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Abstract

We investigate the relation of directed graphs and hyperstructures

by virtue of the graph hyperoperation. A new class of graphs arises

in this way representing isomorphism classes of C-hypergroupoids

and we present the 17 such graphs that correspond to the 73 C-

hypergroupoids associated with binary relations on three element sets.

As it is shown they constitute an upper semilattice with respect to

graph inclusion.

Key words: Hyperoperations, Hypergroupoids, Directed Graphs.

MCS2010: 20N20, 68R10, 97K30.

1 Introduction

The correlation between hyperstructures and binary relations has been
intensively investigated in the last 20 years by several researchers ([10], [11],
[12], [14], [18], [6], [7], [8]) while of particular importance are the hyper-
groupoids that derive from binary relations - known as C-hypergroupoids -
which were introduced by Corsini in [9] (see also [19], [20], [22], [21]).

The purpose of the present paper is to further expand the ongoing re-
search on hypergroupoids by employing concepts from Graph Theory. While
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the foundations of graph theory can be traced back to L. Euler and his
“Königsberg bridge problem” [1] (see also [13, 2]), its growth in recent years
has been explosive covering a large number of disciplines ranging from math-
ematical foundations of computer science [3, 4] to physical chemistry [5] and
natural language processing [17]. In Section 2, basic concepts and results on
directed graphs and hypergroupoids are presented. In Section 3 we define the
graph hyperoperation which is actually Corsini’s hyperoperation applied on
graphs. A particular class of directed graphs arises in this way, representing
isomorphism classes of C-hypergroupoids, namely Corsini’s graphs. As it is
evident from their construction, Corsini’s graphs constitute a useful appara-
tus in order to represent and arrange the hypergroupoid classes they represent
which thus results in a hierarchy inside the class of C-hypergroupoids. We
identify and present the 17 Corsini’s graphs with 3 nodes and we find that
they constitute an upper semilattice with graph inclusion as the partial order.

2 Preliminaries on Hyperstructures and Graph

Theory

A partial hypergroupoid is a pair (H, ∗), where H is a non-empty set, and
∗ is a hyperoperation i.e.

∗ : H × H → P(H), (x, y) 7→ x ∗ y.

If A, B ∈ P(H)-{∅}, then

A ∗ B =
⋃

a∈A,b∈B

a ∗ b.

We denote by a ∗B (respectively, A ∗ b) the hyperproduct A ∗ B in the case
that the set A (respectively, the set B) is the singleton {a} (respectively,
{b}). Moreover, (H, ∗) is called hypergroupoid if x ∗ y 6= ∅, for all x, y ∈ H

and it is called a degenerative (respectively, total) hypergroupoid in the case
that for all x, y ∈ H , x ∗ y = ∅ (respectively, x ∗ y = H).

Given a binary relation R ⊆ H ×H the Corsini’s hyperoperation (cf. [9])

∗R : H × H → P(H)

is defined in the following way:

(x, y) 7→ x ∗R y = {z ∈ H | (x, z) ∈ R and (z, y) ∈ R}.
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The hyperstructure (H, ∗R) is called Corsini’s partial hypergroupoid asso-
ciated with the binary relation R or simply partial C-hypergroupoid and is
denoted HR (cf. [19], [20]). In the case that x∗R y 6= ∅, for all x, y ∈ H , then
(H, ∗R) is called C-hypergroupoid. It can be easily seen that a partial C-
hypergroupoid HR is a C-hypergroupoid if and only if it holds R◦R = H×H ,
where ◦ is the usual relation composition. Let R ⊆ H×H be a binary relation
on the set H = {x1, x2, . . . , xn} then the n × n matrix

MR = [mi,j ]n×n, with mi,j = 1 if (xi, xj) ∈ R and mi,j = 0, else

is called the boolean matrix of R.
Formally a concrete directed graph G is a pair (VG, EG) where:

- VG is a finite set, the elements of which we call vertices and

- EG ⊆ VG × VG is a set of ordered pairs of VG the elements of which we call
edges.

A vertex is simply drawn as a node and an edge as an arrow connecting two
vertices the head and the tail of the edge. A graph G′ = (VG′, EG′) is a
subgraph of the graph G = (VG, EG) if it holds V ′

G ⊆ VG and E ′

G ⊆ EG. In
the other direction, a supergraph of a graph G is a graph that has G as a
subgraph. We say that the graph H is included in the graph G (H ≤ G) if
G has a subgraph that is equal or isomorphic to H . The relation ≤, which
is called graph inclusion, is a graph invariant.

Given a graph G = (VG, EG) and v ∈ VG the number of edges that “leave”
the vertex v is called the out degree of v and the number of edges that “enter”
the vertex is called the in degree of v. Moreover we denote by degreeout(G)
the set of all the out degrees of G’s vertices and similarly for degreein(G).
The order of a graph is the number of its vertices, i.e. |VG|, and the size of a
graph is the number of its edges, i.e. |EG|. A loop is an edge whose head and
tail is the same vertex. An edge is multiple if there is another edge with the
same head and the same tail. A graph is called simple if it has no multiple
edges. A vertex is called isolated if there is no edge connected to it.

Two graphs G and H are said to be isomorphic if there exists an isomor-
phism f between the vertices of the two graphs that respects the edges, i.e.
it holds (x, y) ∈ EG if and only if (f(x), f(y)) ∈ EH . Since the specific sets
VG, EG chosen to define a concrete directed graph G are actually irrelevant
we don’t distinguish between two isomorphic graphs. Hence the following
definition of an abstract graph. The equivalence class of a concrete directed
graph with respect to isomorphism is called an abstract directed graph or
simply graph. A graph property is called invariant if it is invariant under
graph isomorphisms. Examples of graph invariants are
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- order, size and diameter (the longest of the shortest path lengths between
pairs of vertices)

- vertex (edge) connectivity, the smallest number of vertices (edges) whose
removal disconnects the graph

- vertex (edge) chromatic number, the minimum number of colors needed
to color all vertices (edges) so that adjacent vertices (edges) have a
different color

- vertex (edge) covering number, the minimal number of vertices (edges)
needed to cover all edges (vertices)

In what follows we consider simple graphs without isolated vertices.

3 The Graph Hyperoperation

Given a concrete directed graph G = (VG, EG), we introduce the graph
hyperoperation ◦G defined on the nodes of the graph G:

◦G : VG × VG → P(VG), (x, y) 7→ x ◦G y = {z ∈ VG | (x, z), (z, y) ∈ EG}.

It can be easily seen that it holds ◦G = ∗EG
, where ∗EG

is the Corsini’s
hyperoperation derived by the binary relation EG. Hence ◦G structures
the set VG into a (partial) C-hypergroupoid called the Corsini’s (partial)
hypergroupoid associated with G. If the hyperoperation ◦G structures VG

into a C-hypergroupoid then the same holds for every graph G′ isomor-
phic with G, hence this property is a graph invariant. An (abstract) graph
is called Corsini’s graph if the hyperoperation ◦G structures VG into a C-
hypergroupoid.

Remark 3.1 A hyperoperation for undirected graphs has been presented in
[15] by virtue of spanning trees.

Proposition 3.1 The Graph hyperoperation associated with G = (VG, EG)
structures VG into a C-hypergroupoid if and only if, there exists a path of
length 2 between every pair of nodes of G.

Proof. The Corsini’s hyperoperation associated with G is a hypergroupoid
if and only if x◦G y 6= ∅ for all x, y ∈ VG if and only if for every pair of nodes
x, y ∈ VG there exists a node z ∈ VG such that (x, z), (z, y) ∈ EG, if and only
if there exists a path of length 2 between x and y. 2

It is easy to prove that there are two Corsini’s graphs with two nodes,
depicted in the following figure.
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We note that the second graph is actually a subgraph of the first.

Remark 3.2 The adjacency matrix AG of the graph G is identical with the
boolean matrix MEG

of the relation EG.

From this remark we obtain an alternative proof of Proposition 3.1. In-
deed as it is stated in [9] a hyperoperation derived from the binary relation
R ⊆ H × H structures H into a hypergroupoid if and only if the Boolean
matrix MR of the relation has the property M2

R = 1, where 1 is the matrix
that has the unit at every entry. Since in the case of a hyperoperation asso-
ciated with a graph G this matrix is equal with the adjacency matrix AG of
G it follows that A2

G = 1. Hence there exists a path of length 2 between any
given pair of vertices.

Proposition 3.2 The number of Corsini’s graphs with order n is always
smaller than the number of different Corsini’s hypergroupoids derived from
all binary relations R ⊆ H × H with card|H| = n.

Proof. Indeed, although there exist isomorphic graphs with different ad-
jacency matrices, different binary relations R ⊆ H × H always correspond
to different Boolean matrices. Hence there exist different Corsini’s hyper-
groupoids corresponding to two distinct Boolean matrices that represent the
same graph up to isomorphism. 2

As an example for the above proposition we recall that there are three
different Corsini’s hypergroupoids deriving from binary relations with 2 ele-
ments (cf. [9]) but only two Corsini’s graphs as we noted before.

Proposition 3.3 If G is a Corsini’s graph then every graph G′ with G ≤ G′

is also Corsini’s.

Proof. This is obtained by applying Proposition 3.1 since if there exists
a path of length 2 between two nodes in a graph G then there exists such a
path in every supergraph of G. 2

Now let H = {1, 2, 3}, R ⊆ H × H and MR the 3 × 3 boolean matrix of
R. We say that MR has the form (p1, p2, p3) if

|{j ∈ H | (k, j) ∈ R}| = pk for all k ∈ H
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or equivalently if, for all k ∈ H , the sum of the elements of the kth line
of MR is pk. We call the matrix MR good if the Corsini hyperoperation ∗R

structures (H, ∗R) into a C-hypergroupoid. As it is shown in [9] there are 30
good matrices with form (p1, p2, p3) such that p1+p2+p3 = 6. More precisely
there are 12 matrices such that pi = 2, where i ∈ H , and 18 matrices such
that pi = 1, pj = 2, pk = 3, where i, j, k ∈ H .

Proposition 3.4 The 30 good boolean matrices with form (p1, p2, p3), where
p1 + p2 + p3 = 6, correspond to 7 different non-isomorphic Corsini’s graphs.

Proof. First we examine the 12 good matrices with form (2, 2, 2). The
matrices





1 1 0
1 0 1
1 0 1



,





1 0 1
1 1 0
1 1 0



,





1 0 1
1 0 1
0 1 1



,





1 1 0
0 1 1
1 1 0



,





0 1 1
1 1 0
0 1 1



,





0 1 1
0 1 1
1 0 1



,

which are respectively the matrices (1), (3), (5), (8), (10) and (12) of [9], all
represent Corsini’s graphs isomorphic with the following graph.

(G1)

The matrices




1 1 0
1 0 1
0 1 1



,





1 0 1
0 1 1
1 1 0



,





0 1 1
1 1 0
1 0 1



,

which are respectively the matrices (2), (6) and (9) of [9], correspond to
graphs isomorphic with the graph below.

(G2)
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The matrices





1 0 1
1 1 0
0 1 1



,





1 1 0
0 1 1
1 0 1



,

which are respectively the matrices (4) and (7) of [9], both represent Corsini’s
graphs isomorphic with the next graph.

(G3)

The matrix





0 1 1
1 0 1
1 1 0



,

is the matrix (11) of [9] and represents the following Corsini’s graph.

(G4)

Now we examine the rest 18 good matrices with the desired form. The
matrices





0 0 1
1 1 0
1 1 1



,





1 1 0
0 0 1
1 1 1



,





0 1 0
1 1 1
1 0 1



,





1 0 1
1 1 1
0 1 0



,





1 1 1
1 0 0
0 1 1



,





1 1 1
0 1 1
1 0 0



,

which are respectively the matrices (13), (16), (20), (23), (27) and (30) of [9],
represent Corsini’s graphs isomorphic with the following graph.
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(G5)

The matrices




0 0 1
1 0 1
1 1 1



,





0 1 1
0 0 1
1 1 1



,





0 1 0
1 1 1
1 1 0



,





0 1 1
1 1 1
0 1 0



,





1 1 1
1 0 0
1 1 0



,





1 1 1
1 0 1
1 0 0



,

which are respectively the matrices (14), (18), (19), (24), (25) and (29) of [9],
represent Corsini’s graphs isomorphic with the following graph.

(G6)

The matrices




0 0 1
0 1 1
1 1 1



,





1 0 1
0 0 1
1 1 1



,





0 1 0
1 1 1
0 1 1



,





1 1 0
1 1 1
0 1 0



,





1 1 1
1 0 0
1 0 1



,





1 1 1
1 1 0
1 0 0



,

which are respectively the matrices (15), (17), (19), (22), (25) and (28) of [9],
represent Corsini’s graphs isomorphic with the next graph.

(G7)
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2

Remark 3.3 A boolean matrix with form (p1, p2, p3) corresponds to a graph
G with a degreeout(G) = {p1, p2, p3}. Hence graphs G1-G4 have degreeout(G) =
{2, 2, 2} and graphs G5-G7 have degreeout(G) = {1, 2, 3}.

The number of Corsini’s graphs with order n is equal with the number of
boolean n × n matrices forming non-isomorphic hypergroupoids. Although
Massouros and Tsitouras [16] have calculated this number - for n = 3 there
are 17 such matrices - no actual representation of these 17 hypergroupoid
classes has been demonstrated in [16]. Such a representation is of much
greater importance than merely computing their number since it will allow
us to compare and correlate these isomorphism classes. In what follows we
present the remaining Corsini’s graphs and moreover we discover that they
constitute an upper semilattice with respect to graph inclusion. This hier-
archy actually determines a hierarchy inside the set of 73 C-hypergroupoids
(cf. [22]) deriving from binary relations on 3 elements.

Since in the previous proposition we found 7 Corsini’s graphs with 3
vertices it follows that there are 10 more. From these 1 has degreeout(G) =
{1, 1, 3}

(G8)

5 have degreeout(G) = {2, 2, 3}

(G9) (G10) (G11)

(G12)
(G13)

1 has degreeout(G) = {1, 3, 3}
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(G14)

2 have degreeout(G) = {2, 3, 3}

(G15) (G16)

and 1 (the complete graph with 3 nodes) has degreeout(G) = {3, 3, 3}.

(G17)

As it is implied by Proposition 3.3, the graphs G1-G17 form a partially
ordered set with respect to graph inclusion. More precisely they form the
following upper semilattice as it can be verified by merely inspecting the
drawings of graphs G1-G17.
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G8

G1 G2 G3 G4 G5 G6 G7

G9 G10 G11 G12 G13 G14

G15 G16

G17
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