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Abstract 

This study centres on determining the optimal investment strategies for defined contribution (DC) pension 

fund with multiple contributors, administration cost and taxation on the invested fund. We assume that a 

certain proportion of the member’s contributions as administrative cost which is remitted to the pension fund 
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obtained an optimized equation using Hamilton Jacobi equation, then solve the equation using Legendre 

transformation method to obtained explicit solutions of the optimal investment strategy for CARA utility 

function. We observed that the tax has a direct effect on the investment strategies. 
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Introduction  

Defined contribution pension according to Antolin et.al. (2010) is very crucial in retirement income system in a 

lot of countries and there is a growing trend to automatically involve all workers in it. In as much the DC 

scheme is relatively new compared to the defined benefit (DB) pension scheme, it forms a determining factor 

of the old age income adequacy for future retirees. In a defined contribution pension fund, contributions are 

fixed in advance. DC pension fundhas received more attention in the literature; see, Haberman and Vigna 

(2002), Gerrard etal. (2004)and Deelstra etal. (2004). Over the years sizeable literatures on optimal investment 

strategies for DC pension funds have been recorded some of which include Gao (2008) who studied an asset 

allocation problem under a stochastic interest rate. Boulier et al (2001) studied optimal investment for DC with 

stochastic interest rate and Battocchio and Menoncin (2004)] where the interest rate was Vasicek model, 

Chubing and Ximing (2013), Deelstra et al (2003) and Gao (2008), studied the affine interest rate which include 

the Cox- Ingeroll- Ross (CIR) model and Vasicek model. Recently, more attention has been given to constant 

elasticity of Variance (CEV) model in DC pension fund investment strategies. As Geometric Brownian motion 

(GBM) can be considered as a special case of the (CEV) model, such work extended the research of Xiao et al 

(2007) where they applied (CEV) model to derive dual solution of a CRRA utility function via Legendre 

transform, also Gao (2009) extended the work of Xiao et al (2007) by obtaining solutions for investor with 

CRRA and CARA utility function. Blake et al.(2012) investigate an asset allocation problem under a loss-averse 

preference.. 

Recently Dawei and Jingyi (2014) extended the work in Gao (2009) by modelling pension fund with multiple 

contributors, they went on to find the explicit solution for CRRA and CARA using power transformation 

method. Osu et al (2017) studied optimal investment strategies in DC pension fund with multiple contributions 

using Legendre transformation method to obtain the explicit solution for CRRA and CARA. Akpanibah and 

Samaila (2017) studied stochastic strategies of optimal investment for DC pension fund with multiple 

contributors where they considered the rate of contribution to be stochastic. Nkeki (2014),studied a mean-

variance portfolio selection problem with stochastic salary, proportional administrative costs and taxation in 

the accumulation phase of a defined contribution (DC) pension scheme 

In this paper, we extend the work of Dawei and Jingyi (2014)and investigate optimal investment strategies for 

DC pension fund with multiple contributors, administration cost and taxation on the invested fund. We took 

into consideration administrative cost where certain proportion of the members fund is paid to the pension 

fund manager also from the Nigerian Pension Reform Act of 2004 where the invested fund is subjected to tax. 

We solve the optimal investment problem using Legendre transformation method to obtain the optimal 

investment strategies for CARA utility function.  

2. Preliminaries 

Starting with a complete and frictionless financial market which is continuously open over a fixed time interval 0≤ 𝑡 ≤
𝑇, where𝑇is the retirement time of a given shareholder. 

Let the market be of a risk free asset (cash) and a risky asset (stock). Suppose (Ω, 𝐹, 𝑃) is a complete probability space 
such thatΩ is a real space and𝑃 a probability measure, {𝑊𝑜(𝑡), 𝑊°(𝑡): t ≥  0} is a standard two dimensional motion 
such that they orthogonal to each other.𝐹is the filtration and denotes the information generated by the Brownian 
motion {𝑊𝑜(𝑡), 𝑊°(𝑡)}.   

Let 𝑆0(𝑡) denote the price of the risk free asset, it model is given as                                                     

𝑑𝑆0(𝑡)

𝑆0(𝑡)
= 𝑟𝑑𝑡.           (1) 

Let  𝑆(𝑡) denote the risky asset and its dynamics is given based on its stochastic nature and the price process described 
by the CEV model in Gao (2009) as                                                   

𝑑𝑆𝑡(𝑡)

𝑆𝑡(𝑡)
= 𝜑𝑑𝑡 + 𝛾𝑑𝑊𝑜.          (2)  

Where 𝜑 is an expected instantaneous rate of return of the risky asset and satisfies the general condition 𝜑 > 𝑟0. 𝛾is 
the instantaneous volatility,  
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In a pension fund system with multiple contributors, it is expected that payment are remitted to contributors who have 
retired from service and the payment continues till the death of a specific contributor after which payment is stopped 
for that particular contributor. As stated by Dawei and Jingyi (2014) that the payment is a stochastic process and 
assume the Brownian motion with drift as follows 

𝑑𝐶(𝑡) = 𝑢𝑑𝑡 − 𝑣𝑑𝑊°(𝑡),         (3) 

where𝑢 and 𝑣 are positive constants and denote the amount given to the retired contributors and that which which is 
due death contributors which are out of the system.. 

Consider that in DC plans the contributions provided by the contributors are fixed and then without loss of generality, 
we assume that the number of contributors is constant and so is the contribution rate 𝑐.Let0 < 𝜗 < 1be the proportion 
of contribution to be paid as administrative costs to the pension fund managers. Then, the accumulated contribution by 
the members at time t is (1 − 𝜗)𝑐(𝑡).If there is no investment, the dynamics of the surplus is given by 

𝑑𝑅(𝑡) = ((1 − 𝜗)𝑐(𝑡) − 𝑢)𝑑𝑡 + 𝑣𝑑𝑊°(𝑡)       (4) 

𝑑𝑅(𝑡) = (𝛽𝑐 − 𝑢)𝑑𝑡 + 𝑣𝑑𝑊°(𝑡).        (5) 

𝛽 = 1 − 𝜗           (6) 

Materials and Methods 

Hamilton-Jacobi-Bellman (HJB) equation 

Let 𝜋 be the strategy and we define the utility attained by the members from a given state 𝑥 at time 𝑡 as  

𝐽𝜏(𝑡, 𝑟, 𝑥) = 𝐸𝜏[ 𝑈(𝑋(𝑇)) ∣∣ 𝑟(𝑡) = 𝑟, 𝑋(𝑡) = 𝑥 ],       (7) 

Where 𝑡 is the time, 𝑟 is the short interest rate and 𝑥is the wealth. The main aim of this section is to find the 

optimal value function and optimal strategy given as  

𝐽(𝑡, 𝑟, 𝑥) = sup
𝜋

𝐽𝜋(𝑡, 𝑟, 𝑥) and 𝜋∗,      (8) 

respectively such that  

𝐽𝜋∗(𝑡, 𝑟, 𝑥) = 𝐽(𝑡, 𝑟, 𝑥).         (9) 

3.2. Legendre Transformation 

Here we state the basic theorem on Legendre transform and dual theory; this transformhelps to transform a 

non linear partial differential equationto a linear partial differential equation. 

Theorem 1: Let 𝑓: 𝑅𝑛 → 𝑅 be a convex function for 𝑧 > 0, define the Legendre transform 

 𝐿(𝑧) = max
𝑥

{𝑓(𝑥) − 𝑧𝑥},                    (10) 

Where 𝐿(𝑧) is the Legendre dual of 𝑓(𝑥). Jonsson and Sircar (2002) 

Since 𝑓(𝑥) is convex, from theorem 3.1 we defined the Legendre transform 

𝐽(𝑡, 𝑟, 𝑧) = sup{ 𝐽(𝑡, 𝑟, 𝑥) − 𝑧𝑥 ∣∣ 0 < 𝑥 < ∞ }  0 < 𝑡 < 𝑇.                  (11) 

where𝐽is the dual of 𝐽 and 𝑧 > 0 is the dual variable of 𝑥.  

The value of 𝑥 where this optimum is attained is denoted by 𝑔(𝑡, 𝑟, 𝑧), so that 

𝑔(𝑡, 𝑟, 𝑧) = inf{ 𝑥 ∣∣ 𝐽(𝑡, 𝑟, 𝑥) ≥ 𝑧𝑥 + 𝐽(𝑡, 𝑟, 𝑧) }  0 < 𝑡 < 𝑇.                                (12)  

The function 𝑔 and 𝐽are closely related and can be refers to as the dual of 𝐽. These functions are related as 

follows 

𝐽(𝑡, 𝑟, 𝑧) = 𝐽(𝑡, 𝑟, 𝑔) − 𝑧𝑔.                                    (13) 

Where 

𝑔(𝑡, 𝑟, 𝑧) = 𝑥, 𝐽𝑥 = 𝑧, 𝑔 = −𝐽𝑧.                        (14) 
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At terminal time, we denote 

𝑈̂(𝑧) = sup{ 𝑈(𝑥) − 𝑧𝑥 ∣ 0 < 𝑥 < ∞ }, 

and 

𝐽(𝑧) = sup {𝑥 ∣ 𝑈(𝑥) ≥ 𝑧𝑥 + 𝑈̂(𝑧)} 

As a result  

𝐽(𝑧) = (𝑈′)−1(𝑧),                                                  (15) 

where𝐽 is the inverse of the marginal utility 𝑈 and note that 𝐽(𝑇, 𝑟, 𝑥) = 𝑈(𝑥). 

At terminal time 𝑇, we can define 

𝑔(𝑇, 𝑟, 𝑧) = inf
x>0

{ 𝑥 ∣∣ 𝑈(𝑥) ≥ 𝑧𝑥 + 𝐽(𝑡, 𝑟, 𝑧) } 𝑎𝑛𝑑 𝐽(𝑡, 𝑟, 𝑧) = sup
x>0

{ 𝑈(𝑥) − 𝑧𝑥} 

so that   

𝑔(𝑇, 𝑟, 𝑧) = (𝑈′)−1(𝑧).                      (16) 

Wealth Formulation with tax on invested fund 

Let 𝑋(𝑡) denote the wealth of pension fund at 𝑡 ∈ [0, 𝑇],  let 𝜋 denote the proportion of the pension fund invested in 
the risky asset 𝑆𝑡and 1 − 𝜋, the proportion invested in risk free asset. Since the surplus is the contribution of the 
members, it is tax exempted as stated in Nigerian PensionReform Act, 2004,we only subject the invested fund to tax. 
Let 𝛼be the rate at which the invested fund is being tax, which implies (1 − 𝛼) of the invested fund will be tax free. 
Hence the dynamics of the pension wealth is given by 

𝑑𝑋(𝑡) = (1 − 𝛼) (𝜋𝑋(𝑡)
𝑑𝑆𝑡(𝑡)

𝑆𝑡(𝑡)
+ (1 − 𝜋)𝑋(𝑡)

𝑑𝑆0(𝑡)

𝑆0(𝑡)
) + 𝑑𝑅(𝑡)     (17) 

Substituting (1), (2) and (5) into (17) we have 

𝑑𝑋(𝑡) = [(𝜋𝑋(𝑡)(𝜑 − 𝑟))(1 − 𝛼) + 𝑟(1 − 𝛼)𝑋(𝑡) + 𝛽𝑐 − 𝑢]𝑑𝑡 + 𝑋(𝑡)(1 − 𝛼)𝜋𝛾𝑑𝑊0(𝑡) + 𝑣𝑑𝑊°(𝑡)  

                          (18) 

The Hamilton-Jacobi-Bellman (HJB) equation associated with (18) is 

𝐽𝑡 + 𝜔𝑠𝐽𝑠 + (𝑟(1 − 𝛼)𝑥 + (𝛽𝑐 − 𝑢))𝐽𝑥 +
1

2
𝛾2𝑠2𝐽𝑠𝑠 +

1

2
𝑣2𝐽𝑥𝑥 + sup {

1

2
𝜋2(1 − 𝛼)2𝑥2𝛾2𝐽𝑥𝑥 + 𝜋𝑥(1 − 𝛼)(𝜑 − 𝑟)𝐽𝑥 +

𝜋𝑥(1 − 𝛼)𝛾2𝑠𝐽𝑥𝑠} = 0.                                                               (19) 

Differentiating equation (19) with respect to 𝜋, we obtain the first order maximizing condition as  

𝜋𝑥2(1 − 𝛼)2𝛾2𝐽𝑥𝑥 + 𝑥(1 − 𝛼)𝛾2𝑠𝐽𝑥𝑠 + 𝑥(1 − 𝛼)(𝜑 − 𝑟)𝐽𝑥 = 0     (20) 

Solving equation (20) for 𝜏 we have 

𝜋∗ = −
[(𝜑−𝑟)𝐽𝑥+𝛾2𝑠𝐽𝑥𝑠]

𝑥(1−𝛼)𝛾2𝐽𝑥𝑥
.          (21) 

Substituting (21) into (19), we have 

𝐽𝑡 + 𝜔𝑠𝐽𝑠 + (𝑟(1 − 𝛼)𝑥 + (𝛽𝑐 − 𝑢))𝐽𝑥 +
1

2
𝛾2𝑠2𝐽𝑠𝑠 +

1

2
𝑣2𝐽𝑥𝑥 + sup {

1

2
(−

[(𝜑−𝑟)𝐽𝑥+𝛾2𝑠𝐽𝑥𝑠]

𝑥(1−𝛼)𝛾2𝐽𝑥𝑥
)

2

(1 − 𝛼)2𝑥2𝛾2𝐽𝑥𝑥 +

(−
[(𝜑−𝑟)𝐽𝑥+𝛾2𝑠𝐽𝑥𝑠]

𝑥(1−𝛼)𝛾2𝐽𝑥𝑥
) 𝑥(1 − 𝛼)(𝜑 − 𝑟)𝐽𝑥 + (−

[(𝜑−𝑟)𝐽𝑥+𝛾2𝑠𝐽𝑥𝑠]

𝑥(1−𝛼)𝛾2𝐽𝑥𝑥
) 𝑥(1 − 𝛼)𝛾2𝑠𝐽𝑥𝑠} = 0    

                                                                             (22) 

So that 
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𝐽𝑡 + 𝜔𝑠𝐽𝑠 + (𝑟(1 − 𝛼)𝑥 + (𝛽𝑐 − 𝑢))𝐽𝑥 +
1

2
𝛾2𝑠2 [𝐽𝑠𝑠 −

𝐽𝑥𝑠
2

𝐽𝑥𝑥
] +

1

2
𝑣2𝐽𝑥𝑥 −

(𝜑−𝑟)2

2𝛾2

𝐽𝑥
2

𝐽𝑥𝑥
− (𝜑 − 𝑟)𝑠

𝐽𝑥𝐽𝑥𝑠

𝐽𝑥𝑥
= 0.  

                                      (23) 

Differentiating (13) with respect to 𝑡, 𝑠, 𝑎𝑛𝑑𝑥 we have the following partial derivatives 

𝐽𝑡 = 𝐽𝑡 , 𝐽𝑠 = 𝐽𝑠 , 𝐽𝑥 = 𝑧, 𝐽𝑠𝑥 =
−𝐽𝑠𝑧

𝐽𝑧𝑧  
, 𝐽𝑥𝑥 =

−1

𝐽𝑧𝑧  
 , 𝐽𝑠𝑥 = 𝐽𝑠𝑠 −

𝐽𝑠𝑧
2

𝐽𝑧𝑧  
.                            (24) 

Substituting (24) into (23), we have 

𝐽𝑡 + 𝜔𝑠𝐽𝑠 + (𝑟(1 − 𝛼)𝑥 + (𝛽𝑐 − 𝑢))𝑧 +
1

2
𝛾2𝑠2𝐽𝑠𝑠 −

1

2
𝑣2 1

𝐽𝑧𝑧  
−

𝑧2(𝜑−𝑟)2

2𝛾2 𝐽𝑧𝑧
2

− (𝜑 − 𝑟)𝑠𝑧𝐽𝑧𝑧  = 0   

                                  (25)  

and 

𝜋∗ = −
[(𝜑−𝑟)𝑧𝐽𝑧𝑧  −𝛾2𝑠𝐽𝑠𝑧].

𝑥(1−𝛼)𝛾2                      (26) 

Differentiating (25) and (26) with respect to𝑧 and using 𝑥 = 𝑔 = −𝐽𝑧, we have 

𝑔𝑡 + 𝑟𝑠𝑔𝑠 − 𝑟(1 − 𝛼)𝑔 − (𝛽𝑐 − 𝑢) +
1

2
𝛾2𝑠2𝑔𝑠𝑠 + (

(𝜑−𝑟)2

𝛾2 − 𝑟) 𝑧𝑔𝑧 +
1

2
𝑣2 𝑔𝑧𝑧  

𝑔𝑧
2 +

𝑧2(𝜑−𝑟)2𝑔𝑧𝑧  

2𝛾2 − (𝜑 − 𝑟)𝑠𝑧𝑔𝑠𝑧  = 0 

                     (27) 

and 

𝜋∗ = −
[(𝜑−𝑟)𝑧𝑔𝑧−𝛾2𝑠𝑔𝑠]

𝑔(1−𝛼)𝛾2          (28) 

Assume that the fund manager takes an exponential utility 

𝑈(𝑥) = −
1

𝑏
𝑒−𝑏𝑥 ,     𝑏 > 0.           (29) 

The absolute risk aversion of a decision maker with the utility described in (29) is constant and is a CARA utility 

Since 𝑔(𝑇, 𝑠, 𝑧) = (𝑈′)−1(𝑧) with the CARA utility function we obtain 

𝑔(𝑇, 𝑠, 𝑧) = −
1

𝑏
𝑙𝑛𝑧.         (30) 

Hence we developed a solution to (27) as follows 

𝑔(𝑡, 𝑠, 𝑧) = −
1

𝑏
[𝑞(𝑡)(𝑙𝑛𝑧 + 𝑎(𝑡, 𝑠))] + 𝑒(𝑡),      (31) 

With boundary conditions 𝑞(𝑇) = 1, 𝑒(𝑇) = 0, 𝑎(𝑇, 𝑠) = 0 

𝑔𝑡 = −
1

𝑏
[𝑞′(𝑡)(𝑙𝑛𝑧 + 𝑎(𝑡, 𝑠)) + 𝑞𝑎𝑡] + 𝑒′(𝑡),  

𝑔𝑠 = −
1

𝑏
𝑞𝑎𝑠, 𝑔𝑧 = −

𝑞

𝑏𝑧
 , 𝑔𝑧𝑧 =

𝑞

𝑏𝑧2 , 𝑔𝑠𝑠 = −
1

𝑏
𝑞𝑎𝑠𝑠, 𝑔𝑠𝑧 = 0.    (32) 

Substituting (32) into (27), we have 

[𝑞′(𝑡) − 𝑟(1 − 𝛼)𝑞(𝑡)]𝑙𝑛𝑧 + [−𝑒′(𝑡) + 𝑟(1 − 𝛼)𝑒(𝑡) + (𝛽𝑐 − 𝑢)]𝑏 + [𝑎𝑡 + 𝑟𝑠𝑎𝑠 +
1

2
𝛾2𝑠2𝑎𝑠𝑠 +

(𝜑 − 𝑟)2

2𝛾2

− 𝑟(1 − 𝛼)𝑎 +
𝑞′

𝑞
𝑎 − 𝑟(1 − 𝛼) −

1

2
𝑣2]𝑞 = 0. 

Such that      

𝑞′(𝑡) − 𝑟(1 − 𝛼)𝑞(𝑡) = 0        (33) 

and 

𝑎𝑡 + 𝑟𝑠𝑎𝑠 +
1

2
𝛾2𝑠2𝑎𝑠𝑠 +

(𝜑−𝑟)2

2𝛾2 − 𝑟(1 − 𝛼) −
1

2
𝑣2 = 0.     (34) 

So that 

−𝑒′(𝑡) + 𝑟(1 − 𝛼)𝑒(𝑡) + (𝛽𝑐 − 𝑢) = 0       (35) 

Solving (33) and (35) we obtain 
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𝑞(𝑡) = 𝑒−𝑟(1−𝛼)(𝑡−𝑇)          (36) 

and 

𝑒(𝑡) = −
(𝛽𝑐−𝑢)

𝑟(1−𝛼)
(1 − 𝑒−𝑟(1−𝛼)(𝑡−𝑇)).                     (37) 

We next formulate a solution for (32) in the following form 

𝑎(𝑡, 𝑠) = 𝑌(𝑡) + 𝑍(𝑡)𝛾2, 𝑌(𝑇) = 0, 𝑍(𝑇) = 0, 𝑤ℎ𝑒𝑟𝑒 𝛾2 = 𝑘2𝑠2𝛿 , and 𝛿 is the elasticity parameter and satisfies the 
general condition 𝛿 < 0. 

𝑎𝑡 = 𝑌′ + 𝑍′ 𝑘2

𝛾2 , 𝑎𝑠 = −
2𝛿𝑌

𝑠

𝑘2

𝛾2 , 𝑎𝑠𝑠 =
2𝛿(2𝛿+1)𝑍

𝑠2

𝑘2

𝛾2.     (38) 

Substituting (38) into (34) we have 

(𝑌′ + 2𝛿(2𝛿 + 1)𝑘2𝑍 − 𝑟(1 − 𝛼) −
1

2
𝑣2)𝛾2 + 𝑘2 [𝑍′ − 2𝑟𝛿𝑍 +

(𝜑−𝑟)2

2𝑘2 ] = 0,  (39) 

so that 

𝑌′ + 2𝛿(2𝛿 + 1)𝑘2𝑍 − 𝑟(1 − 𝛼) −
1

2
𝑣2 = 0,      (40) 

and 

𝑍′ − 2𝑟𝛿𝑍 +
(𝜑−𝑟)2

2𝑘2 = 0.        (41) 

Solving (41) with the given condition gives; 

𝑍(𝑡) =
(𝜑−𝑟)2

4𝑘2𝑟𝛿
[1 − 𝑒2𝑟𝛿(𝑡−𝑇)].        (42) 

Next substituting (42) into (40) and solving (40) with the given condition we have  

𝑌(𝑡) = [
(2𝛿+1)(𝜑−𝑟)2

4𝑟
− 𝑟(1 − 𝛼) −

1

2
𝑣2] (𝑇 − 𝑡) − [

(2𝛿+1)(𝜑−𝑟)2

8𝑟2𝛿
(1 − 𝑒2𝑟𝛿(𝑡−𝑇))]. (43) 

𝑎(𝑡, 𝑠) = [
(2𝛿+1)(𝜑−𝑟)2

4𝑟
− 𝑟(1 − 𝛼) −

1

2
𝑣2] (𝑇 − 𝑡) − [

(2𝛿+1)(𝜑−𝑟)2

8𝑟2𝛿
(1 − 𝑒2𝑟𝛿(𝑡−𝑇))]  

                                                          + [
(𝜑−𝑟)2

4𝛾2𝑟𝛿
(1 − 𝑒2𝑟𝛿(𝑡−𝑇))].                   (44) 

𝑔(𝑡, 𝑠, 𝑧) = −
1

𝑏
𝑒𝑟(1−𝛼)(𝑡−𝑇) {𝑙𝑛𝑧 + [

(2𝛿+1)(𝜑−𝑟)2

4𝑟
− 𝑟(1 − 𝛼) −

1

2
𝑣2] (𝑇 − 𝑡) − [

(2𝛿+1)(𝜑−𝑟)2

8𝑟2𝛿
(1 − 𝑒2𝑟𝛿(𝑡−𝑇))]  +

[
(𝜑−𝑟)2

4𝛾2𝑟𝛿
(1 − 𝑒2𝑟𝛿(𝑡−𝑇))]} −

(𝛽𝑐−𝑢)

𝑟(1−𝛼)
(1 − 𝑒−𝑟(1−𝛼)(𝑡−𝑇)).                                 (45)                    

If 𝑔𝑧 = −
1

𝑏𝑧
𝑒𝑟(1−𝛼)(𝑡−𝑇). and   𝑔𝑠 =

1

𝑏
𝑒𝑟(1−𝛼)(𝑡−𝑇) (𝜑−𝑟)2

2𝑠𝛾2𝑟
(1 − 𝑒2𝑟𝛿(𝑡−𝑇))], 

then the optimal investment strategy is given as 

                         𝜋∗ =
1

𝑏

(𝜑−𝑟)

𝛾2𝑔(1−𝛼)
𝑒𝑟(1−𝛼)(𝑡−𝑇) [1 +

(𝜑−𝑟)

2𝑟
(1 − 𝑒2𝑟𝛿(𝑡−𝑇))].                               (46) 

Conclusion 

This study centres on determining the optimal investment strategies for DC pension fund with multiple 

contributors with administration cost and taxation on the invested fund. We took into consideration 

administrative cost where certain proportion of the members fund is paid to the pension fund manager. Also 

following the Nigerian Pension Reform Act of 2004 the invested fund is subjected to tax. We obtained an 

optimized equation using Hamilton Jacobi equation then solve the equation using Legendre transformation 

method to obtained explicit solutions of the optimal investment strategy for CARA utility function. We 

observed that the tax has a direct effect on the investment strategy and this provides the pension managers 

insight on how to invest to maximize profit. 
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