Full-Rank Factorization and Moore-Penrose's Inverse

J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán,

ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
jlopezb@ipn.mx

Abstract

C. C. MacDuffee apparently was the first to point out, in private communications, that a full-rank factorization of a matrix A leads to an explicit formula for its Moore-Penrose's inverse A^{+}. Here we apply this idea of MacDuffee and the Singular Value Decomposition to construct A^{+}.

Keywords: Moore-Penrose's generalized inverse, Full-rank factorization, SVD method.
Subject Classification: 11C20, 15A09, 15A23.
Date of Publication: 30-08-2018

Volume: 1 Issue: 2

Journal: MathLAB Journal

Website: https://purkh.com
This work is licensed under a Creative Commons Attribution 4.0 International License.

1. Introduction

Let's consider a matrix $A_{n x m}$ such that rank $A=p$, then its full-rank factorization means the existence of matrices $F_{n x p}$ and $G_{p x m}$ with the properties [1]:

$$
\begin{equation*}
A=F G, \quad \operatorname{rank} F=\operatorname{rank} G=p ; \tag{1}
\end{equation*}
$$

then MacDuffee (1959) constructs the Moore-Penrose's pseudoinverse [2-4] via the expression [1, 5, 6]:

$$
\begin{equation*}
A^{+}=G^{T}\left(F^{T} A G^{T}\right)^{-1} F^{T}=G^{T}\left(G G^{T}\right)^{-1}\left(F^{T} F\right)^{-1} F^{T}, \tag{2}
\end{equation*}
$$

where F^{T} is the corresponding transpose matrix.
In Sec. 2 we employ the Singular Value Decomposition (SVD) of $A[7-14]$ and (2) to construct A^{+}.

2. Full-rank factorization and SVD

For any real matrix $A_{n x m}$, $\operatorname{Lanczos}[7,15]$ introduces the matrix:

$$
S_{(n+m) x(n+m)}=\left(\begin{array}{cc}
0 & A \tag{3}\\
A^{T} & 0
\end{array}\right)
$$

and he studies the eigenvalue problem:

$$
\begin{equation*}
S \vec{\omega}=\lambda \vec{\omega}, \tag{4}
\end{equation*}
$$

where the proper values are real because S is a real symmetric matrix. Besides:

$$
\begin{equation*}
\operatorname{rank} A \equiv p=\text { Number of positive eigenvalues of } S \tag{5}
\end{equation*}
$$

such that $1 \leq p \leq \min (n, m)$. Then the singular values or canonical multipliers follow the scheme:

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p},-\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{p}, 0,0, \ldots, 0 \tag{6}
\end{equation*}
$$

that is, $\lambda=0$ has the multiplicity $n+m-2 p$. Only in the case $p=n=m$ can occur the absence of the null eigenvalue.

The proper vectors of S, named 'essential axes' by Lanczos, can be written in the form:

$$
\begin{equation*}
\vec{\omega}_{(n+m) x 1}=\binom{\vec{u}}{\vec{v}}_{m}^{n}, \tag{7}
\end{equation*}
$$

then (3) and (4) imply the Modified Eigenvalue Problem:

$$
\begin{equation*}
A_{n x m} \vec{v}_{m x 1}=\lambda \vec{u}_{n x 1}, \quad A^{T}{ }_{m x n} \vec{u}_{n x 1}=\lambda \vec{v}_{m x 1}, \tag{8}
\end{equation*}
$$

hence:

$$
\begin{equation*}
A^{T} A \vec{v}=\lambda^{2} \vec{v}, \quad A A^{T} \vec{u}=\lambda^{2} \vec{u}, \tag{9}
\end{equation*}
$$

with special interest in the associated vectors with the positive eigenvalues because they permit to introduce the matrices:

$$
\begin{equation*}
U_{n x p}=\left(\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right), \quad V_{m x p}=\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right) \tag{10}
\end{equation*}
$$

verifying $U^{T} U=V^{T} V=I_{p x p}$ because:

$$
\begin{equation*}
\vec{u}_{j} \cdot \vec{u}_{k}=\vec{v}_{j} \cdot \vec{v}_{k}=\delta_{j k}, \tag{11}
\end{equation*}
$$

therefore $\vec{\omega}_{j} \cdot \vec{\omega}_{k}=2 \delta_{j k}, j, k=1,2, \ldots, p$. Thus, the SVD express $[7,8,10,12,15]$ that A is the product of three matrices:

$$
\begin{equation*}
A_{n x m}=U_{n x p} \Lambda_{p x p} V^{T}{ }_{p x m}, \quad \Lambda=\operatorname{Diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right) . \tag{12}
\end{equation*}
$$

This relation tells that in the construction of A we do not need information about the null proper value; the information from $\lambda=0$ is important to study the existence and uniqueness of the solutions for a linear system associated to A.

The expression (12) is a full-rank factorization of A because it has the structure (1) with:

$$
\begin{equation*}
F=U_{n x p} \quad \text { and } \quad G=\left(V_{m x p} \wedge_{p x p}\right)^{T} \tag{13}
\end{equation*}
$$

whose substitution into (2) gives the following interesting formula for the Moore-Penrose's inverse [3]:

$$
\begin{equation*}
A^{+}{ }_{m x n}=V_{m x p} \Lambda_{p x p}^{-1} U^{T}{ }_{p x n} \tag{14}
\end{equation*}
$$

which coincides with the natural inverse obtained by Lanczos [7, 15]. The matrix (14) satisfies the relations [1, $3,16,17]$:

$$
\begin{equation*}
A A^{+} A=A, \quad A^{+} A A^{+}=A^{+}, \quad\left(A A^{+}\right)^{T}=A A^{+}, \quad\left(A^{+} A\right)^{T}=A^{+} A \tag{15}
\end{equation*}
$$

which characterize the pseudoinverse of Moore-Penrose. The use of (10) and (12) into (14) implies the following expression for the Lanczos generalized inverse:

$$
\begin{equation*}
A^{+}=\left(\vec{t}_{1} \vec{t}_{2} \cdots \vec{t}_{n}\right), \quad \quad \vec{t}_{j}=\frac{u_{1}^{(j)}}{\lambda_{1}} \vec{v}_{1}+\frac{u_{2}^{(j)}}{\lambda_{2}} \vec{v}_{2}+\cdots+\frac{u_{p}^{(j)}}{\lambda_{p}} \vec{v}_{p}, \quad j=1, \ldots, n, \tag{16}
\end{equation*}
$$

where $u_{k}^{(j)}$ means the j th-component of \vec{u}_{k}. Similarly:

$$
\begin{equation*}
\left(A^{+}\right)^{T}=\left(\vec{r}_{1} \vec{r}_{2} \cdots \vec{r}_{m}\right), \quad \vec{r}_{k}=\frac{v_{1}^{(k)}}{\lambda_{1}} \vec{u}_{1}+\frac{v_{2}^{(k)}}{\lambda_{2}} \vec{u}_{2}+\cdots+\frac{v_{p}^{(k)}}{\lambda_{p}} \vec{u}_{p}, \quad k=1, \ldots, m . \tag{17}
\end{equation*}
$$

MacDuffee proposed [1] to construct A^{+}via a full-rank factorization of A, then here we proved that his idea can be applied employing the SVD of the matrix under analysis.

References

1. A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications, Springer, New York (2003)
2. E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Am. Math. Soc. 26, No. 9 (1920) 394395
3. R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51 (1955) 406-413
4. A. Ben-Israel, The Moore of the Moore-Penrose inverse, Electron. J. of Linear Algebra 9 (2002) 150-157
5. R. E. Cline, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 (1968) 182-197
6. G. V. Milovanovic, P. S. Stanimirovic, On Moore-Penrose inverse of block matrices and full-rank factorizations, Publications de L'Institut Mathématique, Nouvelle série, 62, No. 76 (1997) 26-40
7. C. Lanczos, Linear systems in self-adjoint form, Am. Math. Monthly 65, No. 9 (1958) 665-679
8. C. Lanczos, Extended boundary value problems, Proc. Int. Congr. Math. Edinburgh-1958, Cambridge University Press (1960) 154-181
9. H. Schwerdtfeger, Direct proof of Lanczos decomposition theorem, Am. Math. Monthly 67, No. 9 (1960) 855-860
10. C. Lanczos, Boundary value problems and orthogonal expansions, SIAM J. Appl. Math. 14, No. 4 (1966) 831-863
11. D. Kalman, A singularly valuable decomposition: The SVD of a matrix, The College Mathematics Journal 27 (1996) 2-23
12. C. Lanczos, Linear differential operators, Dover, New York (1997)
13. V. Gaftoi, J. López-Bonilla, G. Ovando, Singular value decomposition and Lanczos potential, in "Current topics in quantum field theory research", Ed. O. Kovras, Nova Science Pub., New York (2007) Chap. 10, 313-316
14. I. Guerrero-Moreno, J. López-Bonilla, L. Rosales-Roldán, SVD applied to Dirac supermatrix, The SciTech, J. Sci. \& Tech. (India), Special Issue (2012) 111-114
15. G. Bahadur-Thapa, P. Lam-Estrada, J. López-Bonilla, On the Moore-Penrose generalized inverse matrix, World Scientific News 95 (2018) 100-110
16. T. N. E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev. 2, No. 1 (1960) 15-22
17. H. Yanai, K. Takeuchi, Y. Takane, Projection matrices, generalized inverse matrices, and singular value decomposition, Springer, New York (2011) Chap. 3
