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Abstract

The aim of this paper is to introduce the notions of lower and up-
per approximation of a subset of a hyper BCK-algebra with respect
to a hyper BCK-ideal. We give the notion of rough hyper subalgebra
and rough hyper BCK-ideal, too, and we investigate their properties.
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1 Introduction

In 1966, Y. Imai and K. Iseki [2] introduced a new notion, called a BCK-
algebra. The hyper structure theory (called also multi algebras ) was intro-
duced in 1934 by F. Marty [6] at the 8th Congress of Scandinavian Math-
ematicians. In [3], Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei
applied the hyper structures to BCK-algebras and they introduced the no-
tion of hyper BCK-algebra (resp. hyper K-algebra) which is a generalization
of BCK-algebra (resp. hyper BCK-algebra). They also introduced the no-
tion of hyper BCK-ideal, weak hyper BCK-ideal, hyper K-ideal and weak
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hyper K-ideal and gave relations among them. In 1982, Pawlak introduced
the concept of rough set (see [7]). Recently Jun [5] applied rough set theory
to BCK-algebras. In this paper, we apply the rough set theory to hyper
BCK-algebras.

2 Preliminaries

Let U be a universal set. For an equivalence relation Θ on U , the set
of elements of U that are related to x ∈ U , is called the equivalence class
of x and is denoted by [x]Θ. Moreover, let U/Θ denote the family of all
equivalence classes induced on U by Θ. For any X ⊆ U , we write Xc to
denote the complement of X in U , that is the set U\X. A pair (U,Θ) where
U 6= φ and Θ is an equivalence relation on U is called an approximation
space.
The interpretation in rough set theory is that our knowledge of the objects
in U extends only up to membership in the class of Θ and our knowledge
about a subset X of U is limited to the class of Θ and their unions. This
leads to the following definition.

Definition 2.1. [7] For an approximation space (U,Θ), by a rough approxi-

mation in (U,Θ) we mean a mapping Apr : P (U) −→ P (U)× P (U) defined

for every X ∈ P (U) by Apr(X) = (Apr(X), Apr(X)), where

Apr(X) = {x ∈ U |[x]Θ ⊆ X},

Apr(X) = {x ∈ U |[x]Θ ∩X 6= φ}.

Apr(X) is called a lower rough approximation ofX in (U,Θ), whereas Apr(X)

is called an upper rough approximation of X in (U,Θ).

Definition 2.2. [7] Given an approximation space (U,Θ), a pair (A,B) ∈
P (U)× P (U) is called a rough set in (U,Θ) if and only if (A,B) = Apr(X)

for some X ∈ P (U).

Definition 2.3. ([7]) Let (U,Θ) be an approximation space and X be a
non-empty subset of U .

(i) If Apr(X) = Apr(X), then X is called definable.

(ii) If Apr(X) = φ, then X is called empty interior.
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(iii) If Apr(X) = U , then X is called empty exterior.

Let H be a non-empty set endowed with a hyper operation “◦”, that is ◦ is
a function from H ×H to P ∗(H) = P (H)− {φ}. For two subsets A and B
of H, denote by A ◦ B the set

⋃
a∈A,b∈B a ◦ b. We shall use x ◦ y instead of

x ◦ {y}, {x} ◦ y, or {x} ◦ {y}.

Definition 2.4. ([3]) By a hyper BCK-algebra we mean a non- empty setH
endowed with a hyper operation “◦”and a constant 0 satisfying the following
axioms:

(HK1) (x ◦ z) ◦ (y ◦ z)� x ◦ y,

(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,

(HK3) x ◦H � {x},

(HK4) x� y and y � x imply x = y,

for all x, y, z ∈ H, where x� y is defined by 0 ∈ x◦y and for every A,B ⊆ H,
A � B is defined by ∀a ∈ A,∃b ∈ B such that a � b. In such case, we call
“�”the hyper order in H.

Theorem 2.5. ([3]) In any hyper BCK-algebra H, the following hold:

(a1) 0 ◦ 0 = {0},

(a2) 0� x,

(a3) x� x,

(a4) A� A,

(a5) A� 0 implies A = {0},

(a6) A ⊆ B implies A� B,

(a7) 0 ◦ x = {0},

(a8) x ◦ y � x,

(a9) x ◦ 0 = {x},

(a10) y � z implies x ◦ z � x ◦ y,

(a11) x ◦ y = {0} implies (x ◦ z) ◦ (y ◦ z) = {0} and x ◦ z � y ◦ z,

(a12) A ◦ {0} = {0} implies A = {0},
for all x, y, z ∈ H and for all non-empty subsets A and B of H.
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Definition 2.6. ([3]) Let H be a hyper BCK-algebra and let S be a subset
of H containing 0. If S be a hyper BCK-algebra with respect to the hyper
operation “◦”on H, we say that S is a hyper subalgebra of H.

Theorem 2.7. ([3]) Let S be a non-empty subset of hyper BCK-algebra
H. Then S is a hyper subalgebra of H if and only if x◦y ⊆ S, for all x, y ∈ S.

Definition 2.8. ([3]) Let I be a non-empty subset of hyper BCK-algebra
H and 0 ∈ I.

(i) I is said to be a hyper BCK-ideal of H if x ◦ y � I and y ∈ I imply
x ∈ I for all x, y ∈ H.

(ii) I is said to be a weak hyper BCK-ideal of H if x ◦ y ⊆ I and y ∈ I
imply x ∈ I for all x, y ∈ H.

(iii) I is called a strong hyper BCK-ideal of H if (x ◦ y) ∩ I 6= φ and y ∈ I
imply x ∈ I for all x, y ∈ H.

Theorem 2.9. ([3]) If H be a hyper BCK-algebra, then

(i) every hyper BCK-ideal of H is a weak hyper BCK-ideal of H.

(ii) every strong hyper BCK-ideal of H is a hyper BCK-ideal of H.

Definition 2.10. ([4]) Let H be a hyper BCK-algebra. A hyper BCK-
ideal I of H is called reflexive if x ◦ x ⊆ I for all x ∈ H.

Definition 2.11. ([1]) Let Θ be an equivalence relation on hyper BCK-
algebra H and A,B ⊆ H. Then,

(i) AΘB means that, there exist a ∈ A and b ∈ B such that aΘb,

(ii) AΘ̄B means that, for all a ∈ A there exists b ∈ B such that aΘb and
for all b ∈ B there exists a ∈ A such that aΘb,

(iii) Θ is called a congruence relation on H, if xΘy and x′Θy′ imply x ◦
x′Θ̄y ◦ y′ for all x, y, x′, y′ ∈ H.

(iv) Θ is called a regular relation on H, if x ◦ yΘ{0} and y ◦ xΘ{0} imply
xΘy for all x, y ∈ H.
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Example 2.12. Let H1 = {0, 1, 2}, H2 = {0, a, b} and hyper operations
“◦1”and “◦2”on H1 and H2 are defined respectively, as follow:

◦1 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {2} {0, 2}

◦2 0 a b
0 {0} {0} {0}
a {a} {0, a} {0, a}
b {b} {a, b} {0, b}

Then (H1, ◦1) and (H2, ◦2) are hyper BCK-algebras. Define the equivalence
relation Θ1 and Θ2 on H1 and H2, respectively, as

Θ1 = {(0, 0), (1, 1), (2, 2), (0, 2), (2, 0)},

and

Θ2 = {(0, 0), (a, a), (b, b), (0, a), (a, 0)}.

It is easily checked that Θ1 is a congruence relation on H1. But Θ2 is not a
congruence relation on H2, since bΘ2b and 0Θ2a but b ◦ 0Θ̄2b ◦ a is not true.

Example 2.13. Let (H1, ◦1) be a hyper BCK-algebra as Example 2.12.
Let H2 = {0, a, b, c} and define the hyper operation “◦2”on H2 as follow:

◦2 0 a b c
0 {0} {0} {0} {0}
a {a} {0, a} {0} {a}
b {b} {b} {0, a} {b}
c {c} {c} {c} {0, c}

Then (H2, ◦2) is a hyper BCK-algebra. Define the congruence relation Θ1

and Θ2 on H1 and H2, respectively, by

Θ1 = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)},

and

Θ2 = {(0, 0), (a, a), (b, b), (c, c), (0, b), (b, 0)}.

It is easily checked that Θ1 is a regular congruence relation on H1, but Θ2 is
not a regular relation on H2, since a◦ bΘ2{0} and b◦aΘ2{0} but (a, b) 6∈ Θ2.

Theorem 2.14. ([1]) Let Θ be a regular congruence relation on hyper
BCK-algebra H. Then [0]Θ is a hyper BCK-ideal of H.
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Theorem 2.15. ([1]) Let Θ be a regular congruence relation on H, I = [0]Θ
and H

I
= {Ix : x ∈ H}, where Ix = [x]Θ for all x ∈ H. Then H

I
with hyper

operation “◦”and hyper order “<”which is defined as follow, is a hyper BCK-
algebra which is called quotient hyper BCK-algebra,

Ix ◦ Iy = {Iz : z ∈ x ◦ y},

and
Ix < Iy ⇐⇒ I ∈ Ix ◦ Iy.

Theorem 2.16. ([1]) Let I be a reflexive hyper BCK-ideal of H and rela-
tion Θ on H be defined as follow:

xΘy ⇐⇒ x ◦ y ⊆ I and y ◦ x ⊆ I

for all x, y ∈ H. Then Θ is a regular congruence relation on H and I = [0]Θ.

3 Rough hyper BCK-ideals

Throughout this section H is a hyper BCK-algebra. In this section first
we define lower and upper approximation of the subset A of H with respect
to hyper BCK-ideal of H and prove some properties. Then we give the
definition of (weak, strong) rough hyper BCK-ideals and investigate the
relation between them and (weak, strong) hyper BCK-ideals of H.

Definition 3.1. Let Θ be a regular congruence relation on hyper BCK-
algebra H, I = [0]Θ, Ix = [x]Θ and A be a non-empty subset of H. Then the
sets

Apr
I
(A) = {x ∈ H|Ix ⊆ A},

AprI(A) = {x ∈ H|Ix ∩ A 6= φ}.

are called lower and upper approximation of the set A with respect to the
hyper BCK-ideal I, respectively.

Proposition 3.2. For every approximation space (H,Θ) and every subsets
A,B ⊆ H, we have:

(1) Apr
I
(A) ⊆ A ⊆ AprI(A),

(2) Apr
I
(φ) = φ = AprI(φ),
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(3) Apr
I
(H) = H = AprI(H),

(4) if A ⊆ B, then Apr
I
(A) ⊆ Apr

I
(B) and AprI(A) ⊆ AprI(B),

(5) Apr
I
(Apr

I
(A)) = Apr

I
(A),

(6) AprI(AprI(A)) = AprI(A),

(7) AprI(Apr
I
(A)) = Apr

I
(A),

(8) Apr
I
(AprI(A)) = AprI(A),

(9) Apr
I
(A) = (AprI(Ac))c,

(10) AprI(A) = (Apr
I
(Ac))c,

(11) AprI(A ∩B) ⊆ AprI(A) ∩ AprI(B),

(12) Apr
I
(A ∩B) = Apr

I
(A) ∩ Apr

I
(B),

(13) AprI(A ∪B) = AprI(A) ∪ AprI(B),

(14) Apr
I
(A ∪B) ⊇ Apr

I
(A) ∪ Apr

I
(B),

(15) Apr
I
(Ix) = H = AprI(Ix) for all x ∈ H.

Proof. (1), (2) and (3) are straightforward.

(4) For any x ∈ Apr
I
(A) we have Ix ⊆ A ⊆ B and so x ∈ Apr

I
(B). Now,

suppose that x ∈ AprI(A). Then Ix ∩A 6= φ and so Ix ∩B 6= φ. Hence

x ∈ AprI(B).

(5) Since Apr
I
(A) ⊆ A, by (4) we have Apr

I
(Apr

I
(A)) ⊆ Apr

I
(A). Now,

let x ∈ Apr
I
(A). Then Ix ⊆ A. Since for any y ∈ Ix, we have Ix = Iy,

then Iy ⊆ A and so y ∈ Apr
I
(A). Therefore, Ix ⊆ Apr

I
(A) and then

we obtain x ∈ Apr
I
(Apr

I
(A)).

(6) By (1) and (4), AprI(A) ⊆ AprI(AprI(A)). On the other hand, we

assume that x ∈ AprI(AprI(A)). Then we have Ix ∩AprI(A) 6= φ and

so there exist a ∈ Ix and a ∈ AprI(A). Hence Ia = Ix and Ia ∩ A 6= φ

which imply Ix ∩ A 6= φ. Therefore, x ∈ AprI(A).
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(7) By (1), we haveApr
I
(A) ⊆ AprI(Apr

I
(A)). Now, let x ∈ AprI(Apr

I
(A)).

Then Ix ∩ AprI
(A) 6= φ and so there exist a ∈ Ix and a ∈ Apr

I
(A).

Hence Ia = Ix and Ia ⊆ A which imply Ix ⊆ A. Therefore, x ∈
Apr

I
(A).

(8) By (1), we have Apr
I
(AprI(A)) ⊆ AprI(A). Now, we assume that

x ∈ AprI(A). Then Ix ∩ A 6= φ. For every y ∈ Ix, we have Iy = Ix

and so Iy ∩ A 6= φ. Hence y ∈ AprI(A) which implies Ix ⊆ AprI(A).

Therefore, x ∈ Apr
I
(AprI(A)).

(9) For any subset A of H we have:

(AprI(Ac))c = {x ∈ H : x 6∈ AprI(Ac)}

= {x ∈ H : Ix ∩ Ac = φ}

= {x ∈ H : Ix ⊆ A}

= {x ∈ H : x ∈ Apr
I
(A)}

= Apr
I
(A).

(10) For any subset A of H we have:

(Apr
I
(Ac))c = {x ∈ H : x 6∈ Apr

I
(Ac)}

= {x ∈ H : Ix 6⊂ Ac}

= {x ∈ H : Ix ∩ A 6= φ}

= {x ∈ H : x ∈ AprI(A)}

= AprI(A).

(11) Since A∩B ⊆ A and A∩B ⊆ B, then by (4), AprI(A∩B) ⊆ AprI(A)

and AprI(A∩B) ⊆ AprI(B). Hence AprI(A∩B) ⊆ AprI(A)∩AprI(B).
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(12) For any subset A and B of H we have:

x ∈ Apr
I
(A ∩B)⇐⇒ Ix ⊆ A ∩B

⇐⇒ Ix ⊆ A and Ix ⊆ B

⇐⇒ x ∈ Apr
I
(A) and x ∈ Apr

I
(B)

⇐⇒ x ∈ Apr
I
(A) ∩ Apr

I
(B).

(13) For any subset A and B of H we have

x ∈ AprI(A ∪B)⇐⇒ Ix ∩ (A ∪B) 6= φ

⇐⇒ (Ix ∩ A) ∪ (Ix ∩B) 6= φ

⇐⇒ Ix ∩ A 6= φ or Ix ∩B 6= φ

⇐⇒ x ∈ AprI(A) or x ∈ AprI(B)

⇐⇒ x ∈ AprI(A) ∪ AprI(B).

(14) Since A ⊆ A∪B and B ⊆ A∪B, then by (4), Apr
I
(A) ⊆ Apr

I
(A∪B)

and Apr
I
(B) ⊆ Apr

I
(A ∪B), which imply that Apr

I
(A) ∪ Apr

I
(B) ⊆

Apr
I
(A ∪B).

(15) The proof is straightforward.

Corollary 3.3. Let (H,Θ) be an approximation space. Then

(i) for every A ⊆ H, Apr
I
(A) and AprI(A) are definable sets,

(ii) for every x ∈ H, Ix is definable set.

Proof. (i) By proposition 3.2 (5) and (7), we haveApr
I
(Apr

I
(A)) = Apr

I
(A) =

AprI(Apr
I
(A)). Hence Apr

I
(A) is a definable set. On the other hand

by proposition 3.2 (6) and (8), we have AprI(AprI(A)) = AprI(A) =

Apr
I
(AprI(A)). Therefore AprI(A) is a definable set.

(ii) By proposition 3.2 (15) the proof is clear.
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Theorem 3.4. Let Θ be a regular congruence relation on H, I = [0]Θ be
a hyper BCK-ideal of H and A,B are non-empty subsets of H. Then

(i) AprI(A) ◦ AprI(B) = AprI(A ◦B),

(ii) Apr
I
(A) ◦ Apr

I
(B) ⊆ Apr

I
(A ◦B).

Proof. (i) Let z ∈ AprI(A) ◦ AprI(B). Then there exist a ∈ AprI(A) and

b ∈ AprI(B) such that z ∈ a ◦ b. Hence Ia ∩A 6= φ and Ib ∩B 6= φ and

so there exist c ∈ Ia ∩A and d ∈ Ib ∩B such that aΘc and bΘd. Since

Θ is a congruence relation on H, then we have a ◦ bΘ̄c ◦ d and because

z ∈ a ◦ b, then there exist y ∈ c ◦ d such that zΘy. Hence y ∈ Iz.

On the other hand, y ∈ c ◦ d ⊆ A ◦ B which implies Iz ∩ (A ◦ B) 6= φ

and so z ∈ AprI(A ◦B). Therefore AprI(A) ◦AprI(B) ⊆ AprI(A ◦B).

Now, suppose that x ∈ AprI(A ◦ B). Then Ix ∩ (A ◦ B) 6= φ. Let

z ∈ Ix ∩ (A ◦ B), then there exist a ∈ A and b ∈ B such that z ∈ a ◦ b
and Ix = Iz. Thus we have Iz ∈ Ia ◦ Ib and so Ix ∈ Ia ◦ Ib. Hence

x ∈ a ◦ b ⊆ A ◦ B ⊆ AprI(A) ◦ AprI(B). Therefore, AprI(A ◦ B) ⊆
AprI(A) ◦ AprI(B). 2

(ii) Let z ∈ Apr
I
(A) ◦ Apr

I
(B). Then there exist a ∈ Apr

I
(A) and b ∈

Apr
I
(B) such that z ∈ a ◦ b, Ia ⊆ A and Ib ⊆ B. For every y ∈ Iz, we

have Iz = Iy ∈ Ia ◦ Ib and so y ∈ a ◦ b ⊆ A ◦B. Then y ∈ A ◦B and so

Iz ⊆ A ◦B. Therefore z ∈ Apr
I
(A ◦B).

Example 3.5. Let H = {0, 1, 2} and define the hyper operation “◦”on H
as follow:

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {2} {0, 2}

Then (H, ◦) is a hyper BCK-algebra. Define the equivalence relation Θ by

Θ = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)}.

Then Θ is a regular congruence relation on H and so we have:

I = [0]Θ = {0, 1}, I1 = [1]Θ = {0, 1}, I2 = [2]Θ = {2}.
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Now, if we let A = {1, 2} and B = {0, 2}, then we have A◦B = {0, 1, 2} and
so

Apr
I
(A) = {x ∈ H|Ix ⊆ A} = {2},

AprI(A) = {x ∈ H|Ix ∩ A 6= φ} = {0, 1, 2},
Apr

I
(B) = {x ∈ H|Ix ⊆ B} = {2},

AprI(B) = {x ∈ H|Ix ∩B 6= φ} = {0, 1, 2},
Apr

I
(A ◦B) = {x ∈ H|Ix ⊆ A ◦B} = {0, 1, 2},

AprI(A ◦B) = {x ∈ H|Ix ∩ (A ◦B) 6= φ} = {0, 1, 2},
AprI(A) ◦ AprI(B) = {0, 1, 2},
Apr

I
(A) ◦ Apr

I
(B) = {0, 2}.

Therefore, we see that Apr
I
(A) ◦ Apr

I
(B) 6= Apr

I
(A ◦ B) but AprI(A) ◦

AprI(B) = AprI(A ◦B).

Definition 3.6. Let Θ be a regular congruence relation on H, I = [0]Θ be
a hyper BCK-ideal of H and A be a non-empty subset of H. If Apr

I
(A) and

AprI(A) are hyper subalgebra of H, then A is called a rough hyper subalgebra
of H.

Theorem 3.7. If I be a hyper BCK-ideal and J be a hyper subalgebra of
H, then

(i) AprI(J) is a hyper subalgebra of H.

(ii) If I ⊆ J , then Apr
I
(J) is a hyper subalgebra of H.

Proof. (i) Since 0 ∈ J ⊆ AprI(J), then AprI(J) 6= φ. Now, we assume

that x, y ∈ AprI(J). We must prove that x ◦ y ⊆ AprI(J). Since

Ix ∩ J 6= φ and Iy ∩ J 6= φ, we can let t ∈ Ix ∩ J , s ∈ Iy ∩ J and

z ∈ x ◦ y. Hence Iz ∈ Ix ◦ Iy = It ◦ Is and so z ∈ t ◦ s ⊆ J . Thus we

have z ∈ J and z ∈ Iz and so Iz ∩ J 6= φ. Therefore, z ∈ AprI(J) and

so x ◦ y ⊆ AprI(J).

(ii) Since I = I0 ⊆ J , we have 0 ∈ Apr
I
(J) 6= φ. Now, suppose that

a, b ∈ Apr
I
(J). Then Ia ⊆ J and Ib ⊆ J . For every z ∈ a ◦ b and every

y ∈ Iz, we have Iz = Iy ∈ Ia ◦ Ib and so y ∈ a ◦ b ⊆ J . Hence Iz ⊆ J ,

which implies that z ∈ Apr
I
(J). Therefore, a ◦ b ⊆ Apr

I
(J).
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Theorem 3.8. Let Θ and Φ be two regular congruence relations on H and
I = [0]Θ, J = [0]Φ be two hyper BCK-ideals of H such that I ⊆ J . Then
for any nonempty subset A of H, we have:

(i) Apr
J
(A) ⊆ Apr

I
(A),

(ii) AprI(A) ⊆ AprJ(A).

Proof. (i) First we show that if I ⊆ J , then Ix ⊆ Jx. Let y ∈ Ix. Then

xΘy. Since Θ is a congruence relation on H and xΘx, then x◦xΘ̄x◦y.

Since 0 ∈ x ◦ x, then there exist t ∈ x ◦ y such that 0Θt and so

t ∈ [0]Θ = I ⊆ J = [0]Φ. Thus by hypothesis, t ∈ [0]Φ and so x◦yΦ{0}.
By the similar way, we can show that y ◦ xΦ{0}. Since Φ is a regular

congruence relation, we get xΦy and so y ∈ [x]Φ = Jx. Therefore,

Ix ⊆ Jx. Now, let x ∈ Apr
J
(A). Then Jx ⊆ A and so Ix ⊆ A which

implies x ∈ Apr
I
(A).

(ii) Assume that x ∈ AprI(A). Then Ix ∩ A 6= φ. Since Ix ⊆ Jx, we have

Jx ∩ A 6= φ. Therefore, x ∈ AprJ(A).

Corollary 3.9. Let Θ and Φ are two regular congruence relations on H,
I = [0]Θ, J = [0]Φ be two hyper BCK-ideals of hyper BCK-algebra H and
A be a non-empty subset of H. Then

(i) Apr
I
(A) ∩ Apr

J
(A) ⊆ Apr

I∩J
(A),

(ii) AprI∩J(A) ⊆ AprI(A) ∩ AprJ(A).

Proof. By theorem 3.8, the proof is clear.

Definition 3.10. Let Θ be a regular congruence relation on H, I = [0]Θ
be a hyper BCK-ideal of H, A be a non-empty subset of H and AprI(A) =
(Apr

I
(A), AprI(A)) be a rough set in the approximation space (H,Θ). If

Apr
I
(A) and AprI(A) are hyper BCK-ideals (resp, weak, strong) of H, then

A is called a rough hyper BCK-ideal (resp, weak, strong) of H.
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Example 3.11. Let H = {0, 1, 2, 3} and hyper operation “◦”on H is de-
fined as follow:

◦ 0 1 2 3
0 {0} {0} {0} {0}
1 {1} {0, 1} {0} {1}
2 {2} {2} {0, 1} {2}
3 {3} {3} {3} {0, 3}

Then (H, ◦, 0) is a hyper BCK-algebra. We define the regular congruence
relation on H as follow:

Θ = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0)}.

So we have:
I = I0 = I1 = {0, 1}, I2 = {2}, I3 = {3}.

Now, let A = {0, 1, 3} be a subset of H, then

Apr
I
(A) = {x ∈ H|Ix ⊆ A} = {0, 1, 3},

AprI(A) = {x ∈ H|Ix ∩ A 6= φ} = {0, 1, 3}.

Easily we give that Apr
I
(A) and AprI(A) are hyper BCK-ideals. Therefore,

A is a rough hyper BCK-ideal of H.

Example 3.12. Let H = {0, a, b, c}. By the following table (H, ◦) is a
hyper BCK-algebra.

◦ 0 a b c
0 {0} {0} {0} {0}
a {a} {0, a} {0} {a}
b {b} {b} {0, a} {b}
c {c} {c} {c} {0, c}

Now, let relation Θ on H is defined as follow:

Θ = {(0, 0), (a, a), (b, b), (c, c), (0, b), (b, 0), (0, a), (a, 0), (a, b), (b, a)}.

Then,
I0 = Ia = Ib = {0, a, b}, Ic = {c}.

Let J1 = {0, c}, J2 = {0, b} and J3 = {c}. Then,

Apr
I
(J1) = {c}, AprI(J1) = {0, a, b, c},

Apr
I
(J2) = {}, AprI(J2) = {0, a, b},

Apr
I
(J3) = {c}, AprI(J3) = {c}.
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Hence we can see that J1 is a hyper BCK-ideal of H but Apr
I
(J1) is not a

hyper BCK-ideal. Moreover J2 is not a hyper BCK-ideal but AprI(J2) is a
hyper BCK-ideal of H. In follows, J3 is not a hyper BCK-ideal and neither
Apr

I
(J3) nor AprI(J3) is a hyper BCK-ideal of H.

Theorem 3.13. Let Θ be a regular congruence relation on H and I = [0]Θ
be a hyper BCK-ideal of H. Then

(i) If J be a weak hyper BCK-ideal of H containing I, then Apr
I
(J) is a

weak hyper BCK-ideal of H,

(ii) If J be a hyper BCK-ideal of H containing I, then Apr
I
(J) is a hyper

BCK-ideal of H,

(iii) If J be a strong hyper BCK-ideal of H containing I, then Apr
I
(J) is

a strong hyper BCK-ideal of H.

Proof. (i) Since I = I0 ⊆ J , then 0 ∈ Apr
I
(J). Now, Let x, y ∈ H be such

that x ◦ y ⊆ Apr
I
(J) and y ∈ Apr

I
(J). We must prove that Ix ⊆ J .

Let a ∈ Ix and b ∈ Iy. Then aΘx and bΘy. Since Θ is a congruence

relation on H, we have a◦ bΘx◦y and so for every z ∈ a◦ b, there exist

t ∈ x ◦ y such that zΘt. Since x ◦ y ⊆ Apr
I
(J), we have t ∈ Apr

I
(J)

and so It = Iz ⊆ J which implies z ∈ J . Thus a ◦ b ⊆ J . On the

other hand, b ∈ Iy ⊆ J . Since J is a weak hyper BCK-ideal, we have

a ∈ J and so Ix ⊆ J . Hence x ∈ Apr
I
(J). Therefore, Apr

I
(J) is a

weak hyper BCK-ideal of H.

(ii) Let x, y ∈ H be such that x ◦ y � Apr
I
(J) and y ∈ Apr

I
(J). We

must prove that Ix ⊆ J . Let a ∈ Ix and b ∈ Iy. Then aΘx and

bΘy. Since Θ is a congruence relation on H, we have a ◦ bΘx ◦ y and

so for every z ∈ a ◦ b, there exist z′ ∈ x ◦ y such that zΘz′. Since

z′ ∈ x ◦ y � Apr
I
(J), then there exists t ∈ Apr

I
(J) ⊆ J such that

z′ � t and so from zΘz′, we have I0 ∈ Iz′ ◦ It = Iz ◦ It. Hence 0 ∈ z ◦ t
and then z � t. Thus we have proved that for every z ∈ a ◦ b, there

exist t ∈ J such that z � t which means that a ◦ b� J . On the other

hand we have b ∈ Iy ⊆ J . Since J is a hyper BCK-ideal of H, we

16



Rough Set Theory Applied To Hyper BCK-Algebra

have a ∈ J . Thus Ix ⊆ J which implies that x ∈ Apr
I
(J). Therefore,

Apr
I
(J) is a hyper BCK-ideal of H.

(iii) Suppose that x, y ∈ H be such that (x ◦ y) ∩ Apr
I
(J) 6= φ and y ∈

Apr
I
(J). Let a ∈ Ix and b ∈ Iy. Then aΘx and bΘy. Since Θ is a

congruence relation on H, we have a◦bΘx◦y. Since (x◦y)∩Apr
I
(J) 6=

φ, then there exist t ∈ H such that t ∈ x ◦ y and t ∈ Apr
I
(J). Now,

t ∈ x ◦ yΘa ◦ b implies that there exist z ∈ a ◦ b such that zΘt and so

It = Iz ⊆ J . Hence z ∈ J and so (a◦b)∩J 6= φ. On the other hand, we

have b ∈ Iy ⊆ J . Since J is a strong hyper BCK-ideal of H, then we

have a ∈ J which implies Ix ⊆ J that means x ∈ Apr
I
(J). Therefore,

Apr
I
(J) is a strong hyper BCK-ideal of H.

Theorem 3.14. Suppose that I be a hyper BCK-ideal of H and Θ be a
regular congruence relation on H which is defined as follow:

xΘy ⇔ x ◦ y ⊆ I and y ◦ x ⊆ I.

(i) If J be a weak hyper BCK-ideal of H containing I, then AprI(J) is a
weak hyper BCK-ideal of H,

(ii) If J be a hyper BCK-ideal of H containing I, then AprI(J) is a hyper
BCK-ideal of H,

(iii) If J be a strong hyper BCK-ideal of H containing I, then AprI(J) is
a strong hyper BCK-ideal of H.

Proof. (i) Since I ⊆ J ⊆ AprI(J), then we have 0 ∈ AprI(J). Let x, y ∈
H be such that x◦y ⊆ AprI(J) and y ∈ AprI(J). Then Iy∩J 6= φ and

for every z ∈ x◦y, we have z ∈ AprI(J) which means Iz ∩J 6= φ. Thus

there exist a, b ∈ H such that a ∈ Iy ∩ J and b ∈ Iz ∩ J which imply

that aΘy, bΘz and a, b ∈ J . Thus y ◦ a ⊆ I ⊆ J and z ◦ b ⊆ I ⊆ J and

so we get y, z ∈ J , since J is a weak hyper BCK-ideal. Thus we have

proved that for any z ∈ x ◦ y, we have z ∈ J and so x ◦ y ⊆ J . Since J

is a weak hyper BCK-ideal and y ∈ J , obviously we have x ∈ J . Since

x ∈ Ix, then Ix ∩ J 6= φ. Therefore x ∈ AprI(J) and so AprI(J) is a

weak hyper BCK-ideal of H.
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(ii) Let x, y ∈ H be such that x ◦ y � AprI(J) and y ∈ AprI(J). Then

Iy ∩ J 6= φ and for every z ∈ x ◦ y, there exist t ∈ AprI(J) such that

z � t and It ∩ J 6= φ. Thus, there exist c, d ∈ H such that c ∈ It ∩ J
and d ∈ Iy ∩ J and so cΘt, dΘy and c, d ∈ J . Hence t ◦ c ⊆ I ⊆ J

and y ◦ d ⊆ I ⊆ J . Since J is a hyper BCK-ideal and c, d ∈ J , we

have y, t ∈ J . Thus, we have proved that for every z ∈ x ◦ y, there

exist t ∈ J such that z � t which means that x ◦ y � J and so from

y ∈ J we get x ∈ J . Consequently, Ix ∩ J 6= φ and so x ∈ AprI(J).

Therefore, AprI(J) is a hyper BCK-ideal.

(iii) Let x, y ∈ H be such that (x ◦ y) ∩ AprI(J) 6= φ and y ∈ AprI(J).

Then Iy ∩ J 6= φ and so there exist z ∈ H such that z ∈ x ◦ y and

z ∈ AprI(J). Hence Iz ∩ J 6= φ and so there exist c, d ∈ H such that

c ∈ Iz ∩J and d ∈ Iy ∩J . Hence cΘz and dΘy where c, d ∈ J . Thus we

have z ◦ c ⊆ I ⊆ J and y ◦ d ⊆ I ⊆ J . Since J is a strong hyper BCK-

ideal and c, d ∈ J , we have z ∈ J and y ∈ J . Thus we have proved

that (x ◦ y) ∩ J 6= φ and y ∈ J . Since J is a strong hyper BCK-ideal,

we have x ∈ J and so Ix∩J 6= φ which means that AprI(J) is a strong

hyper BCK-ideal of H.

4 Conclusion

This paper is intend to built up connection between rough sets and hy-
per BCK-algebras. We have presented a definition of the lower and upper
approximation of a subset of a hyper BCK-algebra with respect to a hyper
BCK-ideal. This definition and main results are easily extended to other
algebraic structures such as hyper K-algebra, hyper I-algebra, etc.
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