The Chaotic Properties of the Shift Map and His Conjugacy of Horseshoe Map

Farah Watan Kamel
Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq.
Farahwatan2@gmail.com
Iftichar M. T. AL - Shara'a
Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq. ifticharalshraa@gmail.com

ARTICLE INFO

Submission date: 22 / 9/2019
Acceptance date: 25/ 11 / 2019
Publication date: 31/ 12 / 2019

Abstract

In our study, we prove some chaotic properties of the shift map σ on the symbol space \sum_{2} and apply the topological conjugacy property of the shift map on the horseshoe map.

Keywords: Devaney Chaos; Topological Conjugacy; Topological Mixing; Shift of finite type ; weakly blending; strongly blending .

1-Introduction

Chaotic dynamics generally refers to so complicated and seemingly random long term behavior exhibited in dynamical systems that keep simple, straightforward, deterministic laws . This type of dynamics can be seen in dynamical systems as various as electrical circuits, fluid dynamics, oscillating chemical reactions, and motion of planetary bodies .
The smale horseshoe map F is diffeomorphism defined on a square T in the plane . The image of $\mathrm{F}(T)$ is bound to form a horseshoe like shape [1]. From the axioms that map which are topologically conjugate are totally equivalent in terms of their dynamics . Particularly, the horseshoe map is topologically conjugate to the shift map σ. Hence the shift map is an exact model for the horseshoe map .

Let X be a compact metric space with no isolated point, $\mathcal{H}: \mathrm{X} \rightarrow \mathrm{X}$ be a map . In [2], Dzul-kifli and Good showed that the set of points with prime period at least n it is dense for each n if \mathcal{H} is Devaney chaotic. In [3] Baloush and Dzul-kifli introduced six various one-step shift of finite type which have totally different dynamics demeanor and clear up the dynamics of each space . [4] showed that Locally Everywhere Onto implies many other chaos properties such as mixing, totally transitive , and blending.

2. Preliminaries

If $\mathcal{H}: \mathrm{X} \rightarrow \mathrm{X}$ be a map on compact metric space with no isolated point, let $\mathrm{p} \in$ X then $\mathcal{H}(\mathrm{p})=$ the first iterate of p for \mathcal{H}. More generally , if n is any an integer, and a_{n} is the n -th iterate of p for \mathcal{H}, then $\mathcal{H}\left(\mathrm{a}_{\mathrm{n}}\right)$ is the $(\mathrm{n}+1)$ st iterate of p for \mathcal{H}. The orbit of p it is the set of points $\mathrm{p}, \mathcal{H}(\mathrm{p}), \mathcal{H}^{2}(\mathrm{p}), \ldots$. , and is symbolize by $\operatorname{orb}(\mathrm{p})=$
$\left\{\mathcal{H}^{\mathrm{n}}(\mathrm{p}) \mid \mathrm{n} \in \mathrm{N}_{\circ}\right\}$ such that $\mathrm{N}_{\circ}=\mathrm{N} \cup\{0\}$. A point $\mathrm{p} \in \mathrm{X}$ it is said a fixed point of \mathcal{H} if $\mathcal{H}(\mathrm{p})=\mathrm{p}, \mathcal{H}$ is said to be topologically transitive if $\exists \mathrm{n}>0$ such that $\mathcal{H}^{\mathrm{n}}(\mathrm{U}) \cap$ $\mathrm{V} \neq \emptyset$, where U, V are any two non-empty open subsets of X . If $\exists \delta>0$ for this any $\mathrm{x} \in \mathrm{X}$ and neighborhood N of $\mathrm{x}, \exists \mathrm{y} \in \mathrm{N}$ and $\mathrm{n}>0$ where $\mathrm{d}\left(\mathcal{H}^{\mathrm{n}}(\mathrm{x}), \mathcal{H}^{\mathrm{n}}(\mathrm{y})\right)>\delta$, then \mathcal{H} has sensitive dependence on initial conditions, briefly, we will write (SDIC). If for every pair non-empty open subsets U and V in X , there are a positive integer n such that $\mathcal{H}^{\mathrm{k}}(\mathrm{U}) \cap \mathrm{V} \neq \varnothing$ for every $\mathrm{k}>\mathrm{n}$, then we called that \mathcal{H} is topological mixing. If for any pair of non-empty open sets U and V in X , there exists some $\mathrm{n}>0$ such that $\mathcal{H}^{\mathrm{n}}(\mathrm{U}) \cap \mathcal{H}^{\mathrm{n}}(\mathrm{V}) \neq \varnothing$, then we called that \mathcal{H} is weakly blending, , and called strongly blending, if for any pair of non-empty open sets U and V in X , there exists some $\mathrm{n}>0$ where $\mathcal{H}^{\mathrm{n}}(\mathrm{U}) \cap \mathcal{H}^{\mathrm{n}}(\mathrm{v})$ contains a non-empty open subset. \mathcal{H} is said to be locally everywhere onto if for every open set U of X, there exists a positive integer n such that $\mathcal{H}^{n}(U)=X,[4]$. Let $\mathcal{H}: A \rightarrow A$ and $\mathcal{L}: B \rightarrow B$ be two continuous map, if there exists a homeomorphism $h: A \rightarrow B$ such that $h^{\circ} \mathcal{H}=\mathcal{L}^{\circ} h$ then \mathcal{H} and \mathcal{L} are called a topologically conjugate. The homeomorphism h is said to be topological conjugacy between \mathcal{H} and \mathcal{L}. [5]

3. On Various Concepts for Topological Dynamical Systems

The set $A_{m}=\{0,1\}$. we indicate to A_{m} as an alphabet and its elements as a symbols. Let $\sum_{2}\left(\sum_{2}^{+}\right)$be the set of each bi-infinite sequences (1 -sided sequences) with their elements of $\sum_{2}\left(\sum_{2}^{+}\right)$,i.e. every element \mathcal{S} of $\sum_{2}\left(\sum_{2}^{+}\right)$is of the form :

$$
\begin{aligned}
& \mathcal{S}=\left\{\ldots, \mathcal{S}_{-i}, \ldots, \mathcal{S}_{-1}, \mathcal{S}_{0}, \mathcal{S}_{1}, \ldots, \mathcal{S}_{i}, \ldots\right\}, \quad \mathcal{S}_{i} \in A_{m}, \text { or } \mathcal{S}=\left\{\mathcal{S}_{0}, \mathcal{S}_{1}, \ldots, \mathcal{S}_{n}, \ldots\right\}, \quad \mathcal{S}_{i} \in \\
& A_{m} .
\end{aligned}
$$

Now take another sequence $\overline{\mathcal{S}} \in \sum_{2}, \overline{\mathcal{S}}=\left\{\ldots, \overline{\mathcal{S}}_{-i}, \ldots, \overline{\mathcal{S}}_{-1}, \overline{\mathcal{S}}_{0}, \overline{\mathcal{S}}_{1}, \ldots, \overline{\mathcal{S}}_{i}, \ldots\right\}, \overline{\mathcal{S}}_{i} \in$ A_{m},
or $\overline{\mathcal{S}}=\left\{\overline{\mathcal{S}}_{0}, \overline{\mathcal{S}}_{1}, \ldots, \overline{\mathcal{S}}_{n}, \ldots\right\}, \quad \overline{\mathcal{S}}_{i} \in A_{m}$. The metric between \mathcal{S} and $\overline{\mathcal{S}}$ is defined as $d(\mathcal{S}, \overline{\mathcal{S}})=\sum_{i=-\infty}^{\infty} \frac{1}{2^{|i|}}, \quad$ where $i \in \mathbb{Z}$ is the minimal number such that $\mathcal{S}_{i} \neq \bar{S}_{i}$

In case of bi-infinite sequences, or

$$
d(\mathcal{S}, \bar{\delta})=\sum_{i=0}^{\infty} \frac{1}{2^{i}} \quad, \quad \text { where } i \in \mathbb{N} \text { is the minimal number such that } S_{i} \neq
$$ \bar{s}_{i}

In case of 1 -sided sequences . [6]

Definition 3.1 :

A shift of finite type (SFT) is a shift space $\mathrm{X} \subset \sum_{2}$ which has a finite number of blocks from symbols 0 and 1 such that the blocks do not exist in any element of X . The blocks are called forbidden blocks in X . [3]

Definition 3.2 :

A shift of finite type (SFT) is an M-step or have memory M, for some integer $M \geq 1$, if it can be described by a set of forbidden blocks that have length $M+1$. [3]

Since we have four possible various blocks of length two i.e. $00,01,10$ and 11 , then we have 16 sets of forbidden blocks, as shown in the table(1);

Table(1)

For each $\boldsymbol{i}=\{1,2, \ldots, 16\}, X_{i} \subseteq \sum_{2}$ is the one-step SFT with set of forbidden blocks $\mathcal{F}_{\boldsymbol{i}} \cdot[3]$

$\mathcal{F}_{1}=\emptyset$	$\mathcal{F}_{2}=\{00\}$	$\mathcal{F}_{3}=\{01\}$	$\mathcal{F}_{4}=\{10\}$
$\mathcal{F}_{5}=\{11\}$	$\mathcal{F}_{6}=\{00,01\}$	$\mathcal{F}_{7}=\{00,10\}$	$\mathcal{F}_{8}=\{00,11\}$
$\mathcal{F}_{9}=\{01,10\}$	$\mathcal{F}_{10}=\{01,11\}$	$\mathcal{F}_{11}=\{10,11\}$	$\mathcal{F}_{12}=\{00,01,10\}$
$\mathcal{F}_{13}=\{00,01,11\}$	$\mathcal{F}_{14}=\{00,10,11\}$	$\mathcal{F}_{15}=\{01,10,11\}$	$\mathcal{F}_{16}=\{00,01,10,11\}$

4. Some Properties of the Shift Map

In this section we introduce the some results on shift of finite type space

Theorem 4.1

Let the one-step $\mathrm{SFT}_{i}, i=\{6,11,12,15\}$ is finite set then $\sigma: \mathrm{X}_{i} \rightarrow \mathrm{X}_{i}$ is stable

Proof :
If $\mathrm{X}_{i}=\mathrm{X}_{6}$ such that the forbidden is $\mathcal{F}_{6}=\{00,01\}$ since for every $\mathcal{S} \in$ $\mathrm{X}_{6}, \mathcal{S}_{i} \neq 0$ for every $i \in \mathbb{N}$, so $\mathcal{S}_{i}=1$ for every $i \in \mathbb{N}$, so $\mathcal{S}_{i}=\{\overline{111}\}$ therefore X_{6} is singleton set, so σ has the fixed point $\{\overline{111}\}$, and the basin of the fixed point is X_{6}, so σ is stable .

In the same way $\mathrm{X}_{11}=\{\overline{000}\}, \mathrm{X}_{12}=\{\overline{111}\}, \mathrm{X}_{15}=\{\overline{000}\}$.
Theorem 4.2 :
Let the one-step SFT $\mathrm{X}_{i}, i=\{3,4\}$ is infinite set then $\sigma: \mathrm{X}_{i} \rightarrow \mathrm{X}_{i}, i=\{3,4\}$ is stable . Proof :

For every $\mathrm{X}_{i}, i=\{3,4\}$ the forbidden of $\mathrm{X}_{i}, i=\{3,4\}$ is $\mathcal{F}_{3}=\{01\}$ and $\mathcal{F}_{4}=$ $\{10\}$, so $\mathrm{X}_{i}, i=\{3,4\}$ has two fixed point and do not have any periodic point therefore the periodic point are not dense. Now let $\mathbb{U}=\{\overline{000}\}, \mathbb{V}=\{\overline{111}\}$ two open balls belong to $X_{i}, i=\{3,4\}$ then for any $\mathcal{S} \in \mathbb{U} \sigma^{n}(\mathcal{S}) \notin \mathbb{V}$ for all integer n. So $\mathrm{X}_{i}, i=\{3,4\}$ is not transitive and not Deveaney chaotic . Now if take the same open
balls \mathbb{U} and \mathbb{V} such that $\sigma^{n}(\mathbb{U}) \cap \sigma^{n}(\mathbb{V})=\emptyset$ for any integer n therefore $\mathrm{X}_{i}, i=$ $\{3,4\}$ is not weakly blending. To prove $\mathrm{X}_{i}, i=\{3,4\}$ is not SDIC let $\mathcal{S}=\{\overline{00}\}$ and $\mathcal{T}=\{1 \overline{00}\} \quad$ then $\quad d(\mathcal{S}, \mathcal{T})=1, \sigma^{n}(\mathcal{S})=\{\overline{00}\} \quad$ and $\quad \sigma^{n}(\mathcal{T})=\{\overline{00}\} \quad$ so $d\left(\sigma^{n}(\mathcal{S}), \sigma^{n}(\mathcal{T})\right)=0$. Hence $\mathrm{X}_{i}, i=\{3,4\}$ is not SDIC .

Theorem 4.3 :

Let the one-step SFT $\mathrm{X}_{i}, i=\{7,9\}$ is finite set on discrete topology then $\sigma: \mathrm{X}_{i} \rightarrow \mathrm{X}_{i}, i=\{7,9\}$ have a weakness chaotic.

Proof :
If $X_{i}=X_{7}$ and $X_{7}=\{\overline{111}, 0 \overline{111}\}$ there are only four open balls are $\mathrm{X}_{7}, \emptyset,(\overline{111})$ and $(0 \overline{111})$. Because $\sigma(\overline{111}) \cap \sigma(\overline{0111})=(\overline{111})$ so X_{7} is strongly blending and weakly blending. Since $(0 \overline{111})$ dose not contain any periodic point then the periodic points is not dense. X_{7} is not transitive because $(0 \overline{111}) \notin \sigma^{n}(\overline{111})$ for all integer n. Now let $\mathcal{S}=(0 \overline{11})$ and $\mathcal{T}=(\overline{11})$ then $d(\mathcal{S}, \mathcal{T})=1, \sigma^{n}(\mathcal{S})=$ $(\overline{11}), \sigma^{n}(\mathcal{T})=(\overline{11})$ so $d\left(\sigma^{n}(\mathcal{S}), \sigma^{n}(\mathcal{T})\right)=0$, therefore $\nexists \delta>0$ such that $d\left(\sigma^{n}(\mathcal{S}), \sigma^{n}(\mathcal{T})\right)>\delta$, therefore X_{7} is not SDIC .

If $X_{i}=X_{9}$ and $X_{9}=\{\overline{00}, \overline{11}\}$ there are four open balls in X_{9} are $X_{9}, \emptyset,(\overline{00})$, and $(\overline{11})$. The periodic points of X_{9} are dense since every point of X_{9} is periodic . to prove it is not transitive, so that let $\mathbb{U}=(\overline{00})$ and, $\mathbb{V}=(\overline{11})$, then $\sigma^{n}(\mathbb{U})=(\overline{00})$, and $\sigma^{n}(\mathbb{U}) \cap \mathbb{V}=\emptyset$, for all $n>0$. Now let $\delta=1$, and let $\mathcal{S}=$ $(\overline{00}), \mathcal{T}=(\overline{11})$. So for each $n>0 \quad, \quad \sigma^{n}(\mathcal{S})=\mathcal{S}, \sigma^{n}(\mathcal{T})=\mathcal{T} \quad$, and $d\left(\sigma^{n}(\mathcal{S}), \sigma^{n}(\mathcal{T})\right) \geq 1$, therefore X_{9} is SDIC .To prove X_{9} is not weakly blending and not strongly blending, let $\mathbb{U}=(\overline{00})$ and, $\mathbb{V}=(\overline{11})$. Since $\sigma^{n}(\mathbb{U})=\mathbb{U}$ and $\sigma^{n}(\mathbb{V})=$ \mathbb{V}, then $\sigma^{n}(\mathbb{U}) \cap \sigma^{n}(\mathbb{V})=\emptyset$, for all $n>0$.

Theorem 4.4 :

The one-step SFT X_{8} on discrete topology then $\sigma: \mathrm{X}_{8} \rightarrow \mathrm{X}_{8}$ has Devaney chaotic.

Proof:
Since $X_{8}=\{\overline{01}, \overline{10}\}$ so it has the only open balls $X_{8}, \emptyset,(\overline{01})$ and $(\overline{10})$. The periodic points of X_{8} are dense since every point is periodic point . Now let $\mathbb{U}=(\overline{01})$ and, $\mathbb{V}=(\overline{10})$. So for $n>0$, it is either $\sigma^{n}(\mathbb{U})=\mathbb{U}$ or $\sigma^{n}(\mathbb{U})=\mathbb{V}$. If $\sigma^{n}(\mathbb{U})=\mathbb{U}$ then $\sigma^{n+1}(\mathbb{U})=\mathbb{V}$, and $\sigma^{n+1}(\mathbb{U}) \cap \mathbb{V} \neq \emptyset$, and if $\sigma^{n}(\mathbb{U})=\mathbb{V}$, then $\sigma^{n}(\mathbb{U}) \cap \mathbb{V} \neq$ \emptyset. therefore X_{8} is transitive, so that σ has Devaney chaotic.

Remark 4.1: If X_{8} on any another topology then it is stable . Theorem 4.5 :

The one-step SFT X_{2} is infinite set then $\sigma: \mathrm{X}_{2} \rightarrow \mathrm{X}_{2}$ has Devaney chaotic, and mixing topological, totally transitive, locally everywhere onto, weakly blending and strongly blending.

Proof:
To prove that the periodic points of X_{2} are dense, let $\epsilon>0$ and $\mathcal{S}=$ $\left(\mathcal{S}_{0} \mathcal{S}_{1} \mathcal{S}_{2} \ldots\right) \in \mathrm{X}_{2}$. Choose n such that $\frac{1}{2^{n}}<\epsilon$, now let $\mathcal{T}=\left(\mathcal{T}_{0} \mathcal{T}_{1} \mathcal{T}_{2} \ldots\right)$ be another point such that $\mathcal{S}_{i}=\mathcal{T}_{i}$ for $i=0,1,2, \ldots, n$. Then $d(\mathcal{S}, \mathcal{T})<\frac{1}{2^{n}}$, therefore the set of periodic point to be dense in X_{2} we need to structure a periodic point within ϵ of \mathcal{S}. Let $\mathcal{T}=\left(\overline{\delta_{0} \delta_{1} S_{2} \ldots \delta_{n} 1}\right)$ it is obvious that \mathcal{T} is periodic point within ϵ of \mathcal{S}. So the periodic point are dense in X_{2}.

To show that X_{2} is locally everywhere onto let \mathbb{U} be nonempty open ball in X_{2} such that $\mathcal{S}=\left(\mathcal{S}_{0} \mathcal{S}_{1} \mathcal{S}_{2} \ldots \mathcal{S}_{n} \ldots\right) \in \mathbb{U}$, then we have two statuses; status 1: if $\mathcal{S}_{n}=1$, because (10) and (11) are allowed, then $\sigma^{n}(\mathbb{U})=\mathrm{X}_{2}$. Status 2: if $\mathcal{S}_{n}=0$, because (00) is forbidden then $\forall \mathcal{S} \in \mathbb{U}, \mathcal{S}_{n+1}=1$ therefore $\sigma^{n+1}(\mathbb{U})=\mathrm{X}_{2}$. because for every open set $\mathcal{S} \subseteq \mathrm{X}_{2}$ there exists a positive integer n such that $\sigma^{n}(\mathbb{U})=\mathrm{X}_{2}$, so that X_{2} is locally everywhere onto .

Since X_{2} is locally everywhere onto, therefore it is transitive, topological mixing, totally transitive, weakly blending and strongly blending. And since X_{2} has dense of periodic point and transitive, then it is SDIC, therefore X_{2} is Devaney chaotic .

5. The Horseshoe Map

The horseshoe map will be denoted by F . Its domain is the set S in \mathbb{R}^{2} collected of the unit square $T=[0,1] \times[0,1]$, bounded on the left and right by semicircles B and E such that S contains its boundary. The map F shrinks S vertically by a factor of $a<1 / 3$, and expands S horizontally by a factor of $b=3$. The result figure is folded by F therefore it fits again inside S, with only the semicircles popeyed to the left of T. Thus the range of F looks like a horseshoe when S is partitioned. We can see the effect of F on each member of the partition. Specifically, F sends semicircles B and E in to B and sends the square T into two strips inside T plus a curved strip inside E. [7]

The base interest in the horseshoe map F is to describe its dynamics on the attractor :

$$
\Lambda=\left\{\mathrm{X} \in T: \mathrm{F}^{n}(\mathrm{X}) \in T, \quad \forall n \in \mathbb{Z}\right\}
$$

To make our task easier , we first consider the set

$$
\Lambda^{+}=\left\{\mathrm{X}: \mathrm{F}^{n}(\mathrm{X}) \in T, \forall n \in \mathbb{Z}^{+}\right\}
$$

For the positive orbit of $\mathrm{X}, \mathrm{orb}^{+}(\mathrm{X})$. To be in T, X must belong to either V_{0} or V_{1}. Now if $\mathrm{F}^{n}(\mathrm{X}) \in T$, then obviously $\mathrm{F}^{n}(\mathrm{X}) \in V_{0} \cup V_{1}$ or $\mathrm{X} \in F^{-1}\left(V_{0}\right) \cup F^{-1}\left(V_{1}\right)$. Now if deduce that Λ^{+}is the product of a cantor set with a vertical interval.

Next we take the set

$$
\Lambda^{-}=\left\{\mathrm{X}: \mathrm{F}^{n}(\mathrm{X}) \in T, \forall n \in \mathbb{Z}^{-}\right\}
$$

For the negative orbit of $\mathrm{X}, \operatorname{orb}^{-}(\mathrm{X})$. To be in T, X must belong to either $E_{0}=$ $F\left(V_{0}\right)$ or $E_{1}=F\left(V_{1}\right)$. Now if $F^{-1}(\mathrm{X}) \in E_{0} \cup E_{1}$, therefore $\mathrm{X} \in F\left(E_{0}\right) \cup F\left(E_{1}\right)$, (see Fig (1)). [8]

Figure (1)

6. Applications of topological conjugacy

Now, we define the topological conjugacy map $h: \sum_{2} \rightarrow \Lambda$ is defined as follows :

For $\mathcal{S} \in \sum_{2}$ we let
$h(\mathcal{S})=\left\{\mathcal{S}_{0} \mathcal{S}_{2} \mathcal{S}_{1} \ldots\right\}, \quad$ where $\quad \mathcal{S}_{n}=\left\{\begin{array}{cll}\mathrm{H}^{n}(\mathcal{S}) \in V_{0} & \mathcal{S}_{n}=0, & n \in \mathbb{Z}^{+} \\ \mathrm{H}^{n}(\mathcal{S}) \in V_{1} & \mathcal{S}_{n}=1, & n \in \mathbb{Z}^{+}\end{array}\right.$
$h(\mathcal{S})=\left\{\ldots \mathcal{S}_{-3} \mathcal{S}_{-2} \mathcal{S}_{-1}\right\}$, where $\quad \mathcal{S}_{n}=\left\{\begin{array}{cll}\mathrm{H}^{n}(\mathcal{S}) \in E_{0} & \mathcal{S}_{n}=0, & n \in \mathbb{Z}^{-} \\ \mathrm{H}^{n}(\mathcal{S}) \in E_{1} & \mathcal{S}_{n}=1, & n \in \mathbb{Z}^{-}\end{array}\right.$

Theorem 6.1 :

Let $h: \sum_{2} \rightarrow \Lambda$ be a map , then h is a homeomorphism .
Proof :
To prove that h is one-to-one. Let \mathcal{S} and \mathcal{J} are in \sum_{2}, and $h(\mathcal{S})=h(\mathcal{T})$, then $h(\mathcal{S})\left(h^{-1}(\mathcal{S})\right)$ and $h(\mathcal{T})\left(h^{-1}(\mathcal{T})\right)$ lie on the same vertical (horizontal) line in T,
such that thy have the same forward (backward) sequence. Therefore $\mathcal{S}=\mathcal{T}$, so that h is one-to-one .

To prove that h is onto, let $J_{n}=\left\{V\right.$ in $\left.C_{0} \cup C_{1}: h\left(\mathcal{S}_{0} \mathcal{S}_{1} \mathcal{S}_{2} \ldots\right)=V\right\}$ and $J_{-n}=\left\{V\right.$ in $\left.C_{0} \cup C_{1}: h\left(\ldots \mathcal{S}_{-3} \mathcal{S}_{-2} \mathcal{S}_{-1}\right)=V\right\}$ then J_{n} and J_{-n} are closed for all n. Because $\bigcap_{n \geq 0} J_{n}$ is a single vertical line and $\bigcap_{n<0} J_{n}$ is single horizontal line in T. It follows that $\bigcap_{-\infty<n<\infty} J_{n}$ is a unique point V^{*}. By construction, $h(\mathcal{S})=V^{*}$ such that $\mathcal{S}=\cdots \mathcal{S}_{-3} \mathcal{S}_{-2} \mathcal{S}_{-1}, \mathcal{S}_{0} \mathcal{S}_{2} \mathcal{S}_{1} \ldots$, in \sum_{2} for all n. so that h is onto .

Therefore we need only to show that h and h^{-1} are continuous, let $\mathcal{S}=$ $\cdots \mathcal{S}_{-2} \mathcal{S}_{-1}, \mathcal{S}_{0} \mathcal{S}_{1} \mathcal{S}_{2} \ldots$ and $\mathcal{T}=\cdots \mathcal{J}_{-2} \mathcal{J}_{-1}, \mathcal{T}_{0} \mathcal{T}_{1} \mathcal{T}_{2} \ldots$ be in \sum_{2}, with $h(\mathcal{S})=V$ and $h(\mathcal{T})=W$, if $d(\mathcal{S}, \mathcal{T})=\|\mathcal{S}-\mathcal{T}\|=\sum_{|k|=n+1}^{\infty} \frac{\left|\mathcal{S}_{k}-\mathcal{T}_{k}\right|}{2^{|k|}} \leq \frac{1}{2^{n-1}}$, then $\mathcal{S}_{k}=\mathcal{T}_{k}$ for $k=$ $0,1,2, \ldots, n$, then V and W lie in the same vertical strip of width $1 / 3^{n+1}$, so that $\|V-W\|<1 / 3^{n+1}$. similarly, $\mathcal{S}_{k}=\mathcal{J}_{k}$ for $k=-1,-2, \ldots,-n$, which means that V and W lie in the same horizontal strip at the nth stage. So that there is a $\delta_{1}>0$ such that $\|V-W\|<\delta_{1}$. Now choose $\delta>0$ such that $\delta<1 / 3^{n+1}$ and $\delta<\delta_{1}$ it follows that $d(V, W)=\|V-W\|<\delta$. consequently h is continuous. The proof that h^{-1} is continuous follows by a similar argument .

Proposition 6.2 [9]

1. d is a metric on \sum_{2}.
2. If $\mathcal{S}_{i}=\mathcal{T}_{i}$ for $i=0, \ldots, k$, then $d[\mathcal{S}, \mathcal{T}] \leq 1 / 2^{k}$.
3. If $d[\mathcal{S}, \mathcal{T}]<1 / 2^{k}$ then $\mathcal{S}_{i}=\mathcal{T}_{i}$ for $i \leq k$.

Theorem 6.3 :

Let $I_{1}=V_{0} \cap E_{0}, I_{2}=V_{1} \cap E_{0}, I_{3}=V_{0} \cap E_{1}$ and $I_{4}=V_{1} \cap E_{1}$, Then $\cup_{j=1}^{4} I_{j}$ is closed and invariant under h.

Proof :
It is clear $h\left(I_{j}\right) \subset I_{j}, j=1,2,3,4$ so $\cup_{j=1}^{4} I_{j}$ is invariant. To prove that $\mathrm{U}_{j=1}^{4} I_{j}$ is closed, we need prove that each $I_{j}, j=1,2,3,4$ is closed, we suppose that $\mathcal{S} \in I_{j}, j=1,2,3,4$ such that $\mathcal{S}=\mathcal{S}_{0} \mathcal{S}_{1} \mathcal{S}_{2} \ldots, \mathcal{S}_{i} \in\{0,1\}$ for every $i \in \mathbb{N}$ which converge to \mathcal{T}. Let $\mathcal{T} \notin I_{j}, j=1,2,3,4$. Since the \mathcal{S} converge to \mathcal{T}, there is another integer k such that, if $i>k$ then $d(\mathcal{S}, \mathcal{T}) \leq 1 / 2^{\alpha+1}$. By Proposition [4.3], this forces $\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots, \mathcal{J}_{\alpha+1}$ to agree with the corresponding entries of \mathcal{S}_{i} for $i \geq k$, so that $\mathcal{T}_{\alpha} \in\{0,1\}$ and $\mathcal{T} \in I_{j}, j=1,2,3,4$, so $\bigcup_{j=1}^{4} I_{j}$ is closed.

Proposition 6.4: The $h\left(\mathrm{X}_{1}\right)$ is located in $\mathrm{U}_{j=1}^{4} I_{j}$.
Proof: since X_{1} dose not have any forbidden block, then $h\left(\mathrm{X}_{1}\right)$ is located in $\mathrm{U}_{j=1}^{4} I_{j}$.

Proposition 6.5: The $h\left(\mathrm{X}_{2}\right)$ is located in $I_{2} \cup I_{3} \cup I_{4}$.
Proof: Let $\mathcal{S} \in \mathrm{X}_{2}$ such that for every $i \in \mathbb{Z}, \mathcal{S}_{i}=0$, since $\{00\}$ is forbidden block, but 10 is allowed therefore $\mathcal{S}_{i-1}=1$. and if $\mathcal{S}_{i}=1$ then $\mathcal{S}_{i-1}=1$ or 0 since 11 and 01 are allowed, so that $h\left(\mathrm{X}_{2}\right) \notin I_{1}$, then $h\left(\mathrm{X}_{2}\right)$ is located in $I_{2} \cup I_{3} \cup I_{4}$.

Proposition 6.6: The $h\left(\mathrm{X}_{3}\right)$ is located in $I_{1} \cup I_{3} \cup I_{4}$.
Proof: Let $\mathcal{S} \in \mathrm{X}_{3}$ such that for every $\mathcal{S}_{i}=1$ then $\mathcal{S}_{i-1}=1$ for every $i \in \mathbb{Z}$ since 01 are forbidden, and if $\mathcal{S}_{i}=0$ then $\mathcal{S}_{i-1}=0$ or 1 since 00 and 10 are allowed , therefore $h\left(\mathrm{X}_{3}\right) \notin I_{2}$ and $h\left(\mathrm{X}_{3}\right)$ is located in $I_{1} \cup I_{3} \cup I_{4}$.

Proposition 6.7: The $h\left(\mathrm{X}_{4}\right)$ is located in $I_{1} \cup I_{2} \cup I_{4}$.
Proof: Let $\mathcal{S} \in \mathrm{X}_{4}$ such that for every $\mathcal{S}_{i}=0$ then $\mathcal{S}_{i-1}=0$ for every $i \in \mathbb{Z}$ since 10 are forbidden, and if $\mathcal{S}_{i}=1$ then $\mathcal{S}_{i-1}=0$ or 1 since 00 and 01 are allowed, therefore $h\left(\mathrm{X}_{4}\right) \notin I_{3}$ so $h\left(\mathrm{X}_{4}\right)$ is located in $I_{1} \cup I_{2} \cup I_{4}$.

Proposition 6.8: The $h\left(\mathrm{X}_{5}\right)$ is located in $I_{1} \cup I_{2} \cup I_{3}$.
Proof: Since the only forbidden block is $\{11\}$ so that 01,10 and 00 are allowed , therefore for every $\mathcal{S} \in \mathrm{X}_{5}$, if $\mathcal{S}_{i}=1$ then $\mathcal{S}_{i-1}=0, i \in \mathbb{Z}$, therefore $h\left(\mathrm{X}_{5}\right) \notin I_{4}$ so $h\left(\mathrm{X}_{5}\right)$ is located in $I_{1} \cup I_{2} \cup I_{3}$

Proposition 6.9: The $h\left(\mathrm{X}_{6}\right)$ is located in I_{4}.
Proof: since the forbidden block of X_{6} is $\{00,01\}$ then for every $\mathcal{S} \in \mathrm{X}_{6}, \mathcal{S}_{i} \neq$ 0 for every $i \in \mathbb{N}$. since 11 is allowed then $\mathcal{S}_{i}=1$ for every $i \in \mathbb{Z}$, therefore $h\left(\mathrm{X}_{6}\right)$ $\notin I_{1} \cup I_{2} \cup I_{3}$ and $h\left(\mathrm{X}_{6}\right)$ is located in I_{4}.

Proposition 6.10: The $h\left(\mathrm{X}_{7}\right)$ is located in $I_{2} \cup I_{4}$.
Proof: Since X_{7} has two forbidden block $\{00\}$ and $\{10\}$ then there is $S_{i}=1$ and $\delta_{i-1}=0$ or $1, i \in \mathbb{Z}$ such that $\mathrm{X}_{7}=\{\overline{111}, 0 \overline{111}\}$ so that $h\left(\mathrm{X}_{7}\right) \notin I_{1} \cup I_{3}$ and $h\left(\mathrm{X}_{7}\right)$ is located in $I_{2} \cup I_{4}$.

Proposition 6.11: The $h\left(\mathrm{X}_{8}\right)$ is located in $I_{2} \cup I_{3}$.
Proof: let $\mathcal{S} \in \mathrm{X}_{8}$ such that for every $\mathcal{S}_{i}=1$ then $\mathcal{S}_{i-1}=0$ and if $\mathcal{S}_{i}=0$ then $\mathcal{S}_{i-1}=1, i \in \mathbb{Z}$, since $\{00\}$ and $\{11\}$ are forbidden block, so that $h\left(\mathrm{X}_{8}\right) \notin I_{1} \cup I_{4}$ and $h\left(\mathrm{X}_{8}\right)$ is located in $I_{2} \cup I_{3}$.

Proposition 6.12: The $h\left(\mathrm{X}_{9}\right)$ is located in $I_{1} \cup I_{4}$.
Proof: since X_{9} has two forbidden block $\{01\}$ and $\{10\}$ then let $\mathcal{S} \in \mathrm{X}_{9}$ such that for every $i \in \mathbb{Z}$ if $\mathcal{S}_{i}=1$ than $\mathcal{S}_{i-1}=1$ and if $\mathcal{S}_{i}=0$ then $\mathcal{S}_{i-1}=0$, so that $h\left(\mathrm{X}_{9}\right) \notin I_{2} \cup I_{3}$ and $h\left(\mathrm{X}_{9}\right)$ is located in $I_{1} \cup I_{4}$.

Proposition 6.13: The $h\left(\mathrm{X}_{10}\right)$ is located in $I_{1} \cup I_{3}$.
Proof: since X_{10} has two forbidden block $\{01\}$ and $\{11\}$ then let $\mathcal{S} \in \mathrm{X}_{10}$ such that for every $i \in \mathbb{Z}$ if $\mathcal{S}_{i}=1$ than $\mathcal{S}_{i-1}=0$ or 1 such that $\mathrm{X}_{10}=\{\overline{000}, \overline{1000}\}$, so $h\left(\mathrm{X}_{10}\right) \notin I_{2} \cup I_{4}$ and $h\left(\mathrm{X}_{10}\right)$ is located in $I_{1} \cup I_{3}$.

Proposition 6.14: The $h\left(\mathrm{X}_{11}\right)$ is located in I_{1}.
Proof: since the forbidden block of X_{11} is $\{10\}$ and $\{11\}$ then for every $i \in \mathbb{Z}$ let $\mathcal{S} \in \mathrm{X}_{11}, \mathcal{S}_{i} \neq 1$. since 00 is allowed then $\mathcal{S}_{i}=0$ for every $i \in \mathbb{Z}$, therefore $h\left(\mathrm{X}_{11}\right) \notin I_{2} \cup I_{3} \cup I_{4}$ and $h\left(\mathrm{X}_{11}\right)$ is located in I_{1}.

Proposition 6.15: The $h\left(\mathrm{X}_{12}\right)$ is located in I_{4}.
Proof: The forbidden block of X_{12} is $\{00\},\{01\}$ and $\{10\}$ so that for every $\mathcal{S} \in$ $\mathrm{X}_{12}, \mathcal{S}_{i}=1, i \in \mathbb{Z}$, therefore $h\left(\mathrm{X}_{12}\right) \notin I_{1} \cup I_{2} \cup I_{3}$ and so $h\left(\mathrm{X}_{12}\right)$ is located in I_{4}.

Proposition 6.16 The $h\left(\mathrm{X}_{13}\right), h\left(\mathrm{X}_{14}\right)$ and $h\left(\mathrm{X}_{16}\right)$ are empty .
Proposition 6.17: The $h\left(\mathrm{X}_{15}\right)$ is located in I_{1}.
Proof: The forbidden block of X_{15} is $\{01\},\{10\}$ and $\{11\}$ so that for every $\mathcal{S} \in$ $\mathrm{X}_{15}, \mathcal{S}_{i}=0, i \in \mathbb{Z}$, therefore $h\left(\mathrm{X}_{15}\right) \notin I_{2} \cup I_{3} \cup I_{4}$ and so $h\left(\mathrm{X}_{15}\right)$ is located in I_{1}.

Let $\mathrm{M}_{1}=\mathrm{U}_{j=1}^{4} I_{j}, \mathrm{M}_{2}=I_{2} \cup I_{3} \cup I_{4}, \mathrm{M}_{3}=I_{1} \cup I_{3} \cup I_{4}, \mathrm{M}_{4}=I_{1} \cup I_{2} \cup I_{4}$, $\mathrm{M}_{5}=I_{1} \cup I_{2} \cup I_{3}, \mathrm{M}_{6}=I_{4}, \mathrm{M}_{7}=I_{2} \cup I_{4}, \mathrm{M}_{8}=I_{2} \cup I_{3}, \mathrm{M}_{9}=I_{1} \cup I_{4}, \mathrm{M}_{10}=$ $I_{1} \cup I_{3}, \mathrm{M}_{11}=I_{1}$.

7. Some Chaotic Properties of the Shift Map

Theorem 7.1 :

Let the map $\sigma: \mathrm{X}_{i} \rightarrow \mathrm{X}_{i}, i=\{2,5\}$ is $h-$ conjugate to the map $\mathrm{F}: \mathrm{M}_{i} \rightarrow$ $\mathrm{M}_{i}, i=\{2,5\}$, and σ has chaotic map in sense of Devaney, topologically mixing , totally transitive, weakly blending, strongly blending and locally everywhere onto then so F .

Proof:
To prove the set of periodic points in $\mathrm{M}_{i}, i=\{2,5\}$ is dense, let \mathbb{U} be any open set of $\mathrm{M}_{i}, i=\{2,5\}$ and since that σh-conjugates F , then $h^{-1}(\mathbb{U})$ is an open set of $\mathrm{X}_{i}, i=\{2,5\}$ and thus must contain a p-periodic point $\mathcal{S} \in \mathrm{X}_{i}, i=\{2,5\}$. Since $\mathcal{S}=\sigma^{p}(\mathcal{S})$, so that $h(\mathcal{S})=h\left(\sigma^{p}(\mathcal{S})\right)=(\mathrm{F})^{p}(h(\mathcal{S}))$. So $h(\mathcal{S})$ is a p-periodic point of F . Furthermore,$h(\mathcal{S}) \in h\left(h^{-1}(\mathbb{U})\right)=\mathbb{U}$, and therefore the set of periodic points are dense in $\mathrm{M}_{i}, i=\{2,5\}$. To prove F has locally everywhere onto , let \mathbb{U} be any open set in $\mathrm{M}_{i}, i=\{2,5\}$ then $h^{-1}(\mathbb{U})$ is an open set of $X_{i}, i=\{2,5\}$.

Since σ is locally everywhere onto, there exists a positive integer n such that $\sigma^{n}\left(h^{-1}(\mathbb{U})\right)=\mathrm{X}_{i}, i=\{2,5\}$, so that $h\left(\sigma^{n}\left(h^{-1}(\mathbb{U})\right)\right)=(\mathrm{F})^{n}\left(h\left(h^{-1}(\mathbb{U})\right)\right)=$ $(\mathrm{F})^{n}(\mathbb{U})$. Since h is one to one and onto then $(\mathrm{F})^{n}(\mathbb{U})=\mathrm{M}_{i}, i=\{2,5\}$, So F has locally everywhere onto .Since F has locally everywhere onto then it is transitive ,topologically mixing, totally transitive, weakly blending and strongly blending . Also since Fhas dense periodic point and transitive then it is SDIC and F has Devaney chaotic.

Theorem 7.2 :

Let the map $\sigma: \mathrm{X}_{i} \rightarrow \mathrm{X}_{i}, i=\{3,4,6,11,12,15\}$ is $h-$ conjugate to the map $\mathrm{F}: \mathrm{M}_{i} \rightarrow \mathrm{M}_{i}, i=\{3,4,6,11\}$,so that F is stable .

Theorem 7.3 :
Let the map $\sigma: \mathrm{X}_{i} \rightarrow \mathrm{X}_{i}, i=\{7,10\}$ is $h-$ conjugate to the map $\mathrm{F}: \mathrm{M}_{i} \rightarrow$ $\mathrm{M}_{i}, i=\{7,10\}$, so that F has weakly blending and strongly blending .

Proof:
It is sufficient to prove F has strongly blending. Let \mathbb{U} and \mathbb{V} be two open sets in $\mathrm{M}_{i}, i=\{7,10\}$. Since σ has weakly blending and strongly blending then $h^{-1}(\mathbb{U})$ and $h^{-1}(\mathbb{V})$ are open sets of $X_{i}, i=\{7,10\}$ and thus $\sigma^{n}\left(h^{-1}(\mathbb{U})\right) \cap \sigma^{n}\left(h^{-1}(\mathbb{V})\right)$ contains an open set, so

$$
\begin{aligned}
& h\left(\sigma^{n}\left(h^{-1}(\mathbb{U})\right)\right) \cap h\left(\sigma^{n}\left(h^{-1}(\mathbb{V})\right)\right) \\
= & (\mathrm{F})^{n}\left(h\left(h^{-1}(\mathbb{U})\right)\right) \cap(\mathrm{F})^{n}\left(h\left(h^{-1}(\mathbb{V})\right)\right) \\
= & (\mathrm{F})^{n}(\mathbb{U}) \cap(\mathrm{F})^{n}(\mathbb{V}) \text { contains an open set also . }
\end{aligned}
$$

Hence F has weakly blending and strongly blending .

Theorem 7.4 :

Let the map $\sigma: \mathrm{X}_{8} \rightarrow \mathrm{X}_{8}$ is $h-$ conjugate to the map $\mathrm{F}: \mathrm{M}_{8} \rightarrow \mathrm{M}_{8}$, than F is chaotic map in sense of Devaney .

Proof:
To prove that F is chaotic, we first prove that it is transitive . Let \mathbb{U} and \mathbb{V} be two open sets in M_{8} and suppose that $\mathrm{F} h$ - conjugates σ, then $h(\mathbb{U})$ and $h(\mathbb{V})$ are open sets in X_{8}. Since σ is transitive, there exists $n \in \mathbb{Z}^{+}$such that $\sigma^{n}(h(\mathbb{U})) \cap$ $h(\mathbb{V}) \neq \emptyset$. Hence $h\left((\mathrm{~F})^{n}(\mathbb{U})\right) \cap h(\mathbb{V}) \neq \emptyset$, so $(\mathrm{F})^{n}(\mathbb{U}) \cap \mathbb{V} \neq \varnothing$. Hence F is transitive.

To prove that the set of periodic points are dense in M_{8}. , let \mathbb{U} be any open set of M_{8} and since that σh-conjugates F , then $h^{-1}(\mathbb{U})$ is an open set of X_{8} so there is a p-periodic point $\mathcal{S} \in \mathrm{X}_{8}$. Since $\mathcal{S}=\sigma^{p}(\mathcal{S})$, so that $h(\mathcal{S})=h\left(\sigma^{p}(\mathcal{S})\right)=$ $(\mathrm{F})^{p}(h(\mathcal{S}))$. So $h(\mathcal{S})$ is a p-periodic point of F . Furthermore , $h(\mathcal{S}) \in$ $h\left(h^{-1}(\mathbb{U})\right)=\mathbb{U}$, and therefore the set of periodic points are dense in M_{8}, so that F is Devaney chaotic .

Theorem 7.5 :

Let the map $\sigma: \mathrm{X}_{9} \rightarrow \mathrm{X}_{9}$ is h - conjugate to the map $\mathrm{F}: \mathrm{M}_{9} \rightarrow \mathrm{M}_{9}$, then F has dense periodic points and has SDIC .

Proof:
By the same technique used in the previous proof, so that F has dense periodic points. To prove SDIC, let $\delta>0$ and $\mathcal{S} \in \mathrm{M}_{9}$ and N is neighborhood of $\mathcal{S}, \exists \mathcal{T} \in \mathrm{N}$ and suppose that $\mathrm{F} h$ - conjugates σ, then $h(\mathcal{S}) \in \mathrm{X}_{9}$ and $h(\mathrm{~N})$ is neighborhood of $h(\mathcal{S})$. Since X_{9} is SDIC then for all $n>0, d\left(\sigma^{n}(h(\mathcal{S})), \sigma^{n}(h(\mathcal{T}))\right)>\delta_{1}$, hence $d\left(h\left((\mathrm{~F})^{n}(\mathcal{S})\right), h\left((\mathrm{~F})^{n}(\mathcal{T})\right)\right)>\delta_{1} \quad, d\left(h^{-1}\left(h\left((\mathrm{~F})^{n}(\mathcal{S})\right)\right), h^{-1}\left(h\left((\mathrm{~F})^{n}(\mathcal{T})\right)\right)\right)>$ δ_{1}. Consequently,$d\left((\mathrm{~F})^{n}(\mathcal{S}),(\mathrm{F})^{n}(\mathcal{T})\right)>\delta$, so F is SDIC .

Conclusions

- The map $\mathrm{F}: \mathrm{M}_{i} \rightarrow \mathrm{M}_{i}, i=\{2,5\}$ has chaotic map in sense of Devaney, topologically mixing , totally transitive, weakly blending, strongly blending and locally everywhere onto .
- The map $\mathrm{F}: \mathrm{M}_{i} \rightarrow \mathrm{M}_{i}, i=\{3,4,6,11\}$, is stable .
- The map $\mathrm{F}: \mathrm{M}_{i} \rightarrow \mathrm{M}_{i}, i=\{7,10\}$ has weakly blending and strongly blending .
- The map F: $\mathrm{M}_{8} \rightarrow \mathrm{M}_{8}$ has chaotic in sense of Devaney .
- The map $F: M_{9} \rightarrow M_{9}$, has dense periodic points and has SDIC .

Conflict of Interests.

There are non-conflicts of interest

References

[1] S. Smale, "Differential Dynamical Systems" , Bull. Amer. Math. Soc , 1967.
[2] S. C. Dzul-Kifli and C. Good, "On Devaney Chaos and Dense Periodic Point: Period 3 and Higher Implies Chaos", Mathematical Association of America, Vol. 122, N. 8, PP: 773-780, 2015.
[3] M. Baloush and S.C. Dzul-Kifli ,"The Dynamics of 1-Step Shifts of Finite Type Over Tow Symbols" , Indian Journal of Science and Technology, Vol.9, N. 46, pp:1-6, 2016 .
[4] M. Baloush and S.C. Dzul-Kifli, "On Some Strong Chaotic Properties of Dynamical Systems" , American Institute of Physics, Vol:1830, pp. 1-7, 2017
[5] I. Bhaumik and B. S. Choudhury, "The Shift Map and The Symbolic Dynamics and Application of Topological Conjugacy" , Journal of Physical Sciences , Vol:13, pp. 149-160, 2009 .
[6] X. S. Yang ,"Topological Horseshoe and Computer Assisted Verification of Chaotic Dynamics", International Journal of Bifurcation and Chaos, Vol:19, No.4, pp. 1127-1145, 2009.
[7] D. Gulick, Encounters with Chaos and Fractals, $2^{\text {nd }}$ ed., Taylor \& Francis Group, 2012 .
[8] S. N. Elaydi, Discrete Chaos, $2^{\text {nd }}$ ed., Taylor \& Francis Group, 2007
[9] R.L. Devaney, An Introduction to Chaotic Dynamical Systems , $2^{\text {nd }}$ ed., Addison Wesley, 1989.

$$
\begin{aligned}
& \text { الخلاصة } \\
& \text { في هذا العمل, درسنا بعض الخصائص الفوضوية المختلفة لفضاء الضرب على دالة التزحيف. اوجدنا ترافقا تبولوجيا بين } \\
& \text { د دالة التزحيف ودالة حدوة الحصان لنقل الخواص الفوضوية المدروسة على فضاء }{ }^{2} \text { ع }
\end{aligned}
$$

الكلمات الالة : فوضى ديفيني؛ الترافق التبولوجي ؛ تبولوجي ممزوج ؛ التزحيف في خطوة واحدة ؛خلط ضعيف ؛ خلط بقوة .

