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Abstract 

In this study, the nonlinear vibration analysis of nano/micro electromechanical (NEMS/MEMS) piezoelectric 

beam exposed to simultaneous electrostatic and piezoelectric actuation. NEMS/MEMS beam actuate with 

combined DC and AC electrostatic actuation on the through two upper and lower electrodes. An axial force 

proportional to the applied DC voltage is produced by piezoelectric layers present via a DC electric voltage 

applied in the direction of the height of the piezoelectric layers. The governing differential equation of the 

motion is derived using Hamiltonian principle based on the Eulere-Bernoilli hypothesis and then this partial 

differential equation (PDE) problem is simplified into an ordinary differential equation (ODE) problem by using 

the Galerkin approach. Hamiltonian approach has been used to solve the problem and introduce a design 

strategy. Phase plane diagram of piezoelectric and electrostatically actuated beam has plotted to show the 

stability of presented nonlinear system and natural frequencies are calculated to use for resonator design. The 

result compare with the numerical results (fourth-order Runge-Kutta method), and approximate is more 

acceptable and results show that one could obtain a predesign strategy by prediction of effects of mechanical 

properties and electrical coefficients on the stability and forced vibration of common electrostatically actuated 

micro beam. 

Keywords: NEMS/MEMS, Piezoelectric and Electrostatically actuated, Hamiltonian approach, Nonlinear Force 

Vibrations, Euler-Bernoulli theory, Galerkin method. 

1. Introduction 

Today, Nano/Micro electromechanical system (NEMS/MEMS) devices are in the heart of new technologies which 

are widely used in aerospace, automotive, biotechnology, instrumentation, robotics or manufacturing. The 

application of Nano/micro electromechanical system (NEMS/MEMS) devices especially the electrically actuated 

MEMS devices which require few mechanical components and small voltage levels for actuation is continuously 

growing. Analysis, modeling and experimental results related to the nonlinear behavior of NEMs / MEMs systems 

have numerously been reported in recent years that in references [1–14] consider such as them.  

Azizi et al. considered Mass detection based on pure parametric excitation of a micro beam actuated by 

piezoelectric layers [1]. They showed that the micro beam was excited nearby the periodic solutions outside the 

boundaries of the region of parametric resonance. Also application of piezoelectric actuation to regularize the 

chaotic response of an electrostatically actuated micro-beam investigated by Azizi et al. [2]. Maani Miandoab et 

al. reported study of nonlinear dynamics and chaos in MEMS/NEMS resonators [3]. The presented results 

revealed that chaotic motion occurs when the system steady state response intersects with the homoclinic orbit. 

It is interesting to note that for a resonator with high damping ratio, the chaotic motion occurs where the 

corresponding maximum velocity approaches to the homoclinic orbit velocity; on the other hand, a resonator 

with low damping ratio becomes chaotic where its vibration amplitude approaches the homoclinic orbit 

amplitude. Mahmoodi et al. investigated non-linear vibrations and frequency response analysis of 

piezoelectrically driven microcantilevers [4]. They concluded that in microscale beams, a small change in 

amplitude of excitation could increase the amplitude of vibration considerably. Yiming Fu et al. studied the 

application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system 
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(MEMS) [5]. Mashinchi et al. analytical solution for nonlinear vibration of Micro-Electro-mechanical system 

(MEMS) by analytical approach [6]. Study on the use of perturbation technique for analyzing the nonlinear forced 

response of piezoelectric microcantilevers by M. Zamanian et al. [7].In this paper, a comparison was made 

between direct and indirect perturbation approaches for solving the non-linear vibration equations of a 

piezoelectrically actuated cantilever microbeam. Ghanbari et al. investigated squeeze film damping in a micro-

beam resonator based on micro-polar theory [8]. Sadeghzadeh et al. proposed Higher Order Hamiltonian 

Approach to the Nonlinear Vibration of Micro Electro Mechanical Systems [9]. Rhoads et al. studied the dynamic 

response of a class of electrostatically driven MEM oscillators [10]; cubic type of nonlinearity due to the nonlinear 

spring and time-varying linear and nonlinear stiffness due to electrostatic actuation were included in their 

formulation. Shabani et al investigated the development of superharmonics and chaotic response in an 

electrostatically actuated torsional micro-mirror near pull-in condition [11]. They reported DC and AC symmetry 

breaking in their model, which led to chaotic response by increasing the amplitude of the harmonic excitation. 

DC and AC symmetry breaking in NEMS/MEM devices was previously reported by De and Aluru [12]. Haghighi 

and Markazi [13] proposed a MEM SDOF system with electrostatic actuation on both sides of the proof mass. 

Using Melnikov’s theorem they investigated the chaotic response of the system in terms of the governing 

parameters. They proposed a robust adaptive fuzzy control algorithm to regularize the chaotic response of the 

system. The model studied in the present study is a clamped–clamped micro-beam, sandwiched with two 

piezoelectric layers through the length of the micro-beam. Piezoelectrically sandwiched micro-beams were first 

proposed by Rezazadeh et al. [14] to control the static pull-in instability of a MEM device, and later on similar 

models were studied. Nonlinearity in NEMS/MEMS may cause some difficulties in computations.  

Recently, some approximate methods are considered to be the powerful methods capable of handling strongly 

nonlinear behaviors, especially in NEMS/MEMS systems and can converge to an accurate periodic solution for 

smooth nonlinear systems that can be showed in works of Hashemi kachapi et al. in references [15-24].  

In current study, the methodology of the Hamiltonian for solving an ordinary differential equation with strong 

power nonlinearity is presented. Numerical comparisons (forth order range- kutta method) and results were 

carried out to confirm the rightness and accuracy of the applied method. Deriving the dimensionless equation 

of motion and separation with assumed mode method, first approximation of Hamiltonian of system has 

proposed and then, natural frequency calculated for each case. Finally, we show the effects of various parameters 

on the frequency of piezoelectric and electrostatically actuated nano/micro beam, concluding Hamiltonian 

approach is completely efficient and agreeable. Other similar work, the effects of voltage ACV which leads to 

forced harmonic vibration is not consideration and is usually considered to be zero. The main feature of the 

present work to consider the voltage ACV  on the natural frequency and dynamic response. 

2. Mathematical Model 

As illustrated in Fig. 1, the studied model is an isotropic clamped–clamped nano-micro beam of length l , width 

a , thickness h , density  , and Young’s modulus E . The nano-micro beam is sandwiched with two 

piezoelectric layers throughout the length of the microbeam. The piezoelectric layers are of thickness ph  and 

density 
p . The Young’s modulus of the piezoelectric layers is denoted by 

pE  , and the equivalent piezoelectric 

coefficient is denoted by 31e . Two electrodes are placed underneath and on top of the micro-beam. Initial gaps 

between the micro-beam and the electrodes are both 0g  and the applied electrostatic voltages by the upper 

and lower electrodes are denoted by uV  and lV  , respectively.  
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Fig. 1. Schematics of the clamped–clamped piezoelectrically sandwiched nano-micro beam and the electrodes 

The applied voltage through the upper electrode is supposed to be a combination of a DC voltage DCV  and an 

AC voltage with amplitude ACV  and frequency  ; the voltage applied through the lower electrode is a pure 

DC voltage, the same as the DC component of the upper electrode. The coordinate system, as illustrated in 

Figure 1 is attached to the midplane of the very left end of the micro-beam, where x and z are respectively the 

horizontal and vertical coordinates. The deflection of the micro-beam along the z axis is denoted by ( , )w x t . 

When a clamped–clamped beam undergoes bending, the extended length of the beam
'( )l  becomes larger 

than its initial length l , leading to the introduction of an axial force as follows [25]: 

2
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Here 
'l  is estimated based on the integration of the arc length ds as [26]: 
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(2) 

The governing equation of the transverse motion can be obtained by the minimization of the Hamiltonian using 

variational principle. The total potential strain energy of the nano-micro beam includes the bending and axial 

strain energies ( ,b aU U ) and the electrical energy eU  as [27]: 
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(3) 

where I  and 
pV  denote respectively the moment of inertia of the cross-section about the horizontal axis 

passing through the center of the surface for the cross-section of the micro-beam, and the applied voltage to 

the piezoelectric layers. In Eq. (3) the first two terms are the strain energies due to the bending of the microbeam, 

the third term is the strain energy due to the axial force of the piezoelectric layers, the fourth term is the strain 
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energy due to the stretching of the midplane and the last two terms indicate the electrical potential energy 

stored between the micro-beam and the two substrates, underneath and above; 0  is the dielectric constant of 

the gap medium. 

The kinetic energy of the micro-beam is represented as [27]: 

2 2 2
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(4) 

The Hamiltonian is represented in the following form: 

H T U= −

 
(5) 

Substituting Eqs. (3) and (4) into Eq. (5), the Hamiltonian reduces to 
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) 

Based on the fact that the variation of the integral of the Hamiltonian over the time period [0, t] vanishes, namely,

0
( ) 0

l

T U dt − = , the governing equation of motion and the corresponding boundary conditions are 

obtained as 
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subject to the following boundary conditions for climbed- climbed: 
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where: 

31( ) ( ), 2
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(9) 

The integral term in Eq. (7) represents the midplane stretching of the micro-beam due to the immovable edges. 

Nonlinearities in resonant microsystems generally arise from three sources: (i) large (finite) structural 

deformations, (ii) displacement dependent excitations (stiffness parametric excitation), and (iii) tip/sample 

interaction potentials (e.g. electrostatic interactions, and the Lennard–Jones potential). 
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According to Eq. (7), two types of nonlinearities exist in this model. The nonlinearity of the dynamics of the 

structure adds interesting behavior to the response of the system. For convenience the following non-

dimensional parameters (with over-hats) are introduced: 

0

, , ,
w x t

W t
g l t

 = = =  = 

 

(10) 

where t is a timescale defined as follows: 
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=

 

(11) 

Substituting Eq. (10) into Eq. (7) and dropping the hats and assuming the amplitude of the AC voltage to be 

much less than the DC voltage, the equation of the motion in the non-dimensional form is obtained: 
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Where 
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To approximate the homoclinic trajectory of Eq. (12) with the homoclinic orbit of the well-known Duffing 

equation, Galerkin method is used to discretize Eq. (13); therefore the approximate solution is supposed to be 

in the form 

1

( , ) ( ) ( )
n

i i

i

W u    
=

=
 

(14) 

The deflection ( , )W    in Eq. (14) is expressed as a sum of spatial shapes that, a priori, satisfy the imposed 

kinematic boundary conditions and n is the number of degrees of freedom, ( )i   is the i th eigenfunction of 

the beam and ( )iu   is the i th time-dependent deflection parameter of the beam. Based on a single degree-

of- freedom model of the beams (n=1), Eq. (14) can be solved with appropriate accuracy. 

For example, ( )   can be assumed as 

2 2( ) 16 (1 )   = −

 

(15) 

or  
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Eqs. (15) or (16) are the first eigenfunction of a double-clamped beam that satisfy all the kinematic boundary 

conditions. 

In order to avoid division by zero in the electrostatic force term, we multiply Eq. (5) by 
2 2(1 ( , ))W  − , as a 

result; 
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The one-parameter Galerkin method can be computed by: 
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After substituting for ( )( , )T W    from Eq. (17) into Eq. (18), multiplying by ( )  , and integrating the outcome 

from 0 to 1, we obtain 
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That the nonlinear ordinary differential equation is; 
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here a overdot (.) denotes differentiation with respect to the time variable  , while a prime ( ')  indicates the 

partial differentiation with respect to the coordinate variable  . Eq. (21) is a nonlinear ordinary differential 

equation which can be solved by analytical approaches especially Hamiltonian method. In the next section, the 

Hamiltonian approach is utilized to study this nonlinear system. 

3. Solution Procedure 

For the application of Hamiltonian approach, consider a general nonlinear oscillator in the form: 
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Where u  and   are generalized dimensionless displacement and dimensionless time and A  is amplitude of 

oscillator. Based on the variational principle, by implementing the semi-inverse method and He’s method [15-

18], variation parameter could be written as; 
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Where 2 /T  =  is period of the oscillator and ( )
F

f u
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
. Thus, Hamiltonian of presented problem could 

be expressed as; 
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Then defining a new function as; 
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From Eq. (26) we can obtain approximate frequency–amplitude relationship of a nonlinear oscillator. For current 

special problem, we have following Hamiltonian equation: 

( ) ( )

( )

2
2 2 4

1 2 3 4 5 6

3 4 6 8 2

7 8 9 10 4 5 6

3 4 6 8

7 8 9 10

1
sin( ) sin( )

2 2

sin( ) sin( ) sin( )
3 4 6 8 2

sin( )
3 4 6 8

u
H u u u u

u u u u A
A

A A A A

       

         

    

= + + +  + + 

+  + + + =  + + 

+  + + +
 

(27

) 

or  

( ) ( ) ( )
2 2

2 2 4

1 2 3 4 5 6

3 3 4 4 6 6 8 8

7 8 9 10

1
sin( ) sin( )

2 2 2

sin( )
3 3 4 4 6 6 8 8

u A
R u u u u A

u A u A u A u A

       

    

 
= + + +  − + +  − 

 

       
+  − + − + − + −       

       
 

(28

) 

For satisfying of the initial conditions, its initial approximate guess can be expressed as 

cosu A =

 

(29) 

Substituting Eq. (29) into Eq. (28), the frequency–amplitude relationship can be obtained from; 

( )

( ) ( )( )

( ) ( ) ( )

( )

2 2 2 2 2 4 4

1 2 3

2
2

4 5 6

3 4 6
3 4 6

7 8 9

8
8

10

1
sin cos cos

2

sin cos 1 sin cos 1
2

sin cos 1 cos 1 cos 1
3 4 6

cos 1 0
8

R A A A

A
A

A A A

A

      

      

      

 

= + +

+  − + +  −

+  − + − + −

+ − =

 

(30

) 

Therefore, equation (30) could be solved, and the natural frequency could be obtained as; 

 (31) 

For the trial function Eq. (15) and use of the relations (22) values of 1 - 10  are obtained as follows. 
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1 2 3 4 3

2

5 3 1 6 3

7 3 8 2 9 1

10 2

40.64, 59.91, 24.82, 106.7 ,

162.54 487.62 487.62 , 162.54 ,

68.2 , 872.94 2377.72 , 376.01 ,

1833.52

DC AC

DC DC AC

DC AC

V V

V V V

V V

    

    

     

 

= = − = = − 
 

= − − + = − 
 

= − = + = 
 = 

 

(32) 

By choosing any arbitrary point-like / 4 = , and setting 0
4

R





 
= = 

 
, also Setting values 

( 1..10)i i = in Eq. (31),the natural frequency could be obtained as following:  

( )4 2

2

3

7 2

2 3 1

3

2 3

5

1

3 0.062042 0.29954 0.40635

7.498 sin 3.5269 sin

0.23570 51.568 6 ( 1.6254 4.8762 4.8762 )

4.5 (8.7294 23.777 ) 9.7524 sin

13.16

DC AC DC AC

DC

DC AC

A A A

V V A V V

A A V

A A V V

A

  

  

  




− − +

  + 
 
− − − − + 

 
− + +  

 − =
( )

1/2

2 40.40635 0.29954 0.062042A A A











− +
 

(33) 

As a result, the natural frequency is dependent on the parameters of 1 2 3, , , , ,DC ACA V V    and  . 

Substituting Eq. (33) into Eq. (29) yields: 

( )4 2

2

3

7 2

2 3 1

3

2 3

5

1

3 0.062042 0.29954 0.40635

7.498 sin 3.5269 sin

0.23570 51.568 6 ( 1.6254 4.8762 4.8762 )

4.5 (8.7294 23.777 ) 9.7524 sin

13.16
( ) cos(

DC AC DC AC

DC

DC AC

A A A

V V A V V

A A V

A A V V

A
u A

  

  

  




− − +

  + 
 
− − − − + 
 
− + +  
 − 

=
( )

1/2

2 4
)

0.40635 0.29954 0.062042A A A



 
 
 
 
 
 
 
 

− +
 

() 

Where shows dynamic response of piezoelectric and electrostatically actuated nano/micro beam and shows 

such approach is much simpler and has been widely used. 

4. Results and discussion 

The geometrical and mechanical properties of the case study are represented in Table 1. 

Table 1. Geometrical and material properties of the nano/micro and piezoelectric layers 

Geometrical and material property Micro beam Piezoelectric layers 

Length ( L ) 600 m  600 m  

Width (a ) 30 m  30 m  

Height ( h ) 3 m  0.01 m  
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Initial gap ( 0w ) 2 m  - 

Young`s modulus ( E ) 169.61GPa  76.6 GPa  

Density (  ) 32331 /kg m  
37500 /kg m  

Piezoelectric constant ( 31e ) - 9.29−  

Permittivity constant ( 0 ) 128.85 10 /F m−  - 

Mass ( ng ) 41.958  2.7  

The comparison between Hamiltonian approach and fourth-order Runge-Kutta method is plotted in Figs. (2-4) 

that natural frequency of piezoelectric and electrostatically actuated nano/micro beam is considered.  

 

Fig.2. Effect of 3  parameter on natural frequency piezoelectric and electrostatically actuated nano/micro 

beam with 1 21, 1, 1, 1, 1, 1DC ACA V V = = =  = = =  

Figure 2 depicts the effect of parameter 3  on natural frequency of nano/micro beam with parameters 

1 21, 1, 1, 1, 1, 1DC ACA V V = = =  = = =  and various values for 3 . It can be observed that the 

frequency increases with increasing 3 . Obtained results by the first-order Hamiltonian are close to the higher-

order numerical solution, especially for low amplitudes. 
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Fig.3. Effect of ACV  parameter on natural frequency piezoelectric and electrostatically actuated nano/micro 

beam with 1 2 31, 1, 1, 1, 1, 1DCA V  = = = =  = =  

In Figure 3 shows the effect of applied voltage ACV  on natural frequency of nano/micro beam with parameters 

1 2 31, 1, 1, 1, 1, 1DCA V  = = = =  = =  and various values for ACV . In comparison with previous figure, the 

frequency increases with increasing ACV  but the maximum value of natural frequency is higher. 

 

Fig.4. Effect of   parameter on natural frequency piezoelectric and electrostatically actuated nano/micro 

beam with 1 2 31, 1, 1, 1, 1, 1DC ACA V V  = = = = = = . 
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Figure 4 shows the effect of forced harmonic frequency   on natural frequency. This figure shows that the 

natural frequency is the same for all values of  and only the period increased by increasing the amount of 

.  

Dynamic response of piezoelectric and electrostatically actuated nano/micro beam are depicted in Figures (5-

11).
 

 

Fig.5. Comparison of dynamic response obtained with Hamiltonian approach and forth order rang-kutta 

method for different values of 1  parameter and 2 31, 1, 1, 1, 1, 1DC ACA V V = = =  = = =  

 

Fig.6. Comparison of dynamic response for different values of 2  parameter and 

1 31, 1, 1, 1, 1, 1DC ACA V V = = =  = = =  
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Fig.7. Comparison of dynamic response for different values of 3  parameter and 

1 21, 1, 1, 1, 1, 1DC ACA V V = = =  = = =  

 

Fig.8. Comparison of dynamic response for different values of A  parameter and 

1 2 31, 1, 1, 1, 1, 1DC ACV V  = = =  = = =  



The MathLAB Journal Vol 3 (2019)                                                     http://www.purkh.com/index.php/mathlab                          

173 

 

Fig.9. Comparison of dynamic response for different values of DCV  parameter and 

1 2 31, 1, 1, 1, 1, 1ACA V  = = = =  = =  

As shown in Figures 9 and 10, it is obvious that increasing amounts of sauce plays a large role in increasing the 

amount of output. 

 

Fig.10. Comparison of dynamic response for different values of ACV  parameter and 

1 2 31, 1, 1, 1, 1, 1DCA V  = = = =  = =  
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Fig.11. Comparison of dynamic response for different values of   parameter and 

1 2 31, 1, 1, 1, 1, 1DC ACA V V  = = = = = =  

Figures (12-14) shows the effect of parameters 2 , DCV  and ACV  on dynamic response ( , )W   ,respectively.  

 

 

 

Fig.12. Effect of parameters 2  on dynamic response 

( , )W   .  

Fig.13. Effect of parameters DCV  on dynamic 

response ( , )W   . 
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Fig.14. Effect of parameters ACV  on dynamic response ( , )W   . 

Figure (15) shows the effect of excitation frequency   on natural frequency   in piezoelectric and 

electrostatically actuated nano/micro beam.  

 

Fig.15. Effect of excitation frequency   on natural frequency   in piezoelectric and electrostatically actuated 

nano/micro beam with 1 2 31, 1, 1, 1, 1, 1DC ACA V V  = = = = = =  

Several simulations and plots could be introduced to consider the fundamental design requirements before any 

manufacturing process. Based on the presented system, the proposed nonlinear model based on Hamiltonian 

approach is completely efficient and acceptable to find the effects of parameters on the natural frequency and 

dynamic response piezoelectric and electrostatically actuated nano/micro beam. 
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Conclusions 

This paper studied the effect of various parameters on the natural frequency and dynamic response of 

piezoelectric and electrostatically actuated nano/micro beam, applying the Hamiltonian approach and forth 

orders rang-kutta approach. Other similar work, the effects of voltage ACV which leads to forced harmonic 

vibration is not consideration and is usually considered to be zero. The main feature of the present work is to 

consider the voltage ACV on the natural frequency and dynamic response. Due to the nonlinear manner of 

NEMS/MEMS resonators on actuator design paradigms, this would be used in practical work for more efficient 

and low cost experiments. The effects of nonlinear parameters on the natural frequency and dynamic response 

were also illustrated in several figures. Utilized approximate solution converged to the numerical solution and 

obviously demonstrated a good level of accuracy. 
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