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Abstract. There are several kinds of burst errors for which error detecting

and error correcting codes have been constructed. In this paper, we

consider a new kind of burst error which will be termed as ‘2-repeated

burst error of length b(fixed)’. Linear codes capable of detecting such errors

have been studied. Further, codes capable of detecting and simultaneously

correcting such errors have also been dealt with. The paper obtains lower

and upper bounds on the number of parity-check digits required for such

codes. An example of such a code has also been provided.
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1. Introduction

Investigations in coding theory have been made in several directions but

one of the most important aspects considered has been the detection and

correction of errors. The beginning was made with the detection and

correction of random errors [refer Hamming (1950)] and thereafter the

advent of BCH codes for multiple error correction was taken up. Though

there is a long history concerning the growth of the subject and many of

the codes developed have found applications in numerous areas of practical

interest, one of the areas of practical importance in which a parallel growth

of the subject took place is that of burst error detecting and correcting

codes. It has also been observed that in many communication channels the

likelihood of the occurrence of errors is more in adjacent digits rather than

their occurrence in a random manner. Extending the work of Hamming

(1950), Abramson (1959) developed codes which dealt with the correction

of single and double adjacent errors. The work due to Fire (1959) depicted

a more general concept of clustered errors which in the literature are known

as ‘burst errors’. A burst of length b may be defined as follows:

Definition 1. A burst of length b is a vector whose only non-zero

components are among some b consecutive components, the first and the

last of which is non-zero.

Fire (1959) considered two kinds of bursts viz. open-loop burst which

are popularly refered to simply a burst (as in Definition 1) and the other

is called as ‘closed-loop burst’ defined as follows:
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Definition 2. Let b be an integer and x = (ξ1, . . . , ξn) be a vector in

V n(q), a vector space of n-tuples over GF(q). If 2 6 b 6
n+ 1

2
, then x is

called a ‘closed-loop burst vector of length b ’ whenever there is an i such

that 1 6 i 6 b− 1, ξi · ξn−b+i+1 6= 0, ξi+1 = ξi+2 = · · · = ξn−b+i = 0.

Stone (1961), and Bridwell and Wolf (1970) considered multiple

bursts. It was noted by Chien and Tang (1965) that in several channels

errors occur in the form of a burst but not in the end digits of the burst.

Channels due to Alexander, Gryb and Nast (1960) fall in this category.

This prompted Chien and Tang to propose a modification in the definition

of a burst and they defined a burst of length b which shall be called as CT

burst of length b as follows:

Definition 3. A CT burst of length b is a vector whose only non-zero

components are confined to some b consecutive positions, the first of which

is non-zero.

This definition was further modified by Dass (1980) as follows:

Definition 4. A burst of length b(fixed) is an n-tuple whose only non-zero

components are confined to b consecutive positions, the first of which is

non-zero and the number of its starting positions in an n-tuple is among

the first n− b+ 1 components.

It is clear that the nature of burst errors differ from channel to

channel depending upon the behaviour of channels or the kind of errors

which occur during the process of transmission. Also, in very busy

communication channels, errors repeat themselves. So is a situation when
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errors occur in the form of a burst. In a way, we need to consider repeated

bursts. Codes that detect and correct repeated open-loop bursts have been

studied by Berardi, Dass and Verma (2009). In this paper, a 2-repeated

burst (open-loop) of length b has been defined as follows:

Definition 5. A 2-repeated burst of length b is an n-tuple whose only

non-zero components are confined to two distinct sets of b consecutive

digits, the first and the last component of each set being non-zero.

The development of codes detecting and correcting repeated burst

errors will economize in the number of parity-check digits required not

only in comparison with codes dealing with detection and correction of the

same number of random errors but also in comparison to the usual burst

error detecting and correcting codes while considering such repeated bursts

as single bursts.

In this paper, we introduce yet another kind of a repeated burst and

define a ‘2-repeated burst of length b(fixed)’ as follows:

Definition 6. A 2-repeated burst of length b(fixed) is an n-tuple whose

only non-zero components are confined to two distinct sets of b consecutive

digits, the first component of each set is non-zero and the number of its

starting positions is among the first n− 2b+ 1 components.

For example, (1000001000) is a 2-repeated burst of length up to

4(fixed) whereas (0000100100) is a 2-repeated burst of length at most

3(fixed).
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These 2-repeated burst patterns of length b(fixed) include several 2-

repeated bursts of length b or less in an obvious manner. Moreover, these

are four times in number than the 2-repeated burst patterns of the same

length in the binary case, and in the q -nary case these are
q2

(q − 1)2
-times

the number of 2-repeated bursts. It is clear from the fact that the number

of 2-repeated burst vectors of length b is (q− 1)4(q)2(b−2) and the number

of 2-repeated burst vectors of length b(fixed) is (q− 1)2(q)2(b−1) giving the

ratio as
q2

(q − 1)2
.

In section 2, we obtain bounds for codes detecting 2-repeated bursts

of length b(fixed). Section 3 presents a bound for codes which can detect

and simultaneously correct such 2-repeated bursts. In what follows a

linear code will be considered as a subspace of the space of all n-tuples

over GF(q). The distance between two vectors shall be considered in the

Hamming sense.

2. 2-repeated burst error detecting codes

In this section, we consider linear codes that are capable of detecting any

2-repeated burst of length b(fixed). Clearly, the patterns to be detected

should not be code words. In other words we consider codes that have

no 2-repeated burst of length b(fixed) as a code word. Firstly, we obtain

a lower bound over the number of parity-check digits required for such a

code.

Theorem 1. Any (n, k) linear code over GF(q) that detects any 2-repeated

burst of length b(fixed) must have at least 2b parity-check digits.
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Proof. The result will be proved on the basis that no detectable error vector

can be a code word.

Let V be an (n, k) linear code over GF(q). Consider a set X that

has all those vectors which have their non-zero components confined to

some two fixed distinct b consecutive components in the first n − b + 1

components.

We claim that no two vectors of the set X can belong to the same

coset of the standard array, else a code word shall be expressible as a sum

or difference of two error vectors.

Assume on the contrary that there is a pair, say x1, x2 in X belonging

to the same coset of the standard array. Their difference viz. x1−x2 must

be a code vector. But x1−x2 is a vector all of whose non-zero components

are confined to the same two fixed b consecutive components and so is a

member of X , i.e., x1−x2 is a 2-repeated burst of length b(fixed), which is

a contradiction. Thus all the vectors in X must belong to distinct cosets of

the standard array. The number of such vectors over GF(q) is clearly q2b .

The theorem follows since there must be at least this number of cosets.

Remark 1. Incidentally, this result coincides with [Theorem 1, Berardi,

Dass and Verma (2009)] when bursts considered are open-loop bursts.

An upper bound on the number of check digits required for the

construction of a linear code is provided in the following theorem. This

bound assures the existence of a linear code that can detect all 2-

repeated bursts of length b(fixed). The bound has been obtained by first

constructing a matrix under certain constraints and then by reversing the
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order of its columns altogether giving rise to a parity-check matrix for the

requisite code, a technique given by Dass (1980).

Theorem 2. There exists an (n, k) linear code that has no 2-repeated

burst of length b(fixed) as a code word provided that

qn−k > qb−1[1 + (n− 2b+ 1)(q − 1)qb−1] . (1)

Proof. The existence of such a code will be shown by constructing an

appropriate (n − k) × n parity-check matrix H . Firstly, we construct

a matrix H ′ from which the requisite parity-check matrix H shall be

obtained by reversing the order of its columns altogether. Any non-zero

(n− k)-tuple is chosen as the first column h1 of H ′ . Subsequent columns

are added to H ′ such that after having selected the first j − 1 columns

h1, h2, . . . , hj−1 , j -th column hj is added provided that

hj 6= (αj−b+1hj−b+1 + αj−b+2hj−b+2 + · · ·+ αj−1hj−1)

+ (βihi + βi+1hi+1 + · · ·+ βi+b−1hi+b−1) (2)

where either all βi are zero or if βt is the last nonzero coefficient then

b 6 t 6 j − b , αj ’s and βi ’s in GF(q). This condition ensures that no 2-

repeated burst of length b(fixed) will be a code word. The number of ways

in which the coefficients αj can be selected is clearly qb−1 . To enumerate

the coefficients βi is equivalent to enumerate the number of bursts of length

b(fixed) amongst the first j − b components. This number, including the

vector of all zeros, is [Theorem 1, Dass (1980)]

1 + (j − 2b+ 1)(q − 1)qb−1 .
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Thus, the total number of possible combinations that hj can not be equal

to, is

qb−1[1 + (j − 2b+ 1)(q − 1)qb−1] . (3)

At worst, all these linear combinations might yield a distinct sum.

Therefore a column hj can be added to H ′ provided that

qn−k > (3) .

The required parity-check matrix H = [H1H2 . . . Hn] can be obtained from

H ′ by reversing the order of its columns altogether (hi → Hn−i+1 ). For a

code of length n , replacing j by n gives the result.

Remark 2. In view of the fact that the result obtained in Theorem 2 is

the same as the result for the correction of bursts of length b(fixed), such

a code can serve dual purpose viz. it can either be used to correct bursts

of length b(fixed) or can be used to detect 2-repeated bursts of length

b(fixed).

3. Simultaneous detection and correction of

repeated burst errors

In this section we determine extended Reiger’s bound [Reiger (1960);

also refer Theorem 4.15, Peterson and Weldon (1972)] for simultaneous

detection and correction of 2-repeated bursts of length b(fixed). The

following theorem gives a bound on the number of parity-check digits for
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a linear code that simultaneously detects and corrects 2-repeated bursts of

length b(fixed).

Theorem 3. An (n, k) linear code over GF(q) that corrects all 2-

repeated bursts of length b(fixed) must have at least 4b parity-check digits.

Further, if the code corrects all 2-repeated bursts of length b(fixed) and

simultaneously detects 2-repeated bursts of length d(fixed) (d > b) then

the code must have at least 2(b+ d) parity-check digits.

Proof. We first prove the first part. Consider a burst of length 4b(fixed)

in the first n − b + 1 components. Such a vector is expressible as a

sum or difference of two vectors, each of which is a 2-repeated burst of

length b(fixed). These component vectors must belong to different cosets

of the standard array because both such errors are correctable errors.

Accordingly, such a vector viz. burst of length 4b(fixed) can not be a

code vector. In view of Theorem 1, such a code must have at least 4b

parity-check digits.

Further, consider a burst of length 2(b+d)(fixed), the burst confining

to the first n − b + 1 components. Such a vector is expressible as a sum

or difference of two vectors, one of which is a 2-repeated burst of length

b(fixed) and the other is a 2-repeated burst of length d(fixed). Both such

component vectors, one being a detectable error and the other being a

correctable error, can not belong to the same coset of the standard array.

Therefore such a vector can not be a code vector, i.e., a burst of length

2(b+d)(fixed) can not be a code vector. Hence the code must have at least

2(b+ d) parity-check digits.
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Remark 3. Incidentally, this result coincides with [Theorem 3, Berardi,

Dass and Verma (2009)], when bursts considered are open-loop bursts.

Example. We conclude the paper with an example.

Consider a (7, 2) binary code with parity check matrix

H =



0 0 0 0 1 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 1

0 1 0 0 0 1 1

1 1 0 0 0 1 0


This matrix has been constructed by the synthesis procedure, outlined in

the proof of Theorem 2, by taking b = 3. It can be seen from Table 1

that the syndromes of the different 2-repeated bursts of length 3(fixed)

are nonzero, showing thereby that the code that is the null space of this

matrix can detect all bursts of length 3(fixed).

Table 1

Error vectors Syndromes

1000000 00001

1001000 01001

1001100 11001

1001010 01110

1001110 11110

1000100 10001

1000110 10110

1000101 11111

1000111 11000

1100000 00010

1101000 01010

1101100 11010

1101010 01101

(Contd.)
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Error vectors Syndromes

1101110 11101

1100100 10010

1100110 10101

1100101 11100

1100111 11011

1010000 00101

1011000 01101

1011100 11101

1011010 01010

1011110 11010

1010100 10101

1010110 10010

1010101 11011

1010111 11100

1110000 00110

1111000 01110

1111100 11110

1111010 01001

1111110 11001

1110100 10110

1110110 10001

1110101 11000

1110111 11111

0100000 00011

0100100 10011

0100110 10100

0100101 11101

0100111 11010

0110000 00111

0110100 10111

0110110 10000

0110101 11001

0110111 11110

0101000 01011

0101100 11011

(Contd.)
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Error vectors Syndromes

0101110 11100

0101101 10101

0101111 10010

0111000 01111

0111100 11111

0111110 11000

0111101 10001

0111111 10110

0010000 00100

0011000 01100

0010100 10100

0011100 11100

0001000 01000

0001100 11000

0001010 01111

0001110 11111

0000100 10000

0000110 10111

0000101 11110

0000111 11001
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