Inclusion Properties for Certain Subclasses of Uniformly P-Valent Analytic Functions Involving Linear Operator

R. M. El-Ashwah ${ }^{1}$ A. Y. Lashin ${ }^{2}$ and A. E. El-Shirbiny ${ }^{3}$
1,3 Department of Mathematics, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
2 Department of Mathematics, Faculty of Science, Mansoura University, 35516, Egypt. 1 r_elashwah@yahoo.com, ${ }^{2}$ aylashin@mans.edueg, ${ }^{3}$ amina.ali66@yahoo.com.

Abstract

In this paper, the authors study some inclusion results for new subclasses of β-uniformly p-valent functions in the open unit disc defined by differ-integral operator and some results of certain integral operator are also obtained.

Indexing terms/Keywords: P-Valent Analytic Functions; Uniformly Starlike, Uniformly Convex, DifferIntegral Operator.

Subject Classification: 2010 Mathematics Subject Classification: 30C45.
Language: English
Date of Submission: 2018-02-18

Date of Acceptance: 2018-04-10

Date of Publication: 2018-04-30

Journal: MATHLAB Journal

Website: https://purkh.com

This work is licensed under a Creative Commons Attribution 4.0 International License.

Introduction

Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \square=\{1,2,3, \cdots\}), \tag{1}
\end{equation*}
$$

which are analytic in the open unite disc $U=\{z: z \in \square ;|z|<1\}$. We note that $A(1)=A$ the class of univalent analytic functions.

We say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function ω in U with $\omega(0)=0$ and $|\omega(z)|<1 \quad(z \in U)$ such that $f(z)=g(\omega(z))(z \in U)$. In particular, if the function g is univalent in U the subordination is equivalent to $f(0)=g(0)$ and $f(U) \subset g(U)($ see $[18,19])$.

Definition 1. [15] A function $f(z) \in A(p)$ is said to be β-uniformly p-valent starlike functions of order α, if satisfies .

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\} \geq \beta\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|, \quad(\beta \geq 0,0 \leq \alpha<p, p \in \square) .
$$

The set of all this functions is denoted by $\operatorname{US}_{p}^{*}(\alpha, \beta)$.
Definition 2. [15] A function $f(z) \in A(p)$ is said to be β-uniformly p-valent convex functions of order α, if satisfies

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right\} \geq \beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1-p)\right|, \quad(\beta \geq 0,0 \leq \alpha,<p, p \in \square)
$$

The set of all this functions is denoted by $U C V_{p}(\alpha, \beta)$.

We note that $f \in U C V_{p}(\alpha, \beta)$ if and only if $\frac{z f^{\prime}}{p} \in U S_{p}^{*}(\alpha, \beta)$.

Definition 3. [1] A function $f(z) \in A(p)$ is said to be β-uniformly p-valent close-to-convex of order α and type η, if there exist $g(z) \in U S_{p}^{*}(\beta, \eta)$ such that

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime}(z)}{g(z)}-p\right|, \quad(0 \leq \alpha, \eta<p, \beta \geq 0, p \in \square)
$$

The set of all this functions is denoted by $U K_{p}(\alpha, \beta, \eta)$.

Definition 4. [1] A function $f \in A(p)$ is said to be β-uniformly p-valent quasi convex functions of order α and type η if there exist $g(z) \in U C V_{p}(\beta, \eta)$ such that

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}-\alpha\right\}>\beta\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}-p\right| \quad(0 \leq \alpha, \eta<p, \beta \geq 0, p \in \square)
$$

The set of all this functions is denoted by $U K_{p}^{*}(\alpha, \beta, \eta)$.
We note that $f \in U K_{p}^{*}(\alpha, \beta, \eta)$ if and only if $\frac{z f^{\prime}(z)}{p} \in U K_{p}(\alpha, \beta, \eta)$
Also, we note that:

1) $U S_{1}^{*}(\alpha, \beta)=U S^{*}(\alpha, \beta)$ and $U C V_{1}(\alpha, \beta)=U C V(\alpha, \beta)(0 \leq \alpha<1)$ (see [13] and [24]);
2) $U S_{p}^{*}(\alpha, 0)=S_{p}^{*}(\alpha)(0 \leq \alpha<p)$ (see [22] and [23]);
3) $U C V_{p}(\alpha, 0)=C_{p}(\alpha)(0 \leq \alpha<p)$ (see [22]);
4) $U K_{p}(\alpha, \eta, 0)=K_{p}(\alpha, \eta)(0 \leq \alpha, \eta<p)$ (see [3]);
5) $U K_{p}^{*}(\alpha, \eta, 0)=K_{p}^{*}(\alpha, \eta)(0 \leq \alpha, \eta<p)$ (see [6]).

Geometric properties: It is known that $f \in U S_{p}^{*}(\alpha, \beta)$ or $f \in U C V_{p}(\alpha, \beta)$ with

$$
p(z)=\frac{z f^{\prime}(z)}{f(z)} \text { or } p(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

respectively, if and only if $p(z)$ takes all the values in the conic domain in the right half plane $R_{p, \alpha, \beta}$ which is given by

$$
R_{p, \alpha, \beta}=\left\{w=u+i v \in \square: u-\alpha>\beta \sqrt{(u-p)^{2}+v^{2}},(\beta \geq 0 \text { and } 0 \leq \alpha<p)\right\} .
$$

By some computation, $R_{p, \alpha, \beta}$ appears as conic sections that symmetric around the real axis as follows:

$$
R_{p, \alpha, \beta}= \begin{cases}u+i v,\left(\frac{\left(1-\beta^{2}\right) \mu+\left(\beta^{2} p-\alpha\right)}{\beta(p-\alpha)}\right)^{2}-\left(\frac{\left(1-\beta^{2}\right) v}{(p-\alpha) \sqrt{1-\beta^{2}}}\right)>1 & (0<\beta<1) \\ u+i v,\left(\frac{\left(\beta^{2}-1\right) \mu+\left(\beta^{2} p-\alpha\right)}{\beta(p-\alpha)}\right)^{2}+\left(\frac{\left(\beta^{2}-1\right) v}{(p-\alpha) \sqrt{\beta^{2}-1}}\right)^{2}<1 & (\beta>1)\end{cases}
$$

We note that

$$
\begin{equation*}
p(z) \prec Q_{p, \alpha, \beta}(z), \tag{2}
\end{equation*}
$$

with the explicit forms of function $Q_{p, \alpha, \beta}(z)$ given by

$$
Q_{p, \alpha, \beta}(z)=\left\{\begin{array}{cc}
\frac{p+(p-2 \alpha) z}{1-z} & (\beta=0) ; \\
\frac{p+\frac{2(p-\alpha)}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}{1-\beta^{2}} \cos \left\{\frac{2}{\pi} \arccos (\beta) i \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right\}-\frac{\left(\beta^{2} p-\alpha\right)}{1-\beta^{2}} & (0<\beta<1) ; \\
\frac{(p-\alpha)}{\beta^{2}-1} \sin \left\{\frac{\pi}{2 K(x)}_{0}^{\frac{u(z)}{\sqrt{x}}} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-x^{2} t^{2}}}\right\}+\frac{\left(\beta^{2} p-\alpha\right)}{\beta^{2}-1} & (\beta>1) .
\end{array}\right.
$$

where

$$
u(z)=\frac{z-\sqrt{x}}{1-\sqrt{x} z}, \quad x \in(0,1)
$$

and $K(x)$ is such that

$$
\beta=\cosh \frac{\pi K^{\prime}(x)}{4 K(x)} .
$$

By virtue of (2) and the properties of the domains, we have

$$
\begin{equation*}
\operatorname{Re}(p(z))>\operatorname{Re}\left(Q_{p, \alpha, \beta}(z)\right)>\frac{\beta p+\alpha}{\beta+1} \tag{3}
\end{equation*}
$$

Making use of the principal of subordination between analytic functions and the definition of $Q_{p, \alpha, \beta}(z)$, we may rewrite the subclasses $U S_{p}^{*}(\alpha, \beta), U C V_{p}(\alpha, \beta), U K_{p}(\alpha, \beta, \eta)$ and $U K_{p}^{*}(\alpha, \beta, \eta)$ as the following:

$$
\begin{gathered}
U S_{p}^{*}(\alpha, \beta)=\left\{f \in A(p): \frac{z f^{\prime}(z)}{f(z)} \prec Q_{p, \alpha, \beta}(z)\right\}, \\
U C V_{p}(\alpha, \beta)=\left\{f \in A(p): 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec Q_{p, \alpha, \beta}(z)\right\}, \\
U K_{p}(\alpha, \beta, \eta)=\left\{f \in A(p): \exists g(z) \in U S_{p}^{*}(\beta, \eta), \frac{z f^{\prime}(z)}{g(z)} \prec Q_{p, \alpha, \beta}(z)\right\},
\end{gathered}
$$

$$
U K_{p}^{*}(\alpha, \beta, \eta)=\left\{f \in A(p): \exists g(z) \in U C V_{p}(\beta, \eta), \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} \prec Q_{p, \alpha, \beta}(z)\right\}
$$

El-Ashwah and Durbk [7] (see also [4]) introduced the modified an Erdelyi kober type integral operator $I_{p, \mu}^{a, c}: A(p) \rightarrow A(p)$ for $\mu>0, a, c \in \mathrm{C}, \operatorname{Re}(a)>-\mu p$ and $\operatorname{Re}(c-a)>0$, (see [16]) as follows:

$$
\begin{aligned}
I_{p, \mu}^{a, c} f(z) & =\frac{\Gamma(c+\mu p)}{\Gamma(a+\mu p) \Gamma(c-a)} \int_{0}^{1}(1-t)^{c-a-1} t^{a-1} f\left(z t^{\mu}\right) d t \\
& =z^{p}+\frac{\Gamma(c+\mu p)}{\Gamma(a+\mu p)} \sum_{n=p+1}^{\infty} \frac{\Gamma(a+n \mu)}{\Gamma(c+n \mu)} a_{n} z^{n}, \\
I_{p, \mu}^{a, a} f(z) & =f(z) .
\end{aligned}
$$

It is easy to obtain the following recurrence relations. If $f(z) \in A(p)$, then

$$
\begin{gather*}
z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}=\frac{a+\mu p}{\mu} I_{p, \mu}^{a+1, c} f(z)-\frac{a}{\mu} I_{p, \mu}^{a, c} f(z) \tag{4}\\
z\left(I_{p, \mu}^{a, c+1} f(z)\right)^{\prime}=\frac{c+\mu p}{\mu} I_{p, \mu}^{a, c}(a, c, \mu) f(z)-\frac{c}{\mu} I_{p, \mu}^{a, c+1} f(z) \tag{5}
\end{gather*}
$$

The operator $I_{p, \mu}^{a, c} f(z)$ has been extensively studied by many authors with suitable restrictions on the parameters. For examples, see the following:

।. $\quad I_{p, 1}^{a-1, c-1} f(z)=L_{p}(a, c) f(z) \quad\left(a, c \in \square / \square_{0}^{-}, \square_{0}^{-}=\{0,-1,-2, \ldots\}\right)$ (see [26] and [27]);
II. $\quad I_{p, 1}^{n+p-1, a} f(z)=L_{p}(n+p, 1) f(z)=D^{n+p-1} f(z)(n>-p)$ (see [12]);
III. $\quad I_{1,1}^{\beta, \alpha+\beta-\gamma+1} f(z)=R_{\beta}^{\alpha, \gamma} f(z)(\gamma>0 ; \alpha \geq \gamma-1, ; \beta>-1)$ (see [2]);
IV. $\quad I_{1,1}^{\beta, \alpha+\beta} f(z)=Q_{\beta}^{\alpha} f(z)(\alpha \geq 0 ; \beta>-1)$ (see [14] and [17]);
V. $I_{1,1}^{a-1, c-1} f(z)=L(a, c) f(z)\left(a, c \in \square / \square_{0}^{-}, \square_{0}^{-}=\{0,-1,-2, \ldots\}\right)$ (see [9]);
VI. $I_{1,1}^{\mu-1, l} f(z)=I_{l, \mu} f(z)(\mu>0 ; l>-1)$ (see [10]);
VII. $\quad I_{1,1}^{\alpha, 0} f(z)=D^{\alpha} f(z)(\alpha>-1)$ (see [25]);
VIII. $\quad I_{1,1}^{1, n} f(z)=I^{n} f(z)\left(n \in \square_{0}\right)$ (see [20] and [21]).

Next, using the operator $I_{p, \mu}^{a, c} f(z)$, we introduce the following β - uniformly subclasses of p -valent functions, for $p \in \square, 0 \leq \alpha, \eta \leq p, \beta \geq 0, \mu>0 a, c \in \mathrm{C}, \operatorname{Re}(a)>-\mu p$, and $\operatorname{Re}(c-a)>0$,

Definition 5. Let $f(z) \in A(p)$. Then $f(z) \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta)$ if and only if $I_{p, \mu}^{a, c} f(z) \in U S_{p}^{*}(\alpha, \beta)$.

Definition 6. Let $f(z) \in A(p)$. Then $f(z) \in U C V_{p}(a, c, \mu ; \alpha, \beta)$ if and only if $I_{p, \mu}^{a, c} f(z) \in U C V_{p}(\alpha, \beta)$.

Definition 7. Let $f(z) \in A(p)$. Then $f(z) \in U K_{p}(a, c, \mu ; \alpha, \beta, \eta)$ if and only if $I_{p, \mu}^{a, c} f(z) \in U K_{p}(\alpha, \beta, \eta)$.

Definition 8. Let $f(z) \in A(p)$. Then $f(z) \in U K_{p}^{*}(a, c, \mu ; \alpha, \beta, \eta)$ if and only if $I_{p, \mu}^{a, c} f(z) \in U K_{p}^{*}(\alpha, \beta, \eta)$.

We not that

$$
f(z) \in U C V_{p}(a, c, \mu ; \alpha, \beta) \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta)
$$

and

$$
f(z) \in U K_{p}^{*}(a, c, \mu ; \alpha, \beta, \eta) \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in U K_{p}(a, c, \mu ; \alpha, \beta, \eta)
$$

In this paper, we investigate several inclusion properties of the subclasses $\operatorname{US}_{p}^{*}(a, c, \mu ; \alpha, \beta)$, $U C V_{p}(a, c, \mu ; \alpha, \beta), U K_{p}(a, c, \mu ; \alpha, \beta, \eta)$, and $U K_{p}^{*}(a, c, \mu ; \alpha, \beta, \eta)$. Also, some applications involving integral operators are considered associated with the operator $I_{p, \mu}^{a, c} f(z)$.

Inclusion Properties

Unless otherwise mentioned, we shall assume throughout this paper that $0 \leq \alpha, \eta<p, \beta \geq 0, \mu>0, a$, $c \in \mathrm{C}, \operatorname{Re}(a)>-\mu p$ and $\operatorname{Re}(c-a)>0$. In order to prove our results, we need the following lemmas.

Lemma 9. [11] Let $h(z)$ be univalent convex in the unit disk U with $\operatorname{Re}(\delta h(z)+\zeta)>0(\delta, \zeta \in \mathrm{C})$. If $p(z)$ is analytic in U and $p(0)=h(0)$ then

$$
p(z)+\frac{z p^{\prime}(z)}{\delta p(z)+\zeta} \prec h(z)
$$

implies $p(z) \prec h(z)$.
Lemma 10. [18] Let $h(z)$ be convex function in U and let $D \geq 0$. Suppose that $E(z)$ is analytic in U with $\operatorname{Re}\{E(z)\} \geq D$. If g is analytic in U and $g(0)=h(0)$, then

$$
D z g^{\prime \prime}(z)+E(z) z g^{\prime}(z)+g(z) \prec h(z) \Rightarrow g(z) \prec h(z) .
$$

Theorem 11. Let $f \in A(p)$ and $\frac{\operatorname{Re}(a)}{\mu}>-\frac{\beta p+\alpha}{\beta+1}, \frac{\operatorname{Re}(c)}{\mu}>-\frac{\beta p+\alpha}{\beta+1}$. Then

$$
U S_{p}^{*}(a+1, c, \mu ; \alpha, \beta) \subset U S_{p}^{*}(a, c, \mu ; \alpha, \beta) \subset U S_{p}^{*}(a, c+1, \mu ; \alpha, \beta)
$$

Proof. To prove the first part of this theorem. Let $f \in U S_{p}^{*}(a+1, c, \mu ; \alpha, \beta)$ and set

$$
\frac{z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a, c} f(z)}=p(z)(z \in U),
$$

where $p(z)=p+p_{1} z+p_{2} z^{2}+\ldots$, is analytic in U with $p(0)=p$ and $p(z) \neq 0$, for all $z \in U$.
From (4), we can write

$$
\begin{gather*}
\frac{z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a, c} f(z)}=\left(\frac{a+\mu p}{\mu}\right) \frac{I_{p, \mu}^{a+1, c} f(z)}{I_{p, \mu}^{a, c} a f(z)}-\frac{a}{\mu}, \\
\left(\frac{a+\mu p}{\mu}\right) \frac{I_{p, \mu}^{a+, c} f(z)}{I_{p, \mu}^{a, c} f(z)}=p(z)+\frac{a}{\mu} . \tag{6}
\end{gather*}
$$

By logarithmically differentiating both sides of the equation (6), we get

$$
\begin{equation*}
\frac{z\left(I_{p, \mu}^{a+1, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a+1, c} f(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)+\frac{a}{\mu}} \prec Q_{p, \alpha, \beta} . \tag{7}
\end{equation*}
$$

Since

$$
\operatorname{Re}\left(Q_{p, \alpha, \beta}+\frac{a}{\mu}\right)>0
$$

Applying Lemma 9 to (7), it follows that

$$
p(z) \prec Q_{p, \alpha, \beta}(z),
$$

that is $f(z) \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta)$.

To prove the second inclusion relationship asserted in Theorem 11, let $f \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta)$ and put

$$
\frac{z\left(I_{p, \mu}^{a, c+1} f(z)\right)^{\prime}}{I_{p, \mu}^{a, c+1} f(z)}=q(z)(z \in U)
$$

where the function $q(z)$ is analytic in U with $q(0)=p$. Then by arguments similar to those detailed above with (5), we have $f \in U S_{p}^{*}(a, c+1, \mu ; \alpha, \beta)$. The proof is completed.

Theorem 12. Let $f \in A(p)$ and $\frac{\operatorname{Re}(a)}{\mu}>-\frac{\beta p+\alpha}{\beta+1}, \frac{\operatorname{Re}(c)}{\mu}>-\frac{\beta p+\alpha}{\beta+1}$. Then

$$
U C V_{p}(a+1, c, \mu ; \alpha, \beta) \subset U C V_{p}(a, c, \mu ; \alpha, \beta) \subset U C V_{p}(a, c+1, \mu ; \alpha, \beta) .
$$

Proof. Applying

$$
\begin{aligned}
& f(z) \in U C V_{p}(a+1, c, \mu ; \alpha, \beta) \\
\Leftrightarrow & \frac{z f^{\prime}(z)}{p} \in U S_{p}^{*}(a+1, c, \mu ; \alpha, \beta) \\
\Rightarrow & \frac{z f^{\prime}(z)}{p} \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta) \\
\Leftrightarrow & f(z) \in U C V_{p}(a, c, \mu ; \alpha, \beta) .
\end{aligned}
$$

The second part of the theorem can be proved by using similar arguments, which evidently proves Theorem 12.

Theorem 13. Let $f \in A(p)$ and

$$
\frac{\operatorname{Re}(a)}{\mu}>-\frac{\beta p+\eta}{\beta+1}, \frac{\operatorname{Re}(c)}{\mu}>-\frac{\beta p+\eta}{\beta+1} .
$$

Then

$$
U K_{p}(a+1, c, \mu ; \alpha, \beta, \eta) \subset U K_{p}(a, c, \mu ; \alpha, \beta, \eta) \subset U K_{p}(a, c+1, \mu ; \alpha, \beta, \eta)
$$

Proof. Let $f \in U K_{p}(a+1, c, \mu ; \alpha, \beta, \eta)$, then, in view of the definition, we write

$$
\begin{equation*}
\frac{z\left(I_{p, \mu}^{a+1, c} f(z)\right)^{\prime}}{\psi(z)} \prec Q_{p, \alpha, \beta}(z \in U), \tag{8}
\end{equation*}
$$

for some $\psi(z) \in U S_{p}^{*}(\beta, \eta)$. Choose the function $g(z)$ such that $I_{p, \mu}^{a+1, c} g(z)=\psi(z)$, so we have

$$
\frac{z\left(I_{p, \mu}^{a+1, c} f(z)\right)}{I_{p, \mu}^{a+1, c} g(z)} \prec Q_{p, \alpha, \beta} \quad(z \in U) .
$$

Now, we set

$$
\begin{equation*}
\frac{z\left(I_{p, \mu}^{a, c} f(z)\right)}{I_{p, \mu}^{a, c} g(z)}=p(z) \tag{9}
\end{equation*}
$$

where $p(z)=p+p_{1} z+p_{2} z^{2}+\ldots$, is analytic in U with $p(0)=p$ and $p(z) \neq 0$ for all $z \in U$. Using identity (4), we have

$$
\begin{align*}
\frac{z\left(I_{p, \mu}^{a+1, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a+, c} g(z)}= & \frac{I_{p, \mu}^{a+1, c}\left(z f^{\prime}(z)\right)}{I_{p, \mu}^{a+, c} g(z)} \\
= & \frac{z\left(I_{p, \mu}^{a, c}\left(z f^{\prime}(z)\right)\right)^{\prime}+\left(\frac{a}{\mu}\right) I_{p, \mu}^{a, c}\left(z f^{\prime}(z)\right)}{z\left(I_{p, \mu}^{a, c} g(z)\right)^{\prime}+\left(\frac{a}{\mu}\right) I_{p, \mu}^{a, c} g(z)} \tag{10}\\
& =\frac{\frac{I_{p, \mu}^{a, c} a g(z)}{z\left(I_{p, \mu}^{a, c}\left(z f^{\prime}(z)\right)\right)^{\prime}}+\frac{\left(\frac{a}{\mu}\right) I_{p, \mu}^{a, c}\left(z f^{\prime}(z)\right)}{I_{p, \mu}^{a, c} g(z)}}{I_{p, \mu}^{a, c} g(z)}+\left(\frac{a}{\mu}\right)
\end{align*} .
$$

$$
\begin{equation*}
\frac{z\left(I_{p, \mu}^{a+1, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a+1, c} g(z)}=\frac{\frac{z\left(I_{p, \mu}^{a, c}\left(z f^{\prime}(z)\right)\right)^{\prime}}{I_{p, \mu}^{a, c} g(z)}+\left(\frac{a}{\mu}\right) p(z)}{r(z)+\left(\frac{a}{\mu}\right)} \tag{11}
\end{equation*}
$$

From (9), we consider that

$$
\begin{equation*}
z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}=I_{p, \mu}^{a, c} g(z) p(z) \tag{12}
\end{equation*}
$$

differentiating both sides of (12) with respect to z and divide by $I_{p, \mu}^{a, c}(a, c, \mu ; \beta, \eta) g(z)$, we have

$$
\begin{equation*}
\frac{\left[z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}\right]^{\prime}}{I_{p, \mu}^{a, c} g(z)}=z p^{\prime}(z)+r(z) p(z) \tag{13}
\end{equation*}
$$

Using (11) and (13), we obtain

$$
\begin{gather*}
\frac{z\left(I_{p, \mu}^{a+1, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a+1, c} g(z)}=\frac{z p^{\prime}(z)+r(z) p(z)+\left(\frac{a}{\mu}\right) p(z)}{r(z)+\left(\frac{a}{\mu}\right)}=p(z)+\frac{z p^{\prime}(z)}{r(z)+\left(\frac{a}{\mu}\right)} \tag{14}\\
p(z)+\frac{z p^{\prime}(z)}{r(z)+\left(\frac{a}{\mu}\right)} \prec Q_{p, \alpha, \beta} . \tag{15}
\end{gather*}
$$

Putting $D=0$ and $E(z)=\frac{1}{r(z)+\left(\frac{a}{\mu}\right)}$ in Lemma 10, we obtain

$$
\operatorname{Re}\{E(z)\}=\frac{1}{\left|r(z)+\left(\frac{a}{\mu}\right)\right|^{2}} \operatorname{Re}\left\{r(z)+\left(\frac{a}{\mu}\right)\right\}>0 .
$$

Therefore, the inequality (15) satisfies the conditions required by Lemma 10 . Hence, $p(z) \prec Q_{p, \alpha, \beta}$, so $f \in U K_{p}(a, c, \mu ; \alpha, \beta, \eta)$.

For the second inclusion relationship in Theorem 13, using argument similar to those detailed above, we obtain $U K_{p}(a, c, \mu ; \alpha, \beta, \eta) \subset U K_{p}(a, c+1, \mu ; \alpha, \beta, \eta)$. Thus, we have completed the proof of Theorem 13.

Theorem 14. Let $f \in A(p)$ and

$$
\frac{\operatorname{Re}(a)}{\mu}>-\frac{\beta p+\eta}{\beta+1}, \frac{\operatorname{Re}(c)}{\mu}>-\frac{\beta p+\eta}{\beta+1}
$$

Then

$$
\begin{equation*}
U K_{p}^{*}(a+1, c, \mu ; \alpha, \beta, \eta) \subset U K_{p}^{*}(a, c, \mu ; \alpha, \beta, \eta) \subset U K_{p}^{*}(a, c+1, \mu ; \alpha, \beta, \eta) . \tag{16}
\end{equation*}
$$

Proof. From the expression

$$
f \in U K_{p}^{*}(a, c, \mu, \alpha, \beta, \eta) \Leftrightarrow \frac{z f^{\prime}}{p} \in U K_{p}(a, c, \mu, \alpha, \beta, \eta)
$$

and Theorem 13, we observe that

$$
\begin{aligned}
& f(z) \in U K_{p}^{*}(a+1, c, \mu ; \alpha, \beta, \eta) \\
& \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in U K_{p}(a+1, c, \mu ; \beta, \alpha, \eta) \\
& \Rightarrow \frac{z f^{\prime}(z)}{p} \in U K_{p}(a, c, \mu ; \alpha, \beta, \eta) \\
& \Leftrightarrow f(z) \in U K_{p}^{*}(a, c, \mu ; \alpha, \beta, \eta)
\end{aligned}
$$

The second part of the theorem can be proved by using similar arguments, which evidently proves Theorem 14.

Next, we study the closure properties of generalized Bernardi integral operator [8] defined by Staioh et al. [28] as follows:

$$
\begin{equation*}
\mathfrak{£}_{\gamma, p} f(z)=\frac{\gamma+p}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) d t(f \in A(p), \gamma>-p) . \tag{17}
\end{equation*}
$$

Theorem 15. Let $f \in A(p)$ and $\gamma>-\frac{\beta p+\alpha}{\beta+1}$. If $f(z) \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta)$, then

$$
£_{\gamma, p} f(z) \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta)
$$

Proof. From (17), we have

$$
\begin{equation*}
z\left(I_{p, \mu^{£}}^{a, c} £_{\gamma, p} f(z)\right)^{\prime}=(\gamma+p) I_{p, \mu}^{a, c} f(z)-\gamma I_{p, \mu}^{a, c}\left(£_{\gamma, p} f(z)\right) \tag{18}
\end{equation*}
$$

Setting

$$
\frac{z\left(I_{p, \mu}^{a, c} \mathfrak{f}_{\gamma, p} f(z)\right)}{I_{p, \mu}^{a, c} \mathfrak{f}_{\gamma, p} f(z)}=p(z),
$$

where $p(z)=p+p_{1} z+p_{2} z^{2}+\ldots$ is analytic in U with $p(0)=p, p(z) \neq 0$ for all $z \in U$.

From (18), we have

$$
\begin{equation*}
(\gamma+p) \frac{I_{p, \mu}^{a, c} f(z)}{I_{p, \mu}^{a, c}\left(£_{\gamma, p} f(z)\right)}=p(z)+\gamma \tag{19}
\end{equation*}
$$

By logarithmically differentiating both sides of the (19), we have

$$
\begin{aligned}
& \frac{z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a, c}(f(z))}=\frac{z\left(I_{p, \mu^{£}}^{a, c}, p\right.}{} \frac{I_{p, \mu}^{a, c}\left(£_{\gamma, p} f(z)\right)^{\prime}}{\prime}+\frac{z p^{\prime}(z)}{p(z)+\gamma} \\
& =p(z)+\frac{z p^{\prime}(z)}{p(z)+\gamma} \prec Q_{p, \alpha, \beta} .
\end{aligned}
$$

Since $\operatorname{Re}\left(Q_{p, \alpha, \beta}+\gamma\right)>0$, then by applying Lemma 9, we obtain the result.

Theorem 16. Let $f \in A(p)$ and $\gamma>-\frac{\beta p+\alpha}{\beta+1}$. If $f(z) \in U C V_{p}(a, c, \mu ; \alpha, \beta)$, then

$$
£_{\gamma, p} f(z) \in U C V_{p}(a, c, \mu ; \alpha, \beta) .
$$

Proof. Consider the following

$$
\begin{aligned}
& f(z) \in U C V_{p}(a, c, \mu ; \alpha, \beta) \\
& \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta) \Rightarrow \frac{z\left(£_{\gamma, p}(f(z))\right)}{p} \in U S_{p}^{*}(a, c, \mu ; \alpha, \beta) \\
& \Leftrightarrow £_{\gamma, p} f(z) \in U C V_{p}(a, c, \mu ; \alpha, \beta) .
\end{aligned}
$$

The proof is completed.
Theorem 17. Let $f \in A(p)$ and $\gamma>-\frac{\beta p+\eta}{\beta+1}$. If $f(z) \in U K_{p}(a, c, \mu ; \alpha, \beta, \eta)$, then

$$
£_{\gamma, p} f(z) \in U K_{p}(a, c, \mu ; \alpha, \beta, \eta)
$$

Proof. Let $f(z) \in U K_{p}(a, c, \mu ; \alpha, \beta, \eta)$. Then, in view of the definition, we can write

$$
\begin{equation*}
\frac{z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}}{\psi(z)} \prec Q_{p, \alpha, \beta} \quad(z \in U) \tag{20}
\end{equation*}
$$

for some $\psi(z) \in U S_{p}^{*}(\beta, \eta)$. Choose the function $g(z)$ such that $I_{p, \mu}^{a, c} g(z)=\psi(z)$, so we have

$$
\frac{z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a, c} g(z)} \prec Q_{p, \alpha, \beta}(z)(z \in U) .
$$

Now, we set

$$
\begin{equation*}
\frac{z\left(I_{p, \mu}^{a, c} £_{\gamma, p} f(z)\right)}{I_{p, \mu}^{a, c} £_{\gamma, p} g(z)}=h(z) . \tag{21}
\end{equation*}
$$

where $h(z)=p+h_{1} z+h_{2} z^{2}+\ldots$, is analytic in U with $h(0)=p, h(z) \neq 0$ for all $z \in U$.
Also, we have from (18)

$$
\begin{align*}
& \frac{z\left(I_{p, \mu}^{a, c} f(z)\right)}{I_{p, \mu}^{a, c} g(z)}=\frac{\left(I_{p, \mu}^{a, c} z f^{\prime}(z)\right)}{I_{p, \mu}^{a, c}(g(z))} \tag{22}\\
& =\frac{z\left(I_{p, \mu}^{a, c} £_{\gamma, p}\left(z f^{\prime}(z)\right)\right)^{\prime}+\gamma I_{p, \mu}^{a, c}\left(£_{\gamma, p}\left(z f^{\prime}(z)\right)\right)}{z\left(I_{p, \mu}^{a, c} £_{\gamma, p} g(z)\right)^{\prime}+\gamma I_{p, \mu}^{a, c}\left(£_{\gamma, p} g(z)\right)} \\
& =\frac{\frac{z\left(I_{p, \mu}^{a, c} £_{\gamma, p} z f^{\prime}(z)\right)^{\prime}}{I_{p, \mu}^{a, c}\left(£_{\gamma, p} g(z)\right)}+\frac{\gamma I_{p, \mu}^{a, c}\left(£_{\gamma, p}\left(z f^{\prime}(z)\right)\right)}{I_{p, \mu}^{a, c}\left(£_{\gamma, p} g(z)\right)}}{\frac{z\left(I_{p, \mu}^{a, c}\left(£_{\gamma, p} g(z)\right)\right)^{\prime}}{I_{p, \mu}^{a, c}\left(£_{\gamma, p} g(z)\right)}+\gamma} .
\end{align*}
$$

Since $g(z) \in U S_{p}^{*}(a, c, \mu ; \beta, \eta)$ and by Theorem 15, we have $£_{\gamma, p} g(z) \in U S_{p}^{*}(a, c, \mu ; \beta, \eta)$.
Setting

$$
\frac{z\left(I_{p, \mu}^{a, c} \mathfrak{£}_{\gamma, p} g(z)\right)}{I_{p, \mu}^{a, c} \mathfrak{£}_{\gamma, p} g(z)}=H(z) .
$$

Also, from (21) we obtain

$$
\begin{equation*}
z\left(I_{p, \mu}^{a, c} £_{\gamma, p} f(z)\right)^{\prime}=I_{p, \mu}^{a, c} £_{\gamma, p} g(z) \cdot(h(z)) \tag{23}
\end{equation*}
$$

differentiating both side of (23) with respect to z, we have

$$
\begin{equation*}
\frac{\left.z\left[z\left(I_{p, \mu}^{a, c} \mathfrak{f}_{\gamma, p} f(z)\right)\right]^{\prime}\right]}{I_{p, \mu}^{a, c} \mathfrak{f}_{\gamma, p} g(z)}=z h^{\prime}(z)+h(z) H(z) . \tag{24}
\end{equation*}
$$

Using (22) and (24), we obtain

$$
\begin{align*}
\left.\frac{z\left(I_{p}^{a, c}, \mu\right.}{I_{p, \mu}^{a, c} g(z)}\right)^{\prime} & =\frac{z h^{\prime}(z)+h(z) H(z)+\gamma h(z)}{H(z)+\gamma} \tag{25}\\
& =h(z)+\frac{z h^{\prime}(z)}{H(z)+\gamma} .
\end{align*}
$$

This in conjunction with

$$
\frac{z\left(I_{p, \mu}^{a, c} f(z)\right)^{\prime}}{I_{p, \mu}^{a, c} g(z)} \prec Q_{p, \alpha, \beta}(z)(z \in U),
$$

leads to

$$
\begin{equation*}
h(z)+\frac{z h^{\prime}(z)}{H(z)+\gamma} \prec Q_{p, \alpha, \beta}(z) . \tag{26}
\end{equation*}
$$

Putting $D=0$ in Lemma 10 and

$$
E(z)=\frac{1}{H(z)+\gamma}
$$

we obtain $\operatorname{Re}(E(z))>0$, if $\gamma>-\frac{\beta p+\eta}{\beta+1}$. Therefore, the inequality (26) satisfies the condition required by Lemma 10. Hence, $h(z) \prec Q_{p, \alpha, \beta}(z)$ and the proof is completed.

Theorem 18. Let $f \in A(p)$ and $\gamma>-\frac{\beta p+\eta}{\beta+1}$. If $f(z) \in U K_{p}^{*}(a, c, \mu, \alpha, \beta, \eta)$, then

$$
\mathfrak{f}_{\gamma, p} f(z) \in U K_{p}^{*}(a, c, \mu, \alpha, \beta, \eta) .
$$

Proof. The proof of Theorem 18 can be derived from the proof of Theorem 17.

Remark 19.

(i) Putting $p=1$, in the above results, we obtain the results obtained by EL-Ashwah and Drbuk [5];
(ii) By varying some parameters involved in the above subclasses of functions defined, we can obtain several other results.

References

[1] H. A. Al-Kharsani, Multiplier transformations and k-uniformly p-valent starlike functions, General Math., 17 (2009), no. 1, 13-22.
[2] M.K.Aouf, R. M. EL-Ashwah and Abd-Eltawab, Some inclusion relationships of certain subclasses of $p-$ valent functions associated with a family of integral operators, ISRN.Math. Anal. (2003), Art. ID 38470,1-8.
[3] M. K. Aouf, On a class of p-valent close-to-convex functions, Internat. J. Math. Math. Sci., 11 (1988), no. 2, 259-266.
[4] R. M. El-Ashwah and A. H. Hassan, Argument inequalities of certain subclass of multivalent functions defined by using new integral operator, Asian-European J. Math., 09 (2016), 1-6.
[5] R. M. EL-Ashwah and M. E. Drbuk, Inclusion relationship for uniformly certain classes of analytic functions, Int. J. Open Problems Complex Analysis, 7 (2015), no. 1, 1-18.
[6] R. M. El-Ashwah, M.K.Aouf and S.M.El-Deeb, Some inclusion relationship associated with generalized Sirvastava-Attia operator, Int. J. Open Problems Complex Analysis, 5 (2013), no.1, 18-32.
[7] R. M. EL-Ashwah and M. E. Drbuk, Subordination properties of p-valent functions defined by linear operators, British J. of Math and comput. Sci., 4 (2014), no. 21, 3000-3013.
[8] D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[9] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM. J. Math. Anal., 15 (1984), 737-745.
[10] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432-445.
[11] P.Eenigenburg, S.S.Miller, P. T. Mocanu, and M. O. Reade, On a Briot-Bouquet differential subordination, in General Inequalities, 3 (Oberwolfach,1981), of Internationale Schriftenreihe zur Numerischen Mathematik, Birkhäuser,Basel, Switzerland, 64 (1983), 339-348.
[12] R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353357.
[13] A. W. Goodman, On uniformly starlike functions, J.Math. Anal. Appl., 155 (1991), 364-370.
[14] I. B. Jung, Y. C. Kim and H. M. Srivastava, The hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), 138-147.
[15] S. M. Khairnar and M. More ,On subclass of multivalent-uniformly starlike and convex functions defined by a linear operator, IAENG Internat. J. of Appl. Math., 39:3, IJAM_39_06 (2009).
[16] V. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in Mathematics Series, 301, John Willey \& Sons, Inc. New York; 1994.
[17] J. L. Li, Some properties of two integral operators, Soochow J. Math. 25 (1999), no.1, 91-96.
[18] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), no. 2, 157-172.
[19] S. S. Miller and P. T. Mocanu, Differential Subordinations Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
[20] K. I. Noor, On new classes of integral operators, J. Natur. Geom., 16 (1999), 71-80.
[21] K. I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341-352.
[22] S. Owa, On new classes of p-valent function with negative coefficients, Simon Stevin, 59 (1985), no. 4, 385-402.
[23] D. A. Patil and N. K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S), 27 (1983), 145-160.
[24] F. Ronning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae CurieSklodowska, 47 (1993), no. 13, 123-134.
[25] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[26] H. Saitoh, A linear operator and its application of first order differential subordinations, Math. Japan. 44 (1996), 31-38.
[27] H. Saitoh, On certain subclasses of analytic functions involving a linear operator, in Proceedings of the Second International Workshop, Japan, 1996.
[28] H. Saitoh, S. Owa, T. Sekine, M.Nunokowa and R.Yamakawa, An application of certain integral operator, Appl. Math. letters, 5 (1992), 21-24.

