and A2 are two hyper hoops, then the Cartesian product A1 ×
A2 is a hyper hoop with the unit (1A1 , 1A2) by the following hyperoperations, for
(x1, y1), (x2, y2) ∈ A1 × A2,

(x1, y1)� (x2, y2) = {(a, b)|a ∈ x1 � x2, b ∈ y1 � y2},
(x1, y1)→ (x2, y2) = {(a′, b′)|a′ ∈ x1 → x2, b

′ ∈ y1 → y2}

Proof. The proof is straightforward.2

Lemma 5.6. Let A1 and A2 be two hyper hoops. Then, for a, c ∈ A1 and b, d ∈
A2, we have (a, b)β∗A1×A2

(c, d) if and only if aβ∗A1
c and bβ∗A2

d.
Proof. We know that u ∈ U(A1 × A2) if and only if there exist u1 ∈ U(A1)

and u2 ∈ U(A2) such that u = u1 × u2. Then (a, b)β∗A1×A2
(c, d) if and only if

there exist u1 ∈ U(A1) and u2 ∈ U(A2) such that {(a, b), (c, d)} ⊆ u1×u2 if and
only if {a, c} ⊆ u1 and {b, d} ⊆ u2 if and only if aβ∗A1

c and bβ∗A2
d.2
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Theorem 5.7. Let A1 and A2 be two hyper hoops. Then A1×A2

β∗A1×A2

∼= A1

β∗A1

× A2

β∗A2

.

Proof. Letϕ : A1×A2

β∗
→ A1

β∗A1

× A2

β∗A2

be defined byϕ(β∗(x, y)) = (β∗A1
(x), β∗A2

(y)),

where β∗ = β∗A1×A2
By Lemma 5.5, A1×A2

β∗
is well-define. It is clear that ϕ is onto.

By Lemma 5.6, we have β∗(x1, y1) = β∗(x2, y2) if and only if β∗A1
(x1) = β∗A2

(x2)
and β∗A2

(y1) = β∗A2
(y2), for any (x1, y1), (x2, y2) ∈ A1×A2. So, ϕ is well defined

and one to one. Also, by considering the hyperoperations ⊗ and ↪→ defined in
Theorem 2.8, we have,

ϕ(β∗(x1, y1) ↪→ β∗(x2, y2)) = ϕ({β∗(a, b)|a ∈ x1 → x2, b ∈ y1 → y2})
= {ϕ(β∗(a, b))|a ∈ x1 → x2, b ∈ y1 → y2}
= {(β∗A1

(a), β∗A2
(b))|a ∈ x1 → x2, b ∈ y1 → y2}

= (β∗A1
(x1) ↪→ β∗A1

(x2), β
∗
A2
(y1) ↪→ β∗A2

(y2))

= (β∗A1
(x1), β

∗
A2
(y1)) ↪→ (β∗A1

(x2), β
∗
A2
(y2))

= ϕ(β∗(x1, y1)) ↪→ ϕ(β∗(x2, y2))

Similarly, we can show thatϕ(β∗(x1, y1)⊗β∗(x2, y2)) = ϕ(β∗(x1, y1))⊗ϕ(β∗(x2,
y2)). Moreover, it is clear that ϕ(β∗(1A1 , 1A2)) = (β∗(1A1), β

∗(1A2)). Hence, ϕ
is an isomorphism.2

Corollary 5.8. Let A1, A2, ...., An be hyper hoops. Then,

A1×A2×....×An

β∗A1×A2×....×An

∼= A1

β∗1
× A2

β∗2
× .......× An

β∗n

Proof. The proof is straightforward.2

Theorem 5.9. Let A and B be two sets such that |A| = |B|. If (A,�A,→A, 1A)
is a hyper hoop, then there exist hyperoperations �B and→B and constant 1B on
B such that (B,�B,→B, 1B) is a hyper hoop and (A,�A,→A,1A)

β∗A

∼= (B,�B ,→B ,1b)
β∗B

.

Proof. Since |A| = |B|, then by Lemma 4.2, there exist binary hyper-
operations �B and →B, such that (B,�B,→B, 1B) is a hyper hoop. More-
over, there exists an isomorphism f : (A,�A,→A, 1A) → (B,�B,→B, 1B),
such that f(1A) = 1B. Now, we define ϕ : (A,�A,→A,1A)

β∗A
→ (B,�B ,→B ,1B)

β∗B
by

ϕ(β∗A(x)) = β∗B(f(x)). Since f is an isomorphism, ϕ is onto. Let y1 , y2 ∈
B. Then there exist a1, a2 ∈ A such that b1 = f(a1) and b2 = f(a2). Then
β∗A(a1) = β∗A(a2) iff a1β∗Aa2 iff there exists u ∈ U(A) such that {a1, a2} ⊆ u
iff there existes f(u) ∈ U(B) : {f(a1), f(a2)} ⊆ f(u) iff β∗B(b1) = β∗B(b2) iff
β∗B(f(a1)) = β∗B(f(a2)). Then ϕ is well-defined and one to one. Also, by consid-
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ering the hyperoperations ⊗ and ↪→ defined in Theorem 2.8, we have,

ϕ(β∗A(a1)⊗ β∗A(a2)) = ϕt∈a1�a2(β
∗
A(t)) = β∗t∈a1�a2(f(t))

= β∗t′∈f(a1�a2)(t
′) = β∗t′∈f(a1)�f(a2)(t

′) = β∗B(f(a1))⊗ β∗B
(f(a2))

= ϕ(β∗A(a1))⊗ ϕ(β∗A(a2))

By the same way, we can show that

ϕ(β∗A(a1) ↪→ β∗A(a2)) = ϕ(β∗A(a1)) ↪→ ϕ(β∗A(a2))

Since f is an isomorphism, we get ϕ(β∗A(1A)) = β∗B(f(1A)) = β∗B(1B). Hence, ϕ
is an isomorphism.2

Definition 5.10. Let A be a hoop algebra. Then A is called a fundamental hoop,
if there exists a nontrivial hyper hoop B, such that B

β∗B

∼= A

Theorem 5.11. Every hoop is a fundamental hoop.
Proof. Let A be a hoop. Then by Theorem 4.1, for any hoop B, A × B is a

hyper hoop. By considering the hyperoperations� and→ defined in Theorem 4.1,
we get that any finite combination u ∈ U(A× B) is the form of u = {(a, xi)|a ∈
A, xi ∈ B}. Hence, for any (a1, b1), (a2, b2) ∈ A×B,

(a1, b1)β
∗(a2, b2)⇔ ∃u ∈ U(A×B) such that

{(a1, b1), (a2, b2)} ⊆ u⇔ a1 = a2

Hence, for any (a, b) ∈ A×B, β∗(a, b) = {(a, x)|x ∈ B}.
Now, we define the map ψ : A×B

β∗
→ A by, ψ(β∗(a, b)) = a. It is clear that,

β∗(a1, b1) = β∗(a2, b2)⇔ a1 = a2 ⇔ ψ(β∗(a1, b1)) = ψ(β∗(a2, b2)).

Then, ψ is well defined and one to one. In the following, we show that ψ is a
homomorphism. For this we have,

ψ(β∗(a1, b1)⊗ β∗(a2, b2)) = ψ(β∗(u, v)) : (u, v) ∈ (a1, b1)� (a2, b2)

= ψ(β∗(u, v)) : (u, v) ∈ {((a1 � a2), b1), ((a1 �
a2), b2)}

= {u|u ∈ a1 � a2} = a1 � a2
= ψ(β∗(a1, b1))� ψ(β∗(a2, b2))
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and similarly, for the operation ↪→, we have the following cases,
Case 1: If b1 6= b2, then,

ψ(β∗(a1, b1) ↪→ β∗(a2, b2)) = ψ(β∗(u, v)) : (u, v) ∈ (a1, b1)→ (a2, b2)

= ψ(β∗(u, v)) : (u, v) ∈ {((a1 → a2), b2)}
= {u|u ∈ a1 → a2} = a1 → a2

= ψ(β∗(a1, b1))→ ψ(β∗(a2, b2))

Case 2:If b1 = b2, then,

ψ(β∗(a1, b1) ↪→ β∗(a2, b2)) = ψ(β∗(u, v)) : (u, v) ∈ (a1, b1)→ (a2, b2)

= ψ(β∗(u, v)) : (u, v) ∈ {((a1 → a2), b2), ((a1 →
a2), 1B)}

= {u|u ∈ a1 → a2} = a1 → a2

= ψ(β∗(a1, b1))→ ψ(β∗(a2, b2))

Clearly, ψ(β∗(1A, 1B) = 1A and ψ is onto. Therefore, ψ is an isomorphism i.e.
A×B
β∗
∼= A and so A is fundamental.2

Corollary 5.12. For any non-empty countable set A, we can construct a funda-
mental hoop on A.

Proof. By Corollary 3.6 and Theorem 5.11 the proof is clear.2

References
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