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Abstract

In this paper, we investigate some results on hoop algebras and hyper
hoop-algebras. We construct a hoop and a hyper hoop on any countable set.
Then using the notion of the fundamental relation we define the fundamental
hoop and we show that any hoop is a fundamental hoop and then we con-
struct a fundamental hoop on any non-empty countable set.
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1 Introduction

Hoop-algebras are naturally ordered commutative residuated integral monoids
were originally introduced by Bosbach in [7] under the name of complementary
semigroups. It was proved that a hoop is a meet-semilattice. Hoop-algbras then
investigated by Biichi and Owens in an unpublished manuscript [8] of 1975, and
they have been studied by Blok and Ferreirim[2],[3], and Agliano et.al.[1]. The
study of hoops is motivated by researchers both in universal algebra and algebraic
logic.In recent years, hoop theory was enriched with deep structure theorems.

Many of these results have a strong impact with fuzzy logic. Particularly, from
the structure theorem of finite basic hoops one obtains an elegant short proof of
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the completeness theorem for propositional basic logic(see Theorem 3.8 of [1])
introduced by Héjek in [13]. The algebraic structures corresponding to Héjek’s
propositional (fuzzy) basic logic, BL-algebras, are particular cases of hoops and
MV-algebras, product algebras and Godel algebras are the most known classes of
BL-algebras. Recent investigations are concerned with non-commutative gener-
alizations for these structures.

Hypersructure theory was introduced in 1934[15], by Marty. Some fields of
applications of the mentioned structures are lattices, graphs, coding, ordered sets,
median algebra, automata, and cryptography[9]. Many researchers have worked
on this area. The authors applied hyper structure theory on hyper hoop and intro-
duced and studied hyper hoop algebras in [17]and[16].

In this paper, we investigate some new results on hoop-algebras and hyper
hoop-algebras. We construct a hoop and a hyper hoop on any countable set. Then
using the notion of the fundamental relation we define the fundamental hoop.

2  Preliminaries

First, we recall following basic notions of the hypergroup theory from[10]:
Let A be a non-empty set. A hypergroupoid is a pair (A, ®), where ® : A x
A — P(A) — {0} is a binary hyperoperation on A. If associativity low holds,
then (A, ®) is called a semihypergroup, and it is said to be commutative if © is
commutative. An element 1 € A is called aunit,ifa € 1 ®aNa ® 1, for all
a € A and is called a scaler unit, if 1 ®a = a ©® 1 = {a}, for all « € A. Note that
if B,C C A, then we consider BO Cby B C = U (b ® c). (See [10])

beB,ceC

Definition 2.1. [3] A hoop-algebra or briefly hoop is an algebra (A, ®, —, 1) of
type (2,2,0) such that, (HP1): (A, ®,1) is a commutative monoid and for all
r,y,z € A,(HP2): + - = =1, HP3): (+ ®y) - 2 =2 — (y — z) and
(HP4): (x - y) ® 2 = (y — =) ® y. On hoop A we define "z < y” if and only
if © — y = 1. It is easy to see that < is a partial order relation on A.

Definition 2.2. [17] A hyper hoop-algebra or briefly, a hyper hoop is a non-
empty set A endowed with two binary hyperoperations », — and a constant 1
such that, for all x,y, z € A satisfying the following conditions,

(HHA1) (A, ®, 1) is a commutative semihypergroup with 1 as the unit,
(HHA2)1 € x — x,

(HHA3) (z —»y) Oz = (y = 2) Oy,

(HHAd) z — (y = 2) = (x O y) = z,

(HHAS) 1 ex — 1,
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(HHA6)ifl e x - yand 1 € y — x thenx =y,
(HHA7)iflez —wyandl €y — zthenl € v — 2.

In the sequel we will refer to the hyper hoop (A4, ®, —, 1) by its universe A.
On hyper hoop A, we define x < yifand onlyif 1 € x — y. If A is a hyper hoop,
it is easy to see that < is a partial order relation on A. Moreover, for all B,C' C A
we define B <« C iff there exist b € B and ¢ € C such that b < ¢ and define
B < Ciff for any b € B there exists ¢ € C' such that b < c. A hyper hoop A is
bounded if there is an element 0 € A such that 0 < z, for all x € A.

Proposition 2.3. In any hyper hoop (A,®,—,1), if 2 ©® y and x — y are sin-
gletons, for any x,y € A, then (A, ®,—,1) is a hoop. Then hyper hoops are a
generalization of hoops and every hoop is a trivial hyper hoop.

Proposition 2.4. [17] Let A be a hyper hoop. Then for all z,y,z € A and
B,C, D C A, the following hold,

HHA)z Oy 2z 2 <y — 2,

HHA9)BOCK D& BK(C — D,

(HHA10) z » y < (y = z) = (2 = x),

HHA1D z sy < (x — 2) = (x = y),

(HHA12) 1 © 1 = {1}.

Notations: Let R be an equivalence relation on hyper hoop A and B,C C A.
Then BRC, BRC and BRC denoted as follows,
(i) BRC(' if there exist b € B and ¢ € C such that bR,
(ii) BRC if for all b € B there exists ¢ € C' such that bRc and for all ¢ € C there
exists b € B such that bRc,
(iii) BRC if forall b € B and ¢ € C, we have bRc.

Remark 2.5. It is clear that BRC and CRD imply that BRD, for all B,C, D C
A.

Definition 2.6. [17] Let R be an equivalence relation on hyper hoop A. Then R
is called a regular relation on A if and only if for all x,y, 2z € A,

(1) if xRy, then x ® zﬁy ® z,

(ii) if zRy, then x — 2Ry — z and 2 — zRz — v,

(iii) if x — yR{1} and y — zR{1}, then zRy.

Definition 2.7. [17] Let R be an equivalence relation on hyper hoop A. Then R
is called a strong regular relation on A if and only if, for all z,y, z € A,

(1) if zRy, then z ® zﬁg@ z, B
(ii) if zRy, then x — 2Ry — z and z — zRz — v,
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Theorem 2.8. [17] Let R be a regular relation on hyper hoop A and % be the set of
all equivalence classes respect to R, that is 4 = {[z]|x € A}. Then (§,®, <, [1])
is a hyper hoop, which is called the quotient hyper hoop of A respect to R, where
forall [z],[y] € 4,

el ={ltcroy} ad [1] =y ={}]zcr—=y}

Theorem 2.9. [17] Let R be a strong regular relation on hyper hoop A. Then
(%, ®, <, [1]) is a hoop which is called the quotient hoop of A respect to R.

Theorem 2.10. [4] Let X and Y be two sets such that | X| = |Y|. If (Y, <,0) is
a well-ordered set, then there exists a binary order relation on X and rq € X,
such that (X, <, ) is a well-ordered set.

Lemma 2.11. [14] Let X be an infinite set. Then for any set {a,b}, we have
| X % {a, b} = |X].

3 Constructing of hoops

In this section, we show that we can construct a hoop on any non-empty count-
able set.

Lemma 3.1. Let A and B be two sets such that |A| = |B|. If A is a hoop, then
we can construct a hoop on B by using of A.

Proof. Since |A| = |B|, there exists a bijection p : A — B. For any by, by €
B. We define the binary operations ®p and —p on B by,

b1 ©p by = (a1 ®aas) and by —p by = p(a; —4 az)

where by = p(ay), by = p(az) and ay,ay € A. It is easy to show that © g and —
are well-defined. Moreover, for any b € B we define 1z as 1z = ¢(14). Now, by
some modification we can show that (B, ®g,—p, 1) is a hoop.O

Lemma 3.2. For any k € N, we can construct a hoop on Wy, = {0,1,2,3, ... k —
1}

Proof. Let k € N. We define the operations ”®” and ”— ", on Wy, as follows,
forall a,b € Wy,

0 ifa+b<k-—1,
a® b=
a+b—k+1 otherwise
k—1 ifa <
a—b= fa<b,
k—1—a+b otherwise
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Now, we show that (Wy, ®, —, k — 1) is a hoop,
(HP1I): Since, + is commutative, hence  is commutative. Now, we show that ©®
is associative on Wy. For all a,b,c € W,
Casel: Ifa+b<k—1landb+c<k—1,then(a®b)®c=(0)®c=0and
a®boc)=a00=0andso (a®b)©c=a6 (b®c).
Case2: Ifa+b>k—1andb+c<k—1,sincea+b+c<2(k—1)and so
a+b+c—k+1<k—1weget(a®b)®c=(a+b—k+1)®c=0. On the
other hand, a ® (b® ¢) =a® 0 =0and then (a ®b) ©c=a® (b® ¢).
Case3: Ifa+b > k—1andb+c > k—1, then (a®b)©c = (a+b—k+1)©®cand
a®(boc) =a®(b+c—k+1). Ifa+b+c < 2k then (a®b)©c=a® (bGc) =0
andifa+b+c>2kthen (a®b)©c=aG(bOc)=a+b+c—2k+2.
Cased: Leta+b<k—1andb+ c > k — 1. This case is similar to the Case 2.
Now, we have 0 © k —1 = 0and if 0 # a € Wy, we have a+ (k—1) > k— 1 and
soa®(k—1)=a+k—1—k+1=a. Then (k — 1) is the identity of (W}, ®)
and so (Wy, ®, k — 1) is a commutative monoid.
(HP2): It is clear that, foralla € Wy, a — a =k — 1.
(HP3): Let a,b,c € Wy. We show that (a ©b) — c=a — (b — ¢).
Casel:Ifa+b<k—1landa<b<c then(a®b) >c=0—c=k—1and
a—(b—c)=a— (k—1)=k—1 Hence, (a®b) > c=a— (b—c).
Case2: Ifa+b<k—landa<c<b (a®b) - c=0—=c=k—1and
sincek—1—b+c>a,a— (b—c¢)=a— (k—1—b+c¢)=k— 1. Hence,
(a®b) wc=a— (b—c).
Case3: Ifa+b<k—1landb<a<c then(a®b) >c=0—c=k—1and
a—(b—=c)=a—(k—1)=k—1 Hence, (a®b) > c=a— (b—c).
Case4: Ifa+b<k—1landb<c<a, then(a®b) »>c=0—c=k—1and
a—(b—=c)=a— (k—1)=k—1. Hence, (a®b) > c=a— (b= c).
Case5: Ifa+b<k—1landc<b<a, then(a®b) >c=0—>c=k—1. On
the other hand since a+b < k—1, we geta+b—c < k—1,a < (k—1—b+c) and
a— (k—1—b+c)=k—1.Thena— (b—c)=a— (k—1-b+c)=k—1.
Hence, (a ®b) - c=a— (b — ).
Case6: Ifa+b<k—1landc < a <b then(a®b) - c=0— c=k—1. Onthe
other hand since a+b < k—1,wegeta+b—c<k—1,a<(k—1—b+c¢)and
a—(k—1-b+c)=k—1.Thena— (b—>c)=a—(k—1—b+c)=k—1
Hence, (a®b) = c=a — (b — ¢).
Case7: Leta+b>k—1anda <b<c Sincea<b<c wegeta+b—c<
a<k—landsoa+b—k+1<c Then(a®b) »c=(a+b—k+1) —
¢ = k — 1. On the other hand, a — (b — ¢) = a — (k — 1) = k — 1. Hence,
(a®b) wc=a— (b—c).
Case8: Leta+b>k—1landa<c<b. Sinceca<c<bwegeta+b—c<b<
k—landsoa+b—k+1<c Then (a®b) - c=(a+b—k+1) > c=k—1
On the other hand, sincek —1 —b+c¢>c¢ > a, wegeta — (b — ¢) =a —
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(k—1—b+c)=k—1. Hence, (a®b) »c=a— (b— c).

Case9: Leta+b>k—1andb<a <c Sinceb<a<cwegeta+b—c<a<
k—landsoa+b—k+1<c Then (a®b) - c=(a+b—k+1) - c=k—1
On the other hand since k — 1 —b+c>c > a, wegeta — (b = ¢) =a —
(k—1—0b+c)=k—1. Hence, (a®b) »c=a— (b— c).

Case 10: Leta+b >k —1andb < c < a. Sinceb <c<a,wegeta+b—c<
a<k—landsoa+b—k+1<c Then (a®b) »c=(a+b—k+1) —
¢ =k—1. Onthe other handa — (b — ¢) = a — (k—1) = k — 1. Hence,
(a®@b) »c=a— (b—c).

Case11: Ifa+b>k—1landc <b<a,then (a®b) - c=(a+b—k+1) = c
anda — (b - ¢) =a - (k—1—b+c). Hence, ifa+b—c < k—1,
then (a®b) > c=a — (b »>¢c)=k—1landifa+b—c >k — 1, then
(a@b) 2c=a—(b—c)=2k—2—a—-b+c

Case 12: Ifa+b>k—1landc < a <b then (a®b) - c=(a+b—k+1) = ¢
anda — (b - ¢) =a = (k—1—b+c¢). Hence, ifa+b—c < k—1,
then (a®b) > c=a — (b —>c¢)=k—1landifa+b—c >k —1, then
(a®b) w»c=a—(b—c)=2k—2—a—-b+c

(HP4): Now, we show that (a —b) ®a = (b— a) ®b, forall a,b € Wy.
Case 1: Ifa < b, then (a - b)©0a=(k—1)®a=aand (b - a) ®b =
(k—1—b+a)®b=k—1-b+a+b—k+1 = a. Hence, (a — b)®a = (b — a)®b.
Case2: Ifa > b, then (a — b)®Oa = (k—1—a+b)®a = k—1—a+b+a—k+1 =10
and (b —a)©b=(k—1)®b="b. Hence, (a —b) ®a = (b— a)©®b.
Therefore, (Wy, ®, —, k — 1) is a hoop.O

Theorem 3.3. Let A be a finite set. Then there exist binary operations © and —
and constant 1 on A, such that (A, ®,—, 1), is a hoop.

Proof. Let A be a finite set. Then, there exists k € N such that |A| = |Wy|.
Now, by Lemma 3.2, (W, ®,—,1) is a hoop and so by Lemma 3.1, there exist
binary operations ® and —, and constant 1 on A , such that (A,®,—,1) is a
hoop.O

Lemma 3.4. Let 1 < n € Q. Then there exist binary operations © and — on
E =QnN|[1,n), such that (E,®,—,n) is a hoop.

Proof. Forany 1 < n € FE, we define the binary operations © and — on E
as follows, forall a,b € E,

) < ifa <
a@b:{l if ab < n, a—>b:{n ifa <b,

%b otherwise ";b otherwise

Clearly, ® and — are well-defined on E. Now, we show that (E,®,—,n) is
a hoop.
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(HPI1): Foralla € F, ifa # 1, sincean>nwehavea®n=n®a:%:a
andifa =1, we have a ©n = 1 ®n = 1 = a. Then n is the identity element of
(E,®). Now, we show that © is associative on E. Let a,b,c € E,

Case 1: If ab < n and bc < n, then (a ©® b) ® ¢ = 1 ® ¢ = 1. On the other hand
a®boc)=a®(1)=1.Then (a®b)©c=a® (b®c).

Case 2: If ab < n and bc > n, then (a ©® b) ® ¢ = 1 ® ¢ = 1. On the other hand
bOc=Yandthena® (b®c) =a® (¥). Since 2 = %e < ¢ < n, we get
a®boc)=1landso (a®b)©c=a® (bOc).

Case3: If ab > n and bc > n, then (a ® b) © ¢ = () © c. On the other hand
a®boc)=a0 (%) If2 <n then (a®b)®c=a® (bOc) =1andif
e > n, then (a®b) ©c=a® (bO®c) = % Hence, (a®b) ®c=a® (bOc).
Case 4: Let ab > n and bc < n. This case is similar to the Case 2.

It is clear that, for all a,b € FE, a©b = b® a. Hence, (E, ®,n) is a commutative
monoid.

(HP2): It is clear that, for all a € E, we have a — a = n.

(HP3): Forall a,b,c € E, we have the following cases,

Case 1: Ifb < cand ab < n, thena — (b - ¢) =a - n =nand (a ® b) —
c=1—c=n.Thena— (b—c¢)=(a®b) —c

Case 2: Ifb < cand ab > n, then a — (b — ¢) = a — n = n and since
a4 < 1,weget%b <b<candso (a®b) — c = %b — ¢ = n. Then
a—=(b—=c)=(a®b) —c
Case 3: If b > cand ab < n, since ab < n < nc and so a < %5, then a —
(b —¢c) =a— 5 = n. Onthe other hand, (a ©b) — ¢ =1 — c = n. Then
a—=(b—c)=(@ob) —c

Case 4: If b > cand ab > n, thena — (b — ¢) = a — 5 and (a ©b) — ¢ =
%b—>c. Wehave,a§%Cifandonlyif%bSc,andsoa—)(b—)c)z(a@b)—)c.
HP4: Forall a,b € E, we have the following cases,

Case 1: Ifa < b, thena® (a - b) =a®On =" =aandb® (b = a) =
bO ™ =" = gandsoa® (a—b)=b® (b— a).

Case 2: Ifa > b thena® (a - b) =a 02 =2 —pandb® (b — a) =

an

bon="=bandsoa® (a —b)=bo (b— a).
Therefore, (E,®,—,n) is a hoop.O

Theorem 3.5. Let A be an infinite countable set. Then there exist binary opera-
tions ® and — and constant 1 on A, such that (A, ®,—, 1) is a hoop.

Proof. Let A be an infinite countable set and E = QN [1, n]. Then by Lemma
3.4, (E,®,—,1) is an infinite countable hoop and |A| = |E|. Hence, by Lemma
3.1, there exist binary operations ® and — and constant 1, such that (A, ®, —, 1)
is a hoop.O

Corollary 3.6. For any non-empty countable set A, we can construct a hoop on
A.
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Proof. Let A be a non-empty countable set. Then, A is a finite set, or an
infinite countable set . Then by the Theorems 3.3 and 3.5, the proof is clear.CI

4 Constructing of some hyper hoops

In this section first we show that the Cartesian product of hoops is a hyper
hoop and then we construct a hyper hoop by any non-empty countable set.

Theorem 4.1. Let (A, ®a,—a,14) and (B,®p,—p, 1) be two hoops. Then
there exist hyperoperations ©, — and constant 1 on A X B such that (A X
B,®,—, 1) is a hyper hoop.

Proof. For any (ay,b1), (az,b2) € A X B, we define the binary hyperopera-
tions ®, — on A X B by,

(a1,b1) © (ag,b2) = {(a1 ®4 ag,b1), (a1 ®4 az,bs)},
{(a1 =4 a2,b2), (a1 =4 as,1p)} ifby = bo,

7b — ’b =
(a1,b1) = (az, by) {(a1 =>4 az,b5)} otherwise

and constant 1 = (14, 1p). It is easy to show that the hyperoperations are well-
defined. Now, we show that (A X B, ®,—, 1) is a hyper hoop.

(HHAI): Since © 4, is associative and commutative, we get © is associative and
commutative. Moreover, for all (a,b) € A x B, we have (a,b) ® (1a,1p) =
{(a®a14,b),(a®ala,15)} > (a,b). Then (A x B,®,—, 1) is a commutative
semihypergroup with 1 as the unit, where 1 = (14, 15).

(HHA2): For all (a,b) € A X B, we have

(a,b) = (a,b) = {(a =4 a,b),(a w4 a,1p)} =

{(a —A a,b),(lA,lB)} > (1A7lB) =1

(HHA3): For all (ay,b1), (asz,bs) € A X B, we have the following cases,
Case 1: If by # by, then,

((a1,b1) = (a2,b2)) © (a1,b1) {(a1 = a2,02)} © (a1, b1)
{((a1 = a2) ®4 a1,b1), ((a1 = a2) ©®4 a4,
ba)}

= {((ag — a1) ®a a2,b1),((az = a1) ®4 as,
ba)}

= ((a2,b2) = (a1,b1)) © (az, b2)
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Case 2: If by = b, then,

((a1,01) = (az,b2)) © (a1,b1) =
= {((a1 = a2) ®aa1,b1),((a1 = az) ®4 ay,

{(CLl — a9, bg), (a1 — Qg, 13)} ® ((11, bl)

ba), ((a1 — az) ®4 a1,1p)}

{((a2 = a1) ®4 az,b1), ((a2 = a1) ©4 az,
ba), ((ag — a1) ®a a2, 1p)}

((az,b2) = (a1,b1)) © (a2, ba)

(HHAA4): For all (a1,b1), (a2, bs), (a3,b3) € A X B, we have the following cases,

Case 1: Ifbl = bQ = b3,

(al,bl) — ((a2,b2) — (ag,bg)) =

Case 2: Ifbl 7£ bQ = bg,

(a1,b1) = ((az,b2) — (as,b3))

Case 3: Ifb1 = b2 7é b3,

(a1,01) = {((az =4 a3),b3), ((az =4 a3),
1)}

{(a1 =4 (a2 =4 a3),1B), (a1 =4 (a2 =4
az),bs)}

{((a1 ®aaz) —a a3, 1), ((a1 ©a az2) —4
az),bs)}

((a1,b1) © (a2, b2)) — (as, bs)

(a1,b1) = {((a2 =4 a3), b3), ((a2 =4 a3),
15)}

{(a1 =4 (ag =4 a3),1p), (a1 =4 (a2 =4
az),bs)}

{(a1 ®a a2) =4 (a3,15), ((a1 ©®4 a2) =2
az),bs)}

((a1,b1) ® (a2, b2)) — (as, b)

(a1,b1) = ((az,b2) = (a3,b3)) = (a1,b1) = {((a2 =4 a3),b3)}

= {a1 =4 (ag 24 a3),b3)}
= {((a1 ®a az) =4 as,bs)}
= ((a1,b1) © (a2, b2)) — (as, bs)
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Case 4: Ifb1 7£ bg 7& bg,

(a1,01) = ((a2,b2) = (az,b3)) = (a1,b1) = {((a2 =2 a3),b3)}
= {(a1 —a (a2 =4 a3),b3)}
= {((a1 ®4a2) =4 a3, b3)}
= ((a1,b01) ® (az,b2)) — (as, b3)

(HHAS): For all (a,b) € A X B, we have the following cases,

Case 1: If b = 1p, then (a,b) — (14,15) = {(a — 14,1p),(a — 14,0 —
1)} = {(La,19)} 3 (La, Lp)

Case 2: Ifb 7é 1g, then (a,b) — (1A,1B) = {(CL — 1A,1B)} = {(1,4,13)} =
(14,1B).

(HHAG): For all (a1,b1), (as,by) € A X B, if (14,1p) € (a1,b1) — (az,by) and
(14,1p) € (ag,bs) — (a1, by), then we have the following cases,

Case 1: If by # by, then (14,1p) € {(a1 —a a2,b2)} and (14,15) € {(az —4
ai,by)}. Hence, 14 = a; —4 agand 14 = ay — ay and 1g = by = by. Since A
is a hoop, we get a1 = as and so (ay,b1) = (ag, bs)

Case 2: Ifbl = by, then (1A71B) € {(a1 —A CLQ,bg),(al —A CLQ,lB)} and
(14,15) € {(ay —4 a1,b1),(a2 —a a1,1p)}. Hence 14 = a; —4 ag and
14 = as — ay. Since A is a hoop, we get ay = ay and by assumption, we have
b1 = bg. So (CLl,bl) = (CLQ, bg)

(HHA7): For all (a1,bl), (ag,bs), (a3,b3) € A x B, let (14,15) € (a1,b1) —
(ag,by) and (14,1p) € (ag,bs) — (as, bs). Then we consider the following cases:
Case 1: If by = by = bs, then (14,15) € {(a1 —4 a2,15), (a1 —4 az,bs)} and
(1a,15) € {(ay —4 a3, 1p),(az —a asz,b3)}. Hence 14 = a; —4 as and
1o = ay — ag. Since A is a hoop, we get 14 = a1 —4 a3. Hence, (a1,b1) —
(ag, bg) = {(a1 —A ag,bg), (a1 —4 as, 13)} = {(1A7 bg), (1,4, 13)} = (1A; 13)
Case 2: Ifbl 7& by = bg, then (1A71B) € {(a1 —A ag,bg)} and (1A,1B) €
{(ag —4 a3, 1p),(as —4 as,b3)}. Hence 14 = a1 —4 agand 14 = ay — ag
and by = by = 1. Since A is a hoop, we get 14 = a; —4 a3. Hence,
(a1,b1) = (ag,bs) = {(a1 =4 az,b3)} ={(1a,15)} > (14,15).

Case 3: Let by = by # bs. Then proof is similar to the Case 2.

Case 4: Ifbl 7& b 7é bs, then (1A71B) € {(a1 —A ag,bg)} and <1A,1B) €
{(ag =4 a3,b3)}. Hence, 14 = a1 —4 agand 14 = ay — a3 and by = by = 1p.
Since A is a hoop, we get 14 = a1 — 4 ag. Hence, (a1,b1) — (as,b3) = {(a1 —4
az, b3)} = {(1a,15)} > (14, 1p).

Therefore,(A x B,®,—, 1) is a hyper hoop, where 1 = (14, 15).0

Lemma 4.2. Let A and B be two sets such that |A| = |B|. If (A, ®a, —a,14) isa
hyper hoop, then there exist hyperoperations ®p , —p and constant 1 g on B, such
that (B, ®p,—p, 1) is a hyper hoop and (A, ®4,—4,14) = (B, ®p, —5, 1p).
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Proof. Since |A| = |B|, then there exists a bijection ¢ : A — B . For any
b1,by € B, there exist aj,as € A such that by = ¢(ay) and by = @(ay). Then
we define the hyperoperations ® g, —p on B by, b ©®p by = {¢(a)la € ay ® as},
and by —p by = {p(a)la € a1 — as}. It is easy to show that ©Op,—p are
well-defined and (B, ©® g, — g, 1) is a hyper hoop, where 1z = ¢(14). Now, we
define the map 6 : (A, ®a,—a,14) — (B,®p,—p,15) by 6(x) = ¢(x). Since
@ is a bijection then 0 is a bijection and it is easy to see that 0 is a homomorphism
and so it is an isomorphism.O

Corollary 4.3. For any non-empty countable set A and any hoop B, we can con-
struct a hyper hoop on A x B.

Proof. By Corollary 3.6, we can construct a hoop on A and by Theorem 4.1,
we can construct a hyper hoop on A x B.O

Corollary 4.4. Let A be an infinite countable set. We can construct a hyper hoop
on A.

Proof. Let A be an infinite countable set. Then by Corollary 3.6, we can
construct a hoop on A. Now, By Theorem 3.3, for arbitrary elements x,y not
belonging to A, we can define operations ® and — on the set {z, y}, such that
({z,y},®, —) is a hoop. Then by Theorem 4.1, we can construct a hyper hoop
on A x {x,y}. Then by Lemma 2.11 and 4.2, there exists a hyper hoop on A.O

S Fundametal hoops

In this section we apply the 5* relation to the hyper hoops and obtain some
results. Then we show that any hoop is a fundamental hoop.

Let (A,®,—,1) be a hyper hoop and U(A) denote the set of all finite com-
binations of elements of A with respect to ® and —. Then, for all a,b € A, we
define afbif and only if {a, b} C u, where u € U(A), and a5*b if and only if there
exist z1, ..., Zmi1 € A with 2 = @, 2,41 = bsuch that {z;, z;.1} C u; C U(A),
fori =1, ...,m (In fact 5* is the transitive closure of the relation f3).

Theorem 5.1. Let A be a hyper hoop. Then 3* is a strong regular relation on A.

Proof.  Let af*b, for a,b € A. Then there exist x1,...,x,.1 € A with
Ty = a,Tpy1 = band u; € U(A) such that {x;,x;11} C w;, for 1 < i < n. Let
zi€w;—c foralll <i<n+1,c€ A Then we have,

{zi, zi1} C (s = ) U (41 = ¢) Cuy = ¢ CU(A), forall1 <i<n.

Hence, 21* 2,11, where zy € a — cand 2,41 € b — cand so a — cB*b — c.
Similarly, we can show that ¢ — af*c — b. Now, by the same way we can prove
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that a5*b implies a@cﬁb@c, forall c € A. Hence, 5* is a strong regular relation
on A.O

Corollary 5.2. Let A be a hyper hoop. Then (BA*’ ®, <) is a hoop, where ® and
— are defined by Theorem 2.8.
Proof. By Theorem 2.9 the proof is clear.0

Theorem 5.3. Let A be a hyper hoop. Then the relation 3* is the smallest equiv-
alence relations vy defined on A such that the quotient % is a hoop with operations

V) @y(y) =) texoy and (@) —=y(y)=v():2€x >y

where y(x) is equivalence class of x with respect to the relation .

Proof. By Corollary 5.2, B_Q is a hoop. Now, let vy be an equivalence relation
on A such that % is a hoop. Let xfy, forx,y € Aand: A — % be the natural
projection such that w(x) = ~(x). It is clear that 7 is a homomorphism of hyper
hoops. Then there exists u € U(A) such that {z,y} C u. Since w is a homomor-
phism of hyper hoops, we get |t(u)| = |y(u)| = 1. Since {m(z),n(y)} C 7(u)
and |m(u)| = 1, we get m(z) = n(y) and so v(x) = (y) i.e. xyy. Hence,
B C ~. Now, let afB*b, for a,b € A. Then there exist x1, ..., x,11 € A, such that
a = x1PTs, ..., fryy = b. Since B C v, we get a = x1Yx2, ..., VTpy1 = b. Then
since 7y is a transitive relation on A, we get ayb and so 5* C ~.0

Corollary 5.4. The relation 8* is the smallest strong regular relation on hyper
hoop A.
Proof. The proof is straightforward.O)

Lemma 5.5. If A, and A, are two hyper hoops, then the Cartesian product A, X
Ay is a hyper hoop with the unit (14,,14,) by the following hyperoperations, for
(wlayl)a ('I27y2) € Al X A27

(z1,91) © (w2,72) = {(a,b)|a € x1 © 22,b € y1 © Y2},
(z1,91) = (22,12) = {(d,V)|a’ € 21 — 22,0 € y1r — 1o}

Proof. The proof is straightforward.O

Lemma 5.6. Let Ay and As be two hyper hoops. Then, for a,c € Ay and b, d €
Ay, we have (a,b) 3%, 4,(c, d) if and only if a3} c and b3}, d.

Proof. We know that u € U(A; x As) if and only if there exist uy € U(A;)
and uy € U(Az) such that uw = uy X ug. Then (a,b)3} , 4,(c,d) if and only if
there exist u; € U(A;) and us € U(As) such that {(a,b), (¢,d)} C uy X us if and
only if {a,c} C uy and {b,d} C uy if and only if a3}, c and b3},d.O
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Theorem 5.7. Let A and Ay be two hyper hoops. Then 2122 G = a BA
A1 xAg Aq Ao
Proof. Letp : 45582 — 5l x 52 be defined by ¢(8' (v, 9)) = (84, (2), B4, (v)

A1 XA2

where 3* = 37 . 4, By Lemma 5. 5 is well-define. It is clear that ¢ is onto.

By Lemma 5.6, we have 3*(z1,y1) = (%2, y2) if and only if B} (x1) = B34, (22)
and B, (y1) = B, (y2), for any (x1,y1), (22, 12) € A1 X As. So, @ is well defined
and one to one. Also, by considering the hyperoperations & and — defined in
Theorem 2.8, we have,

(B (@1, 51) = B(x2,32)) = ©({B"(a,b)|la € 1 = 22,0 € y1 —= y2})
= {p(B*(a,b))|a € 1 — x2,b € y1 — Yo}
= {(B4,(a), B4, (0))]a € x1 = z2,b € y1 — o}
= (B4, (z1) = B4, (22), B4, (1) = B, (y2))
= (B4, (71), B4, (y1)) = (B, (22), B, (v2))
= @(B*(z1,11)) = ©(B (22, ¥2))

Similarly, we can show that (5" (1, y1) 5" (2, y2)) = @ (5" (21, 41)) @ (5" (2,
y2)). Moreover, it is clear that o(f*(14,,14,)) = (5%(14,), 8" (14,)). Hence, ¢
is an isomorphism.0

Corollary 5.8. Let A, As, ...., A, be hyper hoops. Then,

A1 X AoX... X Ap A1 Ao
B* 5* * B*
A xXAgX....xAn 1 2 n

I

Proof. The proof is straightforward.O

Theorem 5.9. Let A and B be two sets such that |A| = |B|. If (A,®a,—4,14)
is a hyper hoop, then there exist hyperoperations ®g and — g and constant 1g on
B such that (B, ®p, —p, 1g) is a hyper hoop and (A’QA[’;A’“) >~ (BiOs2p:lb)

B
Proof.  Since |A| = , then by Lemma 4.2, there exist binary hyper-
operations ®p and —p, such that (B,®p,—pg,1p) is a hyper hoop. More-
over, there exists an isomorphism f : (A, ©a,—a,14) — (B,Op,—5,1B),

such that f(14) = 1p. Now, we define ¢ : (A’QA/;,;AJ“‘) — (B’QB/;,?BJB) by
B

o(B4(x)) = Br(f(x)). Since f is an isomorphism, ¢ is onto. Let y; , y» €
B. Then there exist ay,as € A such that by = f(ay) and by = f(as). Then
Bh(ar) = Bh(a) iff a1fhas iff there exists u € U(A) such that {ay,a2} C u
i there existes [(u) € U(B) = {f(a), fa)} C F(u) if By(ba) = Bi(bo) if
B5(f(ar)) = By(f(az)). Then ¢ is well-defined and one to one. Also, by consid-
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ering the hyperoperations & and — defined in Theorem 2.8, we have,

e(Bala1) ® Bala2)) = @rearoan(Bit)) = Bica ou (1))
= ﬁ;ef(m@az)( /) /Bt/ef (a1)Of(az) (t/) ﬁB(f(al)) ® By
(f(a2))
= @(Bila1)) ® p(Fi(az))

By the same way, we can show that

o(Bi(ar) = Bilaz)) = p(Bi(a1)) — w(Bi(az))

Since f is an isomorphism, we get p(5%(14)) = S5(f(14)) = B5(15). Hence, ¢
is an isomorphism.O

Definition 5.10. Let A be a hoop algebra. Then A is called a fundamental hoop,
if there exists a nontrivial hyper hoop B, such that ﬁi ~A
Theorem 5.11. Every hoop is a fundamental hoop.

Proof. Let A be a hoop. Then by Theorem 4.1, for any hoop B, A X B is a
hyper hoop. By considering the hyperoperations ©® and — defined in Theorem 4.1,
we get that any finite combination u € U(A x B) is the form of u = {(a, z;)|a €
A, x; € B}. Hence, for any (ay1,by), (az,by) € A x B,

(ay,b1)5%(az, be) < Ju € U(A x B) such that
{(ala b1>7 (CLQ,bQ)} g U= a1 = ag

Hence, for any (a,b) € A x B, *(a,b) = {(a,z)|x € B}.
Now, we define the map 1 : Ag*B — A by, ¥(8*(a,b)) = a. It is clear that,

B*(a1,b1) = B*(az,b2) & a1 = ag & Y(B* (a1, b1)) = (B (az, ba)).

Then, 1 is well defined and one to one. In the following, we show that 1) is a
homomorphism. For this we have,

P(B* (a1, br) ® B (az,b2)) = P(B"(u,v)) : (u,v) € (a1,b1) © (ag,ba)
= P(B (v, ) : (u,v) € {((a1 © az),b1), (a1 ©
az),bs)}
= {ulu€a ®ay}=a ®ay

= »(67(ar,b1)) © Y(5(az, b))
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and similarly, for the operation —, we have the following cases,

Case 1: If by # b, then,

P(B* (a1, b1) = B (az,b2)) = P(B"(u,v)) : (u,v) € (a1,b1) — (az,ba)
= Y(B(u,v)) : (u,v) € {((a1 = az),ba)}
= {ulu€ay — ax} =a; = as

= Y(B"(a1,b1)) = (B (az, bs))

Case 2:1f by = by, then,

V(B (a1, b1) = B*(az,b2)) = ¢(B*(u,v)) : (u,v) € (ar,b1) = (az,b2)
= Y(B"(u,v)) : (u,v) € {((a1 = az),ba), ((a1 —
(12), 13)}
= {ulu€a; — ax} =a; — ay

= (B (a1,b1)) = Y(B"(az, b2))

Clearly, ¥(*(14,1p) = 14 and v is onto. Therefore, 1 is an isomorphism i.e.

AﬂL*B >~ A and so A is fundamental.O

Corollary 5.12. For any non-empty countable set A, we can construct a funda-

mental hoop on A.
Proof. By Corollary 3.6 and Theorem 5.11 the proof is clear.]
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