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Abstract: Exact solutions of Navier-Stokes equation, presenting a new asymmetric vortex, in framework of mod-

ified by Shivamoggi Burgers vortex [8], has been obtained both for steady and for specific unsteady cases. The 

steady vortex is expressed by the function of parabolic cylinder, unsteady one is expressed by Hermit polyno-

mials. 
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1 Introduction  

The standard whirlwind of Burgers is axisymmetric. In cylindrical system of co-ordinates (r, θ, z) it is defined as 

vr = - γr,  

vθ = ωr0
2 [1- exp (-r2/r0

2)]/r,  

vz = 2γz                              (1) 

Also represents a whirlwind with a converging stream of substance to its center where γ characterizes a con-

verging stream, and ω and r0 - circulation and the size of a trunk of a whirlwind. Rotation in the field of a 

whirlwind trunk almost solid-state and on the big distances a profile of rotary speed falls down under the hy-

perbolic law.  

In the Cartesian system of co-ordinates (x, y, z) the standard whirlwind of Burgers will be presented in a kind 

   vx = - γx - ωr0
2y [1 exp (-r2/r0

2)]/r2, 

   vy = - γy + ωr0
2x [1 exp (-r2/r0

2)]/r2,  

vz = 2γz,                       (2) 

where r2 ≡ x2 + y2.  

This whirlwind in works [1,2] has been used by as a trap for dust particles in the course of planetesimals for-

mation.   

Liquid turbulent flows show on a profuseness of the stretched whirlwinds of an average and a vast scale. Process 

of a stretching of a whirlwind is connected with energy transport in various scales of turbulence, and also with 

processes of disintegration and whirlwinds recombination, process - not quite understood now. In the literature 

there are the works devoted to generalization of Burgers vortex with no axisymmetric stream lines.  

Authors of work [3] investigated the solution for a whirlwind of Burgers, and have found the closed form of 

steady private solutions. Unstable 2D by solutions of a whirlwind of Burgers have been simulated spatial 
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structure of rough turbulent layers ([4,5]). The axisymmetric whirlwind of Burgers is widely used in problems of 

modelling of thin structure of turbulence of a homogeneous incompressible liquid ([6,7]).  

The author of work [8] considered the modified whirlwind of Burgers which describes convection lines of a 

whirlwind round axis Z and extended along axis Y. Exact solutions have been found in a special stationary case 

when the stream parameter γ is constant.  

In the present work possibility of new exact solutions, as for stationary, and a specific non-stationary case is 

shown.  

2. Generalized Burgers Vortex 

The field of speeds of the modified whirlwind of Burgers considered in work [8], in the Cartesian system of co-

ordinates has been presented in a kind 

      v = (- 𝛾 (t) x, 𝛾 (t) y, W (x, t)),  (3) 

which describes convection lines of a whirlwind round axis Z and stretched along axis Y. Lines of speed of a 

stream are identical in the planes parallel XY to a plane. A rotor of speed field (3) has only component Y:  

     ω = ∇×v = (0, - ∂W / ∂ x, 0) (4) 

therefore, vortical stream lines are extended along the axis Y.  

Using (3) and (4), the equation of Navier-Stocks we will present in a kind  

∂ω / ∂ t + (v ∙∇) ω = (ω∙∇) v + ν∇ 2 ω 

or 

∂Ω / ∂ t - γx ∂Ω / ∂ x = γ Ω + ν∂ 2 Ω / ∂ x2      (5) 

where v is kinematic viscosity of substance, and  

Ω ≡ ∂W /∂X.    

Introduction of dimensionless independent variables  

   ξ = x √γ(t)/ν,  τ = ∫γ (t) dt,    (6)  

The equation (5) is led to a look [8] 
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  (7)  

Let's notice that the factor of the second member in the left part (7) depends on τ through the relation (6). 

Generally this equation does not suppose exact solutions, except for special cases. In work [8] the case γ = 

constant at which (7) supposes the exact solution in the form of polynomials of Hermit has been considered.  

Other case at which exact solution there exists, is  
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dγ/dt = 2Aγ2, 

which solution looks like  

         𝛾 (t) =-1 / (2At + B), 

where A and B constants chosen so that, 𝛾(t) > 0. It is necessary, that the co-ordinates defined by parities (6), 

were real. We will notice that, at A = 0 case considered in work [8] γ = constant is received. The equation (7) 

takes the form now    

∂Ω / ∂τ = Ω + αξ∂Ω / ∂ξ + ∂2 Ω / ∂ξ 2,   (8) 

where α = 1 - 2A > 0. The solution of this equation should satisfy to a condition  

ǀξǀ→∞, Ω→ 0. 

3 Exact Solutions  

If to assume 𝜕Ω / 𝜕𝜏 = 0 the exact solution of the equation (8) looks like function of the parabolic cylinder:  

Ω (ξ) = C exp {- αξ 2/4} ·D1 /α-1 (ξ). 

Therefore a z - component of speed will be expressed as 
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where C is arbitrary constant.  

Graphs of function of the parabolic cylinder, D1 / α-1 (ξ), for values of parameter α = l and α = 1/3 are presented 

on Figure 1. 

  

Fig. 1 Function of parabolic cylinder D1 (ξ) and D2 (ξ) - down 

 

The equation (8) supposes also the exact non-stationary solution with divided variables. Representing the solu-

tion in a kind  

    Ω (ξ, τ) = h (ξ) e - λτ,  (9) 
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Where 𝜆 - a constant, from (8) for h we receive the equation  
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+ + = −  (10)  

That the solution (9) was limited, we will demand  

λn = (n + 1) 𝛼 - 1, n = 0,1,2... (11) 

That gives the solution in the form of polynomials of Hermit 

hn (𝜉) = (-1) n exp {- αξ 2/4} Hn (𝜉√𝛼/2),   (12) 

Where 

H0 (ξ) = 1, H1 (ξ) = ξ, H2 (ξ) = ξ 2 - 1... 

Detailed properties of the received solutions and their application to protoplanetary disks will be given in the 

subsequent works. 
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