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Abstract

Let R be a Γ-ring. We introduce the notion of gamma modules over R and study

important properties of such modules. In this regards we study submodules and

homomorphism of gamma modules and give related basic results of gamma modules.
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1 Introduction

The notion of a Γ-ring was introduced by N. Nobusawa in [6]. Recently, W.E. Barnes

[2], J. Luh [5], W.E. Coppage studied the structure of Γ-rings and obtained various gen-

eralization analogous of corresponding parts in ring theory. In this paper we extend the

concepts of module from the category of rings to the category of RΓ-modules over Γ-rings.

Indeed we show that the notion of a gamma module is a generalization of a Γ-ring as well

as a module over a ring, in fact we show that many, but not all, of the results in the
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theory of modules are also valid for RΓ-modules. In Section 2, some definitions and re-

sults of Γ− ring which will be used in the sequel are given. In Section 3, the notion of a

Γ-module M over a Γ− ring R is given and by many example it is shown that the class

of Γ-modules is very wide, in fact it is shown that the notion of a Γ-module is a general-

ization of an ordinary module and a Γ− ring. In Section 3, we study the submodules of

a given Γ-module. In particular, we that L(M), the set of all submodules of a Γ-module

M constitute a complete lattice. In Section 3, homomorphisms of Γ-modules are studied

and the well known homomorphisms (isomorphisms) theorems of modules extended for

Γ-modules. Also, the behavior of Γ-submodules under homomorphisms are investigated.

2 Preliminaries

Recall that for additive abelian groups R and Γ we say that R is a Γ − ring if there

exists a mapping

· : R× Γ×R −→ R

(r, γ, r′) 7−→ rγr′

such that for every a, b, c ∈ R and α, β ∈ Γ, the following hold:

(i) (a + b)αc = aαc + bαc;

a(α + β)c = aαc + aβc;

aα(b + c) = aαb + aαc;

(ii) (aαb)βc = aα(bβc).

A subset A of a Γ-ring R is said to be a right ideal of R if A is an additive subgroup of

R and AΓR ⊆ A, where AΓR = {aαc| a ∈ A, α ∈ Γ, r ∈ R}.

A left ideal of R is defined in a similar way. If A is both right and left ideal, we say that

A is an ideal of R.
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If R and S are Γ-rings. A pair (θ, ϕ) of maps from R into S such that

i) θ(x + y) = θ(x) + θ(y);

ii) ϕ is an isomorphism on Γ;

iii) θ(xγy) = θ(x)ϕ(γ)θ(y).

is called a homomorphism from R into S.

3 RΓ -Modules

In this section we introduce and study the notion of modules over a fixed Γ-ring.

Definition 3.1. Let R be a Γ-ring. A (left) RΓ-module is an additive abelian group

M together with a mapping . : R× Γ×M −→ M ( the image of (r, γ, m) being denoted

by rγm), such that for all m, m1, m2 ∈ M and γ, γ1, γ2 ∈ Γ, r, r1, r2 ∈ R the following

hold:

(M1) rγ(m1 + m2) = rγm1 + rγm2;

(M2) (r1 + r2)γm = r1γm + r2γm;

(M3) r(γ1 + γ2)m = rγ1m + rγ2m;

(M4) r1γ1(r2γ2m) = (r1γ1r2)γ2m.

A right RΓ −module is defined in analogous manner.

Definition 3.2. A (left) RΓ-module M is unitary if there exist elements, say 1 in R and

γ0 ∈ Γ, such that, 1γ0m = m for every m ∈ M . We denote 1γ0 by 1γ0 , so 1γ0m = m for

all m ∈ M .

Remark 3.3. If M is a left RΓ-module then it is easy to verify that 0γm = r0m = rγ0 =

0M . If R and S are Γ-rings then an (R,S)Γ-bimodule M is both a left RΓ-module and right

SΓ-module and simultaneously such that (rαm)βs = rα(mβs) ∀m ∈ M, ∀r ∈ R, ∀s ∈ S

and α, β ∈ Γ.
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In the following by many examples we illustrate the notion of gamma modules and

show that the class of gamma module is very wide.

Example 3.4. If R is a Γ-ring, then every abelian group M can be made into an RΓ-

module with trivial module structure by defining

rγm = 0 ∀r ∈ R,∀γ ∈ Γ,∀m ∈ M .

Example 3.5. Every Γ-ring R, is an RΓ-module with rγ(r, s ∈ R, γ ∈ Γ) being the Γ-ring

structure in R, i.e. the mapping

. : R× Γ×R −→ R.

(r, γ, s) 7−→ r.γ.s

Example 3.6. Let M be a module over a ring A. Define . : A × R × M −→ M , by

(a, s, m) = (as)m, being the R-module structure of M . Then M is an AA-module.

Example 3.7. Let M be an arbitrary abelian group and S be an arbitrary subring of Z,

the ring of integers. Then M is a ZS-module under the mapping

. : Z× S ×M −→ M

(n, n′, x) 7−→ nn′x

Example 3.8. If R is a Γ-ring and I is a left ideal of R .Then I is an RΓ-module under

the mapping . : R× Γ× I −→ I such that (r, γ, a) 7−→ rγa .

Example 3.9. Let R be an arbitrary commutative Γ-ring with identity. A polynomial in

one indeterminate with coefficients in R is to be an expression P (X) = anX
n + +a2X

2 +

a1X + a0 in which X is a symbol, not a variable and the set R[x] of all polynomials is

then an abelian group. Now R[x] becomes to an RΓ-module, under the mapping

. : R× Γ×R[x] −→ R[x]

(r, γ, f(x)) 7−→ r.γ.f(x) =
∑n

i=1(rγai)x
i.
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Example 3.10. If R is a Γ-ring and M is an RΓ-module. Set M [x] = {
∑n

i=0 aix
i | ai ∈

M}. For f(x) =
∑n

j=0 bjx
j and g(x) =

∑m
i=0 aix

i, define the mapping

. : R[x]× Γ×M [x] −→ M [x]

(g(x), γ, f(x)) 7−→ g(x)γf(x) =
∑m+n

k=1 (ak.γ.bk)x
k.

It is easy to verify that M [x] is an R[x]Γ-module.

Example 3.11. Let I be an ideal of a Γ-ring R. Then R/I is an RΓ-module, where the

mapping . : R× Γ×R/I −→ R/I is defined by (r, γ, r′ + I) 7−→ (rγr′) + I.

Example 3.12. Let M be an RΓ-module, m ∈ M . Letting T (m) = {t ∈ R | tγm =

0 ∀γ ∈ Γ}. Then T (m) is an RΓ-module.

Proposition 3.12. Let R be a Γ-ring and (M, +, .) be an RΓ-module. Set Sub(M) =

{X| X ⊆ M}, Then sub(M) is an RΓ-module.

proof. Define ⊕ : (A, B) 7−→ A ⊕ B by A ⊕ B = (A\B) ∪ (B\A) for A, B ∈ sub(M).

Then (Sub(M),⊕) is an additive group with identity element ∅ and the inverse of each

element A is itself. Consider the mapping:

◦ : R× Γ× Sub(M) −→ sub(M)

(r, γ, X) 7−→ r ◦ γ ◦X = rγX,

where rγX = {rγx | x ∈ X}. Then we have

(i) r ◦ γ ◦ (X1 ⊕X2) = r · γ · (X1 ⊕X2)

= r · γ · ((X1\X2) ∪ (X2\X1)) = r · γ · ({a | a ∈ (X1\X2) ∪ (X2\X1)}

= {r · γ · a | a ∈ (X1\X2) ∪ (X2\X1)}.

And

r ◦ γ ◦X1 ⊕ r ◦ γ ◦X2 = r · γ ·X1 ⊕ r · γ ·X2

= (r · γ ·X1\r · γ ·X2) ∪ (r · γ ·X2\r · γ ·X1)
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= {r · γ · x | x ∈ (X1\X2)} ∪ {r · γ · x | x ∈ (X2\X1)}.

= {r · γ · x | x ∈ (X1\X2) ∪ (X2\X1)}.

(ii) (r1 + r2) ◦ γ ◦X = (r1 + r2) · γ ·X

= {(r1 + r2) · γ · x | x ∈ X} = {r1 · γ · x + r2 · γ · x | x ∈ X}

= r1 · γ ·X + r2 · γ ·X = r1 ◦ γ ◦X + r2 ◦ γ ◦X.

(iii) r ◦ (γ1 + γ2) ◦X = r · (γ1 + γ2) ·X

= {r · (γ1 + γ2) · x | x ∈ X} = {r · γ1 · x + r · γ2 · x | x ∈ X}

= r · γ1 ·X + r · γ2 ·X = r ◦ γ1 ◦X + r ◦ γ2 ◦X.

(iv) r1 ◦ γ1 ◦ (r2 ◦ γ2 ◦X)

= r1 · γ1 · (r2 ◦ γ2 ◦X)

= {r1.γ1.(r2 ◦ γ2 ◦ x)|x ∈ X}

= {r1.γ1.(r2.γ2.x) | x ∈ X} = {(r1.γ1.r2).γ2.x | x ∈ X} = (r1.γ1.r2).γ2.X.

Corollary 3.13. If in Proposition 3.12, we define ⊕ by A ⊕ B = {a + b|a ∈ A, b ∈ B}.

Then (Sub(M),⊕, ◦) is an RΓ-module.

Proposition 3.14. Let (R, ◦) and (S, •) be Γ-rings. Let (M, .) be a left RΓ-module

and right SΓ-module. Then A = {

 r m

0 s

 | r ∈ R, s ∈ S, m ∈ M} is a Γ-ring and

AΓ-module under the mappings

? : A× Γ× A −→ A

(

 r m

0 s

 , γ,

 r1 m1

0 s1

) 7−→

 r ◦ γ ◦ r1 r.γ.m1 + m.γ.s1

0 s • γ • s1

 .

�

Proof. Straightforward.

Example 3.15. Let (R, ◦) be a Γ-ring . Then R ⊕ Z = {(r, s) | r ∈ R, s ∈ Z} is an left

RΓ-module, where ⊕ addition operation is defined (r, n)⊕ (r′, n′) = (r +R r′, n +Z n′) and

the product · : R× Γ× (R⊕ Z) −→ R⊕ Z is defined r′ · γ · (r, n) −→ (r′ ◦ γ ◦ r, n).
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Example 3.16. Let R be the set of all digraphs (A digraph is a pair (V, E) consisting

of a finite set V of vertices and a subset E of V × V of edges) and define addition on R

by setting (V1, E1) + (V2, E2) = (V1 ∪ V2, E1 ∪ E2). Obviously R is a commutative group

since (∅, ∅) is the identity element and the inverse of every element is itself. For Γ ⊆ R

consider the mapping

· : R× Γ×R −→ R

(V1, E1) · (V2, E2) · (V3, E3) = (V1 ∪ V2 ∪ V3, E1 ∪ E2 ∪ E3 ∪ {V1 × V2 × V3}),

under condition

(∅, ∅) = (∅, ∅) · (V1, E1) · (V2, E2)(V1, E1) · (∅, ∅) · (V2, E2)

= (V1, E1) · (∅, ∅) · (V2, E2)

= (V1, E1) · (V2, E2) · (∅, ∅).

It is easy to verify that R is an RΓ-module .

Example 3.17. Suppose that M is an abelian group. Set R = Mmn and Γ = Mnm, so

by definition of multiplication matrix subset R
(t)
mn = {(xij) | xtj = 0 ∀ j = 1, ...m} is a

right RΓ-module. Also, C
(k)
mn = {xij) | xik = 0 ∀i = 1, ..., n} is a left RΓ-module.

Example 3.18. Let (M, •) be an RΓ-module over Γ-ring (R, .) and S = {(a, 0)|a ∈ R}.

Then R × M = {(a, m)|a ∈ R,m ∈ M} is an SΓ-module, where addition operation is

defined by (a, m) ⊕ (b, m1) = (a +R b, m +M m1). Obviously, (R ×M,⊕) is an additive

group. Now consider the mapping

◦ : S × Γ× (R×M) −→ R×M

((a, 0), γ, (b, m)) 7−→ (a, 0) ◦ γ ◦ (b, m) = (a.γ.b, a • γ •m).

Then it is easy to verify that R×M is an SΓ-module.

Example 3.19 Let R be a Γ-ring and (M, .) be an RΓ-module. Consider the mapping

α : M −→ R. Then M is an MΓ-module, under the mapping
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◦ : M × Γ×M −→ M

(m, γ, n) 7−→ m ◦ γ ◦ n = (α(m)).γ.n.

Example 3.20. Let (R, ·) and (S, ◦) be Γ- rings. Then

(i) The product R× S is a Γ- ring, under the mapping

((r1, s1), γ, (r2, s2)) 7−→ (r1 · γ · r2, s1 ◦ γ ◦ s2).

(ii) For A = {

 r 0

0 s

 | r ∈ R, s ∈ S} there exists a mapping R × S −→ A, such that

(r, s) −→

 r 0

0 s

 and A is a Γ- ring. Moreover, A is an (R × S)Γ- module under the

mapping

(R× S)× Γ× A −→ A ((r1, s1), γ,

 r2 0

0 s2

) −→

 r1 · γ · r2 0

0 s1 ◦ γ ◦ s2

 .

Example 3.21. Let (R, ·) be a Γ-ring. Then R×R is an RΓ-module and (R×R)Γ- module.

Consider addition operation (a, b)+(c, d) = (a+Rc, b+Rd). Then (R×R, +) is an additive

group. Now define the mapping R×Γ×(R×R) 7−→ R×R by (r, γ, (a, b)) 7−→ (r·γ·a, r·γ·b)

and (R×R)×Γ×(R×R) −→ R×R by ((a, b), γ, (c, d)) 7−→ (a·γ ·c+b·γ ·d, a·γ ·d+b·γ ·c).

Then R×R is an (R×R)Γ- module.

4 Submodules of Gamma Modules

In this section we study submodules of gamma modules and investigate their properties.

In the sequel R denotes a Γ-ring and all gamma modules are RΓ-modules

Definition 4.1. Let (M, +) be an RΓ-module. A nonempty subset N of (M, +) is

said to be a (left) RΓ-submodule of M if N is a subgroup of M and RΓN ⊆ N , where
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RΓN = {rγn|γ ∈ Γ, r ∈ R, n ∈ N}, that is for all n, n′ ∈ N and for all γ ∈ Γ, r ∈

R; n− n′ ∈ N and rγn ∈ N . In this case we write N ≤ M .

Remark 4.2. (i) Clearly {0} and M are two trivial RΓ-submodules of RΓ-module M ,

which is called trivial RΓ-submodules.

(ii) Consider R as RΓ-module. Clearly, every ideal of Γ-ring R is submodule, of R as

RΓ-module.

Theorem 4.3. Let M be an RΓ-module. If N is a subgroup of M , then the factor

group M/N is an RΓ-module under the mapping . : R × Γ ×M/N −→ M/N is defined

(r, γ, m + N) 7−→ (r.γ.m) + N.

Proof. Straight forward.

Theorem 4.4. Let N be an RΓ-submodules of M . Then every RΓ-submodule of M/N

is of the form K/N , where K is an RΓ-submodule of M containing N .

Proof. For all x, y ∈ K,x + N, y + N ∈ K/N ; (x + N)− (y + N) = (x− y) + N ∈ K/N ,

we have x− y ∈ K, and ∀r ∈ R ∀γ ∈ Γ,∀x ∈ K, we have

rγ(x + N) = rγx + N ∈ K/N ⇒ rγx ∈ K.

Then K is a RΓ-submodule M . Conversely,it is easy to verify that N ⊆ K ≤ M then

K/N is RΓ-submodule of M/N . This complete the proof. �

Proposition 4.5. Let M be an RΓ-module and I be an ideal of R. Let X be a nonempty

subset of M . Then

IΓX = {
∑n

i=1aiγixi | ai ∈ Irγi ∈ Γ, xi ∈ X, n ∈ N} is an RΓ-submodule of M .

Proof. (i) For elements x =
∑n

i=1aiαixi and y =
∑m

j=1xa′
jβjyj

of IΓX, we have

x− y =
∑m+n

k=1
bkγkzk ∈ IΓX.

Now we consider the following cases:

Case (1): If 1 ≤ k ≤ n, then bk = ak, γk = αk, zk = xk.
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Case(2): If n + 1 ≤ k ≤ m + n, then bk = −a′k−n, γk = βk−n, zk = yk−n. Also

(ii) ∀r ∈ R,∀γ ∈ Γ,∀a =
∑n

i=1 aiγixi ∈ IΓX, we have rγx =
∑n

i=1 rγ(aiγixi) =∑n
i=1(rγai)γixi. Thus IΓX is an RΓ-submodule of M. �

Corollary 4.6. If M is an RΓ-module and S is a submodule of M . Then RΓS is an

RΓ-submodule of M .

Let N ≤ M . Define N : M = {r ∈ R|rγm ∀γ ∈ Γ ∀m ∈ M}.

It is easy to see that N : M is an ideal of Γ ring R.

Theorem 4.7. Let M be an RΓ-module and I be an ideal of R. If I ⊆ (0 : M), then M

is an (R/I)Γ-module.

proof. Since R/I is Γ-ring, definethemapping• : (R/I)× Γ×M −→ M by

(r + I, γ, m) 7−→ rγm.. The mapping • is well-defined since I ⊆ (0 : M). Now it is

straight forward to see that M is an (R/I)Γ-module. �

Proposition 4.8. Let R be a Γ-ring, I be an ideal of R, and (M, .) be a RΓ-module.

Then M/(IΓM) is an (R/I)Γ- module.

Proof. First note that M/(IΓM) is an additive subgroup of M . Consider the mapping

γ • (m + IΓM) = r.γ.m + IΓM

)NowitisstraightforwardtoseethatMisan(R/I)Γ-module. �

Proposition 4.9. Let M be an RΓ-module and N ≤ M , m ∈ M . Then

(N : m) = {a ∈ R | aγm ∈ N ∀γ ∈ Γ} is a left ideal of R.

Proof. Obvious.

Proposition 4.10. If N and K are RΓ-submodules of a RΓ-module M and if A, B are

nonempty subsets of M then:

(i) A ⊆ B implies that (N : B) ⊆ (N : A);

(ii) (N ∩K : A) = (N : A) ∩ (K : A);

(iii) (N : A) ∩ (N : B) ⊆ (N : A + B), moreover the equality hold if 0M ∈ A ∩B.
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proof. (i) Easy.

(ii) By definition, if r ∈ R, then r ∈ (N ∩K : A) ⇐⇒ ∀a ∈ Ar ∈ (N ∩K : a) ⇐⇒ ∀γ ∈

Γ; rγa ∈ N ∩K ⇐⇒ r ∈ (N : A) ∩K : A).

(iii) If r ∈ (N : A) ∩ (N : B). Then ∀γ ∈ Γ,∀a ∈ A,∀b ∈ B, rγ(a + b) ∈ N and

r ∈ (N : A + B).

Conversely, 0M ∈ A + B =⇒ A ∪B ⊆ A + B =⇒ (N : A + B) ⊆ (N : A ∪B) by(i).

Again by using A, B ⊆ A ∪B we have (N : A ∪B) ⊆ (N : A) ∩ (N : B). �

Definition 4.11. Let M be an RΓ-module and ∅ 6= X ⊆ M . Then the generated

RΓ-submodule of M , denoted by < X > is the smallest RΓ-submodule of M containing

X, i.e. < X >= ∩{N |N ≤ M}, X is called the generator of < X >; and < X > is

finitely generated if |X| < ∞. If X = {x1, ...xn} we write < x1, ..., xn > instead

< {x1, ..., xn} >. In particular, if X = {x} then < x > is called the cyclic submodule of

M , generated by x.

Lemma 4.12. Suppose that M is an RΓ-module. Then

(i) Let {Mi}i∈I be a family of RΓ-submodules M . Then ∩Mi is the largest

RΓ-submodule of M , such that contained in Mi, for all i ∈ I.

(ii) If X is a subset of M and |X| < ∞. Then

< X >= {
∑m

i=1 nixi +
∑k

j=1 rjγjxj|k,m ∈ N, ni ∈ Z, γj ∈ Γ, rj ∈ R, xi, xj ∈ X} .

Proof. (i) It is easy to verify that ∩i∈IMi ⊆ Mi is a RΓ-submodule of M . Now suppose

that N ≤ M and ∀ i ∈ I, N ⊆ Mi, then N ⊆ ∩Mi.

(ii) Suppose that the right hand in (b) is equal to D. First, we show that D is an

RΓ-submodule containing X. X ⊆ D and difference of two elements of D is belong to

D and ∀r ∈ R ∀γ ∈ Γ,∀a ∈ D we have

rγa = rγ(
∑m

i=1 nixi +
∑k

j=1 rjγjxj) =
∑m

i=1 ni(rγxi) +
∑k

j=1(rγrj)γjxj ∈ D.

Also, every submodule of M containing X, clearly contains D. Thus D is the smallest
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RΓ-submodules of M , containing X. Therefore < X >= D. �

For N, K ≤ M , set N + K = {n + k|n ∈ N, K ∈ K}. Then it is easy to see that M + N

is an RΓ-submodules of M , containing both N and K. Then the next result

immediately follows.

Lemma 4.13. Suppose that M is an RΓ-module and N, K ≤ M . Then N + K is the

smallest submodule of M containing N and K.

Set L(M) = {N |N ≤ M}. Define the binary operations ∨ and ∧ on L(M) by

N ∨K = N + K andN ∧K = N ∩K. In fact (L(M),∨,∧) is a lattice. Then the next

result immediately follows from lemmas 4.12. 4.13.

Theorem 4.13. L(M) is a complete lattice.

5 Homomorphisms Gamma Modules

In this section we study the homomorphisms of gamma modules. In particular we

investigate the behavior of submodules od gamma modules under homomorphisms.

Definition 5.1. Let M and N be arbitrary RΓ-modules. A mapping f : M −→ N is a

homomorphism of RΓ-modules ( or an RΓ-homomorphisms) if for all x, y ∈ M and

∀r ∈ R,∀γ ∈ Γ we have

(i) f(x + y) = f(x) + f(y);

(ii) f(rγx) = rγf(x).

A homomorphism f is monomorphism if f is one-to-one and f is epimorphism if f is

onto. f is called isomorphism if f is both monomorphism and epimorphism. We denote

the set of all RΓ-homomorphisms from M into N by HomRΓ
(M, N) or shortly by
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HomRΓ
(M, N). In particular if M = N we denote Hom(M, M) by End(M).

Remark 5.2. If f : M −→ N is an RΓ-homomorphism, then

Kerf = {x ∈ M |f(x) = 0}, Imf = {y ∈ N |∃x ∈ M ; y = f(x)} are RΓ-submodules of

M .

Example 5.3. For all RΓ-modules A, B, the zero map 0 : A −→ B is an

RΓ-homomorphism.

Example 5.4. Let R be a Γ-ring. Fix r0 ∈ Γ and consider the mapping

φ : R[x] −→ R[x] by f 7−→ fγ0x. Then φ is an RΓ-module homomorphism, because

∀r ∈ R, ∀γ ∈ Γ and ∀f, g ∈ R[x] :

φ(f + g) = (f + g)γ0x = fγ0x + gγ0x = φ(f) + φ(g) and

φ(rγf) = rγfγ0x = rγφ(f).

Example 5.5. If N ≤ M , then the natural map π : M −→ M/N with π(x) = x + N is

an RΓ-module epimorphism with kerπ = N .

Proposition 5.6. If M is unitary RΓ-module and

End(M) = {f : M −→ M |f is RΓ − homomorphism}. Then M is an

End(M)Γ-module.

Proof. It is well known that End(M) is an abelian group with usual addition of

functions. Define the mapping

. : End(M)× Γ×M −→ M

(f, γ, m) 7−→ f(1.γ.m) = 1γf(m),

where 1 is the identity map. Now it is routine to verify that M is an End(M)Γ-module.�

Lemma 5.7. Let f : M −→ N be an RΓ-homomorphism. If M1 ≤ M and N1 ≤. Then

(i) Kerf ≤ M , Imf ≤ N ;

(ii) f(M1) ≤ Imf ;

(iii) Kerf−1(N1) ≤ M .
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Example 5.8. Consider L(M) the lattice of RΓ-submodules of M . We know that

(L(M), +) is a monoid with the sum of submodules. Then L(M) is RΓ-semimodule

under the mapping

. : R× Γ× T −→ T , such that (r, γ, N) 7−→ r.γ.N = rγN = {rγn|n ∈ N}.

Example 5.9. Let θ : R −→ S be a homomorphism of Γ-rings and M be an SΓ-module.

Then M is an RΓ-module under the mapping • : R× Γ×M −→ M by

(r, γ, m) 7−→ r • γ •m = θ(r). Moreover if M is an SΓ-module then M is a RΓ-module

for R ⊆ S.

Example 5.10. Let (M, .) be an RΓ-module and A ⊆ M . Letting

MA = {f |f : A −→ M is a map}. Then MA is an RΓ-module under the mapping

◦ : R× Γ×MA −→ MA defined by (r, γ, f) 7−→ r ◦ γ ◦ f = rγf(a),

since MA is an additive group with usual addition of maps.

Example 5.11. Let(M, .) and (N, •) be RΓ-modules. Then Hom(M, N) is a

RΓ-module, under the mapping

◦ : R× Γ×Hom(M, N) −→ Hom(M, N)

(r, γ, α) 7−→ r ◦ γ ◦ α,

where (r • γ • α)(m) = rγα)(m).

Example 5.12. Let M be a left RΓ-module and right SΓ-module. If N be an

RΓ-module, then

(i) Hom(M, N) is a left SΓ-module. Indeed

◦ : S × Γ×Hom(M, N) −→ Hom(M, N)

(s, γ, α) −→ s ◦ γ ◦ α : M −→ N

m 7−→ α(mγs)

(ii) Hom(N, M) is right SΓ-module under the mapping
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◦ : Hom(N, M)× Γ× S −→ Hom(N, M)

(α, γ, s) 7−→ α ◦ γ ◦ s : N −→ M

n 7−→ α(n).γ.s

Example 5.13. Let M be a left RΓ-module and right SΓ-module and α ∈ End(M) then

α induces a right S[t]Γ-module structure on M with the mapping

◦ : M × Γ× S[t] −→ M

(m, γ,
∑n

i=0 sit
i) 7−→ m ◦ γ ◦ (

∑n
i=0 sit

i) =
∑n

i=0(mγsi)α
i

Proposition 5.14. Let M be a RΓ-module and S ⊆ M . Then

SΓM = {
∑

siγiai | si ∈ S, ai ∈ M, γi ∈ Γ} is an RΓ-submodule of M .

Proof. Consider the mapping

◦ : R× Γ× (SΓM) −→ SΓM

(r, γ,
∑n

i=1 siγiai) 7−→
∑n

i=1 siγi(rγai).

Now it is easy to check that SΓM is a RΓ-submodule of M .

Example 5.16. Let (R, .) be a Γ-ring. Let Z2, the cyclic group of order 2.

For a nonempty subset A, set Hom(R, BA) = {f : R −→ BA}. Clearly (Hom(R, BA), +)

is an abelian group. Consider the mapping

◦ : R× Γ×Hom(R, BA) −→ Hom(R, BA) that is defined

(r, γ, f) 7−→ r ◦ γ ◦ f,

where (r ◦ γ ◦ f)(s) : A −→ B is defied by (r ◦ γ ◦ f(s))(a) = f(sγr)(a).

Now it is easy to check that Hom(R, BA) is an Γ-ring.

Example 5.17. Let R and S be Γ-rings and ϕ : R −→ S be a Γ-rings homomorphism.

Then every SΓ-module M can be made into an RΓ-module by defining
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rγx (r ∈ R, γ ∈ Γ, x ∈ M) to be ϕ(r)γx. We says that the RΓ-module structure M is

given by pullback along ϕ.

Example 5.18. Let ϕ : R −→ S be a homomorphism of Γ-rings then (S, .) is an

RΓ-module. Indeed

◦ : R× Γ× S −→ S

(r, γ, s) 7−→ r ◦ γ ◦ s = ϕ(r).γ.s

Example 5.19. Let (M, +) be an RΓ-module. Define the operation ◦ on M by

a⊕ b = b.a. Then (M,⊕) is an RΓ-module.

Proposition 5.20. Let R be a Γ-ring. If f : M −→ N is an RΓ-homomorphism and

C ≤ kerf , then there exists an unique RΓ-homomorphism f̄ : M/C −→ N , such that for

every x ∈ M ; Kerf̄ = Kerf/C and Imf̄ = Imf and f̄(x + C) = f(x), also f̄ is an

RΓ-isomorphism if and only if f is an RΓ-epimorphism and C = Kerf . In particular

M/Kerf ∼= Imf .

Proof. Let b ∈ x + C then b = x + c for some c ∈ C, also f(b) = f(x + c). We know f is

RΓ-homomorphism therefore f(b) = f(x + c) = f(x) + f(c) = f(x) + 0 = f(x) (since

C ≤ kerf) then f̄ : M/C −→ N is well defined function. Also ∀ x + C, y + C ∈ M/C

and ∀ r ∈ R, γ ∈ Γ we have

(i) f̄((x+C)+(y+C)) = f̄((x+y)+C) = f(x+y) = f(x)+f(y) = f̄(x+C)+ f̄(y+C).

(ii) f̄(rγ(x + C)) = f̄(rγx + C) = f(rγx) = rγf(x) = rγf̄(x + C).

then f̄ is a homomorphism of RΓ-modules, also it is clear Imf̄ = Imf and

∀(x + C) ∈ kerf̄ ; x + C ∈ kerf̄ ⇔ f̄(x + C) = 0 ⇔ f(x) = 0 ⇔ x ∈ kerf then

kerf̄ = kerf/C.

Then definition f̄ depends only f , then f̄ is unique. f̄ is epimorphism if and only if f is

epimorphism. f̄ is monomorphism if and only if kerf̄ be trivial RΓ-submodule of M/C.

In actually if and only if Kerf = C then M/Kerf ∼= Imf .�
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Corollary 5.21. If R is a Γ-ring and M1 is an RΓ-submodule of M and N1 is

RΓ-submodule of N , f : M −→ N is a RΓ-homomorphism such that f(M1) ⊆ N1 then f

make a RΓ-homomorphism f̄ : M/M1 −→ N/N1 with operation m + M1 7−→ f(m) + N1.

f̄ is RΓ-isomorphism if and only if Imf + N1 = N, f−1(N1) ⊆ M1. In particular, if f is

epimorphism such that f(M1) = N1, kerf ⊆ M1 then f is a RΓ-isomorphism.

proof. We consider the mapping M −→f N −→π N/N1. In this case;

M1 ⊆ f−1(N1) = kerπf (∀m1 ∈ M1, f(m1) ∈ N1 ⇒ πf(m1) = 0 ⇒ m1 ∈ kerπf). Now

we use Proposition 5.20 for map πf : M −→ N/N1 with function m 7−→ f(m) + N1 and

submodule M1 of M .

Therefore, map f̄ : M/M1 −→ N/N1 that is defined m + M 7−→ f(m) + N1 is a

RΓ-homomorphism. It is isomorphism if and only if πf is epimorphism, M1 = kerπf .

But condition will satisfy if and only if Imf + N1 = N , f−1(N1) ⊆ M1. If f is

epimorphism then N = Imf = Imf + N1 and if f(M1) = N1 and kerf ⊆ M1 then

f−1(N1) ⊆ M1 so f̄ is isomorphism.�

Proposition 5.22. Let B, C be RΓ-submodules of M .

(i) There exists a RΓ-isomorphism B/(B ∩ C) ∼= (B + C)/C.

(ii) If C ⊆ B, then B/C is an RΓ-submodule of M/C and there is an RΓ-isomorphism

(M/C)/(B/C) ∼= M/B .

Proof. (i) Combination B −→j B + C −→π (B + C)/C is an RΓ-homomorphism with

kernel= B ∩ C, because kerπj = {b ∈ B|πj(b) = 0(B+C)/C} = {b ∈ B|π(b) = C} = {b ∈

B|b + C = C} = {b ∈ B|b ∈ C} = B ∩ C therefore, in order to Proposition 5.20.,

B/(B ∩ C) ∼= Im(πj)(?), every element of (B + C)/C is to form (b + c) + C, thus

(b + c) + C = b + C = πj(b) then πj is epimorphism and Imπj = (B + C)/C in

attention (?), B/(B ∩ C) ∼= (B + C)/C.

(ii) We consider the identity map i : M −→ M , we have i(C) ⊆ B, then in order to

Ratio Mathematica 20, 2010

143



apply Proposition 5.21. we have RΓ-epimorphism ī : M/C −→ M/B with

ī(m + C) = m + B by using (i). But we know B = ī(m + C) if and only if m ∈ B thus

ker ī = {m + C ∈ M/C|m ∈ B} = B/C then kerī = B/C ≤ M/C and we have

M/B = Imī ∼= (M/C)/(B/C).�

Let M be a RΓ-module and {Ni|i ∈ Ω} be a family of RΓ-submodule of M . Then

∩i∈ΩNi is a RΓ-submodule of M which, indeed, is the largest RΓ-submodule M

contained in each of the Ni. In particular, if A is a subset of a left RΓ-moduleM then

intersection of all submodules of M containing A is a RΓ-submodule of M , called the

submodule generated by A. If A generates all of the RΓ-module, then A is a set

ofgenerators for M . A left RΓ-module having a finite set of generators is finitely

generated. An element m of the RΓ-submodule generated by a subset A of a RΓ-module

M is a linear combination of the elements of A.

If M is a left RΓ-module then the set
∑

i∈Ω Ni of all finite sums of elements of Ni is an

RΓ-submodule of M generated by ∪i∈ΩNi. RΓ-submodule generated by X = ∪i∈ΩNi is

D = {
∑s

i=1 riγiai +
∑t

j=1 njbj|ai, bj ∈ X, ri ∈ R, nj ∈ Z, γi ∈ Γ} if M is a unitary

RΓ-module then D = RΓX = {
∑s

i=1 riγiai|ri ∈ R, γi ∈ Γ, ai ∈ X}.

Example 5.23. Let M, N be RΓ-modules and f, g : M −→ N be RΓ-module

homomorphisms. Then K = {m ∈ M | f(m) = g(m)} is RΓ-submodule of M .

Example 5.24. Let M be a RΓ-module and let N, N ′ be RΓ- submodules of M . Set

A = {m ∈ M | m + n ∈ N ′ for some n ∈ N} is an RΓ-module of M containing N ′.

Proposition 5.25. Let (M, ·) be an RΓ- module and M generated by A. Then there

exists an RΓ-homomorphism R(A) −→ M , such that f 7−→
∑

a∈A,a∈supp(f) f(a) · γ · a.

Remark 5.26. Let R be a Γ- ring and let {(Mi, oi)|i ∈ Ω} be a family of left RΓ-

modules. Then ×i∈ΩMi, the Cartesian product of Mi’s also has the structure of a left

RΓ-module under componentwise addition and mapping
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· : R× Γ× (×Mi) −→ ×Mi

(r, γ, {mi}) −→ r · γ · {mi} = {roiγoimi}Ω.

We denote this left RΓ-module by
∏

i∈Ω Mi. Similarly,∑
i∈Ω Mi = {{mi} ∈

∏
Mi|mi = 0 for all but finitely many indices i} is a

RΓ-submodule of
∏

i∈Ω Mi. For each h in Ω we have canonical RΓ- homomorphisms

πh :
∏

Mi −→ Mh and λh : Mh −→
∑

Mi is defined respectively by πh :< mi >7−→ mh

and λ(mh) =< ui >, where

ui =

 0 i 6= h

mh i = h

The RΓ-module
∏

Mi is called the ( external)direct product of the RΓ- modules Mi and

the RΓ- module
∑

Mi is called the (external) direct sum of Mi. It is easy to verify that

if M is a left RΓ-module and if {Mi|i ∈ Ω} is a family of left RΓ-modules such that, for

each i ∈ Ω, we are given an RΓ-homomorphism αi : M −→ Mi then there exists a unique

RΓ- homomorphism α : M −→
∏

i∈Ω Mi such that αi = απi for each i ∈ Ω. Similarly, if

we are given an RΓ-homomorphism βi : Mi −→ M for each i ∈ Ω then there exists an

unique RΓ- homomorphism β :
∑

i∈Ω Mi −→ M such that βi = λiβ for each i ∈ Ω .

Remark 5.27. Let M be a left RΓ-module. Then M is a right Rop
Γ -module under the

mapping

∗ : M × Γ×Rop −→ M

(m, γ, r) 7−→ m ∗ γ ∗ r = rγm.

Definition 5.28. A nonempty subset N of a left RΓ-module M is subtractive if and

only if m + m′ ∈ N and m ∈ N imply that m′ ∈ N for all m, m′ ∈ M . Similarly, N is

strong subtractive if and only if m + m′ ∈ N implies that m, m′ ∈ N for all m, m′ ∈ M .
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Remark 5.29. (i) Clearly, every submodule of a left RΓ-module is subtractive. Indeed,

if N is a RΓ-submodule of a RΓ-module M and m ∈ M, n ∈ N are elements satisfying

m + n ∈ N then m = (m + n) + (−n) ∈ N .

(ii) If N, N ′ ⊆ N are RΓ-submodules of an RΓ-module M , such that N ′ is a subtractive

RΓ-submodule of N and N is a subtractive RΓ-submodule of M then N ′ is a subtractive

RΓ-module of M .

Note. If {Mi|i ∈ Ω} is a family of (resp. strong) subtractive RΓ-submodule of a left

RΓ-module M then ∩i∈ΩMi is again (resp. strong) subtractive. Thus every RΓ

-submodule of a left RΓ-module M is contained in a smallest (resp. strong) subtractive

RΓ-submodule of M , called its (resp. strong) subtractive closure in M .

Proposition 5.30 Let R be a Γ-ring and let M be a left RΓ -module. If N, N ′ and

N ′′ ≤ M are submodules of M satisfying the conditions that N is subtractive and

N ′ ⊆ N , then N ∩ (N ′ + N ′′) = N ′ + (N ∩N ′′).

Proof. Let x ∈ N ∩ (N ′ + N ′′). Then we can write x = y + z, where y ∈ N ′ and

z ∈ N ′′. by N ′ ⊆ N , we have y ∈ N and so, z ∈ N , since N is subtractive. Thus

x ∈ N ′ + (N ∩N ′′), proving that N ∩ (N ′ + N ′′) ⊆ N ′ + (N ∩N ′′). The reverse

containment is immediate.�

Proposition 5.31. If N is a subtractive RΓ-submodule of a left RΓ-module M and if A

is a nonempty subset of M then (N : A) is a subtractive left ideal of R.

Proof. Since the intersection of an arbitrary family of subtractive left ideals of R is

again subtractive, it suffices to show that (N : m) is subtractive for each element m. Let

a ∈ R and b ∈ (N : M) (for γ ∈ Γ ) satisfy the condition that a + b ∈ (N : M). Then

aγm + bγm ∈ N and bγm ∈ N so aγm ∈ N , since N is subtractive. Thus

a ∈ (N : M).�.

proposition 5.32. If I is an ideal of a Γ-ring R and M is a left RΓ-module. Then
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N = {m ∈ M | IΓm = {0}} is a subtractive RΓ-submodule of M.

Proof. Clearly, N is an RΓ-submodule of M . If m,m′ ∈ M satisfy the condition that m

and m + m′ belong to N then for each r ∈ I and for each γ ∈ Γ we have

0 = rγ(m + m′) = rγm + rγm′m′ = rγm′, and hence m′ ∈ N . Thus N is subtractive. �

proposition 5.33. Let (R, +, ·) be a Γ-ring and let M be an RΓ-module and there

exists bijection function δ : M −→ R. Then M is a Γ-ring and MΓ-module.

Proof. Define ◦ : M × Γ×M −→ M by (x, γ, y) 7−→ x ◦ γ ◦ y = δ−1(δ(x) · γδ(y)).

It is easy to verify that R is a Γ- ring. If M is a set together with a bijection function

δ : X −→ R then the Γ-ring structure on R induces a Γ-ring structure (M,⊕,�) on X

with the operations defined by x⊕ y = δ−1(δ(x) + δ(y)) and

x� γ � y = δ−1(δ(x) · γ · δ(y)).�
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