# Gamma Modules 

R. Ameri, R. Sadeghi<br>Department of Mathematics, Faculty of Basic Science<br>University of Mazandaran, Babolsar, Iran<br>e-mail: ameri@umz.ac.ir


#### Abstract

Let $R$ be a $\Gamma$-ring. We introduce the notion of gamma modules over $R$ and study important properties of such modules. In this regards we study submodules and homomorphism of gamma modules and give related basic results of gamma modules.


Keywords: $\Gamma$-ring, $R_{\Gamma}$-module, Submodule, Homomorphism.

## 1 Introduction

The notion of a $\Gamma$-ring was introduced by N. Nobusawa in [6]. Recently, W.E. Barnes [2], J. Luh [5], W.E. Coppage studied the structure of $\Gamma$-rings and obtained various generalization analogous of corresponding parts in ring theory. In this paper we extend the concepts of module from the category of rings to the category of $R_{\Gamma}$-modules over $\Gamma$-rings. Indeed we show that the notion of a gamma module is a generalization of a $\Gamma$-ring as well as a module over a ring, in fact we show that many, but not all, of the results in the
theory of modules are also valid for $R_{\Gamma}$-modules. In Section 2 , some definitions and results of $\Gamma$ - ring which will be used in the sequel are given. In Section 3, the notion of a $\Gamma$-module $M$ over a $\Gamma$ - ring $R$ is given and by many example it is shown that the class of $\Gamma$-modules is very wide, in fact it is shown that the notion of a $\Gamma$-module is a generalization of an ordinary module and a $\Gamma$ - ring. In Section 3, we study the submodules of a given $\Gamma$-module. In particular, we that $L(M)$, the set of all submodules of a $\Gamma$-module $M$ constitute a complete lattice. In Section 3, homomorphisms of $\Gamma$-modules are studied and the well known homomorphisms (isomorphisms) theorems of modules extended for $\Gamma$-modules. Also, the behavior of $\Gamma$-submodules under homomorphisms are investigated.

## 2 Preliminaries

Recall that for additive abelian groups $R$ and $\Gamma$ we say that $R$ is a $\Gamma$ - ring if there exists a mapping

$$
\begin{gathered}
\cdot: R \times \Gamma \times R \longrightarrow R \\
\left(r, \gamma, r^{\prime}\right) \longmapsto r \gamma r^{\prime}
\end{gathered}
$$

such that for every $a, b, c \in R$ and $\alpha, \beta \in \Gamma$, the following hold:
(i) $(a+b) \alpha c=a \alpha c+b \alpha c$;

$$
\begin{aligned}
& a(\alpha+\beta) c=a \alpha c+a \beta c \\
& a \alpha(b+c)=a \alpha b+a \alpha c
\end{aligned}
$$

(ii) $(a \alpha b) \beta c=a \alpha(b \beta c)$.

A subset $A$ of a $\Gamma$-ring $R$ is said to be a right ideal of $R$ if $A$ is an additive subgroup of $R$ and $A \Gamma R \subseteq A$, where $A \Gamma R=\{a \alpha c \mid a \in A, \alpha \in \Gamma, r \in R\}$.

A left ideal of $R$ is defined in a similar way. If $A$ is both right and left ideal, we say that $A$ is an ideal of $R$.

If $R$ and $S$ are $\Gamma$-rings. A pair $(\theta, \varphi)$ of maps from $R$ into $S$ such that
i) $\theta(x+y)=\theta(x)+\theta(y)$;
ii) $\varphi$ is an isomorphism on $\Gamma$;
iii) $\theta(x \gamma y)=\theta(x) \varphi(\gamma) \theta(y)$.
is called a homomorphism from $R$ into $S$.

## $3 \quad \mathrm{R}_{\Gamma}$-Modules

In this section we introduce and study the notion of modules over a fixed $\Gamma$-ring.
Definition 3.1. Let $R$ be a $\Gamma$-ring. A (left) $R_{\Gamma}$-module is an additive abelian group $M$ together with a mapping.$: R \times \Gamma \times M \longrightarrow M$ ( the image of $(r, \gamma, m)$ being denoted by $r \gamma m$ ), such that for all $m, m_{1}, m_{2} \in M$ and $\gamma, \gamma_{1}, \gamma_{2} \in \Gamma, r, r_{1}, r_{2} \in R$ the following hold:
$\left(M_{1}\right) \quad r \gamma\left(m_{1}+m_{2}\right)=r \gamma m_{1}+r \gamma m_{2} ;$
$\left(M_{2}\right) \quad\left(r_{1}+r_{2}\right) \gamma m=r_{1} \gamma m+r_{2} \gamma m ;$
$\left(M_{3}\right) \quad r\left(\gamma_{1}+\gamma_{2}\right) m=r \gamma_{1} m+r \gamma_{2} m ;$
$\left(M_{4}\right) \quad r_{1} \gamma_{1}\left(r_{2} \gamma_{2} m\right)=\left(r_{1} \gamma_{1} r_{2}\right) \gamma_{2} m$.
A right $R_{\Gamma}$ - module is defined in analogous manner.
Definition 3.2. A (left) $R_{\Gamma}$-module $M$ is unitary if there exist elements, say 1 in $R$ and $\gamma_{0} \in \Gamma$, such that, $1 \gamma_{0} m=m$ for every $m \in M$. We denote $1 \gamma_{0}$ by $1_{\gamma_{0}}$, so $1_{\gamma_{0}} m=m$ for all $m \in M$.

Remark 3.3. If $M$ is a left $R_{\Gamma}$-module then it is easy to verify that $0 \gamma m=r 0 m=r \gamma 0=$ $0_{M}$. If $R$ and $S$ are $\Gamma$-rings then an $(R, S)_{\Gamma}$-bimodule $M$ is both a left $R_{\Gamma}$-module and right $S_{\Gamma}$-module and simultaneously such that $(r \alpha m) \beta s=r \alpha(m \beta s) \quad \forall m \in M, \forall r \in R, \forall s \in S$ and $\alpha, \beta \in \Gamma$.

In the following by many examples we illustrate the notion of gamma modules and show that the class of gamma module is very wide.

Example 3.4. If $R$ is a $\Gamma$-ring, then every abelian group $M$ can be made into an $R_{\Gamma^{-}}$ module with trivial module structure by defining

$$
r \gamma m=0 \quad \forall r \in R, \forall \gamma \in \Gamma, \forall m \in M
$$

Example 3.5. Every $\Gamma$-ring $R$, is an $R_{\Gamma}$-module with $r \gamma(r, s \in R, \gamma \in \Gamma)$ being the $\Gamma$-ring structure in $R$, i.e. the mapping

$$
\begin{gathered}
: R \times \Gamma \times R \longrightarrow R . \\
\quad(r, \gamma, s) \longmapsto r . \gamma . s
\end{gathered}
$$

Example 3.6. Let $M$ be a module over a ring $A$. Define . : $A \times R \times M \longrightarrow M$, by $(a, s, m)=(a s) m$, being the $R$-module structure of $M$. Then $M$ is an $A_{A}$-module.

Example 3.7. Let $M$ be an arbitrary abelian group and $S$ be an arbitrary subring of $\mathbb{Z}$, the ring of integers. Then $M$ is a $\mathbb{Z}_{S}$-module under the mapping

$$
\begin{gathered}
: \mathbb{Z} \times S \times M \longrightarrow M \\
\quad\left(n, n^{\prime}, x\right) \longmapsto n n^{\prime} x
\end{gathered}
$$

Example 3.8. If $R$ is a $\Gamma$-ring and $I$ is a left ideal of $R$.Then $I$ is an $R_{\Gamma}$-module under the mapping . $R \times \Gamma \times I \longrightarrow I$ such that $(r, \gamma, a) \longmapsto r \gamma a$.

Example 3.9. Let $R$ be an arbitrary commutative $\Gamma$-ring with identity. A polynomial in one indeterminate with coefficients in $R$ is to be an expression $P(X)=a_{n} X^{n}++a_{2} X^{2}+$ $a_{1} X+a_{0}$ in which $X$ is a symbol, not a variable and the set $R[x]$ of all polynomials is then an abelian group. Now $R[x]$ becomes to an $R_{\Gamma}$-module, under the mapping

$$
\begin{gathered}
.: R \times \Gamma \times R[x] \longrightarrow R[x] \\
(r, \gamma, f(x)) \longmapsto r \cdot \gamma \cdot f(x)=\sum_{i=1}^{n}\left(r \gamma a_{i}\right) x^{i} .
\end{gathered}
$$

Example 3.10. If $R$ is a $\Gamma$-ring and $M$ is an $R_{\Gamma}$-module. Set $M[x]=\left\{\sum_{i=0}^{n} a_{i} x^{i} \mid a_{i} \in\right.$ $M\}$. For $f(x)=\sum_{j=0}^{n} b_{j} x^{j}$ and $g(x)=\sum_{i=0}^{m} a_{i} x^{i}$, define the mapping

$$
\begin{gathered}
.: R[x] \times \Gamma \times M[x] \longrightarrow M[x] \\
(g(x), \gamma, f(x)) \longmapsto g(x) \gamma f(x)=\sum_{k=1}^{m+n}\left(a_{k} \cdot \gamma \cdot b_{k}\right) x^{k} .
\end{gathered}
$$

It is easy to verify that $M[x]$ is an $R[x]_{\Gamma}$-module.
Example 3.11. Let $I$ be an ideal of a $\Gamma$-ring $R$. Then $R / I$ is an $R_{\Gamma}$-module, where the mapping . : $R \times \Gamma \times R / I \longrightarrow R / I$ is defined by $\left(r, \gamma, r^{\prime}+I\right) \longmapsto\left(r \gamma r^{\prime}\right)+I$.

Example 3.12. Let $M$ be an $R_{\Gamma}$-module, $m \in M$. Letting $T(m)=\{t \in R \mid t \gamma m=$ $0 \forall \gamma \in \Gamma\}$. Then $T(m)$ is an $R_{\Gamma}$-module.

Proposition 3.12. Let $R$ be a $\Gamma$-ring and $(M,+,$.$) be an R_{\Gamma}$-module. Set $S u b(M)=$ $\{X \mid X \subseteq M\}$, Then $\operatorname{sub}(M)$ is an $R_{\Gamma}$-module.
proof. Define $\oplus:(A, B) \longmapsto A \oplus B$ by $A \oplus B=(A \backslash B) \cup(B \backslash A)$ for $A, B \in \operatorname{sub}(M)$. Then $(S u b(M), \oplus)$ is an additive group with identity element $\emptyset$ and the inverse of each element $A$ is itself. Consider the mapping:

$$
\begin{gathered}
\circ: R \times \Gamma \times \operatorname{Sub}(M) \longrightarrow \operatorname{sub}(M) \\
(r, \gamma, X) \longmapsto r \circ \gamma \circ X=r \gamma X,
\end{gathered}
$$

where $r \gamma X=\{r \gamma x \mid x \in X\}$. Then we have
(i) $r \circ \gamma \circ\left(X_{1} \oplus X_{2}\right)=r \cdot \gamma \cdot\left(X_{1} \oplus X_{2}\right)$
$=r \cdot \gamma \cdot\left(\left(X_{1} \backslash X_{2}\right) \cup\left(X_{2} \backslash X_{1}\right)\right)=r \cdot \gamma \cdot\left(\left\{a \mid a \in\left(X_{1} \backslash X_{2}\right) \cup\left(X_{2} \backslash X_{1}\right)\right\}\right.$
$=\left\{r \cdot \gamma \cdot a \mid a \in\left(X_{1} \backslash X_{2}\right) \cup\left(X_{2} \backslash X_{1}\right)\right\}$.
And

$$
\begin{aligned}
& r \circ \gamma \circ X_{1} \oplus r \circ \gamma \circ X_{2}=r \cdot \gamma \cdot X_{1} \oplus r \cdot \gamma \cdot X_{2} \\
& =\left(r \cdot \gamma \cdot X_{1} \backslash r \cdot \gamma \cdot X_{2}\right) \cup\left(r \cdot \gamma \cdot X_{2} \backslash r \cdot \gamma \cdot X_{1}\right)
\end{aligned}
$$

$=\left\{r \cdot \gamma \cdot x \mid x \in\left(X_{1} \backslash X_{2}\right)\right\} \cup\left\{r \cdot \gamma \cdot x \mid x \in\left(X_{2} \backslash X_{1}\right)\right\}$.
$=\left\{r \cdot \gamma \cdot x \mid x \in\left(X_{1} \backslash X_{2}\right) \cup\left(X_{2} \backslash X_{1}\right)\right\}$.
(ii) $\left(r_{1}+r_{2}\right) \circ \gamma \circ X=\left(r_{1}+r_{2}\right) \cdot \gamma \cdot X$
$=\left\{\left(r_{1}+r_{2}\right) \cdot \gamma \cdot x \mid x \in X\right\}=\left\{r_{1} \cdot \gamma \cdot x+r_{2} \cdot \gamma \cdot x \mid x \in X\right\}$
$=r_{1} \cdot \gamma \cdot X+r_{2} \cdot \gamma \cdot X=r_{1} \circ \gamma \circ X+r_{2} \circ \gamma \circ X$.
(iii) $r \circ\left(\gamma_{1}+\gamma_{2}\right) \circ X=r \cdot\left(\gamma_{1}+\gamma_{2}\right) \cdot X$
$=\left\{r \cdot\left(\gamma_{1}+\gamma_{2}\right) \cdot x \mid x \in X\right\}=\left\{r \cdot \gamma_{1} \cdot x+r \cdot \gamma_{2} \cdot x \mid x \in X\right\}$
$=r \cdot \gamma_{1} \cdot X+r \cdot \gamma_{2} \cdot X=r \circ \gamma_{1} \circ X+r \circ \gamma_{2} \circ X$.
(iv) $r_{1} \circ \gamma_{1} \circ\left(r_{2} \circ \gamma_{2} \circ X\right)$
$=r_{1} \cdot \gamma_{1} \cdot\left(r_{2} \circ \gamma_{2} \circ X\right)$
$=\left\{r_{1} \cdot \gamma_{1} \cdot\left(r_{2} \circ \gamma_{2} \circ x\right) \mid x \in X\right\}$
$=\left\{r_{1} \cdot \gamma_{1} \cdot\left(r_{2} \cdot \gamma_{2} \cdot x\right) \mid x \in X\right\}=\left\{\left(r_{1} \cdot \gamma_{1} \cdot r_{2}\right) \cdot \gamma_{2} \cdot x \mid x \in X\right\}=\left(r_{1} \cdot \gamma_{1} \cdot r_{2}\right) \cdot \gamma_{2} \cdot X$.
Corollary 3.13. If in Proposition 3.12, we define $\oplus$ by $A \oplus B=\{a+b \mid a \in A, b \in B\}$. Then $(S u b(M), \oplus, \circ)$ is an $R_{\Gamma}$-module.

Proposition 3.14. Let $(R, \circ)$ and $(S, \bullet)$ be $\Gamma$-rings. Let $(M,$.$) be a left R_{\Gamma}$-module and right $S_{\Gamma}$-module. Then $A=\left\{\left.\left(\begin{array}{cc}r & m \\ 0 & s\end{array}\right) \right\rvert\, r \in R, s \in S, m \in M\right\}$ is a $\Gamma$-ring and $A_{\Gamma}$-module under the mappings

$$
\left(\left(\begin{array}{cc}
r & m \\
0 & s
\end{array}\right), \gamma,\left(\begin{array}{cc}
r_{1} & m_{1} \\
0 & s_{1}
\end{array}\right)\right) \longmapsto\left(\begin{array}{cc}
r \circ \gamma \circ r_{1} & r \cdot \gamma \cdot m_{1}+m \cdot \gamma \cdot s_{1} \\
0 & s \bullet \gamma \bullet s_{1}
\end{array}\right) .
$$

Proof. Straightforward.
Example 3.15. Let ( $R, \circ$ ) be a $\Gamma$-ring. Then $R \oplus \mathbb{Z}=\{(r, s) \mid r \in R, s \in \mathbb{Z}\}$ is an left $R_{\Gamma}$-module, where $\oplus$ addition operation is defined $(r, n) \oplus\left(r^{\prime}, n^{\prime}\right)=\left(r+{ }_{R} r^{\prime}, n+\mathbb{Z} n^{\prime}\right)$ and the product $\cdot: R \times \Gamma \times(R \oplus \mathbb{Z}) \longrightarrow R \oplus \mathbb{Z}$ is defined $r^{\prime} \cdot \gamma \cdot(r, n) \longrightarrow\left(r^{\prime} \circ \gamma \circ r, n\right)$.

Example 3.16. Let $R$ be the set of all digraphs (A digraph is a pair $(V, E)$ consisting of a finite set $V$ of vertices and a subset $E$ of $V \times V$ of edges) and define addition on $R$ by setting $\left(V_{1}, E_{1}\right)+\left(V_{2}, E_{2}\right)=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$. Obviously $R$ is a commutative group since $(\emptyset, \emptyset)$ is the identity element and the inverse of every element is itself. For $\Gamma \subseteq R$ consider the mapping

$$
\begin{gathered}
\cdot: R \times \Gamma \times R \longrightarrow R \\
\left(V_{1}, E_{1}\right) \cdot\left(V_{2}, E_{2}\right) \cdot\left(V_{3}, E_{3}\right)=\left(V_{1} \cup V_{2} \cup V_{3}, E_{1} \cup E_{2} \cup E_{3} \cup\left\{V_{1} \times V_{2} \times V_{3}\right\}\right)
\end{gathered}
$$

under condition

$$
\begin{aligned}
(\emptyset, \emptyset) & =(\emptyset, \emptyset) \cdot\left(V_{1}, E_{1}\right) \cdot\left(V_{2}, E_{2}\right)\left(V_{1}, E_{1}\right) \cdot(\emptyset, \emptyset) \cdot\left(V_{2}, E_{2}\right) \\
& =\left(V_{1}, E_{1}\right) \cdot(\emptyset, \emptyset) \cdot\left(V_{2}, E_{2}\right) \\
& =\left(V_{1}, E_{1}\right) \cdot\left(V_{2}, E_{2}\right) \cdot(\emptyset, \emptyset) .
\end{aligned}
$$

It is easy to verify that $R$ is an $R_{\Gamma}$-module .
Example 3.17. Suppose that $M$ is an abelian group. Set $R=M_{m n}$ and $\Gamma=M_{n m}$, so by definition of multiplication matrix subset $R_{m n}^{(t)}=\left\{\left(x_{i j}\right) \mid x_{t j}=0 \forall j=1, \ldots m\right\}$ is a right $R_{\Gamma}$-module. Also, $\left.C_{m n}^{(k)}=\left\{x_{i j}\right) \mid x_{i k}=0 \forall i=1, \ldots, n\right\}$ is a left $R_{\Gamma}$-module.

Example 3.18. Let $(M, \bullet)$ be an $R_{\Gamma}$-module over $\Gamma$-ring $(R,$.$) and S=\{(a, 0) \mid a \in R\}$. Then $R \times M=\{(a, m) \mid a \in R, m \in M\}$ is an $S_{\Gamma}$-module, where addition operation is defined by $(a, m) \oplus\left(b, m_{1}\right)=\left(a+_{R} b, m+_{M} m_{1}\right)$. Obviously, $(R \times M, \oplus)$ is an additive group. Now consider the mapping

$$
\begin{gathered}
\circ: S \times \Gamma \times(R \times M) \longrightarrow R \times M \\
((a, 0), \gamma,(b, m)) \longmapsto(a, 0) \circ \gamma \circ(b, m)=(a . \gamma \cdot b, a \bullet \gamma \bullet m) .
\end{gathered}
$$

Then it is easy to verify that $R \times M$ is an $S_{\Gamma}$-module.
Example 3.19 Let $R$ be a $\Gamma$-ring and ( $M,$. ) be an $R_{\Gamma}$-module. Consider the mapping $\alpha: M \longrightarrow R$. Then $M$ is an $M_{\Gamma}$-module, under the mapping

$$
\begin{gathered}
\circ: M \times \Gamma \times M \longrightarrow M \\
(m, \gamma, n) \longmapsto m \circ \gamma \circ n=(\alpha(m)) \cdot \gamma \cdot n .
\end{gathered}
$$

Example 3.20. Let ( $R, \cdot \cdot$ ) and $(S, \circ)$ be $\Gamma$ - rings. Then
(i) The product $R \times S$ is a $\Gamma$ - ring, under the mapping

$$
\left(\left(r_{1}, s_{1}\right), \gamma,\left(r_{2}, s_{2}\right)\right) \longmapsto\left(r_{1} \cdot \gamma \cdot r_{2}, s_{1} \circ \gamma \circ s_{2}\right) .
$$

(ii) For $A=\left\{\left.\left(\begin{array}{ll}r & 0 \\ 0 & s\end{array}\right) \right\rvert\, r \in R, s \in S\right\}$ there exists a mapping $R \times S \longrightarrow A$, such that $(r, s) \longrightarrow\left(\begin{array}{cc}r & 0 \\ 0 & s\end{array}\right)$ and $A$ is a $\Gamma$ - ring. Moreover, $A$ is an $(R \times S)_{\Gamma^{-}}$module under the mapping

$$
(R \times S) \times \Gamma \times A \longrightarrow A\left(\left(r_{1}, s_{1}\right), \gamma,\left(\begin{array}{cc}
r_{2} & 0 \\
0 & s_{2}
\end{array}\right)\right) \longrightarrow\left(\begin{array}{cc}
r_{1} \cdot \gamma \cdot r_{2} & 0 \\
0 & s_{1} \circ \gamma \circ s_{2}
\end{array}\right)
$$

Example 3.21. Let ( $R, \cdot \cdot$ ) be a $\Gamma$-ring. Then $R \times R$ is an $R_{\Gamma^{-}}$module and $(R \times R)_{\Gamma^{-}}$module. Consider addition operation $(a, b)+(c, d)=\left(a+{ }_{R} c, b+{ }_{R} d\right)$. Then $(R \times R,+)$ is an additive group. Now define the mapping $R \times \Gamma \times(R \times R) \longmapsto R \times R$ by $(r, \gamma,(a, b)) \longmapsto(r \cdot \gamma \cdot a, r \cdot \gamma \cdot b)$ and $(R \times R) \times \Gamma \times(R \times R) \longrightarrow R \times R$ by $((a, b), \gamma,(c, d)) \longmapsto(a \cdot \gamma \cdot c+b \cdot \gamma \cdot d, a \cdot \gamma \cdot d+b \cdot \gamma \cdot c)$. Then $R \times R$ is an $(R \times R)_{\Gamma^{-}}$module.

## 4 Submodules of Gamma Modules

In this section we study submodules of gamma modules and investigate their properties. In the sequel $R$ denotes a $\Gamma$-ring and all gamma modules are $R_{\Gamma}$-modules

Definition 4.1. Let $(M,+)$ be an $R_{\Gamma}$-module. A nonempty subset $N$ of $(M,+)$ is said to be a (left) $R_{\Gamma}$-submodule of $M$ if $N$ is a subgroup of $M$ and $R \Gamma N \subseteq N$, where
$R \Gamma N=\{r \gamma n \mid \gamma \in \Gamma, r \in R, n \in N\}$, that is for all $n, n^{\prime} \in N$ and for all $\gamma \in \Gamma, r \in$ $R ; n-n^{\prime} \in N$ and $r \gamma n \in N$. In this case we write $N \leq M$.

Remark 4.2. (i) Clearly $\{0\}$ and $M$ are two trivial $R_{\Gamma}$-submodules of $R_{\Gamma}$-module $M$, which is called trivial $R_{\Gamma}$-submodules.
(ii) Consider $R$ as $R_{\Gamma}$-module. Clearly, every ideal of $\Gamma$-ring $R$ is submodule, of $R$ as $R_{\Gamma}$-module.

Theorem 4.3. Let $M$ be an $R_{\Gamma}$-module. If $N$ is a subgroup of $M$, then the factor group $M / N$ is an $R_{\Gamma}$-module under the mapping . : $R \times \Gamma \times M / N \longrightarrow M / N$ is defined $(r, \gamma, m+N) \longmapsto(r . \gamma \cdot m)+N$.

Proof. Straight forward.
Theorem 4.4. Let $N$ be an $R_{\Gamma}$-submodules of $M$. Then every $R_{\Gamma}$-submodule of $M / N$ is of the form $K / N$, where $K$ is an $R_{\Gamma}$-submodule of $M$ containing $N$.

Proof. For all $x, y \in K, x+N, y+N \in K / N ; \quad(x+N)-(y+N)=(x-y)+N \in K / N$, we have $x-y \in K$, and $\forall r \in R \forall \gamma \in \Gamma, \forall x \in K$, we have

$$
r \gamma(x+N)=r \gamma x+N \in K / N \Rightarrow r \gamma x \in K
$$

Then $K$ is a $R_{\Gamma}$-submodule $M$. Conversely, it is easy to verify that $N \subseteq K \leq M$ then $K / N$ is $R_{\Gamma}$-submodule of $M / N$. This complete the proof.

Proposition 4.5. Let $M$ be an $R_{\Gamma}$-module and $I$ be an ideal of $R$. Let $X$ be a nonempty subset of $M$. Then

$$
I \Gamma X=\left\{\sum_{i=1}^{n} a_{i} \gamma_{i} x_{i} \mid a_{i} \in I r_{\gamma i} \in \Gamma, x_{i} \in X, n \in \mathbb{N}\right\} \text { is an } R_{\Gamma} \text {-submodule of } M .
$$

Proof. (i) For elements $x=\sum_{i=1}^{n} a_{i} \alpha_{i} x_{i}$ and $y=\sum_{j=1}^{m} x_{a_{j}^{\prime} \beta_{j} y_{j}}$ of $I \Gamma X$, we have

$$
x-y=\sum_{k=1}^{m+n} b_{k} \gamma_{k} z_{k} \in I \Gamma X .
$$

Now we consider the following cases:
Case (1): If $1 \leq k \leq n$, then $b_{k}=a_{k}, \gamma_{k}=\alpha_{k}, z_{k}=x_{k}$.

Case(2): If $n+1 \leq k \leq m+n$, then $b_{k}=-a_{k-n}^{\prime}, \gamma_{k}=\beta_{k-n}, z_{k}=y_{k-n}$. Also
(ii) $\forall r \in R, \forall \gamma \in \Gamma, \forall a=\sum_{i=1}^{n} a_{i} \gamma_{i} x_{i} \in I \Gamma X$, we have $r \gamma x=\sum_{i=1}^{n} r \gamma\left(a_{i} \gamma_{i} x_{i}\right)=$ $\sum_{i=1}^{n}\left(r \gamma a_{i}\right) \gamma_{i} x_{i}$. Thus $I \Gamma X$ is an $R_{\Gamma}$-submodule of $M$.
Corollary 4.6. If $M$ is an $R_{\Gamma}$-module and $S$ is a submodule of $M$. Then $R \Gamma S$ is an $R_{\Gamma}$-submodule of $M$.

Let $N \leq M$. Define $N: M=\{r \in R \mid r \gamma m \quad \forall \gamma \in \Gamma \quad \forall m \in M\}$.
It is easy to see that $N: M$ is an ideal of $\Gamma$ ring $R$.
Theorem 4.7. Let $M$ be an $R_{\Gamma}$-module and $I$ be an ideal of $R$. If $I \subseteq(0: M)$, then $M$ is an $(R / I)_{\Gamma}$-module.
proof. Since $R / I$ is $\Gamma$-ring, de finethemapping $\bullet:(R / I) \times \Gamma \times M \longrightarrow M$ by
$(r+I, \gamma, m) \longmapsto r \gamma m$.. The mapping $\bullet$ is well-defined since $I \subseteq(0: M)$. Now it is straight forward to see that $M$ is an $(R / I)_{\Gamma}$-module.

Proposition 4.8. Let $R$ be a $\Gamma$-ring, $I$ be an ideal of $R$, and ( $M,$. ) be a $R_{\Gamma}$-module. Then $M /(I \Gamma M)$ is an $(R / I)_{\Gamma^{-}}$module.

Proof. First note that $M /(I \Gamma M)$ is an additive subgroup of $M$. Consider the mapping
$\gamma \bullet(m+I \Gamma M)=r . \gamma \cdot m+I \Gamma M$
)Nowitisstraightforwardtoseethat $\mathrm{Misan}(\mathrm{R} / \mathrm{I})_{\Gamma}$-module.
Proposition 4.9. Let $M$ be an $R_{\Gamma}$-module and $N \leq M, m \in M$. Then $(N: m)=\{a \in R \mid a \gamma m \in N \forall \gamma \in \Gamma\}$ is a left ideal of $R$.

Proof. Obvious.
Proposition 4.10. If $N$ and $K$ are $R_{\Gamma}$-submodules of a $R_{\Gamma}$-module $M$ and if $A, B$ are nonempty subsets of $M$ then:
(i) $A \subseteq B$ implies that $(N: B) \subseteq(N: A)$;
(ii) $(N \cap K: A)=(N: A) \cap(K: A)$;
(iii) $(N: A) \cap(N: B) \subseteq(N: A+B)$, moreover the equality hold if $0_{M} \in A \cap B$.
proof. (i) Easy.
(ii) By definition, if $r \in R$, then $r \in(N \cap K: A) \Longleftrightarrow \forall a \in A r \in(N \cap K: a) \Longleftrightarrow \forall \gamma \in$

$$
\Gamma ; r \gamma a \in N \cap K \Longleftrightarrow r \in(N: A) \cap K: A) .
$$

(iii) If $r \in(N: A) \cap(N: B)$. Then $\forall \gamma \in \Gamma, \forall a \in A, \forall b \in B, r \gamma(a+b) \in N$ and $r \in(N: A+B)$.

Conversely, $0_{M} \in A+B \Longrightarrow A \cup B \subseteq A+B \Longrightarrow(N: A+B) \subseteq(N: A \cup B)$ by $(\mathrm{i})$.
Again by using $A, B \subseteq A \cup B$ we have $(N: A \cup B) \subseteq(N: A) \cap(N: B)$.
Definition 4.11. Let $M$ be an $R_{\Gamma}$-module and $\emptyset \neq X \subseteq M$. Then the generated $R_{\Gamma}$-submodule of $M$, denoted by $\left.<X\right\rangle$ is the smallest $R_{\Gamma}$-submodule of $M$ containing $X$, i.e. $\langle X\rangle=\cap\{N \mid N \leq M\}, X$ is called the generator of $\langle X\rangle$; and $\langle X\rangle$ is finitely generated if $|X|<\infty$. If $X=\left\{x_{1}, \ldots x_{n}\right\}$ we write $<x_{1}, \ldots, x_{n}>$ instead $\left.<\left\{x_{1}, \ldots, x_{n}\right\}\right\rangle$. In particular, if $X=\{x\}$ then $\langle x\rangle$ is called the cyclic submodule of $M$, generated by $x$.

Lemma 4.12. Suppose that $M$ is an $R_{\Gamma}$-module. Then
(i) Let $\left\{M_{i}\right\}_{i \in I}$ be a family of $R_{\Gamma}$-submodules $M$. Then $\cap M_{i}$ is the largest $R_{\Gamma^{-}}$-submodule of $M$, such that contained in $M_{i}$, for all $i \in I$.
(ii) If $X$ is a subset of $M$ and $|X|<\infty$. Then
$<X>=\left\{\sum_{i=1}^{m} n_{i} x_{i}+\sum_{j=1}^{k} r_{j} \gamma_{j} x_{j} \mid k, m \in \mathbb{N}, n_{i} \in \mathbb{Z}, \gamma_{j} \in \Gamma, r_{j} \in R, x_{i}, x_{j} \in X\right\}$.
Proof. (i) It is easy to verify that $\cap_{i \in I} M_{i} \subseteq M_{i}$ is a $R_{\Gamma}$-submodule of $M$. Now suppose that $N \leq M$ and $\forall i \in I, N \subseteq M_{i}$, then $N \subseteq \cap M_{i}$.
(ii) Suppose that the right hand in $(b)$ is equal to $D$. First, we show that $D$ is an $R_{\Gamma}$-submodule containing $X . X \subseteq D$ and difference of two elements of $D$ is belong to

$$
\begin{gathered}
D \text { and } \forall r \in R \forall \gamma \in \Gamma, \forall a \in D \text { we have } \\
r \gamma a=r \gamma\left(\sum_{i=1}^{m} n_{i} x_{i}+\sum_{j=1}^{k} r_{j} \gamma_{j} x_{j}\right)=\sum_{i=1}^{m} n_{i}\left(r \gamma x_{i}\right)+\sum_{j=1}^{k}\left(r \gamma r_{j}\right) \gamma_{j} x_{j} \in D .
\end{gathered}
$$

Also, every submodule of $M$ containing $X$, clearly contains $D$. Thus $D$ is the smallest
$R_{\Gamma}$-submodules of $M$, containing $X$. Therefore $\langle X\rangle=D$.

For $N, K \leq M$, set $N+K=\{n+k \mid n \in N, K \in K\}$. Then it is easy to see that $M+N$ is an $R_{\Gamma}$-submodules of $M$, containing both $N$ and $K$. Then the next result immediately follows.

Lemma 4.13. Suppose that $M$ is an $R_{\Gamma}$-module and $N, K \leq M$. Then $N+K$ is the smallest submodule of $M$ containing $N$ and $K$.

Set $L(M)=\{N \mid N \leq M\}$. Define the binary operations $\vee$ and $\wedge$ on $L(M)$ by $N \vee K=N+K \operatorname{and} N \wedge K=N \cap K$. In fact $(L(M), \vee, \wedge)$ is a lattice. Then the next result immediately follows from lemmas 4.12. 4.13.

Theorem 4.13. $L(M)$ is a complete lattice.

## 5 Homomorphisms Gamma Modules

In this section we study the homomorphisms of gamma modules. In particular we investigate the behavior of submodules od gamma modules under homomorphisms.

Definition 5.1. Let $M$ and $N$ be arbitrary $R_{\Gamma}$-modules. A mapping $f: M \longrightarrow N$ is a homomorphism of $R_{\Gamma}$-modules ( or an $R_{\Gamma}$-homomorphisms) if for all $x, y \in M$ and

$$
\forall r \in R, \forall \gamma \in \Gamma \text { we have }
$$

(i) $f(x+y)=f(x)+f(y)$;
(ii) $f(r \gamma x)=r \gamma f(x)$.

A homomorphism $f$ is monomorphism if $f$ is one-to-one and $f$ is epimorphism if $f$ is onto. $f$ is called isomorphism if $f$ is both monomorphism and epimorphism. We denote the set of all $R_{\Gamma}$-homomorphisms from $M$ into $N$ by $\operatorname{Hom}_{R_{\Gamma}}(M, N)$ or shortly by
$\operatorname{Hom}_{R_{\Gamma}}(M, N)$. In particular if $M=N$ we denote $\operatorname{Hom}(M, M)$ by $\operatorname{End}(M)$.
Remark 5.2. If $f: M \longrightarrow N$ is an $R_{\Gamma}$-homomorphism, then $\operatorname{Ker} f=\{x \in M \mid f(x)=0\}, \operatorname{Im} f=\{y \in N \mid \exists x \in M ; y=f(x)\}$ are $R_{\Gamma}$-submodules of $M$.

Example 5.3. For all $R_{\Gamma}$-modules $A, B$, the zero map $0: A \longrightarrow B$ is an $R_{\Gamma}$-homomorphism.

Example 5.4. Let $R$ be a $\Gamma$-ring. Fix $r_{0} \in \Gamma$ and consider the mapping $\phi: R[x] \longrightarrow R[x]$ by $f \longmapsto f \gamma_{0} x$. Then $\phi$ is an $R_{\Gamma^{-}}$-module homomorphism, because

$$
\begin{gathered}
\forall r \in R, \forall \gamma \in \Gamma \text { and } \forall f, g \in R[x]: \\
\phi(f+g)=(f+g) \gamma_{0} x=f \gamma_{0} x+g \gamma_{0} x=\phi(f)+\phi(g) \text { and } \\
\phi(r \gamma f)=r \gamma f \gamma_{0} x=r \gamma \phi(f) .
\end{gathered}
$$

Example 5.5. If $N \leq M$, then the natural map $\pi: M \longrightarrow M / N$ with $\pi(x)=x+N$ is an $R_{\Gamma}$-module epimorphism with $\operatorname{ker} \pi=N$.

Proposition 5.6. If $M$ is unitary $R_{\Gamma}$-module and $\operatorname{End}(M)=\left\{f: M \longrightarrow M \mid f\right.$ is $R_{\Gamma}$ - homomorphism $\}$. Then $M$ is an $\operatorname{End}(M)_{\Gamma}$-module.

Proof. It is well known that $\operatorname{End}(M)$ is an abelian group with usual addition of functions. Define the mapping

$$
\begin{gathered}
.: \operatorname{End}(M) \times \Gamma \times M \longrightarrow M \\
(f, \gamma, m) \longmapsto f(1 . \gamma \cdot m)=1 \gamma f(m),
\end{gathered}
$$

where 1 is the identity map. Now it is routine to verify that $M$ is an $\operatorname{End}(M)_{\Gamma}$-module. $\square$
Lemma 5.7. Let $f: M \longrightarrow N$ be an $R_{\Gamma}$-homomorphism. If $M_{1} \leq M$ and $N_{1} \leq$. Then
(i) $\operatorname{Kerf} \leq M, \operatorname{Imf} \leq N$;
(ii) $f\left(M_{1}\right) \leq \operatorname{Imf}$;
(iii) $\operatorname{Kerf}^{-1}\left(N_{1}\right) \leq M$.

Example 5.8. Consider $L(M)$ the lattice of $R_{\Gamma}$-submodules of $M$. We know that $(L(M),+)$ is a monoid with the sum of submodules. Then $L(M)$ is $R_{\Gamma}$-semimodule under the mapping
.$: R \times \Gamma \times T \longrightarrow T$, such that $(r, \gamma, N) \longmapsto r . \gamma \cdot N=r \gamma N=\{r \gamma n \mid n \in N\}$.
Example 5.9. Let $\theta: R \longrightarrow S$ be a homomorphism of $\Gamma$-rings and $M$ be an $S_{\Gamma}$-module.
Then $M$ is an $R_{\Gamma}$-module under the mapping $\bullet: R \times \Gamma \times M \longrightarrow M$ by $(r, \gamma, m) \longmapsto r \bullet \gamma \bullet m=\theta(r)$. Moreover if $M$ is an $S_{\Gamma}$-module then $M$ is a $R_{\Gamma}$-module for $R \subseteq S$.

Example 5.10. Let ( $M,$. ) be an $R_{\Gamma}$-module and $A \subseteq M$. Letting $M^{A}=\{f \mid f: A \longrightarrow M$ is a map $\}$. Then $M^{A}$ is an $R_{\Gamma}$-module under the mapping $\circ: R \times \Gamma \times M^{A} \longrightarrow M^{A}$ defined by $(r, \gamma, f) \longmapsto r \circ \gamma \circ f=r \gamma f(a)$, since $M^{A}$ is an additive group with usual addition of maps.

Example 5.11. Let $(M,$.$) and (N, \bullet)$ be $R_{\Gamma}$-modules. Then $\operatorname{Hom}(M, N)$ is a $R_{\Gamma}$-module, under the mapping

$$
\begin{gathered}
\circ: R \times \Gamma \times \operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}(M, N) \\
(r, \gamma, \alpha) \longmapsto r \circ \gamma \circ \alpha, \\
\text { where }(r \bullet \gamma \bullet \alpha)(m)=r \gamma \alpha)(m) .
\end{gathered}
$$

Example 5.12. Let $M$ be a left $R_{\Gamma}$-module and right $S_{\Gamma}$-module. If $N$ be an

$$
R_{\Gamma} \text {-module, then }
$$

(i) $\operatorname{Hom}(M, N)$ is a left $S_{\Gamma}$-module. Indeed

$$
\begin{aligned}
& \circ: S \times \Gamma \times \operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}(M, N) \\
&(s, \gamma, \alpha) \longrightarrow s \circ \gamma \circ \alpha: M \longrightarrow N \\
& m \longmapsto \alpha(m \gamma s)
\end{aligned}
$$

(ii) $\operatorname{Hom}(N, M)$ is right $S_{\Gamma}$-module under the mapping

$$
\begin{aligned}
& \circ: \operatorname{Hom}(N, M) \times \Gamma \times S \longrightarrow \operatorname{Hom}(N, M) \\
&(\alpha, \gamma, s) \longmapsto \alpha \circ \gamma \circ s: N \longrightarrow M \\
& n \longmapsto \alpha(n) \cdot \gamma . s
\end{aligned}
$$

Example 5.13. Let $M$ be a left $R_{\Gamma}$-module and right $S_{\Gamma}$-module and $\alpha \in \operatorname{End}(M)$ then $\alpha$ induces a right $S[t]_{\Gamma}$-module structure on $M$ with the mapping

$$
\begin{gathered}
\circ: M \times \Gamma \times S[t] \longrightarrow M \\
\left(m, \gamma, \sum_{i=0}^{n} s_{i} t^{i}\right) \longmapsto m \circ \gamma \circ\left(\sum_{i=0}^{n} s_{i} t^{i}\right)=\sum_{i=0}^{n}\left(m \gamma s_{i}\right) \alpha^{i}
\end{gathered}
$$

Proposition 5.14. Let $M$ be a $R_{\Gamma}$-module and $S \subseteq M$. Then $S \Gamma M=\left\{\sum s_{i} \gamma_{i} a_{i} \mid s_{i} \in S, a_{i} \in M, \gamma_{i} \in \Gamma\right\}$ is an $R_{\Gamma}$-submodule of $M$.

Proof. Consider the mapping

$$
\begin{gathered}
\circ: R \times \Gamma \times(S \Gamma M) \longrightarrow S \Gamma M \\
\left(r, \gamma, \sum_{i=1}^{n} s_{i} \gamma_{i} a_{i}\right) \longmapsto \sum_{i=1}^{n} s_{i} \gamma_{i}\left(r \gamma a_{i}\right) .
\end{gathered}
$$

Now it is easy to check that $S \Gamma M$ is a $R_{\Gamma}$-submodule of $M$.
Example 5.16. Let $(R,$.$) be a \Gamma$-ring. Let $\mathbb{Z}_{2}$, the cyclic group of order 2.
For a nonempty subset $A$, set $\operatorname{Hom}\left(R, \mathbb{B}^{A}\right)=\left\{f: R \longrightarrow \mathbb{B}^{A}\right\}$. Clearly $\left(\operatorname{Hom}\left(R, \mathbb{B}^{A}\right),+\right)$ is an abelian group. Consider the mapping $\circ: R \times \Gamma \times \operatorname{Hom}\left(R, \mathbb{B}^{A}\right) \longrightarrow \operatorname{Hom}\left(R, \mathbb{B}^{A}\right)$ that is defined

$$
(r, \gamma, f) \longmapsto r \circ \gamma \circ f
$$

where $(r \circ \gamma \circ f)(s): A \longrightarrow \mathbb{B}$ is defied by $(r \circ \gamma \circ f(s))(a)=f(s \gamma r)(a)$.
Now it is easy to check that $\operatorname{Hom}\left(R, \mathbb{B}^{A}\right)$ is an $\Gamma$-ring.
Example 5.17. Let $R$ and $S$ be $\Gamma$-rings and $\varphi: R \longrightarrow S$ be a $\Gamma$-rings homomorphism.
Then every $S_{\Gamma}$-module $M$ can be made into an $R_{\Gamma}$-module by defining
$r \gamma x \quad(r \in R, \gamma \in \Gamma, x \in M)$ to be $\varphi(r) \gamma x$. We says that the $R_{\Gamma}$-module structure $M$ is given by pullback along $\varphi$.

Example 5.18. Let $\varphi: R \longrightarrow S$ be a homomorphism of $\Gamma$-rings then $(S,$.$) is an$

$$
\begin{gathered}
R_{\Gamma} \text {-module. Indeed } \\
\circ: R \times \Gamma \times S \longrightarrow S \\
(r, \gamma, s) \longmapsto r \circ \gamma \circ s=\varphi(r) \cdot \gamma \cdot s
\end{gathered}
$$

Example 5.19. Let $(M,+)$ be an $R_{\Gamma}$-module. Define the operation o on $M$ by

$$
a \oplus b=b . a \text {. Then }(M, \oplus) \text { is an } R_{\Gamma} \text {-module. }
$$

Proposition 5.20. Let $R$ be a $\Gamma$-ring. If $f: M \longrightarrow N$ is an $R_{\Gamma}$-homomorphism and $C \leq \operatorname{ker} f$, then there exists an unique $R_{\Gamma}$-homomorphism $\bar{f}: M / C \longrightarrow N$, such that for every $x \in M ; \operatorname{Ker} \bar{f}=\operatorname{Kerf} / C$ and $\operatorname{Im} \bar{f}=\operatorname{Imf}$ and $\bar{f}(x+C)=f(x)$, also $\bar{f}$ is an $R_{\Gamma}$-isomorphism if and only if $f$ is an $R_{\Gamma}$-epimorphism and $C=K e r f$. In particular

$$
M / \operatorname{Ker} f \cong \operatorname{Imf}
$$

Proof. Let $b \in x+C$ then $b=x+c$ for some $c \in C$, also $f(b)=f(x+c)$. We know $f$ is $R_{\Gamma}$-homomorphism therefore $f(b)=f(x+c)=f(x)+f(c)=f(x)+0=f(x)$ (since $C \leq k e r f)$ then $\bar{f}: M / C \longrightarrow N$ is well defined function. Also $\forall x+C, y+C \in M / C$ and $\forall r \in R, \gamma \in \Gamma$ we have
(i) $\bar{f}((x+C)+(y+C))=\bar{f}((x+y)+C)=f(x+y)=f(x)+f(y)=\bar{f}(x+C)+\bar{f}(y+C)$.

$$
\text { (ii) } \bar{f}(r \gamma(x+C))=\bar{f}(r \gamma x+C)=f(r \gamma x)=r \gamma f(x)=r \gamma \bar{f}(x+C)
$$

then $\bar{f}$ is a homomorphism of $R_{\Gamma}$-modules, also it is clear $\operatorname{Im} \bar{f}=\operatorname{Im} f$ and

$$
\forall(x+C) \in \operatorname{ker} \bar{f} ; x+C \in \operatorname{ker} \bar{f} \Leftrightarrow \bar{f}(x+C)=0 \Leftrightarrow f(x)=0 \Leftrightarrow x \in \operatorname{ker} f \text { then }
$$

$$
\operatorname{ker} \bar{f}=\operatorname{kerf} / C
$$

Then definition $\bar{f}$ depends only $f$, then $\bar{f}$ is unique. $\bar{f}$ is epimorphism if and only if $f$ is epimorphism. $\bar{f}$ is monomorphism if and only if $\operatorname{ker} \bar{f}$ be trivial $R_{\Gamma}$-submodule of $M / C$.

In actually if and only if $\operatorname{Ker} f=C$ then $M / \operatorname{Ker} f \cong \operatorname{Imf} . \square$

Corollary 5.21. If $R$ is a $\Gamma$-ring and $M_{1}$ is an $R_{\Gamma^{-}}$-submodule of $M$ and $N_{1}$ is $R_{\Gamma}$-submodule of $N, f: M \longrightarrow N$ is a $R_{\Gamma}$-homomorphism such that $f\left(M_{1}\right) \subseteq N_{1}$ then $f$ make a $R_{\Gamma}$-homomorphism $\bar{f}: M / M_{1} \longrightarrow N / N_{1}$ with operation $m+M_{1} \longmapsto f(m)+N_{1}$. $\bar{f}$ is $R_{\Gamma}$-isomorphism if and only if $\operatorname{Im} f+N_{1}=N, f^{-1}\left(N_{1}\right) \subseteq M_{1}$. In particular, if $f$ is epimorphism such that $f\left(M_{1}\right)=N_{1}, \operatorname{ker} f \subseteq M_{1}$ then $f$ is a $R_{\Gamma}$-isomorphism.
proof. We consider the mapping $M \longrightarrow f N \longrightarrow \longrightarrow^{f} N / N_{1}$. In this case;
$M_{1} \subseteq f^{-1}\left(N_{1}\right)=\operatorname{ker} \pi f\left(\forall m_{1} \in M_{1}, f\left(m_{1}\right) \in N_{1} \Rightarrow \pi f\left(m_{1}\right)=0 \Rightarrow m_{1} \in \operatorname{ker} \pi f\right)$. Now we use Proposition 5.20 for map $\pi f: M \longrightarrow N / N_{1}$ with function $m \longmapsto f(m)+N_{1}$ and submodule $M_{1}$ of $M$.

Therefore, map $\bar{f}: M / M_{1} \longrightarrow N / N_{1}$ that is defined $m+M \longmapsto f(m)+N_{1}$ is a $R_{\Gamma}$-homomorphism. It is isomorphism if and only if $\pi f$ is epimorphism, $M_{1}=k e r \pi f$.

But condition will satisfy if and only if $\operatorname{Im} f+N_{1}=N, f^{-1}\left(N_{1}\right) \subseteq M_{1}$. If $f$ is epimorphism then $N=\operatorname{Im} f=\operatorname{Im} f+N_{1}$ and if $f\left(M_{1}\right)=N_{1}$ and $\operatorname{ker} f \subseteq M_{1}$ then

$$
f^{-1}\left(N_{1}\right) \subseteq M_{1} \text { so } \bar{f} \text { is isomorphism. }
$$

Proposition 5.22. Let $B, C$ be $R_{\Gamma^{-}}$-submodules of $M$.
(i) There exists a $R_{\Gamma}$-isomorphism $B /(B \cap C) \cong(B+C) / C$.
(ii) If $C \subseteq B$, then $B / C$ is an $R_{\Gamma^{-}}$-submodule of $M / C$ and there is an $R_{\Gamma^{-} \text {-isomorphism }}$

$$
(M / C) /(B / C) \cong M / B .
$$

Proof. (i) Combination $B \longrightarrow^{j} B+C \longrightarrow \longrightarrow^{\pi}(B+C) / C$ is an $R_{\Gamma}$-homomorphism with kernel $=B \cap C$, because $k e r \pi j=\left\{b \in B \mid \pi j(b)=0_{(B+C) / C}\right\}=\{b \in B \mid \pi(b)=C\}=\{b \in$ $B \mid b+C=C\}=\{b \in B \mid b \in C\}=B \cap C$ therefore, in order to Proposition 5.20., $B /(B \cap C) \cong \operatorname{Im}(\pi j)(\star)$, every element of $(B+C) / C$ is to form $(b+c)+C$, thus $(b+c)+C=b+C=\pi j(b)$ then $\pi j$ is epimorphism and $\operatorname{Im} \pi j=(B+C) / C$ in attention $(\star), B /(B \cap C) \cong(B+C) / C$.
(ii) We consider the identity map $i: M \longrightarrow M$, we have $i(C) \subseteq B$, then in order to
apply Proposition 5.21. we have $R_{\Gamma}$-epimorphism $\bar{i}: M / C \longrightarrow M / B$ with $\bar{i}(m+C)=m+B$ by using $(i)$. But we know $B=\bar{i}(m+C)$ if and only if $m \in B$ thus ker $\bar{i}=\{m+C \in M / C \mid m \in B\}=B / C$ then $k e r \bar{i}=B / C \leq M / C$ and we have

$$
M / B=\operatorname{Im} \bar{i} \cong(M / C) /(B / C) .
$$

Let $M$ be a $R_{\Gamma}$-module and $\left\{N_{i} \mid i \in \Omega\right\}$ be a family of $R_{\Gamma}$-submodule of $M$. Then $\cap_{i \in \Omega} N_{i}$ is a $R_{\Gamma}$-submodule of $M$ which, indeed, is the largest $R_{\Gamma}$-submodule $M$ contained in each of the $N_{i}$. In particular, if $A$ is a subset of a left $R_{\Gamma}$-module $M$ then intersection of all submodules of $M$ containing $A$ is a $R_{\Gamma}$-submodule of $M$, called the submodule generated by $A$. If $A$ generates all of the $R_{\Gamma}$-module, then $A$ is a set of generators for $M$. A left $R_{\Gamma}$-module having a finite set of generators is finitely generated. An element $m$ of the $R_{\Gamma}$-submodule generated by a subset $A$ of a $R_{\Gamma}$-module

$$
M \text { is a linear combination of the elements of } A \text {. }
$$

If $M$ is a left $R_{\Gamma}$-module then the set $\sum_{i \in \Omega} N_{i}$ of all finite sums of elements of $N_{i}$ is an $R_{\Gamma}$-submodule of $M$ generated by $\cup_{i \in \Omega} N_{i} . R_{\Gamma}$-submodule generated by $X=\cup_{i \in \Omega} N_{i}$ is $D=\left\{\sum_{i=1}^{s} r_{i} \gamma_{i} a_{i}+\sum_{j=1}^{t} n_{j} b_{j} \mid a_{i}, b_{j} \in X, r_{i} \in R, n_{j} \in \mathbb{Z}, \gamma_{i} \in \Gamma\right\}$ if $M$ is a unitary $R_{\Gamma}$-module then $D=R \Gamma X=\left\{\sum_{i=1}^{s} r_{i} \gamma_{i} a_{i} \mid r_{i} \in R, \gamma_{i} \in \Gamma, a_{i} \in X\right\}$.

Example 5.23. Let $M, N$ be $R_{\Gamma}$-modules and $f, g: M \longrightarrow N$ be $R_{\Gamma}$-module homomorphisms. Then $K=\{m \in M \mid f(m)=g(m)\}$ is $R_{\Gamma}$-submodule of $M$. Example 5.24. Let $M$ be a $R_{\Gamma^{-}}$module and let $N, N^{\prime}$ be $R_{\Gamma^{-}}$submodules of $M$. Set $A=\left\{m \in M \mid m+n \in N^{\prime}\right.$ for some $\left.n \in N\right\}$ is an $R_{\Gamma}$-module of $M$ containing $N^{\prime}$. Proposition 5.25. Let $(M, \cdot)$ be an $R_{\Gamma^{-}}$module and $M$ generated by $A$. Then there exists an $R_{\Gamma}$-homomorphism $R^{(A)} \longrightarrow M$, such that $f \longmapsto \sum_{a \in A, a \in \operatorname{supp}(f)} f(a) \cdot \gamma \cdot a$.
Remark 5.26. Let $R$ be a $\Gamma$ - ring and let $\left\{\left(M_{i}, o_{i}\right) \mid i \in \Omega\right\}$ be a family of left $R_{\Gamma^{-}}$ modules. Then $\times_{i \in \Omega} M_{i}$, the Cartesian product of $M_{i}$ 's also has the structure of a left $R_{\Gamma}$-module under componentwise addition and mapping

$$
\begin{gathered}
\cdot: R \times \Gamma \times\left(\times M_{i}\right) \longrightarrow \times M_{i} \\
\left(r, \gamma,\left\{m_{i}\right\}\right) \longrightarrow r \cdot \gamma \cdot\left\{m_{i}\right\}=\left\{r o_{i} \gamma o_{i} m_{i}\right\}_{\Omega} .
\end{gathered}
$$

We denote this left $R_{\Gamma}$-module by $\prod_{i \in \Omega} M_{i}$. Similarly,
$\sum_{i \in \Omega} M_{i}=\left\{\left\{m_{i}\right\} \in \prod M_{i} \mid m_{i}=0 \quad\right.$ for all but finitely many indices $\left.i\right\}$ is a $R_{\Gamma^{-} \text {-submodule of }} \prod_{i \in \Omega} M_{i}$. For each $h$ in $\Omega$ we have canonical $R_{\Gamma^{-}}$homomorphisms $\pi_{h}: \prod M_{i} \longrightarrow M_{h}$ and $\lambda_{h}: M_{h} \longrightarrow \sum M_{i}$ is defined respectively by $\pi_{h}:<m_{i}>\longmapsto m_{h}$ and $\lambda\left(m_{h}\right)=<u_{i}>$, where

$$
u_{i}=\left\{\begin{array}{rl}
0 & i \neq h \\
m_{h} & i=h
\end{array}\right.
$$

The $R_{\Gamma^{-}}$module $\prod M_{i}$ is called the ( external) direct product of the $R_{\Gamma^{-}}$modules $M_{i}$ and the $R_{\Gamma^{-}}$module $\sum M_{i}$ is called the (external) direct sum of $M_{i}$. It is easy to verify that if $M$ is a left $R_{\Gamma}$-module and if $\left\{M_{i} \mid i \in \Omega\right\}$ is a family of left $R_{\Gamma}$-modules such that, for each $i \in \Omega$, we are given an $R_{\Gamma}$-homomorphism $\alpha_{i}: M \longrightarrow M_{i}$ then there exists a unique $R_{\Gamma^{-}}$homomorphism $\alpha: M \longrightarrow \prod_{i \in \Omega} M_{i}$ such that $\alpha_{i}=\alpha \pi_{i}$ for each $i \in \Omega$. Similarly, if we are given an $R_{\Gamma}$-homomorphism $\beta_{i}: M_{i} \longrightarrow M$ for each $i \in \Omega$ then there exists an unique $R_{\Gamma^{-}}$homomorphism $\beta: \sum_{i \in \Omega} M_{i} \longrightarrow M$ such that $\beta_{i}=\lambda_{i} \beta$ for each $i \in \Omega$.

Remark 5.27. Let $M$ be a left $R_{\Gamma}$-module. Then $M$ is a right $R_{\Gamma}^{o p}$-module under the mapping

$$
\begin{gathered}
*: M \times \Gamma \times R^{o p} \longrightarrow M \\
(m, \gamma, r) \longmapsto m * \gamma * r=r \gamma m .
\end{gathered}
$$

Definition 5.28. A nonempty subset $N$ of a left $R_{\Gamma}$-module $M$ is subtractive if and only if $m+m^{\prime} \in N$ and $m \in N$ imply that $m^{\prime} \in N$ for all $m, m^{\prime} \in M$. Similarly, $N$ is strong subtractive if and only if $m+m^{\prime} \in N$ implies that $m, m^{\prime} \in N$ for all $m, m^{\prime} \in M$.

Remark 5.29. (i) Clearly, every submodule of a left $R_{\Gamma}$-module is subtractive. Indeed, if $N$ is a $R_{\Gamma}$-submodule of a $R_{\Gamma}$-module $M$ and $m \in M, n \in N$ are elements satisfying

$$
m+n \in N \text { then } m=(m+n)+(-n) \in N .
$$

(ii) If $N, N^{\prime} \subseteq N$ are $R_{\Gamma}$-submodules of an $R_{\Gamma}$-module $M$, such that $N^{\prime}$ is a subtractive $R_{\Gamma}$-submodule of $N$ and $N$ is a subtractive $R_{\Gamma}$-submodule of $M$ then $N^{\prime}$ is a subtractive

$$
R_{\Gamma} \text {-module of } M
$$

Note. If $\left\{M_{i} \mid i \in \Omega\right\}$ is a family of (resp. strong) subtractive $R_{\Gamma}$-submodule of a left
$R_{\Gamma}$-module $M$ then $\cap_{i \in \Omega} M_{i}$ is again (resp. strong) subtractive. Thus every $R_{\Gamma}$ -submodule of a left $R_{\Gamma}$-module $M$ is contained in a smallest (resp. strong) subtractive $R_{\Gamma}$-submodule of $M$, called its (resp. strong) subtractive closure in $M$.

Proposition 5.30 Let $R$ be a $\Gamma$-ring and let $M$ be a left $R_{\Gamma}$-module. If $N, N^{\prime}$ and $N^{\prime \prime} \leq M$ are submodules of $M$ satisfying the conditions that $N$ is subtractive and

$$
N^{\prime} \subseteq N, \text { then } N \cap\left(N^{\prime}+N^{\prime \prime}\right)=N^{\prime}+\left(N \cap N^{\prime \prime}\right)
$$

Proof. Let $x \in N \cap\left(N^{\prime}+N^{\prime \prime}\right)$. Then we can write $x=y+z$, where $y \in N^{\prime}$ and $z \in N^{\prime \prime}$. by $N^{\prime} \subseteq N$, we have $y \in N$ and so, $z \in N$, since $N$ is subtractive. Thus $x \in N^{\prime}+\left(N \cap N^{\prime \prime}\right)$, proving that $N \cap\left(N^{\prime}+N^{\prime \prime}\right) \subseteq N^{\prime}+\left(N \cap N^{\prime \prime}\right)$. The reverse containment is immediate.

Proposition 5.31. If $N$ is a subtractive $R_{\Gamma}$-submodule of a left $R_{\Gamma}$-module $M$ and if $A$ is a nonempty subset of $M$ then $(N: A)$ is a subtractive left ideal of $R$.

Proof. Since the intersection of an arbitrary family of subtractive left ideals of $R$ is again subtractive, it suffices to show that $(N: m)$ is subtractive for each element $m$. Let $a \in R$ and $b \in(N: M)$ (for $\gamma \in \Gamma)$ satisfy the condition that $a+b \in(N: M)$. Then $a \gamma m+b \gamma m \in N$ and $b \gamma m \in N$ so $a \gamma m \in N$, since $N$ is subtractive. Thus

$$
a \in(N: M) . \square .
$$

proposition 5.32. If $I$ is an ideal of a $\Gamma$-ring $R$ and $M$ is a left $R_{\Gamma}$-module. Then

$$
N=\{m \in M \mid I \Gamma m=\{0\}\} \text { is a subtractive } R_{\Gamma} \text {-submodule of } M .
$$

Proof. Clearly, $N$ is an $R_{\Gamma}$-submodule of $M$. If $m, m^{\prime} \in M$ satisfy the condition that $m$
and $m+m^{\prime}$ belong to $N$ then for each $r \in I$ and for each $\gamma \in \Gamma$ we have $0=r \gamma\left(m+m^{\prime}\right)=r \gamma m+r \gamma m^{\prime} m^{\prime}=r \gamma m^{\prime}$, and hence $m^{\prime} \in N$. Thus $N$ is subtractive.
proposition 5.33. Let $(R,+, \cdot)$ be a $\Gamma$-ring and let $M$ be an $R_{\Gamma}$-module and there
exists bijection function $\delta: M \longrightarrow R$. Then $M$ is a $\Gamma$-ring and $M_{\Gamma}$-module.
Proof. Define $\circ: M \times \Gamma \times M \longrightarrow M$ by $(x, \gamma, y) \longmapsto x \circ \gamma \circ y=\delta^{-1}(\delta(x) \cdot \gamma \delta(y))$.
It is easy to verify that $R$ is a $\Gamma$ - ring. If $M$ is a set together with a bijection function $\delta: X \longrightarrow R$ then the $\Gamma$-ring structure on $R$ induces a $\Gamma$-ring structure $(M, \oplus, \odot)$ on $X$ with the operations defined by $x \oplus y=\delta^{-1}(\delta(x)+\delta(y))$ and

$$
x \odot \gamma \odot y=\delta^{-1}(\delta(x) \cdot \gamma \cdot \delta(y)) .
$$

## Acknowledgements

The first author is partially supported by the "Research Center on Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran".

## References

[1] F.W.Anderson ,K.R.Fuller , Rings and Categories of Modules, Springer Verlag ,New York ,1992. [2] W.E.Barens, On the $\Gamma$-ring of Nobusawa, Pacific J.Math.,18(1966),411-422. [3] J.S.Golan,Semirinngs and their Applications.[4] T.W.Hungerford ,Algebra.[5] J.Luh, On the theory of simple gamma rings, Michigan Math .J.,16(1969),65-75.[6] N.Nobusawa ,On a generalization of the ring theory ,Osaka J.Math. 1(1964),81-89.

