
RATIO MATHEMATICA
ISSUE N. 30 (2016) pp. 67-81

ISSN (print): 1592-7415
ISSN (online): 2282-8214

On Hyper Hoop-algebras

Rajabali Borzooei(a), Hamidreza Varasteh(b), Keivan Borna(c)

(a)Department of Mathematics, Shahid Beheshti University, Tehran, Iran

borzooei@sbu.ac.ir
(b) Department of research and technology, Kharazmi University, Tehran, Iran

varastehhamid@gmail.com
(c)Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, Iran

borna@khu.ac.ir

Abstract

In this paper, we apply the hyper structure theory to hoop-algebras and
introduce the notion of (quasi) hyper hoop-algebra which is a generalization
of hoop-algebra and investigate some related properties. We also introduce
the notion of (weak)filters on hyper hoop-algebras, and give several prop-
erties of them. Finally, we characterize the (weak) filter generated by a
non-empty subset of a hyper hoop-algebra.
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1 Introduction
Hoop-algebras or Hoops are naturally ordered commutative residuated integral

monoids were originally introduced by Bosbach in [7] under the name of comple-
mentary semigroups. It was proved that a hoop is a meet-semilattice. Hoop-
algbras then investigated by Büchi and Owens in an unpublished manuscript [8]
of 1975, and they have been studied by Blok and Ferreirim [2],[3], and Aglianò
et.al. [1], among others. The study of hoops is motivated by their occurrence both
in universal algebra and algebraic logic. Typical examples of hoops include both
Brouwerian semilattices and the positive cones of lattice ordered abelian groups,
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while hoops structurally enriched with normal multiplicative operators naturally
generalize the normal Boolean algebras with operators. In recent years, hoop
theory was enriched with deep structure theorems. Many of these results have a
strong impact with fuzzy logic. Particularly, from the structure theorem of finite
basic hoops one obtains an elegant short proof of the completeness theorem for
propositional basic logic introduced by Hájek in [12]. The algebraic structures
corresponding to Hájek’s propositional (fuzzy) basic logic, BL-algebras, are par-
ticular cases of hoops and MV-algebras, product algebras and Gödel algebras are
the most known classes of BL-algebras. Hypersructure theory was introduced in
1934[13], when Marty at the 8th congress of scandinavian mathematicians, gave
the definition of hypergroup and illustrated some applications and showed its util-
ity in the study of groups, algebraic functions, and rational fraction. Till now,
the hyperstructures have been studied from the theoretical point of view for their
applications to many subject of pure and applied mathematics. Some fields of
applications of the mentioned structures are lattices, graphs, coding, ordered sets,
median algebra, automata, and cryptography[9]. Many researchers have worked
on this area. R.A.Borzooei et al. introduced and studied hyper residuated lattices
and hyper K-algebras in [4],[6] and S.Ghorbani et al.[11], applied the hyper struc-
tures to MV-algebras and introduced the concept of hyper MV-algebra, which is a
generalization of MV-algebra.
In this paper we construct and introduce the notion of (quasi) hyper hoop-algebra
which is a generalization of hoop-algebra. Then we study some properties of this
structure. We also introduce the notion of (weak)filters on hyper hoop-algebras,
and give several properties of them. Finally, we characterize the (weak) filter
generated by a non-empty subset of a hyper hoop-algebra.

2 Preliminaries

In this section, we recall some definitions and theorems in hoop algebras
which will be needed in this paper.

Definition 2.1. [1] A hoop-algebra or a hoop is an algebra (A, ∗,→, 1) of the type
(2, 2, 0) such that, for all x, y, z ∈ A:
(H1) (A, ∗, 1) is a commutative monoid,
(H2) x→ x = 1,
(H3) (x→ y) ∗ x = (y → x) ∗ y,
(H4) x→ (y → z) = (x ∗ y)→ z.

On the hoop A, if we define x ≤ y iff x → y = 1, for any x, y ∈ A, it is
proved that ≤ is a partial order on A. A hoop A is bounded if there is an element
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0 ∈ A such that 0 ≤ x for all x ∈ A.

Proposition 2.2. [1] Let A be a hoop-algebra. Then for every a, b, c ∈ A the
following hold:
(i) (A,≤) is a ∧-semilattice and a ∧ b = a ∗ (a→ b),
(ii) a ≤ b→ c iff a ∗ b ≤ c,
(iii) 1→ a = a,
(iv) a→ 1 = 1, i.e. a ≤ 1,
(v) a→ b ≤ (c→ a)→ (c→ b),
(vi) a ≤ b→ a,
(vii) a ≤ (a→ b)→ b,
(viii) a→ (b→ c) = b→ (a→ c),
(ix) a→ b ≤ (b→ c)→ (a→ c),
(x) a ≤ b implies b→ c ≤ a→ c and c→ a ≤ c→ b.

Now, we recall some basic notions of the hypergroup theory from [9]:
Let H be a non-empty set. A hypergroupoid is a pair (H,�), where � : H ×
H −→ P (H) \ ∅ is a binary hyperoperation on H . If a � (b � c) = (a � b) � c
holds, for all a, b, c ∈ H then (H,�) is called a semihypergroup, and it is said
to be commutative if � is commutative. An element 1 ∈ H is called a unit, if
a ∈ 1�a∩a�1, for all a ∈ H and is called a scaler unit, if {a} = 1�a = a�1,
for all a ∈ A. If the reproduction axiom a � H = H = H � a, for any element
a ∈ H is satisfied, then the pair (H,�) is called a hypergroup. Note that if
A,B ⊆ H , then A�B =

⋃
a∈A,b∈B(a� b).

3 Hyper hoop-algebras
Definition 3.1. Aquasi hyper hoop-algebra or briefly, a quasi hyper hoop is a
non-empty set A endowed with two binary hyperoperations �,→ and a constant
1 such that, for all x, y, z ∈ A satisfying the following conditions:
(HHA1) (A,�, 1) is a commutative semihypergroup with 1 as the unit,
(HHA2) 1 ∈ x→ x,
(HHA3) (x→ y)� x = (y → x)� y,
(HHA4) x→ (y → z) = (x� y)→ z,
A quasi hyper hoop (A,�,→, 1) is called a hyper hoop if the following hold;
(HHA5) 1 ∈ x→ 1,
(HHA6) if 1 ∈ x→ y and 1 ∈ y → x then x = y,
(HHA7) if 1 ∈ x→ y and 1 ∈ y → z then 1 ∈ x→ z.

In the sequel we will refer to the (quasi) hyper hoop (A,�,→, 1) by its uni-
verse A. On (quasi) hyper hoop A, for any x, y ∈ A, we define x ≤ y if and
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only if 1 ∈ x → y. If A is a hyper hoop, it is easy to see that ≤ is a partial order
relation on A. Moreover, for all B,C ⊆ A we define B � C iff there exist b ∈ B
and c ∈ C such that b ≤ c and define B ≤ C iff for any b ∈ B there exists c ∈ C
such that b ≤ c. A (quasi) hyper hoop A is bounded if there is an element 0 ∈ A
such that 0 ≤ x, for all x ∈ A.

In the following examples, we will show that the conditions (HHA5), (HHA6),
and (HHA7) are independent from the other conditions.

Example 3.2. (i) Let A = {1, a, b}. Define the hyperoperations �, and→ on A
as follows:

� 1 a b
1 {1} {a} {a, b}
a {a} {a} {a, b}
b {a, b} {a, b} {b}

→ 1 a b
1 {1} {a, b} {b}
a {b} {1, a, b} {b}
b {1, a, b} {1, a, b} {1, a, b}

Then (A,�,→, 1) is a quasi hyper hoop, but doesn’t satisfy the condition (HHA5).
Since 1 /∈ a→ 1.

(ii) Let A = {1, a, b}. Define the hyperoperations � and→ on A as follows:

� 1 a b
1 {1} {a} {b}
a {a} {a} {a}
b {b} {a} {1}

→ 1 a b
1 {1, b} {a} {1, b}
a {1, b} {1, b} {1, b}
b {1, b} {a} {1, b}

Then (A,�,→, 1) is a quasi hyper hoop, but doesn’t satisfy the condition (HHA6).
Since 1 ∈ b→ 1 and 1 ∈ 1→ b, but 1 6= b.

(iii) Let A = {1, a, b, c}. Define hyperoperations � and→ on A as follows:

� 1 a b c
1 {1} {a} {b} {c}
a {a} {a} {a, b} {a, b}
b {b} {a, b} {b} {b}
c {c} {a, b} {b} {c}

→ 1 a b c
1 {1} {a} {b} {c}
a {1} {a, 1} {1, b, c} {c}
b {1} {a} {1, b, c} {1, b, c}
c {1} {a} {b} {1, b, c}

Then (A,�,→, 1) is a quasi hyper hoop, but doesn’t satisfy the condition
(HHA7). Because 1 ∈ a→ b and 1 ∈ b→ c but 1 /∈ a→ c.
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In the following, we give some examples of (quasi) hyper hoop algebras.

Example 3.3. (i) In any (quasi) hyper hoop (A,�,→, 1), if x � y and x → y
are singletons, for any x, y ∈ A, then (A,�,→, 1) is a hoop. Then (quasi) hyper
hoops are generalizations of hoops.

(ii) Let A = {1}. If we consider 1 → 1 = {1}, 1 � 1 = {1}, then it is clear
that A = (A,�,→, 1) is a (quasi) hyper hoop.

(iii) Let A = {1, a}. Define the hyperoperations � and→ on A as follows:

� 1 a
1 {1} {1, a}
a {1, a} {a}

→ 1 a
1 {1, a} {a}
a {1} {1, a}

Then (A,�,→, 1) is a bounded (quasi) hyper hoop.

(iv) Let A = {1, a, b}. Define the hyperoperations � and→ on A as follows,

� 1 a b
1 {1} {a} {b}
a {a} {a, b} {a, b}
b {b} {a, b} {b}

→ 1 a b
1 {1} {a} {b}
a {1} {1, a, b} {1, b}
b {1} {a} {1, b}

Then (A,�,→, 1) is a bounded (quasi) hyper hoop.

(v) Let A = {1, a, b, c}. Define the hyperoperations � and→ on A as follows:

� 1 a b c
1 {1} {a} {b} {c}
a {a} {a} {a, b, c} {a, c}
b {b} {a, b, c} {b, c} {b, c}
c {c} {a, c} {b, c} {c}
→ 1 a b c
1 {1} {a} {b} {c}
a {1} {1, a} {1, b, c} {1, c}
b {1} {a} {1, b, c} {b, c}
c {1} {a} {b} {1, b, c}

71



Rajabali Borzooei, Hamidreza Varasteh and Keivan Borna

Then (A,�,→, 1) is a bounded (quasi) hyper hoop.

(vi) Let A = {1, a, b, c}. Define the hyperoperations � and→ on A as follows:

� 1 a b c
1 {1} {a} {b} {c}
a {a} {a} {a, b, c} {a, c}
b {b} {a, b, c} {b, c} {b, c}
c {c} {a, c} {b, c} {c}
→ 1 a b c
1 {1} {a} {b} {c}
a {1} {1, a} {b} {1, c}
b {1} {a} {1, b, c} {b, c}
c {1} {a} {b} {1, b, c}

Then (A,�,→, 1) is an unbounded (quasi) hyper hoop. Hence, (quasi) hyper
hoops may not be bounded, in general.

(vii) Let A = [0, 1]. Define the hyperoperations � and→ on A as follows:

x� y = {1, x, y} x→ y =

{
{1, y} , if x ≤ y,

{y} , otherwise.

Then (A,�,→, 1) is an infinite (quasi) hyper hoop.

Proposition 3.4. Let A be a quasi hyper hoop. Then the following hold, for all
x, y, z ∈ A and B,C,D ⊆ A:
(HHA8) B � C ⇔ 1 ∈ B → C,
(HHA9) (B � C)→ D = B → (C → D),
(HHA10) x� y � {z} ⇔ {x} ≤ y → z,
(HHA11) B � C � D ⇔ B � C → D,
(HHA12) x→ (y → z) = y → (x→ z),
(HHA13) {x} ≤ y → z ⇔ {y} ≤ x→ z,
(HHA14) {x} ≤ (x→ y)→ y,
(HHA15) x� (x→ y)� {y}.

Proof. Let x, y, z ∈ A and B,C,D ⊆ A. Then,
(HHA8): B � C ⇔ there exist b ∈ B and c ∈ C such that b ≤ c i.e. 1 ∈ b →
c⇔ 1 ∈ B → C.
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(HHA9): By (HHA4), the proof is clear.
(HHA10): x � y � {z} ⇔ by (HHA8), 1 ∈ (x � y) → z ⇔ by (HHA4),
1 ∈ x→ (y → z)⇔ by (HHA8), {x} ≤ y → z.
(HHA11): The proof is similar to the proof of (HHA10).
(HHA12): By (HHA4) and (HHA1),

x→ (y → z) = (x� y)→ z = (y � x)→ z = y → (x→ z).

(HHA13): {x} ≤ y → z⇔ by (HHA10), x� y � {z} ⇔ by (HHA1), y � x�
{z} ⇔ by (HHA10), {y} ≤ x→ z.
(HHA14): Since x→ y � x→ y, by (HHA1)and (HHA11), x�(x→ y)� {y}
and so by (HHA11), {x} ≤ (x→ y)→ y.
(HHA15): By (HHA10) and (HHA14), the proof is clear.

Proposition 3.5. Let A be a hyper hoop. Then the following hold, for all x, y, z, t ∈
A and B,C,D ⊆ A,
(HHA16) x� y � {x}, {y},
(HHA17) {y} ≤ x→ y,
(HHA18) if 1 ∈ 1→ x, then x = 1,
(HHA19) x ∈ 1→ x, and x is the maximum element of 1→ x,
(HHA20) 1� 1 = {1},
(HHA21) if A is bounded, then 0 ∈ x� 0,
(HHA22) if B � C ≤ D, then B � D, and {x} ≤ B ≤ {y} implies x ≤ y,
(HHA23) if B ≤ C ≤ D, then B ≤ D, and {x} ≤ {y} ≤ B implies {x} ≤ B,
(HHA24) if B � {x} � C, then B � C, and B � {x} ≤ C implies B � C,
(HHA25) if x ≤ y, then z → x ≤ z → y,
(HHA26) if x ≤ y, then y → z ≤ x→ z,
(HHA27) z → y ≤ (y → x)→ (z → x),
(HHA28) z → y � (x→ z)→ (x→ y),
(HHA29) if x ≤ y, then x� z � y � z,
(HHA30) if x ≤ y and z ≤ t, then x� z � y � t,
(HHA31) (x→ y)� z � x→ (y � z).

Proof. (HHA16): By (HHA2)and(HHA5), {y} ≤ x → x and so by (HHA10),
x � y � {x}. Moreover by (HHA5), {x} ≤ y → y and so by (HHA10),
x� y � {y}.
(HHA17): By (HHA16) and (HHA10), the proof is clear.
(HHA18): Let 1 ∈ 1→ x. Since by (HHA5), 1 ∈ x→ 1, by (HHA6), 1 = x.
(HHA19): For all u ∈ 1→ x by (HHA2), 1 ∈ u→ (1→ x). Then by (HHA12),
1 ∈ 1 → (u → x) and so there exists v ∈ u → x such that 1 ∈ 1 → v. Then
by (HHA18), v = 1. Hence 1 ∈ u → x and so u ≤ x. On the other hand, by
(HHA17), {x} � 1 → x. Then there exists a t ∈ 1 → x such that x ≤ t. Since
for all u ∈ 1 → x we have u ≤ x, by considering u = t, we have t ≤ x ≤ t and
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so by (HHA6), x = t. Hence x ∈ 1 → x and so x is the maximum element of
1→ x.
(HHA20): By (HHA1), 1 is the unit and so 1 ∈ 1 � 1. Let 1 6= a ∈ 1 � 1. Then
1� 1� a and so by (HHA10), 1 ≤ 1→ a. Hence 1 ∈ 1→ a and by (HHA18),
a = 1. Then 1� 1 = {1}.
(HHA21): Let A be bounded. Since by (HHA2), 1 ∈ 0→ 0, we get {x} ≤ 0→ 0,
for all x ∈ A. Then by (HHA10), x � 0 � {0}. Hence since A is bounded, we
get 0 ∈ x� 0.
(HHA22): Straightforward, by (HHA7).
(HHA23): Straightforward, by (HHA7).
(HHA24): Straightforward, by (HHA7).
(HHA25): Let x ≤ y. For all u ∈ z → x we have {u} ≤ (z → x) and so by
(HHA10), u � z � {x}. Since x ≤ y, by (HHA24), u � z � {y} and so by
(HHA10), {u} ≤ z → y. Hence z → x ≤ z → y.
(HHA26): Let x ≤ y. For all u ∈ y → z we have {u} � (y → z) and so by
(HHA13), {y} � u→ z. Since x ≤ y, by (HHA23), {x} � (u→ z). Hence by
(HHA13), {u} � (x→ z) and so y → z ≤ x→ z.
(HHA27): For all u ∈ z → y we have {u} � z → y and so by (HHA10) and
(HHA14), u � z � {y} � (y → x) → x. Hence by (HHA24) and (HHA10),
{u} � z → ((y → x) → x) and so by (HHA12), {u} � (y → x) → (z → x).
Therefore, z → y ≤ (y → x)→ (z → x).
(HHA28): By (HHA27), (x → z) � (z → y) → (x → y). Hence by (HHA13),
(z → y)� (x→ z)→ (x→ y).
(HHA29): Let x ≤ y. Since y � z � y � z, by (HHA10), {y} ≤ z → (y � z).
Hence by (HHA23), {x} � z → (y� z) and so by (HHA10), (x� z)� (y� z).
(HHA30): Let x ≤ y and z ≤ t. Since z ≤ t, by (HHA29), y � z � y � t. Then
by (HHA10), {y} ≤ z → (y � t). Hence by (HHA23), {x} ≤ z → (y � t) and
so by (HHA10), x� z � y � t.
(HHA31): Since x→ y � x→ y, by (HHA10), (x→ y)� x� {y}. Hence by
(HHA29), (x → y) � x � z � y � z. Therefore, by (HHA10), (x → y) � z �
x→ (y � z).

Notation: Let A be a bounded (quasi) hyper hoop. Then for any x ∈ A, we
consider x′ = x→ 0.

Proposition 3.6. Let A be a bounded quasi hyper hoop. Then 1 ∈ 0′ and for any
x ∈ A, {x} ≤ x′′.

Proof. By (HHA2), 1 ∈ 0→ 0. Then 1 ∈ 0′. Since by (HHA12),

(x→ 0)→ (x→ 0) = x→ ((x→ 0)→ 0) = x→ x′′

and by (HHA2), 1 ∈ (x→ 0)→ (x→ 0). Then 1 ∈ x→ x′′ and so, {x} ≤ x′′.
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Proposition 3.7. Let A be a bounded hyper hoop. Then the following hold, for
any x, y ∈ A,
(i) x ≤ y, implies that y′ ≤ x′,
(ii) x′ ≤ x→ y,
(iii) x→ y ≤ y′ → x′.

Proof. (i) If x ≤ y, then by (HHA26), y → 0 ≤ x→ 0. Hence y′ ≤ x′ .
(ii) Since 0 ≤ y, by (HHA25), x→ 0 ≤ x→ y. Hence x′ ≤ x→ y.
(iii) By Proposition 3.6 , y ≤ y′′. Then by (HHA25) and (HHA12),

x→ y ≤ x→ y′′ = x→ ((y → 0)→ 0) = (y → 0)→ (x→ 0) = y′ → x′.

Theorem 3.8. Any (quasi) hyper hoop of order n, can be extend to a (quasi) hyper
hoop of order n+ 1, for any n ∈ N.

Proof. Let A be a (quasi) hyper hoop of order n ∈ N, e be an element such that
e /∈ A and A1 = A ∪ {e}. Then we define two hyperoperations �′ and→′ on A1

by:

a�′ b=


a� b if a, b ∈ A,

{a} if a ∈ A, b = e,

{b} if b ∈ A, a = e

a→′ b =


a→ b ∪ {e} if a, b ∈ A, 1 ∈ a→ b,

a→ b if a, b ∈ A, 1 /∈ a→ b,

{e} if b = e,

{b} if a = e

By some modification we can prove that (A1,�′, e) is a commutative semihy-
pergroup with e as the unit and satisfies the conditions (HHA2), (HHA3), (HHA4),
(HHA5), (HHA6), and (HHA7). Therefore, (A1,�′,→′, e) is a (quasi) hyper hoop
and e is the unit element of it.

Corollary 3.9. There exist at least one (quasi) hyper hoop of order n, for any
n ∈ N

Proof. By Theorem 3.8 and Example 3.3 (ii), the proof is clear.

Note: From now on, we let A be a hyper hoop, unless otherwise is stated.

75



Rajabali Borzooei, Hamidreza Varasteh and Keivan Borna

4 Some filters on hyper hoop-algebras
In this section we define the concepts of some filters on hyper hoops and we

get some properties.

Definition 4.1. Let F be a non-empty subset of A. Then F is called an upset of
A, if x ∈ F and x ≤ y imply y ∈ F , for all x, y ∈ A,

Definition 4.2. Let F be a non-empty subset of A. Then:
(i) F is called a weak filter of A, if F is an upset and for all x, y ∈ F , x�y∩F 6= ∅.
(ii) F is called a filter of A, if F is an upset and for all x, y ∈ F , x� y ⊆ F .

Note: Let F be a (weak) filter of A and x ∈ F . Since F is an upset and x ≤ 1,
we get 1 ∈ F .

Example 4.3. (i) In Example 3.3(iv), F = {b, 1} is a filter.
(ii) In Example 3.3(v), F = {b, 1} is a weak filter.

Example 4.4. It is clear that A is a (weak) filter of A. By (HHA20), {1} = 1� 1
and so 1� 1 ⊆ {1}. Then {1} is a (weak)filter of A.

Proposition 4.5. Any filter of A is a weak filter.

Proof. Let F be a filter of A. Then F is an upset and x� y ⊆ F , for all x, y ∈ F .
Hence (x� y) ∩ F 6= ∅, for all x, y ∈ F . Then F is a weak filter.

Note: Any weak filter is not a filter, in general. It can be verified by the
following Example.

Example 4.6. In Example 3.3(vi), F = {b, 1} is a weak filter, but it is not a filter.

Theorem 4.7. Let F be a non-empty subset of A. Then F is a weak filter of A if
and only if F is an upset and F � x� y , for all x, y ∈ F .

Proof. (⇒) Straightforward.
(⇐) Let F be an upset and F � x� y, for all x, y ∈ F . Hence there exist u ∈ F
and v ∈ x� y such that u ≤ v. Since F is an upset and u ∈ F , then v ∈ F and so
x� y ∩ F 6= ∅. Hence F is a weak filter of A.

Theorem 4.8. Let F be a filter of A. Then for all x, y, z ∈ A,
(i) if x→ y ⊆ F and x ∈ F , then y ∈ F ,
(ii) If x→ y ⊆ F and x� z ⊆ F , then y � z ⊆ F ,
(iii) If x, y ∈ F and x� y → z, then z ∈ F .
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Proof. (i) Let x ∈ F and x → y ⊆ F , for x, y ∈ A. Then x � (x → y) =⋃
u∈x→y x � u ⊆ F . On the other hand, since x → y � x → y, by (HHA11),

(x → y) � x � y. Therefore, there is v ∈ (x → y) � x such that v ≤ y. Since
v ∈ F , we get y ∈ F .

(ii) By (HHA16), x � z � x, z. Then there exists u ∈ x � z ⊆ F such that
u ≤ x, z. Since u ∈ F and F is a filter, we get x, z ∈ F . Now, since x ∈ F and
x→ y ⊆ F , by (i) y ∈ F . Finally, since y, z ∈ F and F is a filter, y � z ⊆ F .

(iii) Let x, y ∈ F . Since F is a filter, x � y ⊆ F and since x � y → z, by
(HHA10), x � y � z. Then there exists u ∈ x � y ⊆ F such that u ≤ z. Since
F is a filter and u ∈ F , we get z ∈ F .

Theorem 4.9. Let F be a non-empty subset of A. Then F is a filter of A if and
only if 1 ∈ F and F � x→ y and x ∈ F implies y ∈ F , for any x, y ∈ A.

Proof. (⇒) Let F be a filter, F � x → y and x ∈ F , for x, y ∈ A. Hence there
exist u ∈ F and v ∈ x → y such that u ≤ v. Since u ∈ F and F is an upset,
we get v ∈ F and since F is a filter, we get x � v ⊆ F . By v ∈ x → y we have
{v} ≤ x → y. Then by (HHA10), v � x � y and so there exists t ∈ v � x ⊆ F
such that t ≤ y. Since F is an upset, we get y ∈ F .
(⇐) Let x ≤ y and x ∈ F , for x, y ∈ A. Then 1 ∈ x → y and since 1 ∈ F ,
we get F � x → y. Then, by hypothesis y ∈ F and so F is an upset. Now, let
x, y ∈ F and u ∈ x � y. Then x � y � u and so by (HHA10), {y} ≤ x → u.
Since y ∈ F , we get F � x→ u and so by hypothesis, u ∈ F . Hence x� y ⊆ F
and so F is a filter of A.

Definition 4.10. Let S be a non-empty subset of A. If S is a hyper hoop with
respect to the hyperoperations � and → on A, we say that S is a hyper hoop-
subalgebra of A.

Theorem 4.11. Let S be a non-empty subset of A. Then S is a hyper hoop-
subalgebra of A iff x� y ⊆ S and x→ y ⊆ S, for all x, y ∈ S.

Proof. (⇒) The proof is clear.
(⇐) Let x ∈ S. By (HHA2), 1 ∈ x → x and by assumption, x → x ⊆ S.

Hence 1 ∈ S. It is easy to show that (S,�,→, 1) is a hyper hoop. Then S is a
hyper hoop-subalgebra of A.

Example 4.12. (i) In Example 3.3(iv), F = {b, 1} is a hyper hoop-subalgebra.
(ii) In Example 3.3(iii), F = {1} is a (weak)filter, but it is not a hyper hoop-
subalgebra.
(iii) In Example 3.3(vi), F = {a, 1} is a hyper hoop-subalgebra, but it is not a
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(weak)filter. Since a ≤ c and a ∈ F , but c /∈ F and so F is not an upset.

Theorem 4.13. If {Fi} is a finite family of filters of A, then ∩{Fi} is a filter of A.

Proof. The proof is easy.

Definition 4.14. Let D be a subset of A. The intersection of all (weak) filters of
A containing D is called the (weak) filter generated by D. The filter generated
by D denoted by [D) and the weak filter generated by D denoted by [D)w. It is
trivial to verify that [D) is the least filter containing D and [D)w is the least weak
filter containing D.

Theorem 4.15. If ∅ 6= D ⊆ A, then

[D)w ⊆ {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � ....� an � {x}}

Proof. Let

F = {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � a2 � ......� an � {x}}

It is sufficient to show that F is a weak filter containing D. Let x ≤ y and x ∈ F ,
for x, y ∈ A . Then there exist a1, ..., an ∈ D, such that, a1 � ...... � an � {x}.
Since x ≤ y, by (HHA23), a1 � ...... � an � {y} and so y ∈ F . Hence F is an
upset. Now, let x, y ∈ F . Then there exist a1, ..., an, b1, ..., bm ∈ D, such that,
a1�......�an � {x} and b1�......�bm � {y}. Hence there exist u ∈ a1�.....�an
and v ∈ b1 � .....� bm, such that u ≤ x and v ≤ y. By (HHA30) u� v � x� y.
Then a1� ......� an� b1� ......� bm � x� y. Hence there exists s ∈ x� y such
that a1 � ......� an � b1 � ......� bm � {s} and so x� y ∩ F 6= ∅. Thus F is a
weak filter of A. For all d ∈ D we have {d} � {d}, and so d ∈ F . Therefore F
is a weak filter of A containing D.

Note: In the following Example we will show that the equation, [D)w = F is
not true, in general, where

F = {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � ....� an � {x}}

Example 4.16. In Example 3.3(v), if we take D = {b} then it follows that F =
{1, b, c}, that is a weak filter containing D, but [D)w = {1, b}. Hence in this
Example [D)w 6= F .

Theorem 4.17. If ∅ 6= D ⊆ A, then

[D) = {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � ....� an � {x}}
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Proof. Let

F = {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � a2 � ......� an � {x}}

Let x ≤ y and x ∈ F , for x, y ∈ A. Then there exist a1, ..., an ∈ D, such that,

a1 � ......� an � {x}

Since x ≤ y, by (HHA24), a1 � ...... � an � {y} and so y ∈ F . Hence F is an
upset. Now, let x, y ∈ F . Then there exist a1, ..., an, b1, ..., bm ∈ D, such that,
a1 � ......� an � x and b1 � ......� bm � {y}. For all u ∈ x� y, x� y � {u}.
Then by(HHA10), {x} ≤ y → u. Since a1� ......� an � {x} and {x} ≤ y → u
by (HHA24), a1 � ......� an � y → u. Since b1 � ......� bm � y by (HHA26),
y → u ≤ (b1 � ......� bm)→ u. Hence

a1 � ......� an � y → u ≤ (b1 � ......� bm)→ u

and so by (HHA22), a1� ......� an � (b1� ......� bm)→ u. Then by (HHA11),
(a1 � ......� an)� (b1 � ......� bm)� {u} and so u ∈ F . Therefore x� y ⊆ F
and so F is a filter. Since d� d, for all d ∈ D, we have d ∈ F and so F is a filter
of A containing D. Let D ⊆ C and C be a filter of A. For all x ∈ F , there exist
a1, ..., an ∈ D, such that

a1 � ....� an � {x}

Then there exists v ∈ a1 � ....� an, such that v ≤ x. By a1, ..., an ∈ D ⊆ C and
C is a filter, it follows that a1 � .....� an ⊆ C and so v ∈ C. Since C is an upset
we have x ∈ C and so F ⊆ C. Therefore [D) = F .

Definition 4.18. Let A be bounded. Then D ⊆ A is said to have the finite inter-
section property if a1 � a2......� an ∩ {0} = ∅, for all a1, ...., an ∈ D.

Theorem 4.19. Let A be bounded and D ⊆ A. Then [D) is a proper filter of A if
and only if D has the finite intersection property.

Proof. Let [D) be a proper filter of A and D has not the finite intersection prop-
erty, by the contrary. Then there exist a1, ...., an ∈ D such that 0 ∈ a1 � a2......�
an. Hence a1 � a2...... � an � {0} and so by Theorem 4.17, 0 ∈ [D). Since
0 ≤ x, for all x ∈ A and [D) is a filter, we have x ∈ [D) and so [D) = A, which
is a contradiction. Hence D has the finite intersection property.
Conversely, let D has the finite intersection property and [D) is not a proper filter,
by the contrary. Then [D) = A and so 0 ∈ [D). Then by Theorem 4.17, there
exist a1, ...., an ∈ D such that a1�a2......�an � {0} and so 0 ∈ a1�a2......�an.
Then D has not the finite intersection property, which is a contradiction. Hence
[D) is a proper filter.
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Theorem 4.20. If F is a filter of A and a ∈ A, then

[F ∪ {a}) = {x|x ∈ A, ∃n ∈ N, s.t., an → x ∩ F 6= ∅}

Proof. Suppose that x ∈ [F ∪ {a}). By Theorem 4.17, there exist b1, ...., bm ∈ F
and n ∈ N such that

b1 � .....� bm � an � {x}

By (HHA11), we have b1 � ..... � bm � an → x. Then there exists u ∈ b1 �
.....� bm and v ∈ an → x such that u ≤ v. Since F is a filter and b1, ...., bm ∈ F ,
we get b1 � .....� bm ⊆ F and so u ∈ F . Now, since F is a filter, we get v ∈ F .
Hence an → x ∩ F 6= ∅.
Conversely, let there exists n ∈ N such that an → x∩F 6= ∅. If s ∈ an → x∩F ,
then 1 ∈ s → (an → x). Hence by (HHA4), 1 ∈ (s � an) → x. Therefore,
s� an � {x} and so by Theorem 4.17, x ∈ [F ∪ {a}).

5 Conclusion
In this paper, we applied the hyper structure theory to the hoop algebras and

introduced the notion of (quasi) hyper hoop algebra which is a generalization of
hoop-algebra. Then we studied some properties and filter theory of this structure.
Topological and categorical properties, quotient structures and relation with the
other hyperstructures can be studied for the future researches.
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