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Abstract

This Ph. D. Thesis deals with di�erent problems that arise when planning, designing
and managing a wind farm. This work proposes several solutions to these problems
using soft-computing techniques. First of all, the reconstruction of wind speed values
based on synoptic pressure values is tackled. We propose the application of a support
vector machine for regression, in order to be able to establish a relationship between
the measured wind speed values and the synoptic pressure values, available on a grid
over the area under study. A Weather Regimes Classi�cation Technique (WRCT) is
applied for comparison. Both algorithms are evaluated in several real problems of
wind speed reconstruction at three sites, obtaining excellent results in terms of wind
speed reconstruction.

Then, wind speed reconstruction of wind series using data from in-situ measuring
towers is carried out. In this work, we present the application of two state-of-the-
art neural networks which have shown a very fast training time with an excellent
performance in terms of accuracy. Speci�cally, we show the application of Group
Method of Data Handling and Extreme Learning Machines in the reconstruction of
wind speed series, in a real wind farm in Spain. A comparison in terms of computation
time and accuracy with alternative algorithms in the literature is also carried out.

Surface wind speed distribution over a wind farm area is a key parameter related
to several di�erent processes in wind farm prospecting, design and micrositing.
This information is often obtained from mesoscale models simulations, that include
variables from global models. We present several techniques to correct surface wind
speed simulations from mesoscale models, using data from measuring stations in
wind farms. Speci�cally, we propose di�erent heuristic corrections of the mesoscale
models output by means of a surface �tting between the wind speed series Weibull
parameters (from the mesoscale model) and those from the measuring stations (real
wind speed) in the wind farm. The good performance of our proposal is shown in
the correction of the surface wind speed from mesoscale models in two wind farms
facilities in Spain where several measuring towers are installed.

Finally, a novel evolutionary algorithm for optimal positioning of wind turbines in
wind farms is proposed. A realistic model for the wind farm is considered in the
optimization process, which includes orography, shape of the wind farm, simulation
of the wind speed and direction, and costs of installation, connection and road
construction among wind turbines. Regarding the solution of the problem, this work
introduces a greedy heuristic algorithm which is able to obtain a reasonable initial
solution for the problem. This heuristic is then used to seed the initial population of
the evolutionary algorithm, improving its performance. It is shown that the proposed
seeded evolutionary approach is able to obtain very good solutions to this problem,
which maximize the economical bene�t which can be obtained from the wind farm.





Resumen

En esta tesis se presentan diferentes problemas que surgen durante la plani�cación,
el diseño y la operación de un parque eólico. Este trabajo propone abordar estos
problemas utilizando diferentes técnicas de soft-computing. En primer lugar se
aborda la reconstrucción de valores de velocidad de viento basada en valores de
presiones sinópticas. Se propone la utilización de máquinas de vectores de soporte,
para establecer una relación entre los valores de viento y los valores de presión,
disponibles en un grid sobre el área de estudio. Además, se aplica una técnica
de Weather Regimes, para comparar. Ambos algoritmos son evaluados en varias
situaciones reales en tres localizaciones, obteniendo resultados excelentes en términos
de reconstrucción de viento.

Se propone también la reconstrucción de series de viento utilizando datos de torres
reales de medida. En este trabajo se presenta la aplicación de dos redes neuronales,
con un entrenamiento extremadamente rápido y con un rendimiento excelente en
términos de precisión. En concreto, se aplican Extreme Learning Machines y Group
Method of Data Handling para la reconstrucción de series de viento en un parque
eólico real en España. Se realiza una comparación con otros algoritmos alternativos
de la literatura en términos de tiempo de computación y precisión.

Por otro lado, la distribución espacial del viento sobre un parque eólico proporciona
información muy útil. Esta información se obtiene normalmente de simulaciones
de modelos de mesoescala. En este trabajo se presentan diferentes técnicas para
corregir estas simulaciones de modelos de mesoescala, utilizando datos de torres de
medida situadas en el propio parque. En concreto, se proponen diferentes métodos
heurísticos para ajustar mediante super�cies los parámetros Weibull de la serie de
viento del modelo de mesoescala con los de la serie de viento real medida por las
torres. Se muestra el buen rendimiento obtenido por los algoritmos propuestos en
dos parques eólicos en España.

Por último se propone un novedoso algoritmo para el posicionamiento óptimo de las
turbinas en un parque eólico. Se considera un modelo de parque eólico más realista,
incluyendo orografía del terreno, forma del parque eólico, simulación de velocidad y
dirección de viento y costes de instalación y conexión entre turbinas. Este trabajo
propone la aplicación de un algoritmo heurístico que obtiene una solución inicial
razonable para el problema. Esta solución se utilizará para inicializar la población
inicial de un algoritmo evolutivo. Se muestra que el algoritmo evolutivo inicializado
con la solución inicial del heurístico, obtiene muy buenos resultados, maximizando el
bene�cio económico.





A person who never made a mistake never tried anything new

- Albert Einstein
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Motivation, objectives and state-of-art
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Chapter 1

Introduction

Existing reserves and undiscovered sources of fossil fuels and other combustible or radioactive
minerals will eventually be exhausted or too expensive to extract in the mid-term future. There-
fore, new energy sources are needed, and that is here, where renewable energies play a very
important role. The use of renewable energies is also linked with environmental issues. As the
Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA)
point out, CO2 and other greenhouse gas (GHG) emissions must peak and begin to decline in
less than a decade if we plan to have any chance of meeting the target of staying below 2◦ C of
global mean temperature rise - the target to which the 192 member governments of the UNFCCC
(United Nations Framework Convention on Climate Change) have committed themselves to.

1.1 Some notes on wind energy economy

Due to climate change and in order to meet the established targets, a transformation on the
global energy system is needed. This energy transformation is becoming already a fact: renew-
able energy provided an estimated 19.1% of global energy consumption in 2013 (Figure 1.1) and
continued to grow in 2014, despite the dramatic decline in oil prices. Out of this total share in
2013, modern renewables accounted for approximately 10.1%, with the remainder coming from
traditional biomass [142].

Since 2009 installed renewable capacity grew at rapid rates. Over this period, solar photo-
voltaics (PV) experienced the fastest capacity growth rate of any power generation technology,
while wind experienced the most power capacity added of any renewable technology. Besides,
there was a number of signi�cant and positive developments: wind power was deeply developed
in Africa and Latin America; solar thermal power has shifted its focus to the Middle East and
North Africa region and to South America and solar PV has continued to grow around the world.
It is evident then, that renewables are no longer in hands of a small bunch of countries. Ma-
jor renewable energy companies focused their e�orts in Africa, Asia and Latin America, where
strong new markets are emerging. Renewable energy is considered crucial for meeting current
and future needs. In developing countries, it can provide and expand access to modern energy
services. On the other hand, a growing number of cities around the world aim to switch to a
100% Renewable energy system (See Table 1.1)

According to the Medium-Term Market Report (MTRMR) 2014, published by the Interna-
tional Energy Agency (IEA) [121], it is expected that the deployment of renewable technologies

3
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Figure 1.1: Estimated Renewable Energy Share of Global Final Energy Consumption. Source:
REN21.

Table 1.1: Cities and Countries moving towards 100% RE in electricity systems.

Country Target

Iceland (OECD) Produces 100% of its electricity from hydropower and
geothermal energy.

Cook Islands (Small Island State) 50% by 2015 and 100% by 2020 renewable energy goal.
Costa Rica (Central America) 95% renewables goal for 2014, mostly from indigenous

hydro resources.
Denmark (OECD) More than 50% of its electricity supply with renewables

by 2020, 100% of electricity and heat by 2035, and 100
per cent in transport by 2050.

Maldives (Small Island State) Completely carbon neutral by 2020. This entailed
embracing an almost 100% renewables based energy
system.

Scotland (OECD) 100% renewable power supply by 2020.
Tokelau (Small Island State) 100% of its electricity from renewable energy. Now

Tokelau produces over 10% of its electricity from solar
energy.

Tuvalu (Small Island State) 100% of its electricity from renewable energy by 2020.
Tasmania (Australian Territory) 100% renewables by 2020 and a 35% reduction in

emissions.
City Target

Sydney (Australia) 100% of the City's electricity, heating and cooling from
RE sources by 2030

Malmo (Sweden) 100% RE by 2030
Greensburg, Kansas (US) Today the town sources a 100% of electricity from a

12.5 MW wind farm.

over the medium term rises. Global renewable energy generation is projected to grow from 5070
TWh in 2013 to 7315 TWh in 2020 (Figure 1.2). China should be responsible for the biggest
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part of this growth within most categories.

Figure 1.2: Global renewable electricity generation. Source: MTRMR 2014.

In 2020, the number of countries with cumulative renewable electricity capacities above 100
MW is expected to notably increase. Onshore wind is expected to be deployed in nearly 75
countries by 2020. The deployment of solar PV is expected to reach 75 countries by 2020, and
bioenergy should reach 60 countries by 2020, up from 50 in 2013. The spread of o�shore wind,
CSP, geothermal and ocean deployment should remain relatively lower (Figure 1.3).

Figure 1.3: Number of countries with non-hydro renewable capacity above 100 MW. Source:
MTRMR 2014.

1.1.1 The Global Status of Wind Power

According to the Global Wind 2014 Report [66], 2014 was a record year for the wind industry as
annual installations crossed the 50 GW mark for the �rst time. More than 51 GW of new wind
power capacity were installed, a sharp rise in comparison to 2013, when global installations were
just over 35.6 GW (Figure 1.4).

The new global total capacity at the end of 2014 was 369.6 GW, representing cumulative
market growth of more than 16 percent (Figure 1.5). China, the largest wind market since 2009,
had a good year and retained the top spot in new installed capacity in 2014. The majority of
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Figure 1.4: Global annual installed wind capacity 1997-2014 Source: GWEC 2014

Figure 1.5: Global annual installed wind capacity 1997-2014 Source: GWEC 2014

wind farm facilities were installed outside the OECD1.

The big �ve markets - China, USA, Germany, Spain and India, still represent a 72% share of
global wind capacity. The Chinese market crossed the 100 GW mark, adding another milestone
to its already exceptional history of renewable energy development since 2005 [66].

China controls 31% of the global installed capacity, adding 23 GW in 2014. Germany added
5.3 GW anticipating the changes in the renewable energy legislation, which may lead to a slow-
down of the German market in the coming years. For the �rst time, Brazil has entered the top
group by becoming the third largest wind market for new capacities, with 2.5 GW, representing
5% of all new wind capacities. India kept the second Asian position, with 2.3 GW of new wind
capacity. The Spanish market, however, has not contributed to the overall growth in 2014, with
only 0.1 MW of new wind capacity added [185].

1Organisation for Economic Co-operation and Development. Members: EU-28, except Bulgaria, Croatia,
Cyprus, Latvia, Lithuania, Romania and Malta; Australia, Canada, Chile, Israel, Japan, South Korea, New
Zealand, Mexico, Turkey, Switzerland, Norway, Iceland, United States of America.
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(a) (b)

Figure 1.6: (a) Top 10 new installed capacity Jan-Dec 2014; (b) Top 10 cumulative capacity Dec
2014. Source: GWEC 2014.

1.1.2 Wind market forecast for 2015-20191

All industry experts saw wind energy as a very strong market for decades [141]. One of the the
most optimistic projections was 1000 GW globally by 2020. Another expert saw 50% of global
electricity from wind by 2050. Some utilities are equally optimistic. For example, German RWE
said that �wind power is well on its way to becoming competitive even in a non-regulated market�.
And Spanish Gas Natural Fenosa said that �wind energy is one of the most mature renewable
technologies and is the most widespread and has the greatest growth horizon world-wide�. Ac-
cording to the Global Wind Energy Comission [66], Asia will continue to dominate and having
surpassed Europe in terms of cumulative installed capacity at the end of 2014, it will continue
to lead markets with 40-45% of the annual global total. Cumulative growth will be near 15% in
2015, but it is expected to be in average 11-13% from 2016 to 2019. Total installation should
almost double today's capacity, going from 370 GW to just about 670 GW by the end of 2019
(Figure 1.7).

On the other hand, the potential of o�-shore wind energy remains high, but technical, �-
nancial and grid connection issues pose challenges to its deployment. The reliability of o�shore
turbines needs to be improved. To do so, more robust turbines speci�cally designed to operate
in o�shore conditions and �oating turbines to operate in deep waters are needed. Despite the
lack of nowadays reliability, wind o�shore capacity is expected to overcome these di�culties and

1Note that at the time of writing this Ph.D. Thesis, most recent reports on Wind Energy were from 2014.
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Figure 1.7: Cumulative market forecast by region 2014-2019 Source: GWEC 2014.

expand globally. According to EWEA, there are twelve projects currently under construction,
that will add 2.9 GW, bringing cumulative capacity in Europe to 10.9 GW in 2015-16. Beyond
2016, EWEA has identi�ed future o�shore wind farms, resulting in more than 98 GW.

1.1.3 Wind energy in Spain

Spain is the fourth country in the world in terms of wind energy capacity installed. In fact, it
has a history of continuous growth during the past few years (Figure 1.8).

Figure 1.8: New and cumulative annual capacity and variation rate in Spain 1998-2014. Source:
AEE.

However, the year 2014 will be remembered as the worst year for the wind sector. The energy
reform distanced new possible investors from Spain. The short term therefore o�ers little hope
for the wind power sector given the lack of objectives for 2020, the lack of incentives and the
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newly imposed taxes that do not apply to other technologies. New installed capacity reached the
minimum of the latest 20 years, with only 27 MW installed, 14 MW out of them corresponding
to a new wind farm in Galicia. On the other hand, according to REE, 42% of the electricity
demand in 2013 was covered by renewable energies. In fact, wind energy covered 21.1% of the
Spanish electricity demand in 2013, reaching a historical record. For the �rst time, wind en-
ergy was the technology with the highest share in electricity demand (Figure 1.9) and Spain
became the �rst country in the world, in which wind energy was the main energy power. In 2014
however, wind energy covered 20.3% of the electricity demand. According to the preliminary
report of 2015, coal-�re generation, with a contribution of 20.3% to demand coverage, placed
second in the generation mix, displacing wind energy to third place with 19.1% of the total share.

Figure 1.9: Spanish electricity demand coverage 2014. Source: REE.

1.2 Wind farms

The design of a wind farm and its later operation is an extraordinarily complex task, in which
many di�erent parts participate: electrical and electronic engineering, mechanic and aeronautical
engineering, topography, meteorology, environmental sciences, as well as economics and law.
Simplifying, there are three key factors to consider in the construction of a wind energy facility
[26].

• Availability of wind (Wind resource). A site must have a high annual average wind speed
to guarantee a certain amount of generated energy, and a low level of turbulences.

• Availability of existing transmission lines. Whenever possible, access to existing lines
should be considered to avoid the installation of new high voltages lines, that can cost
thousands of euros per kilometer.

• Access to the site. The construction of a wind farm needs the use of heavy industrial
equipment and turbine components have to be transported to the site. Therefore, a good
road infrastructure is needed.

While every project is unique, the life cycle of a wind farm generally has the following steps,
in which the key factors explained above should be taken into account [4, 32].
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1. Development.

(a) Site assessment. As a �rst step, a study of a potential site is undertaken to know
its suitability, looking at wind speed (using databases, or data from near airports,
for example), landscape features (orography), environmental issues and proximity to
grid lines. It is particulary useful here the use of Geographical Information Systems
(GIS), given the amount of information and considerations involved. There are some
articles in the literature, that deal with GIS systems to assess and evaluate the wind
potential of an area [72, 83, 102]. This is a pre-development phase, which ends with
an agreement with the landowner.

(b) Feasibility studies. One of the most important steps, once the site is chosen, is the
study of the wind resource to con�rm the initial wind speed assessment. To do so,
typically, measuring towers are installed on the site and data is gathered for 12-24
months. Sometimes these towers have technical failures, so the gathered data may
have gaps. Other times the developer cannot a�ord such long measuring campaigns
and only three or six months of data are available. Therefore, a good analysis of wind
speed data, that deals with lacks of data or short data series, is needed to study the
trend of the wind resource. Besides, there are other feasibility considerations to take
into account: if there are endangered or protected species in the area, if noise and
aesthetics will be an issue for locals, if the site's geology is appropriate for industrial
development, if the turbines will obstruct the �ight path of air tra�c, etc.

Figure 1.10: Capital cost breakdown for a typical onshore wind farm. Source: IRENA.

On the other hand, �nancing is another key point in terms of feasibility. First of all,
developers need to make a cost analysis. Wind energy is capital intensive, but has no
fuel costs. The key parameters governing wind power economics are:

• Investment costs (including project �nancing).

• Operation and maintenance costs (�xed and variable).

• Capacity factor (based on wind speeds and turbine availability factor).

• Economic lifetime.

• Cost of capital.
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The installed cost of a wind power project is dominated by the upfront capital cost
for the wind turbines (Figure 1.10). These high upfront costs can be a barrier to their
development, despite the fact that there is no fuel price once the wind farm is built.
The capital costs can be divided into turbine cost, civil works (including construction
for site preparation and foundation for the towers), grid connection costs and other
costs, that include the construction of buildings, control systems, etc.

Altough wind energy is capital intensive, it is one of the most cost-e�ective renewable
technologies in terms of the cost per kW of electriciy generated. The levelised cost
of energy (LCOE) is the main metric for describing and comparing the economics in
energy projects. In wind energy, the LCOE represents the sum of all costs of a fully
operational wind power system over the lifetime of the project with �nancial �ows
discounted to a common year. The principal components of the LCOE of wind power
systems include capital costs, operation and maintenance costs and expected annual
energy production (Figure 1.11). If the reader is interested in a deeper analysis, the
International Renewable Energy Agency (IRENA) provides a series of cost analysis
of di�erent renewable energy technologies, with a speci�c study on wind power cost
[80]. Further details are not included because cost analysis is beyond the scope of this
PhD. Thesis.

Figure 1.11: The economics of wind systems. Source: IRENA.

(c) Construction. Once the permits and licenses have been obtained, it is needed to
project the location of the turbines within the wind farm. It is usually made in
a heuristic way, with trial and error. With this preliminary layout, developers
use a commercial software for micro-sitting [176, 181, 182] or novel computational
intelligence techniques to evaluate the potential power obtained with the layout,
considering the orography and wind speed distribution of the wind farm. Then,
slight modi�cations are made by trial and error to adjust and maximize the power
output. With the layout established, construction works start: access roads, turbines
foundations, transportation of equipment and turbines, etc. In parallel with this, an
agreement with the local electricity distribution company is made to connect the wind
farm to the grid.
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2. Operation and management. Modern wind farms are fully automatic and are managed
using remote telemetry. Maintenance requirements are minimal and are carried out by
specialists. However, it could be interesting the development of a failure predicting system,
to anticipate and manage more e�ciently failures and breakdowns. Besides, in some
countries, governments or electricity companies require wind power prediction for the next
few hours, in order to balance the electricity system based on o�er and demand.

1.3 Objectives of this Ph. D. Thesis

This Ph. D. Thesis tackles several problems related to di�erent aspects of the wind farm design
previously described. Speci�cally, the following problems are the core of this work:

• Wind speed reconstruction, based on synoptic pressure values, rather than past wind speed
values. It is useful to study the wind resource in the area, when only measurements for a
short period of time have been taken. A relationship between wind speed and past synoptic
pressure values is achieved by applying di�erent soft-computing techniques.

• Wind speed reconstruction based on wind speed values from neighbour towers. Measuring
towers usually su�er technical problems and gathered data have gaps. In this part of the
work, we propose several algorithms for missing values reconstruction using the available
information from neighbour measuring towers. Di�erent techniques such as fast training
neural networks or support vector machines will be analyzed.

• Modi�cation of values from a mesoscale model using information from measuring towers.
Mesoscale models are used in wind farm prospection to study the spatial distribution of
wind speed. However, they tend to have a bias and data from mesoscale models di�er
from real data measured by towers. To solve this problem, an heuristic correction of the
mesoscale model values is proposed using on-site measuring towers.

• Wind farm design. A novel approach to design the layout of the turbines is proposed,
using computational intelligence techniques and including parameters like wind farm shape,
orography and costs, to improve the pro�t of the installation.

1.4 Structure of this Ph. D. Thesis

This Ph. D. Thesis is structured as follows:

• In Chapter 2 the State of the Art of each problem tackled in this work is reviewed, giving
references and examples of previous works in the literature.

• Chapter 3 includes the description of the di�erent soft-computing techniques applied to
solve the problems.

• Chapters 4, 5, 6 and 7 contain the work related to each of the proposed problems. Each
chapter is self-contained and includes a general description of the problem, the chosen
theoretical approach, the results obtained and some �nal conclusions. When necessary,
appendices to tables are included.

• Finally, some general remarks and possible lines of work are included. Besides, references
from the scienti�c publications produced as a result of this research work are provided.



Chapter 2

State-of-the-art

This chapter follows the structure of this Ph. D. Thesis. The objective is to follow the line of
the whole process of installing a new wind farm facility. This process implies a huge variety of
tasks in order to have a detailed study of the wind at the given location, as it has been shown
in Chapter 1. Thus, in the next sections we review some previous works on indirect wind speed
reconstruction from synoptic pressure patterns, direct wind speed reconstruction from measured
data, spatial reconstruction of wind speed with mesoscale models and intelligent design of wind
farms.

2.1 Indirect models based on synoptic pressure for wind recon-
struction

Wind speed series reconstruction is an important problem currently faced by companies exploit-
ing wind farms. Basically this problem is usually faced by obtaining a model for characterizing
the wind speed based on previous real wind measures and then, applying it to obtain values in
the past in order to reconstruct wind speed series. Di�erent techniques have been used to obtain
these wind speed models, such as statistical methods [50, 90, 105, 117, 166], neural networks
[52, 103, 104, 110, 114], support vector machines [113] or hybridization of some of these algo-
rithms [17].

The majority of the existing techniques to reconstruct wind speed series (and also for long-
term wind speed prediction problems) are based on past wind speed data [21], and some of
them include other atmospheric variables such as local temperature, radiation or pressure at
the measuring point. The main problem with this approach is that these prediction variables
are not always available for all the places, so it is sometimes di�cult to extrapolate the current
techniques or studies to new locations. This problem with local measures is common all over
the world, so the idea of considering synoptical information combined with local information
has been of interest in the last few years. In fact, this idea has been successfully applied in
a huge variety of prediction problems: pollution [28, 129], ozone levels [29, 189], precipitation
[133, 147, 167], temperature [132], forest �res [135] , dust storms [45], car accidents [96]. These
works tackle the relationship between synoptic pressure patterns and the variable under study in
lots of di�erent ways: support vector machines, weather types approaches or simply statistical
analysis, among others.

Since synoptic information (mainly atmospheric pressure) is available all over the world and
there are reliable records of synoptic pressure �elds back to more than one century ago, it is

13
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a great source of information for wind speed, because it has also been proved that the wind
at a given point is a direct function of the pressure gradient over time. Therefore, di�erent
works tackle the problem of wind speed prediction using synoptic pressure data. In [161], the
authors propose a method to automatically classify objective synoptic processes, not to predict
wind speed, but to study the mesoscale atmospheric circulatory patterns. Surface pressure and
geopotential height data at 500 hPa are studied, considering three day groups. The method is
based on the minimization of the distance among the groups, obtaining an average pressure and
geopotencial maps for each of the groups. Finally, a high-resolution mesoscale model is run, with
the characteristic maps (average pressure and geopotential maps calculated) for each situation
(group), so circulatory patterns are obtained for a certain synoptic situation.

In another di�erent work, [71], an approach to model wind speed data using atmospheric
pressure by means of hidden Markov models (HMMs) is developed. The authors state that the
correlation between atmospheric pressure and wind speed is not su�cient to build a nonlinear
predictor with past and current wind speed and pressure data, as most of the works try to estab-
lish. Therefore, a HMM is used, to exploit the dependencies between wind speed and pressure
to be able to build an accurate wind speed model. It is worth noting that a single value of at-
mospheric pressure in the location under study is used as input data in the HMM. Experimental
results show the performance of the proposed model: consistent predicted values, in accordance
with the real measured data, and parameters to model accurately the wind speed distribution.

In [22, 23] an evolutionary algorithm to carry out the synoptic pressure clustering for wind
speed reconstruction is proposed. The algorithm operates in a search space formed by grids of
pressure measurements, and classi�es the di�erent pressure situation into classes. Each class has
a mean wind speed and wind direction assigned, so the wind speed reconstruction is possible for
a new grid of synoptic pressures, by classifying it. A matrix of synoptic pressure data around the
location is used, speci�cally, a matrix of 182 values (14 × 13) surrounding the Iberian Peninsula
is considered. The authors propose a way to reduce the number of points in the grid and encode
the information for the evolutive algorithm to be used: di�erences of pressure between points of
the grid, speci�cally, 4 pressure di�erences (8 points) are considered. The evolutionary algorithm
tries to �nd the best possible encoding of the synoptic situation in order to classify them and
obtain the most concentrated clusters, to predict wind speed in the most accurate way. Both
works operate in a similar way, but [22] reconstructs wind speed module while [23] reconstructs
wind roses. In the reconstruction of wind speed module, a comparison with a weather types
approach is considered. In the reconstruction of wind roses, two di�erent objective functions are
proposed.

Another recent and interesting work is [64], that tackles the problem of wind speed estimation
in a very di�erent way from the previous works. In this work, wind speed is considered as a
discrete variable. Thus, the wind speed is discretized into di�erent levels of wind and the problem
is now a classi�cation problem. According to the authors, in some cases it is not necessary to
know the exact wind speed value, it is enough with a general idea of the level of speed for the
manager to set functional operations in the wind farm. Daily wind speed is discretized in four
di�erent classes and a synoptic pressure grid is considered. The objective of that work is to
test several methods to compare nominal and ordinal classi�cation. Also a comparison with the
hidden Markov models in [71] is given. In order to reduce the curse of dimensionality (synoptic
pressure grid has a high number of variables), a principal component analysis is applied, so as to
reduce the inputs for the di�erent algorithms. The results obtained in the work show that the
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best method is support vector machines, while ordinal and nominal classi�ers do not show big
di�erences.

2.2 Direct models for wind reconstruction from real measured
data

The analysis of wind speed in the area under study can also be carried out by installing one or
several wind measuring towers in the area of interest to take measures of wind speed and direc-
tion, over a time period, long enough to obtain revealing results. In [38] and more recently in
[100] these measures are then used to evaluate the best sites to place a wind farm. In other works
these measures are applied to the wind speed reconstruction using two-sites correlation models
[154], or to estimate mean wind speed from short-term data [101]. Note that these measuring
stations often have di�erent operational or technical problems, so in many cases the measured
wind speed series are incomplete in some periods. Therefore, the estimation of missing values in
wind speed series at a particular site, i.e. the reconstruction of a wind speed time series, is an
important problem in wind farms site prospection [35].

On the one hand, very short-term wind speed prediction is an important problem in wind
farms since in countries like USA hourly energy prediction is required. On the other hand, some
previous works have tackled long-term prediction in wind farms using wind speed data from
measuring towers. In [11] the wind speed prediction from reference stations is carried out using
neural networks, and applied to wind energy evaluation in Turkey. The authors use data from
8 stations and perform the prediction of each measuring stations using data from some other
reference stations. It is concluded in this work that the correlation factor between the target
station and the reference stations used to obtain the prediction is of extremely importance. Thus,
the prediction is made using data from the stations with the highest correlation factor. In [25]
a probabilistic method using measures from a reference site is used to estimate long-term wind
speed in the Canary Islands, Spain. The same authors also carried out di�erent studies on long-
term wind speed prediction from reference sites using neural networks [170, 171]. In [170] mean
hourly wind speeds and directions from twenty two measuring stations are used. The authors
conclude that the estimation errors tend to decrease when the number of reference measuring
towers used increases and the correlation factor between these reference towers and the objective
tower does not matter. It is also concluded that, when both the wind speed and the direction
are used as input signals, the number of measuring towers needed to obtain a certain estimation
error is lower than when only wind speed is used. On the other hand, [171] focuses on the
estimation of the cost per kWh produced so wind speed, electrical energy and energy cost are
analysed. As it can be seen, wind speed prediction and reconstruction of wind series from in-situ
measuring towers is currently a hot topic in wind energy research, covered under the generic
name of Measure-Correlate-Predict methods (MCP).

Many di�erent techniques have been applied to wind speed prediction or reconstruction from
MCP: traditional ones, such as linear MCP techniques have been applied in di�erent studies
of wind farm site assessment [118, 162] or wind speed reconstruction [146], in which a vari-
ety of sites (o�shore, coastal, complex terrain) and di�erent Measure-Correlate-Predict methods
are compared. Non-linear approaches have also been considered to this end, including di�erent
computational intelligent methods like neural networks. In [87] a review of neural networks ap-
plied to renewable energy system is provided: solar water heating systems, photovoltaic systems,
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solar radiation and wind speed prediction are tackled. Focusing on arti�cial neural networks
for wind speed prediction, a lot of works can be found in the literature in which, speci�cally,
multi-layer preceptrons have been applied to estimate wind speed in di�erent countries such as
Turkey [11, 130], Spain [106] or Nigeria [52], among others. It should be pointed out that in
[106] the authors showed the importance of using the wind direction as an input in complex
terrain locations. In the work [60], a two hidden layer neural network is proposed to carefully
predict the wind energy output. To do so, not only the authors use monthly mean wind speed
data from measuring towers, but also humidity, temperature, generation hours and maintenance
hours as inputs of the neural network. The novelties proposed by the authors are the use of a
two hidden layer neural network with two di�erent nonlinearities (i.e., the hyperbolic tangent
function and the logarithmic sigmoid function) and the consideration of �ve input signals that
enable a more accurate energy prediction. Some other works propose the usage of Support Vec-
tor Machines [113], Abductive networks [1], Bayessian networks [24], or generalized mapping
regression [8]. Usually the performance of each method has been evaluated on di�erent real data
from wind farms. Besides there are also several works comparing di�erent MCP techniques [148].

In spite of this huge work in MCP processes and algorithms, the majority of articles do not
cover real MCP operations (RMCPO), but re�ned versions on the problem, in which data have
been treated to consider complete sets, where all the data from reference towers are available. A
RMCPO problem consists of tackling the raw reconstruction or prediction problem from measur-
ing stations data, i.e., training a large number of reconstruction or prediction models from the
existing data (with missing values). Since huge amounts of data are received in a control center
managing several wind farms, RMCPO are dynamic processes which often require the continuous
re-training of the algorithms to consider new data. Thus, very fast training approaches must be
used in RMCPO problems, and that is why linear regression approaches are usually applied in
industry for RMCPO problems.

2.3 Spacial reconstruction of wind speed with Mesoscale models

In order to obtain the wind speed trend over the years, regression methods are usually applied.
The objective is to extend the series of the measured wind speed back to previous years. This
process can also be used to obtain long-term wind speed estimations, which will help support
the appropriateness of the area when it is presented to investors. There are many works in the
literature presenting regression techniques for this issue (Section 2.2). Estimation of wind speed
can also be tackled using indirect measurements from data acquired from Reanalysis or proxies
such as synoptic pressure patterns (Section 2.1). Besides, regarding the speci�c geographical dis-
tribution of surface wind speeds over the area of study, Computational Fluid Dynamics (CFD)
simulations are usually carried out, but in large complex areas simulations by mesoscale models
provide better results [5] and are quite often employed. The methodology to use mesoscale mod-
els consists of considering a grid of points, de�ned over the area under study, and the wind speed
distribution, calculated by means of the mesoscale model. This model is often initialized from
global-scale models outputs and fed with local information and/or parameterizations. The main
problem with this approach is that mesoscale models can produce wind speed data with some
drift, due to the characteristics of the model such as its resolution and discretization process.
Therefore, it is important to include di�erent corrections to the models in order to obtain surface
wind �elds as similar to real wind as possible.
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Recently, two works have proposed the statistical correction of the surface wind speed from
a mesoscale model using measuring stations [123, 124]. In those papers, a statistical correc-
tion of the geostrophic monthly wind speed is carried out through linear transformation of the
mesoscale model data in a grid in Iceland. The rescaling factor and o�set in the correction are
determined at measuring stations by comparison with measurements. The values of the rescaling
factor and o�set are then interpolated in the model grid through distance-weighted horizontal
averaging. These works have not been proposed to be applied in wind farm prospecting, but to
improve wind speed �elds analysis for Iceland, in the frame of meteorological analysis of the area.

Another recent work tackling mesoscale models correction is [93]. The main di�erence with
the previous commented work, is that this one does not use data from measuring stations to
correct mesoscale models, only to validate their proposed method. Instead, satellite-derived
variables are used: land surface temperature (LST) derived from satellite thermal infrared sig-
nals and normalized di�erence water index (NDWI). The authors state that these two variables
can represent the land surface characteristics corresponding to temperature and moisture con-
ditions. Simulated values of the mesoscale models matching the measuring station location are
corrected applying a multiple linear regression in order to include the LST and NDWI parameters.
Data from 74 meteorological stations operated by the Korean Meteorological Administration are
used to check the performance of the proposed algorithm. An analysis between simulated and
measured data is done, before doing any correction. Then, the correction is applied and com-
pared again with measured data. Overall, corrected wind speed values show stronger correlation
with the observed values. The authors suggest that their method can improve the accuracy of
mesoscale models in the Republic of Korea. The main advantage is that measuring towers are
unnecessary to carry out the correction of mesoscale models, they are needed just to validate and
check the performance of the method, while the technique proposed in [124] needs measuring
towers. Therefore, [124] can be used in wind farms studies, where measuring towers will be
available and the method proposed in [93] is a more general method, to be applied in a huge area
where no real data is available.

Although correction of mesoscale models is a very interesting �eld and can be a very resource-
ful tool as shown in the cited works [93, 124], it is not an exploited issue in the literature.

2.4 Wind farm design

When a completed study of wind resource in the location under study, and once the economical
viability of the wind farm facility has been checked, it is time for the engineers to design the
wind farm. Automated wind farm design is a topic gaining popularity in the last few years.
Therefore, there is an increasing number of articles tackling this problem successfully applying
computational intelligence techniques. Evolutionary algorithms are mainly applied, although
other approaches have also been used.

The seminal paper in the use of evolutionary computation techniques for wind turbines layout
in wind farms is the work by Mosetti et al., [119]. This paper proposed a genetic algorithm to
tackle the problem of the optimal positioning of turbines in a wind farm. The model proposed in
[119] consists of modeling the wind farm as a square divided into cells in which turbines can be
situated. A new wake model was proposed and several experiments considering di�erent average
wind speed and direction were presented. This initial work has been the base of di�erent recent
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approaches which have improved the initial model. For example, in [61], the authors showed that
better results can be obtained in the problem by improving the genetic algorithm used, using the
same model as in [119]. Another improvement with the same model has been recently proposed
in [48]. This paper proposes a modi�cation of the objective function of the problem, to take
into account deployment cost and e�ciency of the turbines. The authors show that this modi�-
cation leads to better design results than previous approaches using a standard genetic algorithm.

Another interesting and recent work, including a di�erent optimization model is the work
described in [144]. In this work a variable-length genetic algorithm with novel procedures of
crossover is applied to solve a problem of optimal positioning of wind turbines considering mon-
etary cost as the objective optimization function. The authors show that their variable-length
evolutionary approach is able to obtain good results in terms of the objective function consider-
ing di�erent types of wind turbines. A similar approach using a hybrid evolutionary algorithm
was previously presented in [109]. This approach has been further studied in [155, 156]. The
work in [116] also proposed a genetic algorithm with variable size chromosomes, in which each
solution uses a di�erent number of wind turbines.

It is also signi�cant the work proposed in [175], in which the authors proposed new improved
models for wind and turbines. Speci�cally, a more elaborated wind speed simulation is considered
based on a Weibull distribution. The authors have shown that this new model is able to produce
better results than previous approaches in the literature. Also following this trend, [98] proposes
to incorporate di�erent sophisticated models in di�erent parts of the problem. Speci�cally, a
complete study of the problem including di�erent costs of turbines and their maintenance, a
wind turbine wake model similar to the one described in [119], a Weibull distribution for mod-
elling the wind speed and direction in each point of study are considered. The authors propose
then an evolutionary programming approach to solve the continuous optimization problem of
optimal positioning of wind turbines using these novel models.

In the last few years other approaches to wind farm design based on evolutionary algorithms
and related techniques have been published, such as the work in [173], based on real-coded ge-
netic algorithms. The use of real encoding is interesting in wind turbines positioning, since it
allows to improve the accuracy of the optimal turbine sitting, i.e. the location of each wind
turbine in a given cell can be modi�ed to maximize the energy produced by that turbine. The
paper [159] is based on a multi-objective evolutionary algorithm which maximizes the power
production capacity while constrains the budget of installed turbines. The algorithm evolves
individuals of the Pareto optimal solution, which are evaluated in terms of the di�erent criteria
considered in the optimization. This is one of the �rst works dealing with multi-objective evolu-
tionary techniques applied to wind farm design problems. Another interesting paper is the work
in [79] based on hybrid genetic algorithms, in which the genetic algorithm is combined with a
steepest ascent hill-climbing local search technique and with an heuristic method to reduce the
computation time in �nding the local optimum. There are also other bio-inspired approaches
(alternative to evolutionary algorithms) that have been successfully applied to the wind farm
design problem, for example Particle Swarm Optimization (PSO). In [174] the authors proposed
a PSO with inertia weight, maximum velocity and constriction factor. The main novelty of this
work is the fact that a continuous space is considered, while previous works considered discrete
positions for the wind turbines (the center of the cells). In [140] there are a lot of similarities
with the work in [119] and [61] because a comparison between those methods is made. Another
work that also tackle wind farm layout problems is the one in [30, 31]. In their proposed PSO



2.4. Wind farm design 19

a combination of di�erent rotors diameters is included. A study of the in�uence of the size of
the wind farm and the number of turbines is also carried out. A most recent work that tackles
the optimal placement of wind turbines with a PSO is the one proposed in [137]. A binary PSO
(BPSO) with time-varying acceleration coe�cient (TVAC) is applied to di�erent scenarios, in
which both uniform and non-uniform wind characteristics are set. A comparison with di�erent
methods, such as genetic algorithms, BPSO-TVIW (time-varying inertia weight factor), BPSO-
RANDIW (random inertia weight factor) and BPSO-RTVIWAC (random time-varying inertia
weight and acceleration coe�cients) is carried out. It is also worth mentioning the novel and
recent work proposed in [63], that introduces a new method to take into account irregular-shape
wind farms. Even though the optimization algorithm is a traditional Gaussian PSO, the main
proposed novelty is the introduction of an edge detection algorithm to extract wind farm contour
data from digital maps. Another bio-inspired technique, Ant Colony Optimization, is used in
the work described in [51]. Although Simulated Annealing (SA) is a well-known optimization
technique applied to numerous optimization problems, only two works in the literature use SA
to tackle the problem of onshore wind farm layouts, [10] and [70]. A di�erent approach is pro-
posed in [172], where a covariance matrix adaptation evolution strategy (CMA-ES) is proposed
as the optimization algorithm. An excellent review of the most signi�cant papers focused on
onshore wind farm design has been recently published [91]. Another interesting review has been
published in [157]. It o�ers a review of the latest advances and the main aspects that need to be
taken into account when dealing wih the wind farm design problem.

Although in this Ph.D. Thesis the problem that has been tackled is onshore wind farm design,
a quick review on o�shore design is made. Multiple studies have been carried out to account
for the growth of o�shore wind power. In the study [12] a historical review of the evolution of
wind power in onshore and o�shore facilities is carried out. Also, the current status of the wind
power installed in Europe (onshore and o�shore) is presented and a study of investment cost
is done. A most recent work, [163], explores the current development of o�shore wind power
around the world and the economic, technical and environmental issues that this technology
involves. Di�erent computational optimization methods has been also applied to the design of
o�shore wind farms in di�erent works [46, 47, 99, 145, 190]. In the works [46, 47, 99], a novel
model for the design of o�-shore wind farms is presented and several approaches were compared
in this work. A greedy algorithm, a genetic algorithm, a pattern search approach and a simu-
lated annealing technique were tested in this article. In [190], the authors presented a di�erent
approach to the design of an o�shore wind farm, focused on minimizing the connections between
wind turbines, considering a layout where turbines are previously settled. The authors tested
their approach in a real design of an o�shore facility in Liverpool Bay. Three di�erent genetic
algorithms were tested with diverse selection and initialization mechanisms, such as rank-based
selection or the niching method. Finally, [145] used a simulated annealing algorithm to solve a
problem of optimal turbine sitting in wind farms. In a quite recent paper [136], the authors have
proposed an speci�c approach to a problem of o�shore wind farm design, based on mathematical
programming techniques, speci�cally a combination of heuristic and gradient-based algorithms,
that provides a good solution to the design of a real wind farm in northern Europe. A novel
bio-inspired approach based on the simulation of coral reefs is applied in [153] to o�shore wind
farm design. A complete description of this novel algorithm is provided as well as a comparison
with di�erent algorithms, such as Evolutionary Algorithm, Di�erential Evolution and Harmony
Search. The proposed Coral Reef Optimization algorithm obtains better results in the discussed
problem.
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Finally, to �nish this section, a brief note on useful software for wind farm design is given.
Currently, the most used free software for wind farm turbines layout is OpenWind [127]. This is
a wind farm design software for engineers and scientists. This software is based on the following
heuristic algorithm:

1. The heuristic searches for a valid (which ful�ls all the problem's constraints) layout. Once
a starting valid layout is available, the heuristic does a full test of the layout to get the
starting energy. It then tests the layout again to get its �rst optimizing benchmark. It then
begins to optimize the layout to evolve to better situations after a number of iterations.

Each iteration of the optimizer consists of the following steps:

� The heuristic attempts to �nd a new legal position for each turbine. If the turbine
made a good move in the last iteration, it will attempt to move in the same direction.
Otherwise, it �nds a new random movement adding a Gaussian-distributed random
noise to the turbine± x and y coordinates. If the new position is not a legal position
or it obstructs another turbine, then a new random movement is made and so on until
all the turbines have new valid positions.

� The heuristic then runs an energy capture and if the total energy is greater than the
benchmark energy, it accepts the entire new layout and the heuristic returns to step
2.

� If the new layout was not accepted as a whole, the heuristic analyzes each turbine
in a separate way: if the turbine has less energy than in its benchmark position,
the movement for this turbine is rejected, and it is returned to its last position and
benchmark energy. After analyzing all the turbines, the heuristic sums the total
energy from all the turbines and if it is equal or greater than the benchmark energy,
it runs another energy capture to see if it really constitutes an improvement. If no,t
then all the perturbations are discarded and return to step 2. If so, then all these new
positions and energies are accepted as the new benchmark energies and the heuristic
returns to step 2.

The Openwind heuristic is fast and can be used in combination with evolutionary algorithms
to improve the quality of the latter. A hybrid evolutionary algorithm with the Openwind heuristic
as initial point could be a very attractive algorithm to face di�cult wind farm design problems.



Chapter 3

Techniques and methods

Lots of di�erent real-world problems can be modelled as optimization or regression models. Usu-
ally, these models have huge search-spaces, constraints and are di�cult to model and to �nd an
exact solution in a reasonable time. Thus, applying conventional algorithms is very arduous,
if not impossible. In these cases, Soft Computing (SC) techniques have shown a big potential
to overcome these limitations and tackle these problems. As L. Zadeh de�ned in [187]: �Soft
computing is a collection of methodologies that aim to exploit the tolerance for imprecision and
uncertainty to achieve tractability, robustness and low solution cost�. So SC appears to be a good
way to tackle real-world problems.

The term SC does not refer to an homogenous group of concepts and techniques. On the
contrary, the classi�cation of SC methods is �exible and even a technique can belong to di�erent
groups. Mainly, SC is divided in three di�erent branches: Neural Computation, Evolutionary
Computation and Fuzzy Techniques (Figure 3.1).

Figure 3.1: Classi�cation of Soft Computing techniques.

For the aim of this Ph.D. Thesis, Neural Computation and Evolutionary approaches are
deeply studied.

21
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3.1 Neural Computation-based Approaches

Neural Computation is the �rst branch of Soft Computing techniques. It includes algorithms
inspired in the human brain metaphor and tries to mimic how the biological neurons work. So
these techniques will, given a set of data (inputs and outputs), analyze it and recognise pat-
terns, learning the relationship between them. Arti�cial Neural Networks (such as Multi-layer
perceptrons and Extreme Learning Machines) and another approaches devoted to classi�cation
and regression problems, such as Support Vector Machines, are included in this branch.

3.1.1 Multi-layer perceptron

A Multi-Layer Perceptron (MLP) is a particular kind of Neural Network (NN), a massively
parallel and distributed information processing system, successfully applied in modeling a large
variety of nonlinear problems [13, 69]. The MLP is probably the class of neural network most
widely used in classi�cation and regression problems. An MLP is a parallel information process-
ing network consisting of an input layer, a number of hidden layers, and an output layer. The
leftmost one represents the input layer, and, as shown in Figure 3.2, receives a number of N data
inputs, which usually are arranged forming an input vector. On the other side, the rightmost
layer, named the output layer, produces an output signal. In Figure 3.2, for the sake of clar-
ity, we have represented a simple situation in which the MLP generates only one output signal
although, in a more general case, it could produce a number of output signals. Those layers in
between the input and output layers are the so-called hidden layers. In turn, the layers forming
an MLP are basically composed of a number of especial processing units, called neurons, whose
internal behavior will be described below. Prior to this, and as shown in Figure 3.2, as impor-
tant as the processing units themselves is the connectivity among them: note that the neurons
within a given layer are connected to those of other layers by means of weighted links. These
weights are just the parameters that determine to what extent a neuron is connected to other. In
this respect, the value of each weight is related to one of the most important properties that an
MPL can exhibit: the ability to learn and generalize from a su�ciently long number of examples.

xN

x1

x2

nN
~

hidden nodes

n1

Figure 3.2: Example of the structure of a MLP/ELM network.

Such a learning process demands a proper database containing a variety of input examples or
patterns and their corresponding known outputs. The adequate weight values are just those that
minimize the error between the output generated by the MLP (when fed with input patterns in
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the database) and the corresponding expected known one in the database. Or in other words,
the weights of the links are adjusted to learn the function relating the input samples to the
corresponding known output in the database. Regarding this, it is well known that MLPs (like
most of the neural networks) are universal approximators of a wide range of functions, which
gives them a great versatility. For instance, in many regression problems and in time series
predictions, MLPs with a single hidden layer, as illustrated in Figure 3.2, are profusely used.
The number of neurons in the hidden layer is a parameter to be optimized when using this type
of neural networks [13, 69].

As represented in Figure 3.2, the input data consist in N samples, which usually are arranged
forming an input vector, {x1, . . . , xN}. As mentioned before, once an MLP has been properly
trained, validated and tested, when fed with an input vector di�erent from those contained in
the database, it is able to generate a proper output y. The relationship between the output and
the input signals of a neuron is

y = φ

 n∑
j=1

wjxj − θ

 , (3.1)

where y is the output signal, xj , for j = 1, . . . , n are the input signals, wj is the weight associated
with the j-th input and θ is a threshold [13, 69]. The transfer function φ is usually considered
as the logistic function:

φ(x) =
1

1 + e−x
. (3.2)

Usually, the well-known Levenberg-Marquardt algorithm is used to train the MLP [68]. The
Levenberg-Marquardt algorithm was designed to approach second-order training speed, without
having to compute the Hessian matrix. This matrix is estimated using the Jacobian matrix
instead, which can be computed through a standard back-propagation technique, much less
complex than computing the Hessian matrix [68]. The Levenberg-Marquardt algorithm works
by using the following Newton-like update:

xk+1 = xk −
(
JTJ + µI

)−1
JT e, (3.3)

where J is the Jacobian matrix, e is a vector of network errors and µ is a parameter which
controls the process: note that when µ = 0 , we have the Newton's method, while if µ is large,
it becomes a gradient descent method with small step size.

MLPs have been successfully applied to many di�erent classi�cation and regression problems
in science and engineering applications. The main drawback related to this algorithm is the lack
of a general rule to come up with an optimal network structure to solve a given problem. The
optimal number of hidden layers and the number and type of neurons in this layer is an open
problem, which has been tackled massively in the literature. The training algorithm is another
open question, though the existing approaches provide good results, research in this �eld is still
open, and di�erent training algorithms, many of them based on meta-heuristic search, have been
proposed. The Extreme Learning Machine, described in the following section, is one of the most
successful training approaches suggested in the last few years.
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3.1.2 The Extreme Learning Machine

The Extreme Learning Machine (ELM) is a novel and fast learning method based on the structure
of multi-layer perceptrons, recently proposed in [73] and applied thereafter to a large number of
classi�cation and regression problems [75, 76, 77]. The ELM approach is a novel way of training
feedforward neural networks, with perceptron structure similar to the network given in Figure
3.2. The most signi�cant characteristic of the ELM training is that it is carried out just by
randomly setting the network weights, and then obtaining the inverse of the hidden-layer output
matrix. The advantages of this technique are its simplicity, which makes the training algorithm
extremely fast, and also its outstanding performance when compared to a priori learning meth-
ods, usually better than other established approaches such as classical multi-layer perceptrons or
support vector machines. Moreover, the universal approximation capability of the ELM network,
as well as its classi�cation capability, have been already proven [74, 78].

The ELM algorithm can be described as follows: given a training set ℵ = {(xi, ti)|xi ∈
Rn, ti ∈ Rm, i = 1, · · · , N}, an activation function g(x) and number of hidden nodes (Ñ),

1. Randomly assign input weights wi and biases bi, i = 1, · · · , Ñ .

2. Calculate the hidden layer output matrix H, de�ned as

H =

 g(w1 · x1 + b1) · · · g(wÑ · x1 + bÑ )
... . . .

...
g(w1 · xN + b1) · · · g(wÑ · xN + bÑ )


N×Ñ

(3.4)

3. Calculate the output weight vector β as

β = H†T, (3.5)

where H† stands for the Moore-Penrose inverse of matrix H [73], and T is the training
output vector, T = [t1, . . . , tN ]T .

Note that the number of hidden nodes (Ñ) is a free parameter of the ELM training, and
must be estimated for obtaining good results. The solution to this problem is usually to evaluate
a di�erent number of values for Ñ . It is well known that the ELM is an algorithm with a low
computational complexity because it just involves the calculation of the output weights by means
of the Moore-Pennrose matrix and other minor calculations.

Because of their excellent performance along with their extreme fast training time, ELMs
are perfect for hybrid algorithms that requires fast classi�ers or regressors, such as in the case of
feature selection. The research in ELMs has also been focussed on improving their performance,
by including small modi�cations to their training algorithm. There are some parameters that
must be optimized in ELM, i.e. the number of neurons in the hidden layer, and the random
initialization of their input weights. Di�erent approaches have focused on improving ELM per-
formance by tuning these points using optimization algorithms [77]-[78].



3.1. Neural Computation-based Approaches 25

3.1.3 The Group Method of Data Handling

The Group Method of Data Handling (GMDH) is a self-organized heuristic technique developed
by A. G. Ivakhnenko in 1968 [81], which have been successfully applied to di�erent prediction
problems, including applications in wind energy [1] and also solar energy [88]. In self-organized
algorithms such as GMDH, the model is generated in an adaptive way by using the data, getting
more complex and �tting it to a speci�c problem, this process continues until the model reaches
the optimal complexity degree.

Generally speaking, the relationship between input-output variables can be approximated by
Volterra functional series, the discrete analogue of which is Kolmogorov-Gabor polynomial [3].

p = a0 +

m∑
i=1

aixj +

m∑
i=1

m∑
j=1

aijxixj +

m∑
i=1

m∑
j=1

m∑
k=1

aijkxixjxk + . . . (3.6)

where, x = (x1, x2, . . . , xm) are the inputs and A = (a0, a1, a2, . . . , am) are the coe�cients
(weights). The Kolmogorov-Gabor polynomial is a universal format for non-linear function
modeling as they can approximate any continuous function on a compact data set to an arbitrary
precision, in an average squared residual sense (ASR), if there are enough terms [55]:

ASR =
1

N

N∑
i=1

(yi − p(xi))
2 (3.7)

The Kolmogorov-Gabor polynomial has an important drawback, it is necessary to have a large
numbers of samples in order to calculate all the coe�cients ai [81]. In order to overcome this
drawback, Ivakhnenko proposed a new algorithm which approximates the Kolmogorov-Gabor
polynomial by using low order polynomials in an iterative method very similar to the Multilayer
Perceptron. This method does not need so many samples and the time consuming is much lower.
In fact, Ivakhnenko proved that using second order polynomials can reconstruct the complete
Kolmogorov-Gabor Polynomial.

There are several GMDH types [3], in this work the Multilayer GMDH algorithm [81]
is considered. This algorithm constructs a hierarchical tree graph of bivariate second order
polynomials in the nodes and variables in the leaves. The steps followed to create a GMDH
network (Figure 3.3) are:

1. Obtain the data set of the problem D = (xi, yi)
N
i=1, xi = (xi1, xi2, . . . , xiK), where N is the

number of samples and K the input dimension.

2. Split the data set in two subsets, one of them is used to calculate the polynomial coe�cients
of the nodes. The second subset checks the goodness of every polynomial created before.

3. Make all combination of variables in pairs (xi, xj) in order to generate all the possible
bivariate polynomials L = K(K−1)

2 .

4. Calculate the coe�cients of every polynomial with Ordinary Least Square method.

A = (XTX)−1XTY (3.8)



26 Chapter 3. Techniques and methods

Figure 3.3: Basic structure of a GMDH neural network.

5. Apply an external criterion to choose the best nodes in the current layer. This election
must be based on new available information (samples not previously used in the process
of coe�cients calculation) in order to avoid over-�tting. There are several possible criteria
to carry out this node selection, the most popular in GMDH is called regularity criterion,
which consists of splitting the training set in two subsets A and B. One is used to calculate
the coe�cients and the other to apply the ASR by using the second order polynomial
(Equation (3.7)).

6. The outputs of the selected nodes are the inputs for the new layer.

This process is repeated until a stopping criterium is ful�lled. The stopping criterium is
usually based on the ASR: when, at some point of the network construction, the ASR does
not decrease from one layer to the next one, the algorithm is stopped, because the structure
generated is considered as enough complex in order to make good estimations.

3.1.4 Support vector regression algorithms

One of the most important forecasting statistic models are the support vector machines for re-
gression (SVMr) [160]. The SVMr are used in a large amount of regression problems, including
wind speed prediction [113]. The SVMr uses kernel theory to increase the quality of regression
models and, in most cases can be solved as a convex optimization problem. The SVMr does not
only take into consideration the prediction error of the data, but also the generalization of the
model, i. e., its capability to improve the prediction of the model when new data are evaluated
by it (avoiding over-�tting). Also there are several versions of SVMr, in this case the classical
model presented in [160] is described.

The ϵ-SVM method for the SVMr [168] consists of, given a set of training vectors S =
{(xi, yi), i = 1, . . . , l}, obtaining a model of the form y(x) = f(x)+ b = wTϕ(x)+ b, to minimize
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a general risk function of the form

R[f ] =
1

2
∥w∥2 + 1

2
C

l∑
i=1

L (yi, f(x)) (3.9)

where w controls the smoothness of the model, ϕ(x) is a function of projection of the input
space to the feature space, b is a parameter of bias, xi is a feature vector of the input space
with dimension N , yi is the output value to be estimated and L (yi, f(x)) is the selected loss
function. In this work, the L1-SVR (L1 support vector regression) is used, characterized by an
ϵ-insensitive loss function [168]:

L (yi, f(x)) = |yi − f(xi)|ϵ (3.10)

In order to train this model, it is necessary to solve the following optimization problem [168]:

min

(
1

2
∥w∥2 + C

l∑
i=1

(ξi + ξ∗i )

)
(3.11)

subject to

yi −wTϕ(xi)− b ≤ ϵ+ ξi, i = 1, . . . , l (3.12)

−yi +wTϕ(xi) + b ≤ ϵ+ ξ∗i , i = 1, . . . , l (3.13)

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l (3.14)

The dual form of this optimization problem is usually obtained through the minimization of
the Lagrange function, constructed from the objective function and the problem constraints. In
this case, the dual form of the optimization problem is the following:

max

−1

2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi,xj)− ϵ

l∑
i=1

(αi + α∗
i ) +

l∑
i=1

yi(αi − α∗
i )

 (3.15)

subject to

l∑
i=1

(αi − α∗
i ) = 0 (3.16)

αi, α
∗
i ∈ [0, C] (3.17)

In addition to these constraints, the Karush-Kuhn-Tucker conditions must be ful�lled, and
also the bias variable, b, must be obtained. This process is not detailed here for simplicity, the
interested reader can consult [168] for reference. In the dual formulation of the problem the
function K(xi,xj) is the kernel matrix, which is formed by the evaluation of a kernel function,
equivalent to the dot product ⟨ϕ(xi), ϕ(xj)⟩. An usual election for this kernel function is a
Gaussian function, as follows:

K(xi,xj) = exp(−γ · ∥xi − xj∥2). (3.18)
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The �nal form of function f(x) depends on the Lagrange multipliers αi, α
∗
i , as follows:

f(x) =

l∑
i=1

(αi − α∗
i )K(xi,x) (3.19)

Note also, that, in addition to the obtention of the �nal model given by Equation (3.19), the
hyper-parameters C, γ and ϵ must be estimated before a complete application of SVMr, usually
using grid search with k-cross validation, so the computational cost of SVMr is eventually quite
high.

3.2 Evolutionary computation-based algorithms

Evolutionary Computation-based approaches are inspired by the principles of Genetics and Nat-
ural Selection. The most representative strategy in this subset is perhaps the concept of Genetic
Algorithm (GA) [44], although there are also other paradigms that have been recently introduced
such as the social computation by swarms, like in the Particle Swarm Optimization approach
(PSO) [41], or the simulation of an orchestra composition, like in the Harmony Search algorithm
[57]. There are many algorithms belonging to the family of evolutionary computation. Here
genetic and evolutionary approaches are described

3.2.1 Genetic and evolutionary algorithms

Evolutionary computation algorithms have been widely used for solving combinatorial optimiza-
tion problems, which primarily work in discrete search spaces. These algorithms are based on
an encoding of the problem by strings of numbers. All genetic and evolutionary algorithms are
based on the evolution of a population of candidate solutions by applying a series of evolutionary
operators.

In general, a genetic algorithm is based on the evolution of a population of individuals (called
chromosomes, indistinctly), each of them representing a candidate solutions of the problem. Now,
di�erent operations inspired by the natural evolving process are iteratively applied: mutations,
recombinations among di�erent individuals, selection of the most suited to the environment ones
(the so-called survival of the �ttest). Figure 3.4 shows this process, in a simply way.

• Encoding candidate solutions

Encoding candidate solutions is the very �rst step when applying a genetic algorithm. We
have to choose a feasible codi�cation that allows the encoding of the di�erent solutions of
the problem.

In nature, all of the genetic information which encodes and causes the external character-
istics of a living organism (or individual) is called genotype. Any particular characteristic
produced by a piece of this genetic information is encoded by a gene. Usually, a chromo-
some will be a vector of numbers, being each number a gene. Each gene is located at a
particular position on the chromosome and can have di�erent values, called allele. Note
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Figure 3.4: Example of the process of a genetic algorithm.

that this strategy can be considered as transforming the real search space into another in
which working is much easier.

Normally, the values of the di�erent genes of a chromosome are independent. The value
a gene adopts does not in�uence the set of values that another gene can take. However,
sometimes, because of the chosen encoding system, the values of the di�erent genes depend
on each other, being that the case of permutations. In that case, a certain value in a gene
cannot appear in another gene of the chromosome.
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The existence of this kind of constraints is a determining factor for the design of some
operators involved in the evolving process of a genetic algorithm, such as the recombina-
tion or mutation operators. This is due to the fact that the dependence on the values of
di�erent genes requires operators designed to ful�ll the required constraints. The depen-
dence between the genes depends on the encoding system. Therefore, the operators must
be designed for each speci�c type of encoding. The following operators are applicable to
those problems without encoding constraints, and should be modi�ed in order to ful�ll the
speci�c requirements of each problem.

• Fitness function

The �tness function is the one used to measure how much an individual is suited to its
environment. An in�nity of possible �tness functions can lead to the solution of a prob-
lem. The reach of good solutions depends on the chosen function and the convergence of it.

We have to be very careful when de�ning a �tness function because of the constraints of
each problem. This problem can be tackled with two di�erent approaches:

� In this �rst approach, the solutions that do not ful�ll the requirements are unfeasible.
Therefore, the solution is repaired until a feasible solution is obtained or the �tness
function value is set to zero.

� This second approach is based on the penalization of the �tness function. The value
of the �tness function is divided by a certain value (the penalty), related with the
unful�llment of the constraints.

• Selection

The selection operator generates a new population randomly choosing chromosomes of the
original population, in such a way that the better an individual is suited to an environment,
the higher its probability of being selected (survive) is. Lots of methods have been proposed
to carry out the selection process, but two of them can be highlighted:

� Roulette-wheel: in this case, each individual has a probability of selection related to
its �tness value. A portion of the wheel is assigned to each chromosome, being pro-
portional to the value of the �tness. This is usually carried out dividing the �tness
value of each individual by the total �tness of all the individuals. Then, a random
selection is made to choose the individuals of the new population. With this method,
weak individuals are less likely to survive, but there is a chance they may be chosen.
That includes genetic material, which causes genetic diversity and by means of the
recombination process can produce new and better individuals.

� Tournament: a subset of chromosomes among the initial population is chosen at ran-
dom to ��ght in a tournament�. The �ttest individual of this subset will survive the
next generation. This process is carried out until the whole new population is com-
pleted. The larger the tournament size is, the smaller probability weak individuals
have to be selected. Figure 3.5 shows the process.
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Figure 3.5: Example of the tournament selection process. Numbers on each individual represent
the �tness value, being 1 the �ttest individual.

Even though the evolution in a genetic algorithm tries to �nd the �ttest individual, it is
sometimes not found in an exact way. Due to the intrinsic randomness of the selection op-
erator, it is possible that, although the optimum individual appears in a certain generation
of the evolution, it does not survive, and later it may be impossible to reach that solution
again.

To avoid the loss of optimum individuals, the elitism operator is used. The �ttest indi-
vidual (the elitist) in each generation is placed on a privileged position that assures its
survival. The elitist cannot be replaced or modi�ed by any operator. In that way, the best
individual on each generation is able to survive.

• Crossover and recombination

In the procreation process, the parent chromosomes are combined to provide a novel
chromosome. Each individual is chosen with a probability of recombination to be a part
of the crossover process. Once the �parents� chromosomes are chosen, they are grouped in
random pairs, so as to each pair generates new descendants. The objective of this crossover
process is to join the potentially advantageous features of di�erent chromosomes in a new
�tter individual. There are a lot of recombination schemes, but commonly, the ones most
used are:

� One-point crossover: A random point is selected. Data of each parent chromosome
beyond that point is swapped. The resulting individuals are the children.

� Two-point crossover: In this case, the genetic material swapped, is the one between
two genes, randomly selected.

� N-point crossover: It is a generalization of the two previous cases. Each parent indi-
vidual is split along N random points. The N+1 segments in which each chromosome
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is sectioned into, are swapped between parents.

� Uniform crossover: Each gene of the chromosome is swapped between parent with a
certain probability.

• Mutation

The mutation operator introduces genetic variability, slightly changing some genes of a
certain individual. This operator allows the algorithm to evolve, without getting stuck in
local minimums, inducing a genetic diversity and thus, a higher search space. However, the
mutation probability must be set low, because if not, the search will turn into a random
search. There are di�erent kinds of mutation operators:

� Gene changing: The value of the genes that are going to be mutated, are replaced
with another feasible value, according to the encoding system. In the particular case
of binary encoding, the mutation implies the inversion of the gene ('1' turns '0' and
viceversa).

� Swap: The mutation is carried out over two di�erent genes of an individual. These
genes, randomly chosen, are swapped.

� Probabilistic distribution: In real-value encoding, the mutation is carried out adding
random noise, de�ned by a probabilistic distribution, such as Gaussian or Cauchy.
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Figure 3.6: Examples of crossover process; (a) One-point crossover; (b) Two-point crossover; (c)
N-point crossover; (d) Uniform crossover.
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Chapter 4

Wind speed regression based on
Synoptic-scale pressure �elds

4.1 Introduction

Wind speed reconstruction is an important problem in wind energy, related to key procedures
in wind farms, such as production analysis [56, 97], planning [126], wind resource [139] or even
micro-siting of new wind turbines and wind farms. Existing approaches to tackle wind speed
reconstruction are mainly based on historical data and wind speed measurements, usually taken
in-situ, using a measuring tower within the wind farm. From these wind speed measurements,
statistical models are then constructed in order to carry out the desired wind speed reconstruction
[34]. The main disadvantage with this approach is that, in some cases, wind measurements are
not fully available at a given location, due to failures in the observation systems, short measuring
campaigns or even meteorological mast dismantling in wind farm areas. In these problematic
cases, we could use indirect measurements (not direct measured wind speed) in order to con-
struct the statistical models (this way we need less wind speed measurements to construct these
models). The synoptic mean sea-level pressure (SLP), or patterns thereof, is the most commonly
used indirect variable for wind speed reconstruction [19, 22, 150], and it has also been used as
prospective variable in di�erent applications such as pollution [28] or rainfall analysis [147].

Di�erent methods have used SLP as a predictive variable for meteorological prediction. We
can �nd in the literature works dealing with physical approaches [84], machine learning tech-
niques [23, 64] or hybrid approaches involving both physical and machine learning approaches
[94]. Physical approaches refer to those methodologies that solve atmospheric equations to con-
struct the prediction/reconstruction system. On the other hand, machine learning approaches
do not consider the physical properties of the problem to construct the prediction/reconstruction
system, but instead it is just trained with a set of predictive and goal variables.

We propose a comparison of the performance of a machine learning approach versus a weather
oriented model, in a problem of wind speed reconstruction from Synoptic Pressure variables.
Speci�cally, the following problem of wind speed reconstruction in a given point (wind farm)
from a related synoptic sea-level pressure values in a grid is tackled: Let dt, t = 1 . . . , T, be a
series of wind speed, measured in a given point (a wind farm in this case), for a given period of
time T . Let Pt, t = 1 . . . , T, be a series of synoptic-scale pressure measurements in a given grid.
In our case, each component of Pt is a matrix of M ×N surface pressure values, measured in a
grid surrounding the wind farm location. Both, the time interval of reconstruction and the range

37
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(dimensions and resolution) of the pressure grid are parameters to be �xed in the problem. The
problem consists of obtaining the relationship between the wind speed and the synoptic-scale
pressure situation using a given regressor, in such a way that a measure of error between the
wind speed reconstruction and a real value is minimized.

The algorithms here compared are the following: in the case of the machine learning approach
(a hybrid Support Vector Regression - Genetic Algorithm, SVMr-GA), the problem involves six-
hour time pressure patterns in a synoptic grid and a wind speed module measurement. In this
case, the SVMr is used to carry out the wind speed reconstruction from the mean sea-level pres-
sure values, that act as input (predictive) variables. A GA is used to carry out a feature selection
(selecting what points of the pressure grid are useful to obtain a good wind speed prediction),
in order to improve the SVMr results. The physical-based approach considered in this work is
a Weather Regimes Classi�cation Technique (WRCT), based on �elds of the 850 hPa geopoten-
tial height in order to classify the synoptic pattern in a reduced number of Weather Regimes
(WR), using a k-means algorithm. A previous step of Principal Component Analysis reduces
the dimensions of the problem. Once these WRs are obtained, a wind speed predictor (module
of the SLP gradient in this case), is used to obtain the wind speed reconstruction within each WR.

We test both SVMr-GA and WRCT systems in several real problems of wind speed recon-
struction at three di�erent sites: Cabauw (The Netherlands), Capel (Wales, UK) and Kaegnes
(Denmark). The performance of both approaches is comparatively analyzed, in terms of perfor-
mance in wind speed, Weibull parameters of a wind speed model and wind power reconstruction,
and also in terms of computational cost, obtaining results that identify the advantages and dis-
advantages of each approach in this problem.

The structure of the rest of the Chapter is the following: Section 4.2 presents the detailed
description of the algorithms discussed here. The experimental part is then presented in Section
4.3, where we compare the results obtained by both approaches in a real wind speed reconstruc-
tion problem. Finally, Section 4.4 closes the Chapter giving some concluding remarks.

4.2 Material and Methods

4.2.1 A hybrid SVMr-GA algorithm over SLP variables for wind speed
reconstruction

4.2.1.1 Feature Selection in the SLP grid

One of the main issues when tackling a regression problem is to obtain a set of input (predictive)
variables that are signi�cant. This problem is usually known as Feature Selection Problem (FSP),
and it is also important in other problems such as supervised and unsupervised classi�cation.
Obtaining a good set of input features is key in regression, since irrelevant features can cause
di�erent distortions in the regressor performance, such as lack of generalization or increase of
the computation time [16].

A general formulation of the FSP is the following: Let (x1, y1), . . . , (xl, yl) be a set of data
points and their corresponding objective values, where xi ∈ Rn and yi ∈ R. The FSP consists of
choosing a subset of m features (m < l), that produces the lowest error in the prediction of yi.
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There are two basic approaches to the FSP: the �rst one tries to identify an appropriate set
of features, independently of its regression performance, i.e. independently of the regressor used,
which preserve as much information from the original data as possible. This approach is known
as the �lter method for feature selection [16]. The second approach uses the regressor to obtain
a subset of m features out of the total l, trying to improve the performance of the regressor (or
at least not degrade it). This method is known as the wrapper method, and it has been proven
to be more powerful than �lter methods, though it is usually computationally more demanding
[95, 177].

In this work we consider a wrapper procedure for FSP, that uses a SVMr as a regressor and
a genetic algorithm (GA) (described in Chapter 3) as a search algorithm to obtain the optimal
set of features (SLP points in the grid).

4.2.2 WRCT: Weather Regimes and SLP gradient for wind speed reconstruc-
tion

4.2.2.1 Principal component analysis

Empirical Orthogonal Function (EOF) analysis is a methodology used to calculate the principal
directions of variability followed by a particular variable [134]. This methodology, also named as
Principal Component Analysis (PCA), is applied in this case to the anomalous �elds of covari-
ance matrix of a synoptic scale meteorological �eld (850 hPa geopotential height in this study),
by calculating its eigenstructure. The diagonalization of this matrix produces a diagonal matrix
with the fractions of variance given by each of the components, and a set of eigenventors or
EOFs which show the regions in which the covariance is organized. A number of eigenvectors
are chosen, which make up a new orthogonal base in which the data is oriented explaining a
percentage of variance given by the sum of the fraction of variances of the selected components.
The projection of each of the EOFs onto the original data gives a time series (Principal Compo-
nents (PCs)), in which each of the scores indicates the weight of each EOF in each of the days
of analysis.

The time domain in the available data is then divided into two sub-domains: a period used to
train the model, and a validation period to test the results of the wind speed reconstruction. The
PCA is performed with all data available from a Reanalysis model (the one by the European
Center for Medium range Weather Forecasting, ECMWF), except for the validation periods,
considering groups of three months each: January, February, March (JFM); April, May, June
(AMJ); July, August, September (JAS) and October, November, December (OND). A spatial
domain has been chosen for the calculation of the PCA, centered at the meteorological mast
position and with an area of 10.5◦ × 10.5◦ in longitude and latitude. For each group of months,
the fraction of the total variance explained by the chosen leading EOFs was established to be
greater than 98%. Thanks to the PCA and to the possibility of expressing the geopotential
height anomalies at 850hPa �elds with a few PCs in the EOFs basis, the computational time
used to perform the following cluster analysis is considerably reduced.

4.2.2.2 k-means cluster analysis

The clustering method used is based on the well known k-means clustering [39, 67]. Hence, a
k-means cluster analysis using Euclidean distance was applied for each group of months over the
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selected PCs, whose result leads to a distribution in k clusters of the geopotential height anomaly
�elds. The �nal partition can be sensitive to the algorithm initialization, which requires a �rst
guess for the cluster centroids. Thus, the algorithm was repeated 50 times [143], each one with
di�erent initial seeds, and the best partition was retained. The clusters represent commonly
occurring patterns of the geopotential height anomalies at 850-hPa �eld and are so-called weather
types or WR [112, 115]. These WRs are responsible for the behaviour of the synoptic-scale
motions during several days or weeks [111], and therefore, a�ect the local weather. This study is
based in the assumption that the orography of the geopotential �eld associated with each WR
is the main driving force of surface wind at local scale.

4.2.2.3 Regression of local surface wind against modulus of SLP gradient

Once the training period is selected, the 6 hourly averaged surface wind data for each WR are
grouped conforming 4 time-based populations per WR, i.e., data at 0, 6, 12 and 18 UTC. Each of
these wind data groups are then linearly regressed with their corresponding modulus of the SLP
gradient, which is calculated from 4 points at a distance of 0.75◦ from the meteorological mast
position, two of which are located in the same parallel and the other two in the same meridian
(Figure 4.1). The interpolated �eld at point i (W, E, N, or S point in Figure 4.1) is equal to a
weighted mean of the value among the j = 1, . . . , 4 closest points of the grid:

SLPi=W,E,N,S =

∑4
j=1

SLPj

d2ij∑4
j=1

1
d2ij

(4.1)

where dij is the linear distance between points i and j.
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Figure 4.1: Schematic representation of the grid with reanalysis data (ERA-Interim from
ECMWF), tower's location (triangle), and the interpolated points used to calculate the modulus
of SLP gradient series (W, E, N and S squares).

Once the SLP values in the W, E, N and S points are known, each gradient component was



4.2. Material and Methods 41

calculated at the meteorological mast location as a centered �nite di�erence approximation given
by Equation (4.2). Then, the components of the vector are composed in order to obtain the wind
speed. (

∂SLP

∂x
,
∂SLP

∂y

)
=

(
SLPE − SLPW

RT 2∆λcosϕ
,
SLPN − SLPS

RT 2∆λ

)
(4.2)

where RT is the Earth radius, ∆λ is the angular distance in radians between each point and the
mast and ϕ is the mast's latitude.

4.2.2.4 Wind speed reconstruction

Once the model is trained, the surface wind speed series is reconstructed for every instant of
the test period (6-hour time step). The �rst step is to determine to which WR belongs the 850-
hPa geopotential height anomalies map at every moment. Depending on the group of months
considered, a projection of the map onto the appropriate EOFs basis was made, calculating its
representation in PCs. Then, the Euclidean distance, l, between these PCs and the PCs of all
centroids of the seasonal k-means cluster analysis is computed:

lj =

√√√√ nm∑
i=1

[PCi − PCCTRj,i ]
2 (4.3)

where the subscript j marks one particular centroid CTRj and nm is the number of components
retained in the PCA. After this, the module of the SLP gradient is calculated (Equations (4.1)
and (4.2)), and then, the corresponding WR regression equation is applied in order to obtained
a reconstructed surface wind speed.

4.2.2.5 Choosing the optimal number of clusters

Probably one of the most important issues in cluster analysis is to choose an appropriate number
of clusters in the classi�cation. To deal with this challenge, there are a large amount of methods
in the literature, but it does not seem to exist an absolutely objective criterion to determine
the optimal number of clusters. Thus, a di�erent number can be used depending on the speci�c
application of cluster analysis. The �nal purpose of this work is the wind speed reconstruction
at local scale, so we have developed a new criterion in order to guarantee a better estimation of
this variable.

The procedure basically consists of reconstructing the wind speed during a certain period,
in our case, each training period for each scenario, and assessing the quality of estimations
depending on the number of clusters employed. Therefore, the �rst step is to choose a time
period that comprises a number n of complete years (at least two) with available wind data.
With the data of n−1 years the WRCT model is trained, using di�erent numbers of clusters (k)
in the k-means algorithm. Then, for each choice of k, a wind speed reconstruction is done during
the remaining year, calculating the associated RMSE and MAE. The procedure is repeated for
all possible combinations of n-1 years to train and 1 year to test, conforming a cross validation of
n iterations (n-fold cross-validation). A set of values of RMSE(i, k) and MAE(i, k) are obtained
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(see Section 4.3.1), one for each iteration i and for each number of clusters k. Thus, we compute
the following index I for each k:

I(k) =
1

2

[
RMSE(k)−RMSEmin

RMSEmax −RMSEmin

+
MAE(k)−MAEmin

MAEmax −MAEmin

]
(4.4)

where the overline indicates an arithmetic mean for each number of clusters, made over the
n iterations:

RMSE =

∑n
i=1RMSE(i, k)

n
(4.5)

MAE =

∑n
i=1MAE(i, k)

n
(4.6)

and the max and min subscripts refer to the maximum and minimum values of the RMSE
and MAE means over k. Finally, we identify the optimal number of clusters as the value of k
which minimizes the I index.

4.3 Experiments and results

This section presents the experimental part of this study. Observed wind data at three sites
in the Netherlands (Cabauw), Denmark (Kaegness) and UK (Capel) are used, together with
meteorological variables (geopotential height at 850 hPa and mean Sea Level Pressure) at grids
centers in these places (see Figure 4.2). First, we present the data used for this study and then,
we show the comparative performance of the two algorithms proposed here.

4.3.1 Data used for the study and methodology

In order to analyze the atmospheric variability during recent-past conditions, high resolution
data of the third ECMWF (ERA-Interim) reanalysis generation has been used [158, 169]. The
6-hourly �elds (at 0, 6, 12 and 18 UTC) of the geopotential height at 850hPa (WRCT method),
and Mean Sea Level Pressure (SLP) for both SVMr-GA and WRCT methods, have been used
as predictor �elds. All these datasets were used on 0.75◦ × 0.75◦ grids centered at each site
considered. In all the sites considered, 6-hour averages of the original hourly wind time series
were made, centered at 0, 6, 12 and 18 UTC. Note, however, that only those averages calculated
with at least 50% of the data in each 6-hours interval were taken into account for the subsequent
analysis (there are missing data in the wind series considered at all sites). Speci�c characteristics
of each site are as follows:
Cabauw: The observed wind data at Cabauw (The Netherlands, 51◦58′14′′N , 4◦55′35′′E) come
from a 213m meteorological mast. Wind speed and wind direction were measured with propellor
anemometers at several heights. However, only derived hourly measurements of wind speed and
direction at 10m were used. The dataset at this site has been downloaded from [180]. Speci�cally,
wind speed data from Cabauw is available from 1st December 1988 until 30th November 2000.
We have divided the available data at this site into four di�erent training and test sets within
this period (C1 to C4), in order to have some diversity for results discussion:

C1. Training: 01/12/1988-30/11/1991; Test: 01/12/1991-30/11/2000.

C2. Training: 01/12/1991-30/11/1994; Test: 01/12/1988-30/11/1991+01/12/1995-30/11/2000.

C3. Training: 01/12/1994-30/11/1997; Test: 01/12/1988-30/11/1994+01/12/1997-30/11/2000.
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Figure 4.2: Locations of the sites considered (Cabauw, Kaegnes and Capel), and grid (0.75◦)
considered over Cabauw site.

C4. Training: 01/12/1997-30/11/2000; Test: 01/12/1988-30/11/1997.

Capel: This site is located in Wales (UK), (52◦8′20′′N , 4◦21′15′′W ). In this case the period
of available data is quite reduced, from 01/01/1990 to 31/12/1992. Thus, we only consider one
train and test period (Cp1):

Cp1. Training: 01/01/1990-31/12/1991; Test: 01/01/1992-31/12/1992.

Kaegnes: This site is close to the shore of Kaegnes island, Denmark (54◦51′20′′N , 9◦56′10′′E).
In this case we have available data from 01/03/1991 to 29/02/2000. We have considered three
training and test sets at this site:

K1. Training: 01/03/1991-28/02/1994; Test: 01/03/1994-29/02/2000.

K2. Training: 01/03/1994-28/02/1997; Test: 01/03/1991-28/02/1994+01/03/1997-29/02/2000.

K3. Training: 01/03/1997-29/02/2000; Test: 01/03/1991-28/02/1994.

Note that the results obtained at all sites will be referred to these training and test sets.
For these sites, the average number of weather types (clusters) obtained by applying WRCT
methodology are displayed in Table 4.1. Note that depending on the training period considered,
the number of clusters varies, so average values are displayed in this table.
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On the other hand, we will use several statistical measures to compare the results obtained
by the WRCT and SVMr-GA approaches proposed. Speci�cally, we use the root mean squared
error, the mean absolute error, the bias and R2 measure, de�ned as follows:

RMSE =

√√√√ N∑
i=1

(vpi − vri)
2

N
(4.7)

MAE =

∑N
i=1 |vpi − vri |

N
(4.8)

Bias =

∑N
i=1 vpi − vri

N
(4.9)

R2 = 1−
∑N

i=1(vpi − vri)
2∑N

i=1(vri − v̄r)2
(4.10)

where vpi stands for the predicted wind speed value, vri stands for the observed wind speed
value, v̄r is the mean observed wind speed value and N is the number of samples of wind speed
considered in the test set.

Regarding SVMr tuning, usually the SVMr parameters (C, ϵ and γ) selection is done by
standard grid search in the space of parameters [128], though there is also the possibility of using
a global search algorithm in order to obtain these parameters [152]. In this case, we �nally de-
cided to apply a grid search approach for SVMr parameters tuning, to keep the GA as simple as
possible (binary encoding with the standard operators), and only focused on the feature selection
of synoptic pressure points. The methodology applied to tune the SVMr parameters is to carry
out a �rst grid search to tune the SVMr parameters before running the GA for feature selection.
Finally, once the best set of features have been selected we also carry out a �nal more accurate
grid search to obtain the SVMr parameters before the �nal application of the SVMr in the test set.

GA parameters are also important to make the results of this work reproducible. We have
used a population of 30 individuals, during 50 generations. Multi-point crossover and �ip-based
mutation are used to form an o�spring population. The parents of next generation are obtained
from the joined population of parents and o�spring by using a tournament selection. We have
followed the algorithm's dynamics outlined in [186] in the proposed GA.

4.3.2 Results and discussion

The structure of this subsection is based on the results obtained in each site, Cabauw, Capel
and Kaegnes.

4.3.2.1 Cabauw

The results shown at this site are based on the 4 di�erent training and test periods (C1 to C4)
de�ned above for Cabauw. Table 4.2 shows the obtained results with the WRCT and SVMr-GA
methods compared, respectively at this site. Note that the WRCT approach obtains slightly
better values of the statistical indices considered in all the periods. However, there are no major
di�erences between the compared approaches in any of the periods considered. Figure 4.3 (a)
and (b) show an example of the dispersion �gure (real wind speed vs. reconstructed wind speed)
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Figure 4.3: Wind speed reconstruction in C1 test period at Cabauw; (a) WRCT approach; (b)
SVMr-GA approach.

with the two compared algorithms, in the test period C1. It seems that the WRCT performs
better in for low wind speeds, whereas the dispersion is smaller with the SVMr-GA for high wind
speeds. Note that the wind speed reconstruction is made in 6-hours time averages.

It can be seen that both methodologies tend to miss maximum and minimum values of the
wind speed in the reconstruction. However, note that the aim of both approaches is to obtain
a good reconstruction of the wind speed in general, and none of them are speci�cally focused
on maximum and minimum values of the wind. In this sense, the proposed methodologies are
not applicable to locate extreme values in the reconstruction, but to obtain a good average
reconstruction of the wind speed, which is enough in many cases. Figures 4.4 and 4.5 show the
wind speed histogram reconstruction, and the observed one at Cabauw, for both approaches
and for all the test periods considered. As it can be seen, the histogram reconstruction is quite
accurate. We also can model the reconstructed histograms of wind speed to a Weibull distribution
for each test period, and obtain the parameters of the distribution. Table 4.3 (top of the table)
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shows these parameters for each test period at Cabauw and the two considered approaches. Note
that this allows a complete and accurate reconstruction of the wind speed at Cabauw, and also
it brings out the possibility to extend the wind speed analysis back to the past, and in years
where there are not wind speed measures at this site.
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Figure 4.4: Histograms of the wind speed (reconstructed and observed ones), for all the considered
periods at Cabauw (WRCT approach).
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Figure 4.5: Histograms of the wind speed (reconstructed and observed ones), for all the considered
periods at Cabauw (SVMr-GA approach).

The algorithms complexity and computational cost of the compared approaches are also



4.3. Experiments and results 47

important elements to be discussed. The SVMr-GA approach has 3 parameters (C, ϵ and γ)
that must be estimated previously to its application (see above). On the other hand the WRCT
approach needs to estimate the optimum number of clusters k in the k-means approach, which
is also done in previous tests. Regarding the computational time required by each approach,
both require approximately the same computation time, that includes all the preprocessing of
�les and algorithm's parameters, about 20 minutes.
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Figure 4.6: Wind speed reconstruction in Cp1 test period at Capel; (a) WRCT approach; (b)
SVMr-GA approach.

4.3.2.2 Capel

Results in Capel site are reduced to just one test period (Cp1). Table 4.2 (middle of the table)
shows the obtained results with the WRCT and SVMr-GA methods compared, respectively at
this site. In this case the performance of both approaches is quite similar, and no real di�erences
can be detected in the statistical measures used. This point is certi�ed by Figure 4.6, that shows
the dispersion graph for Capel, where it is not possible to observe strong di�erences between the
performance of either algorithms in this case. Finally, Table 4.3 (middle of the table) shows the
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reconstruction of Weibull distribution parameters (A and k) for the wind speed at Capel, with
the WRCT and SVMr-GA. In this case, it seems that the wind speed reconstruction is slightly
more accurate with the WRCT, since the SVMr-GA slightly overestimates these parameters.
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Figure 4.7: Wind speed reconstruction in K1 test period at Kaegnes; (a) WRCT approach; (b)
SVMr-GA approach.

4.3.2.3 Kaegnes

The �nal tests of this comparative are carried out at Kaegnes, where three test periods are
considered. Table 4.2 (at the bottom of the table) shows the results obtained with the two
approaches considered. In this case, the performance of the algorithms varies with the test
period considered. In the period K1 the SVMr-GA outperforms the WRCT, whereas in periods
K2 and K3 it is the WRCT that obtains the best results. The di�erences in all cases are small.
Table 4.3 (at the bottom of the table) shows the reconstruction of the Weibull distribution
parameters (A and k) of the wind speed at Kaegnes. In this case the best reconstruction of these
parameters are given by the SVMr-GA, and it is the WRCT that overestimates these parameters
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at this site. Figure 4.7 shows the dispersion graph for Kaegnes (period K1) obtained with the
WRCT and SVMr-GA algorithms.

4.4 Conclusions

We have presented a comparison between two di�erent methods for wind speed reconstruction
based on synoptic variables. Speci�cally, the comparison between a machine learning approach
(SVMr-GA) and a physical-based algorithm (WRCT) is carried out. The SVMr-GA approach
is a hybrid algorithm composed by a Support Vector Regression and a Genetic Algorithm. The
WRCT works by carrying out a �rst clustering step over a synoptic �eld. Then a regression tech-
nique between wind speed and any meteorological variable is applied. We have fully described
both approaches and compared them within the frame of a real wind speed reconstruction prob-
lem at three di�erent sites: Cabauw (The Netherlands), Capel (Wales, UK) and Kaegnes (Den-
mark). The results obtained have shown a good performance of both approaches, with slightly
prevalence of one or another depending on the site or reconstruction objective considered. The
proposed approaches have shown to be excellent tools for wind speed analysis in sites where there
are long past periods without wind speed measurements.

These two tools open the possibility of improving long term estimation of the wind resource of
a particular area given the fact that this is a very challenging problem when developing a wind
farm. Speci�cally, this problem is aggravated when there are few years of measurements and
there are no nearby meteorological masts to apply classical MCP (Measure-Correlate-Predict)
methodologies. This situation is very usual, especially in countries with recent development of
wind energy and scarce data from meteorological stations. Moreover, these two methodologies
can help on the �nancing stage as well as to reduce the uncertainty of private investment in wind
energy projects.
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Appendix for this chapter

4.A Tables

Table 4.1: Average number of weather types (clusters) determined for each group of three months
(JFM, AMJ, JAS, OND) at each site considered with the WRCT methodology.

site JFM AMJ JAS OND
Cabauw 3 4 3 5
Capel 3 2 3 2
Kaegnes 3 5 3 6

Table 4.2: Wind speed reconstruction results for various statistics obtained with the WRCT and
the SVMr-GA approach at all the sites considered.

Set MAE RMSE Bias R2

Cabauw (WRCT)
C1 0.8368 1.1017 0.1796 0.8205
C2 0.8137 1.0805 0.0667 0.8241
C3 0.8227 1.0908 -0.0089 0.8262
C4 0.8078 1.0909 -0.2018 0.8279

Cabauw (SVMr-GA)
C1 0.8536 1.1093 0.0659 0.8086
C2 0.8902 1.1593 -0.0136 0.7949
C3 0.8775 1.1534 -0.1441 0.8057
C4 0.8657 1.1392 -0.2564 0.8057

Capel (WRCT)
Cp1 1.32 1.68 0.05 0.74

Capel (SVMr-GA)
Cp1 1.28 1.71 0.02 0.73

Kaegnes (WRCT)
K1 1.17 1.56 -0.01 0.77
K2 1.16 1.55 0.12 0.78
K3 1.22 1.65 -0.05 0.75

Kaegnes (SVMr-GA)
K1 1.04 1.35 -0.03 0.83
K2 1.15 1.66 -0.03 0.74
K3 1.21 1.86 0.04 0.68
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Table 4.3: Comparison of the Weibull distribution parameters of the wind (A and k) reconstructed
versus observed ones at all the sites considered, obtained with the SVMr-GA and WRCT approaches.

A A k k
Set Observed Reconstructed Observed Reconstructed

Cabauw (WRCT)
C1 5.32 5.40 1.96 2.12
C2 5.32 5.32 1.94 2.17
C3 5.41 5.27 1.93 2.13
C4 5.33 5.07 1.93 2.08

Cabauw (SVMr-GA)
C1 5.32 5.52 1.96 2.09
C2 5.32 5.40 1.94 2.07
C3 5.41 5.42 1.93 2.12
C4 5.33 5.12 1.93 2.00

Capel (WRCT)
Cp1 7.86 7.87 2.25 2.62

Capel (SVMr-GA)
Cp1 7.86 7.82 2.25 2.88

Kaegnes (WRCT)
K1 7.86 7.82 2.28 2.53
K2 7.94 8.06 2.28 2.51
K3 7.95 7.88 2.28 2.43

Kaegnes (SVMr-GA)
K1 7.86 7.81 2.28 2.46
K2 7.94 7.90 2.28 2.46
K3 7.95 7.99 2.28 2.35
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Chapter 5

Wind speed reconstruction and
prediction from neighbour towers data

5.1 Introduction

Wind farm management and prospection usually tackle with two important problems: wind
speed prediction and wind series reconstruction. Wind speed prediction and reconstruction of
wind series are usually carried out in wind farms using data from in-situ measuring towers, using
the so-called Measure-Correlate-Predict methods (MCP). MCP processes consist, therefore, in
the wind speed prediction or reconstruction from neighbor stations, using di�erent methods as
it has been explained in Section 2.2. Traditional MCP processes deal with pre-processed data
from measuring towers in order to have a full set of data from all the towers without gaps. But
in real operations in a wind farm, real time applications are needed, so the processing of data
to tackle the problem with a traditional MCP method is not feasible. We deal with Real MCP
Operations (RMCPO) in a wind farm, which are dynamic processes which often require the con-
tinuous re-training of the algorithms to consider new data. Our method will consider direct data
from the measuring stations and will apply the corresponding model to reconstruct or predict
the wind speed. The algorithms used to reconstruct or predict the wind series must be extremely
fast in order to reuse new input data. Thus, we propose the application of two state-of-the-art
neural networks which have shown a very fast training and excellent performance in terms of
accuracy. Speci�cally, Group Method of Data Handling and Extreme Learning Machines are ap-
plied to the MCP reconstruction and prediction of wind speed series, in a real wind farm in Spain.

This chapter is structured as follows: next section summarizes the RMCPO problem
de�nition. Section 5.4 presents the experimental part, with a comparison with alternative
multilinear regression and di�erent computational intelligence-based regression algorithms, such
as multilayer perceptrons or support vector machines. This section also discusses the performance
of the proposed approach in reconstruction and prediction problems. In this section we also
present the real software developed for RMCPO in wind farms. Section 5.5 closes the chapter
giving some �nal conclusions.

5.2 Problem de�nition

Let D be a N ×M matrix, where N stands for the number of measuring stations in the wind
farm, and M stands for the total number of wind speed measures available. The RMCPO prob-
lem consists of, given D, training a set of n(D) regression models R, for covering all the possible

53
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combinations of available wind speed data and missing values to be reconstructed (or to predict
a wind speed value in a future time at a given station), in such a way that each regression model
Ri, i = 1, . . . , n(D) must contain, at least, two input features from D.

Just as an example, consider a wind farm in which 4 measuring towers have been installed.
Let us consider 10 values of wind in each tower to illustrate the neural models generation in
order to reconstruct missing values.

D =



5.1 X 3.8 2.9
6.0 7.2 X X
X X 1.3 1.2
9.4 6.2 4.8 7.9
X 9.6 X 8.5
6.2 2.9 4.0 X
4.1 7.2 4.3 6.8
4.5 5.2 6.1 X
2.1 3.6 5.1 3.8
8.6 9.2 10.0 X


. (5.1)

For example, let us suppose that we want to reconstruct the missing value (marked in bold-
face) in the �rst row of D, corresponding to the wind speed measured by tower #2. Note that
in this case, we need to train a model in which all the values in the four towers are available
(measures of towers #1, #3 and #4 as features, and measure of tower #2 as objective variable).
Thus, we must use all rows in D which have all the values complete, i.e, rows (samples) 4, 7 and
9 in this case. Imagine now that we need to reconstruct the variable in the second row of D
marked in boldface. In this case we need all the samples in D which contains features #1, #2
and #3 (#1 and #2 as input features and #3 as objective variable) to train the network. We
can use rows (samples) 4, 6, 7, 8, 9 and 10 to train this model.

Note that the total number of models needed (n(D)) to ensure the complete reconstruction
of a matrix D (having at least two input variables), completely depends on size N of D (number
of wind speed measuring stations). The expression for n(D) is the following:

n(D) =

N−3∑
i=0

N !

i!(N − i− 1)!
(5.2)

Note that for N = 5, the total number of neural models that we have to train to cover
all possible combinations of missing and existing values is n(D) = 55. This number, however,
increases dramatically with N , so for N = 8 we have to train 960 models to cover all the possible
combinations in D.

5.3 Fast training neural networks for RMCPO problems

In order to tackle RMCPO instances when the value of N increases, very fast training neural
methods must be applied to obtain results in a reasonable time. This necessity is even harder
when we tackle MCP short-term prediction problems, where often we have to incorporate new
data and refresh the models to carry out the predictions. We propose two models of neural
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networks that share the property of having an extremely fast training process. The �rst one is
a polynomial self-organized neural network called Group Method of Data Handling, whereas the
second proposal is the Extreme Learning Machine. Both approaches have recently received the
attention of the research community due to their good performance in accuracy and excellent
computation time required and have been explained in Chapter 3.

5.4 Experimental part

In this section a real case of study in a Spanish wind farm is tackled. The methodology used is
explained and alternative MCP algorithms are proposed for comparison tasks.

5.4.1 Alternative MCP algorithms for comparison

Di�erent modern MCP techniques based on computational intelligence algorithms are proposed
to compare the fast training approaches. Speci�cally, a multi-layer perceptron and a support
vector machine are used (both described in Sections 3.1.1 and 3.1.4). We brie�y describe a
classical linear MCP technique, the multiple linear regression that can be used as a reference
algorithm.

5.4.1.1 Multiple Linear Regression

Multiple linear regression (MLR) is an extension of the simple linear regression model, in
which the relationship between a dependent variable and several independent variables can be
calculated. The general model for k variables is:

yi = β0 + β1xi,1 + β2xi,2 + . . .+ βkxi,k + ei, i = 1, . . . , n (5.3)

as shown in [18]. In multiple linear regression, the least-squares method is used also to determine
the regression coe�cients, βi, in Equation (5.3).

The error term in Equation (5.3), ei, is unknown because the true model is unknown. Once
the model is predicted, the residual errors are de�ned as:

ei = yi − ŷi (5.4)

where yi stands for the real value and ŷi stands for the predicted value. These residual errors
give an idea of how accurate the prediction obtained is. In this work the Matlab implementation
of the MLR algorithm described in [18] is used. An example in the carsmall dataset available in
Matlab is shown in Figure 5.1. Given the horsepower and the weight of di�erent vehicles, MPG
(miles per gallon) is regressed (from the given MPG data). A surface of regression is obtained in
order to predict MPG of new vehicles given its horsepower and weight. In the RMCPO problem
considered, the MLR is the basic reference algorithm to be improved, since many companies
devoted to managing wind farms use this approach in MCP problems.

5.4.2 Experimental evaluation in a real wind farm: methodology

In order to analyze the performance of the two proposed algorithms, several experiments of wind
series reconstruction and prediction have been tackled, over real data from a wind farm in Spain.



56 Chapter 5. Wind speed reconstruction and prediction from neighbour towers data

1000
2000

3000
4000

5000 050100150200250

5

10

15

20

25

30

35

40

45

Horsepower
Weight

M
P

G

Figure 5.1: Example of Multiple Linear Regression, with carsmall MatLab dataset.

Figure 5.2 shows the situation of the eight measuring towers considered, within the same wind
farm, situated in northern Guadalajara, Spain.

Measured hourly wind data from November 2008 to November 2010 are available. We have
carried out the following experiments: �rst, in order to focus on the speci�c reconstruction and
prediction performance of the algorithms proposed, we have tackled a round of experiments
consisting in MCP reconstruction and prediction using only complete samples (samples without
missing values). There is available a total of 239 complete temporal series, of di�erent length,
with a total of 4391 hours of average wind speed data for the eight towers. The distribution
length of the considered wind series is shown in Figure 5.3.

In the same way, the problem of predicting the wind speed in each of the towers from the
measures of the other towers is then tackled. In order to face these �rst two problems with
complete samples, the initial data have been split in train, validation and test sets. The validation
set is used in the MLP training, in order to avoid over-�tting. To obtain independent sets with
a composition balanced over the seasons, the 239 time series have been split as shown in Figure
5.4. These sets will be used to train and test the di�erent methods considered. The distribution
in seasons of the samples in the train, validation and test sets considered is shown in Figure
5.5. In a second round of experiments, we analyze the performance of the ELM and GMDH in
a RMCPO, consisting in the reconstruction of the missing values in the set of eight considered
towers without processing data.

5.4.3 Evaluation of the GMDH and ELM in MCP wind speed reconstruction

First, the problem of wind speed series reconstruction using the complete data from neighbor
towers is tackled. In this problem, the wind values of di�erent neighbor towers are used as input
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Height of the

wind measurement

T-5 50m     T-6 50m

T-7 50m     T-8 50m

T-3 50m     T-4 40m

T-1 50m     T-2 50m

Figure 5.2: Situation of the wind measuring towers in Spain and within the wind farm.

in the regression techniques, in order to estimate the wind at the same time in an objective tower.
Since we have available all the data in each tower, we can evaluate the accuracy of each considered
method. This evaluation is carried out in terms of di�erent well-known statistical evaluation in-
dices in each tower: such as root mean square error (RMSE), which provides information about
the mean error in the wind speed reconstruction, the Mean Bias Error (MBE), which checks
whether the model overestimates or underestimates the wind speed, the Coe�cient of Determi-
nation (R2), which provides information about the percentage of the variance that the model is
able to explain, and the Index of Agreement (IoA), which gives information about how close the
predicted wind speed values are to the observed ones. These performance indices have been used
profusely before in di�erent studies, including in environmental applications [40, 120, 179]. We
also compare the algorithms in terms of the �nal computation time for training each method, i.e.,
the time taken by each method to generate the model to reconstruct each tower (one model). We
have carried out wind speed reconstruction and prediction for all the towers by using a di�erent
number of neighbor towers: the 3 nearest towers to the target one (called 3T case), the 5 near-
est (called 5T case) and all the available towers (called 7T case). Table 5.1 shows a summary
of the towers used to reconstruct/predict each target tower. This table can be seen together
with Figure 5.2, where the actual disposition of the towers is shown. The table details which
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Figure 5.3: Distribution of the wind speed time series (complete samples) in terms of their duration.
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Figure 5.4: Distribution of the sets for training, validation and test.

towers are used in the 3T case (using the 3 nearest towers to do the reconstruction/prediction)
and in the 5T case (using the 5 nearest towers to do the reconstruction/prediction). Note that
in the 7T case all the towers but the target one are used in the reconstruction/prediction process.

Tables 5.2 to 5.6 show the performance of the GMDH and ELM, and the alternative method
for comparison (MLR, MLP and SVMr), in terms of the di�erent evaluation indices considered.
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Figure 5.5: Balanced distribution over the time of the sets.

Table 5.1: Towers used to reconstruct/predict the target tower, by using a di�erent number of
neighbor towers (the 3 nearest (3T case) or the 5 nearest (5T case)). Note that in the 7T case all
the towers but the target one are used in the reconstruction/prediction process.

Target tower Nearest towers (3T case) Nearest towers (5T case)
1 2, 3, 4 2, 3, 4, 6, 7
2 1, 3, 4 1, 3, 4, 6, 7
3 1, 2, 4 1, 2, 4, 6, 8
4 1, 2, 3 1, 2, 3, 6, 8
5 6, 7, 8 2, 3, 6, 7, 8
6 2, 3, 8 2, 3, 5, 7, 8
7 5, 6, 8 2, 3, 5, 6, 8
8 5, 6, 7 2, 3, 5, 6, 7

Note that the performance of both the ELM and GMDH is quite acceptable, with evaluation
indices comparable to the obtained by the compared approaches. The SVMr seems to be the
most accurate method among all tested and the MLR (reference method) is the one which pro-
vides the poorer results. Regarding the di�erences between the wind speed reconstruction using
3, 5 or 7 towers, it is interesting to see how the reconstruction using 3 reference towers (3T case)
provides poorer results than the reconstruction using 5 (5T case) or 7 (7T case). However, the
reconstruction using 5 towers (5T case) is, in many cases, better than the one using 7 towers.
This indicates that the information provided by 5 towers is enough to obtain a good quality
reconstruction of the wind speed, whereas the information of the 3 nearest towers is not enough
to provide the best possible reconstruction.

Table 5.7 shows the training time in the reconstruction problem, in the case of data from 7
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towers (7T case). This table shows one of the main advantages of using GMDH or ELM networks
in wind speed reconstruction. Note that the ELM approach is extremely fast, with training time
comparable to the MLR approach (about 30 ms per training). The GMDH takes about 1 second
per training model, but it is still less than the MLP, and of course less than the SVMr approach,
which is the algorithm that employs more time in a single model training.

5.4.4 Evaluation of the GMDH and ELM in MCP wind speed prediction

The prediction problem is quite similar to the reconstruction one, but in this case the regressors
include wind measures in past time (last hour) at the neighbor towers in order to predict the
current wind value at the current tower. Tables 5.8 to 5.12 show the results obtained by the dif-
ferent techniques considered in the prediction problem, with di�erent number of towers to train
the predictors (3T, 5T and 7T cases). Note that the results obtained in the prediction problem
are slightly worse in terms of accuracy (in all evaluation indices) for the compared algorithms,
as expected. However, again the results obtained by the ELM and GMDH are quite competitive
to the other tested algorithms, and improve the results of the reference method (MLR). We can
also observe in this problem the same e�ect regarding the number of reference towers used to do
the prediction: the results with 3 towers are worse than with 5 and 7 towers in the prediction,
but the results using 5 towers are, in average, slightly better than the results obtained using 7
towers in the prediction. Table 5.13 shows the training time obtained by the compared algo-
rithms in each tower, for the case of predictions using data from 7 towers. As in the previous
case, the training time of the ELM and GMDH is less than the other neural approaches compared.

5.4.5 A software for RMCPO problems: real wind series reconstruction and
prediction

This section presents a software tool implementing the ELM and GMDH, for RMCPO problems
in wind farms. The tool has been developed in Matlab, and it is currently under operation
in di�erent wind farms in Spain and USA. Figure 5.6 shows the frontend of the tool, where
we can set di�erent parameters and options (ELM or GMDH selection, MCP reconstruction or
prediction, generation of the models, selection of the �le with the wind speed values (matrix D,
etc.). A �rst step in any RMCPO problem is the generation of the regression models for the
chosen algorithm (ELM or GMDH), that is showed in the tool with a progress bar, as shown in
Figure 5.7. At this stage, the tool is able to reconstruct or predict the wind speed values of the
matrix D. As an example, if we consider the GMDH network, the tool is able to provide the
network's structure obtained (Figure 5.8), and �nally, a complete reconstruction of matrix D if
required, or a prediction of the wind speed in each tower from the neighbor ones. For example,
Figures 5.9 shows the wind speed prediction in Tower 6 obtained by our software (with the
GMDH network) and the comparison with the real wind speed measured in that tower. On the
other hand, the ELM network is probabilistic, so we can obtain di�erent predictions (depending
on network initialization). Figure 5.10 shows the best and worst prediction obtained for Tower
6.
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Figure 5.6: Frontend of the proposed software for wind speed reconstruction and prediction.

Figure 5.7: Progress bar in the proposed software indicating that GMDH or ELM models for wind
speed reconstruction or prediction are being computed.

1 2 3 4 5 6 7
1

1.5

2

2.5

3

3.5

4

4.5

5

GMDH Network

Input variables

G
M

D
H

 L
a

y
e

r

Figure 5.8: GMDH structure obtained by the proposed software tool in a wind speed prediction
problem in the considered wind farm.

5.5 Conclusions

We have applied two very fast training neural network to two real MCP operation problems
(wind series reconstruction and prediction), i.e. wind series management from neighbor stations
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Figure 5.9: Wind speed prediction in tower 6 of the considered wind farm obtained by the GMDH
network (prediction using data from 7 towers).

in a wind farm. Speci�cally, we have applied a Group Method of Data Handling network, and an
Extreme Learning Machine, which are able to obtain good results in terms of accuracy, within a
extreme fast computation time. A complete set of experiments have evaluated the performance
of these two approaches in a real application of wind series reconstruction in a real wind farm
at Guadalajara, Spain, with excellent results. A software that implements fast versions of the
GMDH and ELM has also been described and tested. This software can be used to carry out
fast wind speed reconstruction and short term prediction of wind speed from reference measuring
towers in wind farms. This software tool is therefore an useful tool for wind farm managers to
improve the processing of wind speed data in wind farms.
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Figure 5.10: Wind speed prediction in tower 6 of the considered wind farm obtained by the ELM
network (prediction using data from 7 towers); (a) Best prediction obtained; (b) Worst prediction
obtained.
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Appendix for this chapter

5.A Tables

Table 5.2: Wind speed reconstruction results obtained by the GMDH network.

GMDH reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.955 0.019 0.977 0.950
2 0.952 0.001 0.987 0.676
3 0.946 0.002 0.9823 0.738
4 0.938 0.058 0.983 0.761
5 0.965 -0.001 0.985 0.818
6 0.781 -0.009 0.976 0.847
7 0.951 0.001 0.969 1.263
8 0.972 -0.006 0.986 0.789

GMDH reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.928 0.010 0.978 0.928
2 0.950 -0.003 0.990 0.599
3 0.974 0.003 0.985 0.690
4 0.941 0.047 0.984 0.730
5 0.969 -0.009 0.987 0.773
6 0.787 -0.018 0.975 0.868
7 0.987 0.013 0.970 1.256
8 0.985 -0.010 0.987 0.770

GMDH reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.928 0.010 0.978 0.928
2 0.949 -0.003 0.990 0.585
3 0.973 0.003 0.985 0.690
4 0.941 0.047 0.984 0.730
5 0.969 -0.009 0.987 0.773
6 0.796 -0.030 0.975 0.871
7 0.926 -0.041 0.971 1.248
8 0.985 0.005 0.987 0.760
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Table 5.3: Wind speed reconstruction results (average values of 30 runs) obtained by the ELM
network.

ELM reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.955 -0.090 0.978 0.943
2 0.970 0.086 0.989 0.616
3 0.941 0.019 0.985 0.676
4 0.922 -0.064 0.983 0.748
5 0.950 0.009 0.987 0.768
6 0.849 -0.049 0.978 0.835
7 0.839 -0.186 0.966 1.289
8 0.983 0.059 0.988 0.737

ELM reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.978 -0.062 0.978 0.949
2 0.999 0.094 0.989 0.621
3 0.942 0.017 0.985 0.675
4 0.937 -0.044 0.984 0.740
5 0.962 0.014 0.986 0.785
6 0.858 -0.055 0.977 0.849
7 0.831 -0.199 0.968 1.249
8 0.978 0.046 0.987 0.744

ELM reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.974 -0.034 0.975 0.994
2 0.985 0.054 0.989 0.618
3 0.955 0.017 0.983 0.717
4 0.965 -0.044 0.982 0.771
5 0.967 0.023 0.986 0.800
6 0.865 -0.048 0.975 0.880
7 0.838 -0.157 0.967 1.264
8 0.988 0.039 0.986 0.791
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Table 5.4: Wind speed reconstruction results obtained by the MLR method (Reference).

MLR reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.937 -0.084 0.976 0.966
2 0.961 0.080 0.989 0.611
3 0.944 0.038 0.983 0.712
4 0.959 -0.059 0.984 0.747
5 0.968 0.021 0.987 0.770
6 0.830 -0.053 0.977 0.835
7 0.822 -0.190 0.964 1.312
8 0.975 0.071 0.986 0.780

MLR reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.962 -0.059 0.978 0.936
2 0.981 0.087 0.990 0.599
3 0.953 0.032 0.9841 0.702
4 0.949 -0.045 0.984 0.727
5 0.963 0.016 0.986 0.766
6 0.824 -0.059 0.978 0.830
7 0.806 -0.202 0.966 1.280
8 0.959 0.057 0.987 0.764

MLR reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.963 -0.052 0.978 0.943
2 0.983 0.057 0.990 0.590
3 0.954 0.031 0.984 0.700
4 0.948 -0.048 0.984 0.727
5 0.963 0.019 0.987 0.767
6 0.826 -0.058 0.977 0.837
7 0.812 -0.169 0.966 1.271
8 0.962 0.041 0.987 0.755
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Table 5.5: Wind speed reconstruction results (average values of 30 runs) obtained by the MLP.

MLP reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.958 -0.080 0.977 0.950
2 0.968 0.084 0.989 0.616
3 0.938 -0.010 0.985 0.677
4 0.911 -0.097 0.981 0.783
5 0.942 0.014 0.986 0.762
6 0.836 -0.066 0.977 0.846
7 0.834 -0.169 0.966 1.292
8 0.992 0.069 0.987 0.755

MLP reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.965 -0.056 0.978 0.930
2 0.982 0.086 0.989 0.605
3 0.937 -0.003 0.985 0.669
4 0.933 -0.039 0.984 0.724
5 0.946 0.006 0.987 0.760
6 0.840 -0.052 0.976 0.852
7 0.819 -0.238 0.967 1.269
8 0.970 0.043 0.987 0.751

MLP reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.968 -0.059 0.978 0.935
2 0.981 0.056 0.990 0.590
3 0.952 0.012 0.986 0.668
4 0.931 -0.046 0.983 0.748
5 0.945 0.018 0.987 0.766
6 0.853 -0.073 0.975 0.878
7 0.844 -0.130 0.969 1.232
8 0.982 0.041 0.988 0.729
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Table 5.6: Wind speed reconstruction results obtained by the SVMr.

SVMr reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.952 -0.141 0.977 0.961
2 0.972 0.088 0.989 0.616
3 0.953 0.038 0.985 0.672
4 0.931 -0.011 0.983 0.747
5 0.965 0.081 0.987 0.772
6 0.833 -0.015 0.977 0.844
7 0.832 -0.129 0.967 1.275
8 0.984 -0.036 0.988 0.734

SVMr reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.979 -0.106 0.978 0.930
2 0.978 0.069 0.990 0.599
3 0.955 0.039 0.986 0.665
4 0.944 -0.019 0.984 0.726
5 0.965 0.077 0.987 0.768
6 0.807 -0.043 0.977 0.844
7 0.789 -0.211 0.967 1.252
8 0.981 -0.036 0.988 0.738

SVMr reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.984 -0.099 0.978 0.941
2 0.976 0.058 0.990 0.590
3 0.958 0.039 0.986 0.661
4 0.940 -0.029 0.984 0.727
5 0.965 0.078 0.987 0.767
6 0.817 -0.048 0.977 0.845
7 0.831 -0.121 0.970 1.214
8 0.979 -0.036 0.989 0.704

Table 5.7: Computation time of wind speed reconstruction (using data from 7 towers) in each
considered tower, in the example with complete wind speed samples (in seconds).

Tower ELM GMDH MLP SVMr MLR
(Reference)

T1 0.045 1.078 20.001 584.5 0.028
T2 0.033 1.149 21.315 617.1 0.023
T3 0.034 0.788 20.975 586.5 0.029
T4 0.033 0.891 22.850 601.3 0.030
T5 0.033 0.982 21.153 596.7 0.027
T6 0.036 1.034 22.179 589.9 0.027
T7 0.035 1.101 20.336 598.1 0.031
T8 0.042 0.972 22.891 619.2 0.024
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Table 5.8: Wind speed prediction results obtained by the GMDH network.

GMDH prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.836 0.004 0.945 1.409
2 0.875 -0.023 0.957 1.182
3 0.842 -0.012 0.939 1.305
4 0.833 0.022 0.946 1.282
5 0.884 -0.032 0.947 1.470
6 0.702 -0.054 0.934 1.346
7 0.843 -0.030 0.930 1.823
8 0.867 -0.004 0.951 1.406

GMDH prediction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.775 0.016 0.943 1.400
2 0.846 -0.022 0.956 1.181
3 0.867 -0.003 0.943 1.272
4 0.833 0.023 0.946 1.285
5 0.897 -0.043 0.952 1.410
6 0.717 -0.031 0.939 1.305
7 0.899 -0.015 0.933 1.804
8 0.920 -0.015 0.955 1.361

GMDH prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.777 0.017 0.944 1.395
2 0.868 -0.029 0.957 1.185
3 0.867 -0.003 0.943 1.272
4 0.841 -0.036 0.944 1.310
5 0.926 -0.075 0.949 1.459
6 0.717 -0.031 0.939 1.305
7 0.934 -0.074 0.936 1.785
8 0.948 -0.044 0.954 1.387
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Table 5.9: Wind speed prediction results (average values of 30 runs) obtained by the ELM network.

ELM prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.835 -0.094 0.946 1.394
2 0.870 0.070 0.957 1.187
3 0.813 -0.004 0.943 1.261
4 0.822 -0.023 0.944 1.299
5 0.849 0.049 0.950 1.416
6 0.760 -0.048 0.941 1.297
7 0.748 -0.157 0.927 1.813
8 0.888 0.095 0.955 1.358

ELM prediction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.861 -0.060 0.948 1.374
2 0.889 0.063 0.957 1.187
3 0.826 0.033 0.941 1.281
4 0.850 -0.014 0.946 1.285
5 0.860 0.038 0.950 1.424
6 0.762 -0.061 0.941 1.300
7 0.754 -0.172 0.931 1.760
8 0.891 0.073 0.955 1.358

ELM prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.895 -0.033 0.946 1.412
2 0.898 0.057 0.956 1.205
3 0.842 0.037 0.940 1.298
4 0.867 -0.001 0.944 1.317
5 0.866 0.071 0.949 1.435
6 0.775 -0.033 0.940 1.309
7 0.755 -0.126 0.930 1.768
8 0.891 0.079 0.955 1.365



5.A. Tables 71

Table 5.10: Wind speed prediction results obtained by the MLR method (Reference).

MLR prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.853 -0.081 0.945 1.408
2 0.876 0.063 0.958 1.175
3 0.832 0.037 0.939 1.305
4 0.869 -0.035 0.947 1.282
5 0.861 0.057 0.949 1.436
6 0.746 -0.053 0.941 1.297
7 0.733 -0.154 0.924 1.834
8 0.877 0.106 0.952 1.394

MLR prediction 5T
Tower R2 MBE (m/s IoA RMSE (m/s)
1 0.885 -0.051 0.949 1.377
2 0.890 0.068 0.958 1.170
3 0.840 0.048 0.941 1.291
4 0.863 -0.021 0.948 1.273
5 0.849 0.040 0.950 1.413
6 0.743 -0.060 0.941 1.295
7 0.714 -0.174 0.927 1.789
8 0.856 0.081 0.953 1.370

MLR prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.885 -0.047 0.948 1.381
2 0.891 0.045 0.959 1.171
3 0.838 0.040 0.941 1.284
4 0.860 -0.026 0.948 1.270
5 0.850 0.048 0.949 1.422
6 0.740 -0.052 0.942 1.281
7 0.726 -0.132 0.927 1.795
8 0.857 0.077 0.954 1.362
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Table 5.11: Wind speed prediction results (average values of 30 runs) obtained by the MLP.

MLP prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.833 -0.081 0.945 1.401
2 0.877 0.072 0.957 1.188
3 0.802 -0.003 0.942 1.265
4 0.821 -0.046 0.944 1.295
5 0.834 0.060 0.949 1.416
6 0.755 -0.028 0.939 1.314
7 0.750 -0.147 0.926 1.819
8 0.886 0.100 0.954 1.371

MLP prediction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.850 -0.075 0.948 1.374
2 0.881 0.055 0.958 1.180
3 0.817 0.058 0.944 1.253
4 0.842 -0.018 0.946 1.278
5 0.851 0.004 0.951 1.402
6 0.763 -0.057 0.941 1.302
7 0.738 -0.182 0.930 1.768
8 0.873 0.089 0.955 1.349

MLP prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.845 -0.060 0.947 1.379
2 0.881 0.048 0.958 1.179
3 0.832 0.065 0.945 1.246
4 0.844 -0.003 0.947 1.272
5 0.835 0.079 0.949 1.425
6 0.758 -0.069 0.940 1.312
7 0.752 -0.074 0.931 1.760
8 0.893 0.080 0.956 1.350
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Table 5.12: Wind speed prediction results obtained by the SVMr.

SVM prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.865 -0.052 0.948 1.378
2 0.886 0.024 0.959 1.168
3 0.799 0.041 0.942 1.263
4 0.804 -0.002 0.946 1.272
5 0.884 0.031 0.951 1.411
6 0.769 0.005 0.943 1.279
7 0.785 -0.120 0.932 1.769
8 0.898 0.105 0.956 1.349

SVM prediction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.850 -0.054 0.948 1.377
2 0.862 0.057 0.958 1.173
3 0.792 0.051 0.941 1.270
4 0.867 -0.067 0.947 1.279
5 0.887 0.018 0.951 1.417
6 0.764 0.009 0.942 1.295
7 0.764 -0.247 0.931 1.771
8 0.885 0.098 0.955 1.353

SVM prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)
1 0.852 -0.065 0.945 1.407
2 0.881 0.053 0.958 1.175
3 0.854 -0.021 0.943 1.272
4 0.858 -0.091 0.946 1.289
5 0.884 0.017 0.950 1.437
6 0.775 0.006 0.942 1.296
7 0.730 -0.162 0.926 1.809
8 0.904 0.122 0.953 1.390

Table 5.13: Computation time of wind speed prediction (using data from 7 towers) in each
considered tower, in the example with complete wind speed samples (in seconds).

Tower ELM GMDH MLP SVMr MLR
(Reference)

T1 0.030 0.992 17.254 501.4 0.024
T2 0.033 1.091 17.973 507.9 0.025
T3 0.030 0.699 18.597 505.1 0.023
T4 0.038 0.783 17.366 499.3 0.027
T5 0.029 0.647 17.426 517.9 0.025
T6 0.033 0.546 18.007 499.6 0.024
T7 0.029 0.981 17.884 534.4 0.027
T8 0.030 1.127 17.677 525.9 0.028
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Chapter 6

Heuristic Correction of Wind Speed
Mesoscale Models Simulations

6.1 Introduction

Wind farms prospection is a complex process that involves di�erent previous studies to be ac-
complished. These prospection studies include analysis and estimation of wind resource in the
area, evaluation of possible problems and cost in wind turbines installation and wind farm ex-
ploitation or several environmental and impact studies [85]-[165]. The important economical
investments involved in this process make extremely important, that previous analyses that en-
sure the optimal location of the wind farm [2, 92] are carried out. These analyses usually start
with a wind speed modeling in the study area, from di�erent points of view: �rst, wind speed
trends are to be assessed, to check if they are maintained (or even increased) over the years.
Second, it is important to know the geographical wind speed distribution in the study area.
Finally, it is needed a complete study of surface wind speeds in the study area in order to carry
out an e�ective micrositing of the wind turbines, allowing tto obtain the maximum pro�t from
the wind farm. Usually this prospective wind farm process starts with the installation of a set of
measuring towers in the zone, in order to collect wind speed data during a period of time, long
enough to perform the di�erent studies involved in the process.

In this Chapter we tackle the geographical distribution of surface wind speed, using mesoscale
models. Previous works have been proposed to improve wind speed �elds analysis, in the frame
of meteorological analysis of the area (Chapter 2, Section 2.3). The idea, however, can be ex-
trapolated to wind farms prospection in a direct way, and that is the objective of our work.
Thus, we propose the statistical correction of mesoscale models to estimate the geographical
distribution of surface wind speeds for wind farms prospection. We introduce several novel-
ties in comparison to the previous works in the literature: �rst, instead of managing complete
wind speed series in each point of the grid, we deal with probability distributions: we consider
the parameters of a Weibull distribution in each point of the grid (representing the wind speed
at that point), obtained from the mesoscale model. We also consider that the measured wind
speed follows a Weibull distribution, so the Weibull parameters of the measuring stations are
used to modify the mesoscale models. An heuristic approach is proposed, that carries out a
rescaling of the Weibull parameters at each grid point, depending on the distance to the dif-
ferent measuring towers in the wind farm. We also show the performance of an Evolutionary
Strategy to select the best parameters for the heuristic search. We discuss the performance of
the proposed approach by means of di�erent experiments in two wind farms prospection sites in
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Spain, where several measuring towers are available to show the appropriateness of our approach.

The rest of the Chapter is structured in the following way: next section presents the problem
de�nition, including the notation used and the objective functions considered for each Weibull
parameter. Section 6.3 discusses the di�erent heuristics proposed in this work for mesoscale
models correction. Section 6.4 shows the performance of the heuristics in grid data obtained
from measuring towers located in two di�erent wind farms in Spain, one with an important
number of measuring towers installed, and another with a reduced number of towers available.
Comparative results are discussed in both cases. Section 6.5 closes the chapter by giving some
�nal conclusions and remarks.

6.2 Problem de�nition

Let us consider a grid M ×N in a prospective area under study to install a wind farm. In each
node of the grid we consider a wind speed series, obtained from a given mesoscale physical model
Ξ. Since the treatment of large wind speed series in each grid node is complicated, we make the
assumption that each wind speed series follows a Weibull probability distribution:

f(v;A, k) =
k

A

( v
A

)k−1
e−( v

A
)k (6.1)

where v is the wind speed value (variable), A is the scale parameter of the distribution and k is
its shape parameter. So each point in the grid keeps a value of A and k to model the complete
wind speed series.

Let G be an M ×N grid with the wind speed measures from the mesoscale model. The wind
speed series in the grid can be represented by using two matrices: GA with values of the Weibull
distribution of each grid node (parameter A), and another matrix Gk with values of parameter
k. In addition, let T = {ti}, i = 1, . . . ,K, be the set of K measuring towers installed on the
studied area, which gives a set of real wind speed measures. We also represent the wind speed
in each measuring tower t using the Weibull distribution, i.e., a value tAi for the parameter A
and a value tki for the parameter k.

The aim of the problem is to obtain two di�erent M ×N matrices, SA and Sk that contain
modi�ed values of the mesoscale model. The modi�cation is carried out by using information
of the real wind speed values of the measuring towers, in such a way that minimizes a given
error function, (eA or ek, depending on the Weibull parameter to be modi�ed), de�ned by the
following equations:

eSA =
1

K∗

K∗∑
i=1

|A(ti)− SA(ti)| (6.2)

eSk =
1

K∗

K∗∑
i=1

|k(ti)− Sk(ti)| (6.3)

where A(ti) and k(ti) stand for the real value of the Weibull parameters that represent wind
speed series measured at tower ti (value of A or k, respectively), K stands for the total number
of towers in the wind farm and K∗ stands for the number of towers selected to train or test the
results. SA(ti) and Sk(ti) stand for the value of the modi�ed mesoscale model wind speed series
Weibull parameter at the point where tower i is installed. Note that if the modi�cation process
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of the mesoscale model is done correctly, the values of eSA and eSk should be better than the values
of the original mesoscale model eGA and eGk (non-corrected values), de�ned as:

eGA =
1

K∗

K∗∑
i=1

|A(ti)− GA(ti)| (6.4)

eGk =
1

K∗

K∗∑
i=1

|k(ti)− Gk(ti)| (6.5)

Figure 6.1 shows an example of a distribution of measures. Grid points with data form the
mesoscale model are represented by red crosses. The location of measuring towers are represented
by blue circles. Note that the measuring towers do not coincide with any point in the mesoscale
model grid, so at this point we cannot calculate Equations (6.4-6.5). A transformation from
discrete to continuous values is therefore needed, in order to extend the values of the mesoscale
model to the points where the measuring towers are located. There are di�erent possibilities to
do this transformation from discrete to continuous values, and the study in this work is general,
so any procedure which does the transformation can be applied. In this work we use a surface
�tting procedure able to construct accurate 2D surface models from scattered (discrete) data,
by means of the software tool available for MatLab, grid�t [62].
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Figure 6.1: Example of mesoscale grid and measuring towers situation in a wind farm.

6.3 Proposed heuristics for mesoscale models correction

The correction of the mesoscale model with measured data can be done in di�erent ways. First,
we propose a constructive heuristics to carry out this modi�cation. Second, we introduce an
Evolutionary Strategy in order to re�ne the search for the best modi�cation of A and k surfaces
in terms of the values of the measuring towers.
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6.3.1 Constructive heuristic

Intuitively, we can think of modifying the output values of the mesoscale model by applying
some function that determines the in�uence of the real value measured by the towers in each
point on the mesoscale grid. Note that this function depends on the distance to the tower, so
the closer a point of the mesoscale model is to a measuring tower, the more similar both values
should be. This procedure can be iteratively done, by modifying each value of the mesoscale
model to take into account the in�uence of all the towers installed in the wind farm. Using the
de�nitions above, the steps of the modi�cation procedure are de�ned in Algorithm 1. In this
algorithm wh is a parameter that controls the correction level of each measuring tower h. This
parameter is introduced for the sake of completeness: if all the stations are considered as equally
important, then wh = 1, ∀h, as in our case. Note that the heuristic construction is easy: in
the �rst step of the proposed heuristic, each point of the mesoescalar model output is modi�ed
by a factor, which depends on distance to tower #1 (wh (th − sij) · f(d)). This value is modi�ed
again by a second factor, which depends on the distance to tower #2, and so on. The process is
repeated in a loop fashion until tower #K∗ is reached. Note also that all the points in the grid
are modi�ed in this way. The procedure is carried out for modifying both GA and Gk grid values,
that characterized the wind speed series from the mesoscale model. In addition, note that there
are Weibull distribution data (GA and Gk) for di�erent sectors of a wind rose in a given wind
farm. Thus, this procedure is carried out for each sector of the wind rose.

Algorithm 1 Constructive heuristic

Require: An initial grid of A or k values from a mesoscale model (G), and set of measuring
towers (T).

Ensure: A modi�ed grid of A or k measures of the mesoscale model, (S).
1: for i = 1 to N do
2: for j = 1 to M do
3: for h = 1 to K∗ do
4: if h = 1 then
5: sij = gij
6: end if
7: Calculate the distance d between the point gij and the tower th.
8: sij = sij + wh (th − sij) · f(d).
9: end for
10: end for
11: end for

We can think of a large variety of functions that depends on distance in the desired way,
i.e., the larger the distance the less the function values. A negative exponential function has
been chosen in this work, following the suggestion in [123], where it was shown to be e�ective in
mesoscale model corrections. Therefore, the correction function used is:

f(d) = exp(−α · d) (6.6)

The constant value α has been chosen in such a way that, when the distance of a given point
in the grid to a given tower is larger than the maximum distance between the set of measuring
towers, dmax, the value of f(−α · d) is less than 0.01, i.e. α is obtained by solving the equation
f(−α · dmax) = 0.01. In this case, the f(−α · d) value is considered insigni�cant and therefore,
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f(−α · d) = 0 if d > dmin, so the in�uence of towers situated larger than a distance dmax is not
considered at any point in the grid (Figure 6.2).

dmax

UmbralThreshold

Figure 6.2: Graphic explanation of α choice.

6.3.2 An Evolutionary Strategy to set α

We propose an alternative method to set α in Equation (6.6), by means of an evolutionary strat-
egy (ES) [9, 54]. ESs are robust meta-heuristic search algorithms based on Darwinian principles
of natural evolution and survival of the �ttest. Several types of ESs have been proposed [9], and
the �elds of application are huge, in almost all areas of science and engineering optimization.
We apply this algorithm to obtain the optimal α parameter in the correction function of our
approach for adapting mesoscale wind speed values to measuring stations.

The encoding of each individual in the population of the strategy is a real value α > 0.
Also, each individual has associated a �tness value, given by Equation (6.2) if we consider a
modi�cation of the Weibull parameter A, or Equation (6.3) if we consider parameter k. The
modi�ed mesoscale model is obtained by applying the constructive heuristic presented in the
previous section, with the α value of each individual. Only Gaussian mutations are considered
in the evolutionary strategy carried out, and the value for α is bounded between 0 and two
times the maximum distance among towers (2 · dmax). The evolutionary strategy procedure is
the following:

1. Generate an initial population of µ individuals (solutions). Each individual is formed by a
parameter α (to be found) and a matrix S containing the values obtained by applying the
constructive heuristic with the exponential function (Equation (6.6)). Let b be a counter
for the number of generations, set it to b = 1.

2. Evaluate the �tness value for each individual by using the problem's error equation
(Equations (6.2) or (6.3), for A and k, respectively, with K∗ equal to the number of
towers used to train the algorithm). Before this, the surface that best �ts to the S values
needs to be calculated using the Grid�t software.
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3. Generate an o�spring population, of length µ, by applying a mutation operator to the
individuals (Gaussian mutation is considered).

4. Evaluate the �tness of the o�spring population using Equations (6.2) or (6.3).

5. Selection is based on the procedure described in [186]: Conduct pairwise comparison over
the union of parents and o�spring remaining: for each individual, p opponents are chosen
uniformly at random from all the parents and o�spring. The best individual in these p is
selected to survive for the next generation. This process is repeated until a new parent
generation of µ individuals is obtained.

6. Stop if the stopping criterion is satis�ed. Otherwise set b = b+1 and go to Step 3. In this
case, the stopping criterion established is that the best solution found by the algorithm
is not improved during X generations, or, alternatively, the algorithm reaches a maximum
number of generations.

6.4 Experimental part

In order to show the performance of the proposed algorithms a large amount of experiments have
been analyzed. Experiments in two locations where there are currently installed two wind farms
in Spain are carried out. This ensures the presence of measuring towers which provide real wind
speed data in the area under study. Data from the Weather Research and Forecasting mesoscale
model [184] are considered in the two locations, obtaining a Weibull modeling of the wind in a
grid de�ned in both wind farms.

1

2

Figure 6.3: Location of the two wind farms under study in the center of Spain.

6.4.1 Results in wind farm # 1

The �rst wind farm area considered is located in the northern part of Guadalajara province, in
Spain. There are 13 measuring towers available in this wind farm (K = 13) and a wind rose of
12 sectors is considered. Figure 6.4 shows the location of all the measuring towers in this case,
and the wind rose obtained from data collected by the measuring tower #8.
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Figure 6.4: Location of measuring towers and average wind rose for wind farm #1; (a) Location
of measuring towers. Colors stand for orography of the area under study, red colors indicate higher
zones than blue colors; (b) Average wind rose.
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In order to evaluate the performance of the proposed algorithms, a cross-validation procedure
has been carried out. The idea is to use a number of wind towers to obtain the mesoscale model
output correction, and then a reduced test set in order to compare the algorithms' performance.
In this case, a cross-validation procedure that uses 10 towers for training and 3 towers for test is
carried out (K∗ = 10 in train and K∗ = 3 in test). This process has been carried out a number
of times (10 permutations have been considered), in which we have used di�erent towers in the
training and test sets).
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Figure 6.5: Surface of Weibull parameter A obtained from the uncorrected data of the mesoscale
model output(a), the heuristic approach (b) and the ES considered (c). x and y coordinates are
expressed in UTM coordinates (meters).

Tables 6.1-6.6 show the results obtained comparing the proposed heuristic and ES. These
tables show the �tness values calculated following Equation (6.2) or (6.3), that can be interpreted
as a average mean error in the test set. The values of eGA and eGk (average absolute error between
the mesocale model without correction and the measurements at the K∗ towers) are also shown
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in these tables, for reference. It is possible to see how the statistical correction carried out with
the heuristic algorithms proposed improves the mesoscale model value (in terms of error in the
test measuring towers considered). Depending on the parameter considered, sector and tower,
the results obtained by the heuristic are better than those by the ES, or vice-versa: there is not
a clear pattern of outperforming in this case. Note that the ES chooses the best possible α in
the training phase, however, this does not mean that the correction made using that α value
is the best when new data (test) are considered. The average results in the 10 permutations
taken into account (lower part of Tables 6.1-6.6) con�rm that the heuristic and ES corrections
of the mesoscale model improves its performance in terms of error with the available in-situ
measurements.
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Figure 6.6: Surface of Weibull parameter k obtained from the uncorrected data of the mesoscale
model output(a), the heuristic approach (b) and the ES considered (c). x and y coordinates are
expressed in UTM coordinates (meters).
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The adjusted surfaces obtained after the application of the algorithms proposed in this work
can be also represented, and compared to the surface of the mesoscale model data (without
correction). This gives an idea of how the heuristic and ES correction a�ect the values of
parameters A and k. We have chosen a speci�c case (parameter A, sector 1, permutation 1).
The uncorrected data from the mesoscale model for this case are shown in Figure 6.5 (a). On
the other hand, Figures 6.5 (b) and 6.5 (c) show the resulting surfaces obtained after applying
the heuristic and ES methods, respectively. Note the di�erences obtained when the correction
procedures are applied, and how the surface is smoother after the application of the heuristic
corrections. Figures 6.6 (a), (b) and (c) show the uncorrected mesoscale model values, heuristic
and ES corrections, respectively, for parameter k. In these �gures it can also be seen how the
heuristic correction is quite important, while the ES correction is not so deep.

6.4.2 Results in wind farm # 2

The second wind farm area studied in this work is located in the Eastern part of the Guadalajara
province, Spain. In this wind farm, there are only 6 measuring towers available (represented in
Figure 6.7 (a), K = 6). The wind rose in this case has been measured with 16 sectors (Figure 6.7
(b) shows the wind rose obtained from data of tower #1). In this case, 4 towers have been used
to train the algorithms, and 2 for test purposes (K∗ = 4 in train and K∗ = 2 in test). Again
10 di�erent permutations of the training and test towers are considered. Results are presented
in Tables 6.7-6.14 for Weibull parameters A and k. It is easy to see that in this scenario, the
ES consistently obtains better results than the heuristic approach tested. Again, both proposed
approaches improve the performance of the mesoscale model without correction, in terms of er-
ror in test. These results show that, in the case of scarce information available to carry out the
correction (low number of measuring towers), the optimal selection of the α parameter through
the ES procedure provides better results that the heuristic choice of this parameter.

Figures 6.8 (a), (b) and (c) show the parameter A surfaces for the mesoscale model without
correction, heuristic correction and ES, respectively. Figures 6.9 (a), (b) and (c) show their
counterpart for parameter k. These �gures show the e�ect of the proposed corrections, and how
in this case the corrections by the heuristic and the ES are small.
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Figure 6.7: Location of measuring towers and average wind rose for wind farm #2; (a) Location
of measuring towers. Colors stand for orography of the area under study, red colors indicate higher
zones than blue colors; (b) Average wind rose.

6.5 Conclusions

In this Chapter we have discussed two di�erent heuristic methods for the statistical correction of
wind speed outputs from mesoscale models. The methods developed here have direct application
in prospecting wind farms and in the process of wind farm design and turbines micrositing. In
these processes, the exact knowledge of wind speed �eld in the area under study is extremely
important, so correction of the mesoscale models output is a must. In this study we have tackled
the correction of the model with probability distributions, by considering the parameters of a
Weibull distribution (obtained from the mesoscale model) in each point of a grid. The statistical
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Figure 6.8: Surface of Weibull parameter A obtained from the uncorrected data of the mesoscale
model output(a), the heuristic approach (b) and the ES considered (c). x and y coordinates are
expressed in UTM coordinates (meters).

correction has been carried out in terms of similarity of these Weibull parameters to some mea-
suring stations. This technique allows using a surface �tting algorithm to obtain the goodness of
mesoscale model parameters' correction. The e�ectiveness of the proposed heuristic approaches
in the correction of wind speeds from mesoscale models has been successfully tested in two real
wind farm areas in the center of Spain, where measuring towers are installed, and real wind speed
measurements are available.
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Figure 6.9: Surface of Weibull parameter k obtained from the uncorrected data of the mesoscale
model output(a), the heuristic approach (b) and the ES considered (c). x and y coordinates are
expressed in UTM coordinates (meters).
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Appendix for this chapter

6.A Tables

Note that for every table eGA stands for the value of the error in test for the uncorrected mesoscale
model. Avg stands for the average error of the 10 permutations considered.

Table 6.1: Wind farm #1. Correction of Weibull parameter A (Sectors 1 to 4) in terms of average
absolute error in the test set (eSA, K

∗ = 3 towers), in m/s for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 1 Sector 2 Sector 3 Sector 4
eGA H ES eGA H ES eGA H ES eGA H ES

1 0.83 0.52 0.54 2.02 0.63 0.67 0.65 0.34 0.35 0.33 0.11 0.09
2 1.10 0.69 0.64 2.12 0.64 0.51 1.35 0.71 0.74 0.53 0.28 0.32
3 0.64 0.43 0.43 1.43 0.24 0.24 0.83 0.24 0.28 0.42 0.49 0.48
4 0.87 0.54 0.56 1.64 0.35 0.45 0.42 0.40 0.47 0.39 0.17 0.19
5 0.90 0.41 0.37 1.59 0.36 0.43 0.63 0.37 0.36 0.44 0.34 0.41
6 0.46 0.43 0.45 1.27 0.46 0.52 0.69 0.32 0.34 0.26 0.37 0.31
7 1.22 0.87 0.86 2.07 0.34 0.25 0.73 0.25 0.24 0.47 0.22 0.31
8 0.81 0.35 0.35 1.94 0.47 0.38 0.89 0.46 0.42 0.17 0.17 0.10
9 0.41 0.38 0.38 1.57 0.47 0.43 0.35 0.38 0.45 0.19 0.43 0.37
10 0.69 0.63 0.63 1.79 0.48 0.30 0.56 0.12 0.08 0.35 0.31 0.20
Avg 0.79 0.52 0.52 1.74 0.44 0.42 0.71 0.36 0.37 0.35 0.29 0.28

Table 6.2: Wind farm #1. Correction of Weibull parameter A (Sectors 5 to 8) in terms of average
absolute error in the test set (eSA, K

∗ = 3 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 5 Sector 6 Sector 7 Sector 8
eGA H ES eGA H ES eGA H ES eGA H ES

1 0.47 0.31 0.33 0.30 0.18 0.21 0.45 0.44 0.44 0.67 0.35 0.32
2 0.28 0.13 0.15 0.32 0.25 0.21 0.45 0.46 0.44 1.65 0.90 0.93
3 0.23 0.28 0.25 0.27 0.06 0.07 0.25 0.13 0.21 1.11 0.18 0.07
4 0.33 0.04 0.11 0.37 0.16 0.22 0.27 0.23 0.30 0.64 0.11 0.10
5 0.35 0.17 0.24 0.16 0.08 0.08 0.32 0.13 0.19 0.54 0.38 0.47
6 0.33 0.33 0.32 0.20 0.09 0.08 0.32 0.30 0.33 1.02 0.23 0.22
7 0.22 0.09 0.10 0.24 0.17 0.17 0.26 0.24 0.22 1.07 0.24 0.24
8 0.26 0.15 0.13 0.33 0.20 0.20 0.40 0.34 0.42 1.41 0.55 0.67
9 0.23 0.15 0.14 0.29 0.10 0.10 0.17 0.09 0.12 0.80 0.17 0.15
10 0.31 0.30 0.30 0.27 0.11 0.18 0.37 0.33 0.37 1.04 0.35 0.34
Avg 0.30 0.19 0.21 0.28 0.14 0.15 0.33 0.27 0.30 0.99 0.35 0.35
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Table 6.3: Wind farm #1. Correction of Weibull parameter A (Sectors 9 to 12) in terms of average
absolute error in the test set (eSA, K

∗ = 3 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 9 Sector 10 Sector 11 Sector 12
eGA H ES eGA H ES eGA H ES eGA H ES

1 0.35 0.45 0.46 0.68 0.74 0.90 0.93 1.59 1.38 1.33 0.44 0.38
2 0.85 0.54 0.58 1.14 0.50 0.52 1.28 0.74 0.58 1.46 0.56 0.48
3 0.40 0.17 0.23 1.85 0.96 1.02 3.02 1.90 2.18 1.36 0.69 0.69
4 0.37 0.55 0.57 1.29 0.56 0.64 0.63 0.34 0.42 1.30 0.80 0.65
5 0.43 0.42 0.43 1.36 0.69 0.56 0.46 0.58 0.65 0.78 0.58 0.56
6 0.33 0.21 0.18 1.65 0.71 0.77 1.81 1.17 1.21 1.18 1.11 1.09
7 0.69 0.39 0.40 1.45 0.47 0.59 1.25 0.29 0.16 1.57 0.54 0.46
8 0.41 0.07 0.09 1.41 0.57 0.70 1.31 1.36 1.15 1.35 0.63 0.63
9 0.70 0.21 0.36 1.73 0.80 1.03 2.25 1.33 1.47 1.30 0.39 0.40
10 0.36 0.16 0.16 1.55 1.01 1.08 1.83 1.62 1.51 0.89 0.45 0.45
Avg 0.49 0.32 0.35 1.41 0.70 0.78 1.48 1.09 1.07 1.25 0.62 0.58

Table 6.4: Wind farm #1. Correction of Weibull parameter k (Sectors 1 to 4) in terms of average
absolute error in the test set (eSk , K

∗ = 3 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 1 Sector 2 Sector 3 Sector 4
eGk H ES eGk H ES eGk H ES eGk H ES

1 1.78 1.30 1.71 2.22 1.68 2.03 1.05 1.25 1.06 1.03 0.69 0.95
2 1.53 1.68 1.70 2.69 2.24 2.68 1.26 1.55 1.27 2.39 1.83 2.28
3 0.71 1.92 1.17 1.53 3.05 3.73 1.93 2.69 2.24 2.31 1.84 2.10
4 2.94 2.15 2.64 2.36 1.44 2.18 0.78 1.51 0.79 1.22 1.14 1.00
5 2.88 1.94 2.71 3.19 2.60 3.21 1.04 0.78 1.06 3.10 2.35 2.87
6 0.98 1.61 1.00 2.68 2.94 2.65 1.77 2.12 1.76 1.39 1.71 1.58
7 1.10 0.91 1.11 1.54 1.27 1.48 0.89 0.63 0.91 2.20 1.12 1.94
8 0.75 0.67 0.71 1.43 2.12 1.51 1.18 1.78 1.22 1.93 1.77 1.95
9 0.63 1.79 1.08 1.65 3.53 4.16 1.58 2.28 1.99 0.96 1.16 0.82
10 0.94 0.86 0.94 0.74 2.39 2.48 1.67 2.40 1.98 2.36 1.87 2.05
Avg 1.42 1.48 1.48 2.00 2.33 2.61 1.31 1.70 1.43 1.89 1.55 1.75
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Table 6.5: Wind farm #1. Correction of Weibull parameter k (Sectors 5 to 8) in terms of average
absolute error in the test set (eSk , K

∗ = 3 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 5 Sector 6 Sector 7 Sector 8
eGk H ES eGk H ES eGk H ES eGk H ES

1 0.90 1.50 1.07 2.24 2.09 2.27 1.23 1.40 1.21 0.42 0.53 0.45
2 2.27 1.42 2.05 0.88 0.80 0.88 0.76 1.34 0.88 1.15 1.55 1.19
3 2.03 1.61 2.01 0.50 0.35 0.36 1.61 1.57 1.66 1.00 1.32 1.05
4 0.69 0.90 0.33 2.45 1.81 1.90 1.36 0.82 1.28 0.70 1.18 0.70
5 2.38 1.39 2.06 1.61 0.68 1.55 1.30 1.05 1.31 1.71 1.77 1.71
6 0.32 1.32 0.38 0.99 0.36 0.75 1.97 1.66 2.00 1.62 1.91 1.66
7 0.69 0.65 0.56 1.34 1.84 1.76 0.24 1.15 0.47 1.12 1.06 1.12
8 1.63 2.02 1.47 1.14 0.51 1.02 1.13 0.32 1.13 1.53 1.76 1.58
9 0.76 1.19 0.71 0.82 0.82 0.70 0.86 0.60 0.86 1.22 1.89 1.41
10 1.76 1.62 1.69 1.23 0.57 1.10 1.92 2.19 2.02 1.11 1.51 1.12
Avg 1.34 1.36 1.23 1.32 0.98 1.23 1.24 1.21 1.28 1.16 1.45 1.20

Table 6.6: Wind farm #1. Correction of Weibull parameter k (Sectors 9 to 12) in terms of average
absolute error in the test set (eSk , K

∗ = 3 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 9 Sector 10 Sector 11 Sector 12
eGk H ES eGk H ES eGk H ES eGk H ES

1 1.22 1.20 1.29 1.18 0.76 1.16 1.50 1.06 1.34 1.59 1.39 1.61
2 0.71 0.92 0.68 0.75 0.64 0.75 0.84 1.20 0.83 1.55 1.46 1.54
3 1.42 1.15 1.42 0.87 1.10 0.93 1.66 1.13 1.53 1.46 1.68 1.49
4 1.82 0.84 1.73 1.70 1.07 1.53 0.45 0.30 0.45 2.53 2.40 2.61
5 1.09 0.63 0.86 1.92 1.09 1.75 0.74 0.54 0.63 3.15 2.86 3.14
6 1.35 0.94 1.30 0.53 1.04 0.58 1.55 1.13 1.52 1.55 1.66 1.58
7 0.19 0.48 0.24 0.57 0.91 0.49 0.72 0.38 0.66 0.99 0.96 1.03
8 1.22 0.88 1.05 0.34 0.75 0.34 0.72 1.20 0.75 1.84 1.65 1.77
9 0.99 0.57 0.93 0.83 0.72 0.72 0.94 0.71 0.72 0.46 0.58 0.31
10 1.38 0.92 1.34 1.17 0.87 1.15 0.99 1.09 1.05 1.39 1.03 1.25
Avg 1.14 0.85 1.08 0.99 0.90 0.94 1.01 0.87 0.95 1.65 1.57 1.63
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Table 6.7: Wind farm #2. Correction of Weibull parameter A (Sectors 1 to 4) in terms of average
absolute error in the test set (eSA, K

∗ = 2 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 1 Sector 2 Sector 3 Sector 4
eGA H ES eGA H ES eGA H ES eGA H ES

1 0.53 0.56 0.46 0.90 0.86 0.72 0.65 0.55 0.51 0.98 0.82 0.54
2 0.70 0.66 0.55 0.86 0.85 0.64 0.14 0.21 0.33 0.48 0.29 0.30
3 0.41 0.46 0.52 0.50 0.49 0.40 0.58 0.56 0.53 1.12 1.05 0.80
4 0.48 0.50 0.49 1.28 1.25 1.10 0.39 0.31 0.31 1.22 1.15 0.93
5 0.83 0.82 0.65 0.82 0.77 0.50 0.16 0.12 0.29 0.54 0.42 0.41
6 0.41 0.46 0.53 0.50 0.49 0.42 0.58 0.57 0.55 1.12 1.05 0.77
7 0.26 0.28 0.31 0.76 0.71 0.58 0.79 0.69 0.60 1.18 1.06 0.86
8 0.71 0.72 0.63 0.74 0.78 0.63 0.67 0.63 0.55 1.18 1.07 0.81
9 0.53 0.56 0.46 0.90 0.86 0.72 0.65 0.55 0.51 0.98 0.82 0.54
10 0.18 0.19 0.27 1.16 1.14 0.95 0.63 0.67 0.64 1.55 1.51 1.25
Avg 0.50 0.52 0.49 0.84 0.82 0.66 0.52 0.49 0.48 1.04 0.93 0.72

Table 6.8: Wind farm #2. Correction of Weibull parameter A (Sectors 5 to 8) in terms of average
absolute error in the test set (eSA, K

∗ = 2 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 5 Sector 6 Sector 7 Sector 8
eGA H ES eGA H ES eGA H ES eGA H ES

1 1.13 1.09 0.77 1.11 0.97 0.27 0.24 0.22 0.16 0.20 0.18 0.30
2 1.33 1.21 0.85 0.93 0.72 0.49 0.53 0.57 0.54 0.89 0.93 0.98
3 1.40 1.42 1.24 1.22 0.94 0.57 0.09 0.16 0.29 0.61 0.65 0.67
4 0.55 0.59 0.80 1.82 1.76 1.45 0.68 0.68 0.59 0.57 0.56 0.56
5 1.46 1.45 0.92 0.99 0.86 0.43 0.47 0.47 0.53 0.52 0.49 0.38
6 1.40 1.42 1.21 1.22 0.94 0.65 0.09 0.17 0.24 0.61 0.65 0.69
7 1.34 1.28 1.06 1.52 1.32 0.97 0.65 0.66 0.69 0.67 0.66 0.77
8 1.04 1.03 0.77 1.41 1.31 0.95 0.16 0.14 0.12 0.38 0.39 0.27
9 1.13 1.09 0.77 1.11 0.97 0.27 0.24 0.22 0.16 0.20 0.18 0.30
10 0.72 0.69 0.61 1.28 1.33 1.16 0.93 0.92 0.92 0.78 0.73 0.64
Avg 1.15 1.13 0.90 1.26 1.11 0.72 0.41 0.42 0.43 0.54 0.54 0.55
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Table 6.9: Wind farm #2. Correction of Weibull parameter A (Sectors 9 to 12) in terms of average
absolute error in the test set (eSA, K

∗ = 2 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 9 Sector 10 Sector 11 Sector 12
eGA H ES eGA H ES eGA H ES eGA H ES

1 0.37 0.34 0.19 0.92 0.84 0.49 0.91 0.89 0.57 0.56 0.45 0.24
2 0.60 0.57 0.52 1.13 1.03 0.76 0.81 0.80 0.70 0.30 0.19 0.18
3 0.73 0.68 0.54 1.36 1.27 1.11 1.15 1.09 0.85 0.44 0.38 0.29
4 0.57 0.55 0.46 0.93 0.88 0.65 0.70 0.70 0.56 0.65 0.57 0.65
5 0.40 0.42 0.47 1.00 0.95 0.70 1.18 1.16 0.80 0.13 0.18 0.52
6 0.73 0.68 0.55 1.36 1.27 1.12 1.15 1.09 0.86 0.44 0.39 0.32
7 0.72 0.68 0.59 1.21 1.06 0.78 1.06 1.00 0.77 0.64 0.45 0.37
8 0.57 0.55 0.40 1.11 1.07 0.84 0.98 0.97 0.70 0.41 0.34 0.17
9 0.37 0.34 0.19 0.92 0.84 0.49 0.91 0.89 0.57 0.56 0.45 0.24
10 0.93 0.93 0.84 1.00 0.99 0.68 0.66 0.63 0.45 0.80 0.75 0.57
Avg 0.60 0.57 0.48 1.09 1.02 0.76 0.95 0.92 0.68 0.49 0.41 0.35

Table 6.10: Wind farm #2. Correction of Weibull parameter A (Sectors 13 to 16) in terms of
average absolute error in the test set (eSA, K

∗ = 2 towers), in m/s, for the proposed heuristic (H)
and the Evolutionary Strategy (ES).

# P Sector 13 Sector 14 Sector 15 Sector 16
eGA H ES eGA H ES eGA H ES eGA H ES

1 1.62 1.54 0.99 0.66 0.68 0.60 0.83 0.82 0.71 0.50 0.56 0.60
2 1.51 1.35 0.99 0.65 0.63 0.56 0.98 0.94 0.75 0.56 0.54 0.55
3 0.99 0.74 0.59 0.18 0.17 0.16 0.37 0.36 0.23 0.30 0.30 0.41
4 1.38 1.30 1.04 0.38 0.37 0.33 0.61 0.59 0.41 0.39 0.40 0.39
5 1.61 1.52 0.82 0.61 0.60 0.35 0.83 0.80 0.37 0.51 0.50 0.43
6 0.99 0.74 0.58 0.18 0.17 0.15 0.37 0.36 0.22 0.30 0.30 0.40
7 1.42 1.23 0.90 0.21 0.16 0.07 0.38 0.29 0.12 0.14 0.16 0.16
8 1.02 1.00 0.89 0.43 0.44 0.42 0.60 0.62 0.58 0.60 0.60 0.60
9 1.62 1.54 0.99 0.66 0.68 0.60 0.83 0.82 0.71 0.50 0.56 0.60
10 1.66 1.62 1.23 0.36 0.35 0.23 0.46 0.44 0.30 0.12 0.14 0.16
Avg 1.38 1.26 0.90 0.43 0.43 0.35 0.63 0.61 0.44 0.39 0.41 0.43



6.A. Tables 93

Table 6.11: Wind farm #2. Correction of Weibull parameter k (Sectors 1 to 4) in terms of average
absolute error in the test set (eSk , K

∗ = 2 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 1 Sector 2 Sector 3 Sector 4
eGk H ES eGk H ES eGk H ES eGk H ES

1 3.76 4.30 3.25 0.65 0.60 0.42 0.58 1.92 0.70 1.23 6.56 1.38
2 2.75 3.72 2.96 0.87 0.97 0.49 1.24 1.86 1.24 0.90 5.08 0.90
3 2.01 3.09 1.15 0.69 0.45 0.52 1.43 1.63 1.23 1.76 7.68 3.07
4 2.77 2.70 2.07 0.45 0.94 0.42 2.22 1.00 2.07 1.46 4.98 2.14
5 2.26 2.99 1.68 1.01 0.77 0.58 0.75 1.72 0.79 1.03 6.60 0.89
6 2.01 3.08 1.19 0.69 0.44 0.46 1.43 1.63 1.25 1.76 7.67 2.92
7 2.36 3.60 1.67 0.98 0.90 0.82 0.56 1.78 1.13 0.92 5.29 0.87
8 2.59 2.62 1.76 0.95 0.27 0.75 1.60 1.68 1.40 2.35 7.27 3.83
9 3.76 4.30 3.25 0.65 0.60 0.42 0.58 1.92 0.70 1.23 6.56 1.38
10 2.39 2.40 1.82 0.67 0.62 0.52 1.79 1.81 1.63 2.65 2.75 2.73
Avg 2.67 3.28 2.08 0.76 0.66 0.54 1.22 1.69 1.21 1.53 6.04 2.01

Table 6.12: Wind farm #2. Correction of Weibull parameter k (Sectors 5 to 8) in terms of average
absolute error in the test set (eSk , K

∗ = 2 towers), in m/s, for the proposed heuristic (H) and the
Evolutionary Strategy (ES).

# P Sector 5 Sector 6 Sector 7 Sector 8
eGk H ES eGk H ES eGk H ES eGk H ES

1 0.91 1.85 0.83 0.50 2.02 0.55 0.53 2.48 0.50 2.44 3.28 2.48
2 1.19 0.79 0.87 0.22 0.38 0.26 1.25 2.45 1.34 1.65 1.84 1.39
3 1.69 1.36 1.35 1.75 1.01 1.12 1.83 2.06 1.75 1.77 2.79 1.73
4 1.47 1.51 1.26 0.56 0.73 0.65 1.35 1.39 1.39 1.07 2.10 1.00
5 1.69 1.17 1.03 1.97 1.31 1.84 1.28 2.05 1.25 2.90 2.89 3.19
6 1.69 1.36 1.36 1.75 1.01 1.18 1.83 2.07 1.82 1.77 2.80 1.79
7 0.89 0.58 0.46 0.42 0.52 0.24 0.76 1.07 0.86 1.78 2.22 1.49
8 1.82 1.81 1.65 1.62 0.98 1.27 1.50 2.23 1.56 2.02 2.26 2.14
9 0.91 1.85 0.83 0.50 2.02 0.55 0.53 2.48 0.50 2.44 3.28 2.48
10 1.15 1.12 0.92 0.68 0.75 1.00 1.20 1.19 1.04 0.89 0.84 0.61
Avg 1.34 1.34 1.06 1.00 1.07 0.87 1.21 1.95 1.20 1.87 2.43 1.83
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Table 6.13: Wind farm #2. Correction of Weibull parameter k (Sectors 9 to 12) in terms of
average absolute error in the test set (eSk , K

∗ = 2 towers), in m/s, for the proposed heuristic (H)
and the Evolutionary Strategy (ES).

# P Sector 9 Sector 10 Sector 11 Sector 12
eGk H ES eGk H ES eGk H ES eGk H ES

1 1.92 3.21 0.98 3.54 4.91 2.42 1.10 5.20 0.78 1.56 2.94 1.29
2 1.91 2.89 1.55 2.99 3.53 1.80 1.63 4.77 1.68 1.94 2.12 1.71
3 2.46 4.66 1.80 3.53 3.63 2.77 2.62 4.66 2.52 1.82 2.02 1.70
4 2.20 2.93 1.89 4.63 4.62 4.03 1.32 3.14 1.95 0.72 1.36 0.89
5 2.03 2.80 0.91 4.96 4.32 4.21 2.27 4.35 1.64 2.17 2.93 2.04
6 2.46 4.65 1.75 3.53 3.66 3.21 2.62 4.65 2.41 1.82 2.02 1.72
7 1.96 3.44 0.99 3.14 2.97 2.15 1.86 2.72 1.83 1.61 1.57 1.37
8 2.44 4.37 1.71 4.43 4.41 4.26 1.90 4.96 1.61 1.05 1.91 0.84
9 1.92 3.21 0.99 3.54 4.91 2.42 1.10 5.20 0.78 1.56 2.94 1.29
10 2.33 2.26 1.89 3.66 3.71 3.49 0.62 0.60 0.70 1.23 1.18 0.88
Avg 2.16 3.44 1.45 3.79 4.07 3.08 1.70 4.02 1.59 1.55 2.10 1.37

Table 6.14: Wind farm #2. Correction of Weibull parameter k (Sectors 12 to 16) in terms of
average absolute error in the test set (eSk , K

∗ = 2 towers), in m/s, for the proposed heuristic (H)
and the Evolutionary Strategy (ES).

# P Sector 13 Sector 14 Sector 15 Sector 16
eGk H ES eGk H ES eGk H ES eGk H ES

1 0.35 0.81 0.15 1.02 1.66 1.01 0.30 1.28 0.50 3.59 4.20 1.79
2 0.97 1.54 0.68 1.84 2.10 1.61 1.69 1.99 1.69 5.16 5.16 3.64
3 0.81 2.04 0.82 0.99 1.74 0.49 1.48 1.98 1.10 3.85 3.82 2.33
4 0.53 1.55 0.64 1.43 1.42 1.19 0.86 0.89 0.89 4.53 4.44 3.24
5 0.87 0.73 0.45 1.45 1.47 0.91 1.45 0.62 0.42 3.98 3.17 1.92
6 0.81 2.05 0.75 0.99 1.74 0.55 1.48 1.99 1.02 3.85 3.81 2.21
7 0.75 1.34 0.71 0.75 1.21 0.60 1.12 1.19 0.54 4.14 3.81 2.87
8 0.69 1.14 1.01 1.12 1.56 0.61 0.97 0.97 0.51 3.13 3.03 1.50
9 0.35 0.81 0.15 1.02 1.66 1.01 0.30 1.28 0.50 3.59 4.20 1.79
10 0.72 0.69 0.65 1.07 1.07 0.93 0.91 0.87 0.67 3.58 3.56 2.79
Avg 0.69 1.27 0.60 1.17 1.56 0.89 1.06 1.31 0.78 3.94 3.92 2.41



Chapter 7

On-shore wind farm design with
evolutionary algorithms

7.1 Introduction

A problem directly related to wind energy production and the improvement of wind farms ef-
�ciency is the optimal design of wind farms taking into account wind speed data in the area,
costs and expected pro�ts. This wind farm design problem is crucial for companies in the energy
sector, since it is expected the construction of hundreds of wind farm facilities in Europe, United
States and Middle East in the next few years. Therefore, tackling wind farm design is extremely
interesting from an economic point of view. That is why automatic wind farm design is a topic
gaining popularity among wind farm designers and engineers in the last years. Wind farm de-
sign has opened a huge new line of research. There is an increasing number of articles tackling
this problem, successfully applying computational intelligence techniques, mainly evolutionary
algorithms, though other approaches have also been used, as it has been reported in Chapter 2.

Several novelties are proposed in this Thesis in order to make the problem closer to reality:
a wind farm shape model, an orography model and the inclusion of bene�t/cost terms in the ob-
jective function are the main new points included in this work. In addition, a novel evolutionary
algorithm is presented, initially seeded with the solution from a greedy heuristic for the optimal
solution of the problem.

The rest of the Chapter is structured as follows: next section summarizes the main previous
approaches on wake and cost models used in the literature. Section 7.3 presents the main
novelties included in the optimization model. Section 7.4 presents the greedy-constructive
heuristic proposed, which will be used to seed the evolutionary algorithm presented in Section
7.5. The experimental part of the study is shown in Section 7.6, and to sum up, some conclusions
are presented at the end of the chapter.

7.2 Background: turbines' wake and most used cost models in
the literature

The �rst wake model (and maybe the most common one) was proposed by Mosetti et al. [119].
It was applied later in many following works such as [48, 61, 98, 108]. Though it is simple (and
therefore somehow far away from a realistic wake) it has been profusely used, since it can be
complicated with extra constraints to make it closer to reality, and it can be used to compare
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96 Chapter 7. On-shore wind farm design with evolutionary algorithms

di�erent algorithms in the same conditions. Figure 7.1 shows and schematic of the wake model
considered. This model has been simpli�ed by applying the continuity equation in the control
volume in Figure 7.1:

ρu0A0 = ρu1A1 = ρuiAi (7.1)

r1 =ax+rr
rr

x

1/3 u0

u0 u0

u

Figure 7.1: Schematic of Mosetti's wake model.

So assuming that wind speed will reduce in a units its speed after passing through a turbine:

ρ(au0)Ar + ρu(A1 −Ar) = ρuAr (7.2)

where A1 = πr21, Ar = πr2r and r1 = αx+ rr. Substituting in Equation (7.2):

u = u0

[
1−

(
(2a)/ [1 + α(x/r1)]

2
)]

(7.3)

where u0 is the mean wind speed, a is the axial induction factor, x is the distance downstream
from the turbine, rr is the downstream rotor radius and α is the entrainment constant. In
addition, r1 and and the turbine coe�cient CT can be calculated from rr and a, through the
so-called Betz equations:

r1 = rr
√
((1− a)/(1− 2a)), (7.4)

CT = 4a(1− a) (7.5)

Finally, the entrainment constant α can be empirically calculated as:

α = (0.5)/(ln(z/z0)), (7.6)

where z is the hub height of the wind turbine, and z0 is the surface roughness.
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Using these equations, and assuming that the kinetic energy de�cit of a mixed wake is equal
to the sum of the energy de�cits, the resulting wind speed downstream of N turbines can be
calculated as follows:

(
1− u

u0

)2

=
N∑
i=1

(
1− ui

u0

)2

(7.7)

The power equation given in [48, 61, 119] is the following:

Ptotal =
N∑
i=1

0.3ui (7.8)

Regarding the cost modeling, in [61, 119] is assumed that the non-dimensionalized cost/year
of a single turbine is 1, and a reduction in the cost of each turbine when a large number are
installed, the total cost/year for the entire wind farm is:

cost = N

(
2

3
+

1

3
e−0.00174N2

)
(7.9)

So the genetic algorithms presented in [61, 119] use as objective function the following:

g =
cost

Ptotal
. (7.10)

In [48], using the same wake and cost modeling, a di�erent objective function is considered:

g = w1costm + w2
1

Ptotal
(7.11)

w1 + w2 = 1 (7.12)

where costm is the per unit value of cost/year of the whole wind farm. Equation 7.11 not only
optimizes the placement of wind turbines, but also has control on cost.

In [144] a novel cost model based on pro�tability of investments in the wind farm was
presented. Basically, this model is based on the following objective function to be maximized:

NPV (x, i, t) =
N1(x)

i+ 1
+ . . .+

Nt(x)

(i+ 1)t
+ IC(x), (7.13)

where IC is the initial capital investment, Nk stands for the net cash �ow of the kth year, i is
the discount rate (capital cost), t is the number of years spanned by the investment and �nally
x is the solution vector containing the location and height of the wind turbines.

7.3 Optimization model

Several points have been included in this model to make the problem closer to a real wind farm
design than previous approaches. The main novelties in this model are the inclusion of the wind
farm shape, an orography model and a cost model based on bene�t/investment terms.
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7.3.1 Wind farm shape model

Previous approaches in the literature have not taken into account the problem of the wind farm
shape. Basically the majority of previous approaches consider squares wind farms, divided into
cells, where turbines could be positioned [61, 119]. This square-based approach is interesting,
since it introduces a nice way of managing the di�erent possible points where a turbine can be
installed, but the problem is that it cannot model the design of a real wind farm in a realistic
way. An easy manner to consider di�erent shapes for the wind farm is proposed, while keeping
square cells to model a possible point to locate a wind turbine. The idea is really simple: over a
square of length K ×K cells which serves as a background, a binary template T (K ×K) which
describes the zones allowed to install turbines is de�ned. The elements of T are de�ned in such
a way that Tij = 1 stands for a point included in the wind farm area, and Tij = 0 stands for a
point outside of the wind farm. Note that with this simple idea almost any shape for the wind
farm can be considered. As an example, Figure 7.2 shows the square background in black, and
the allowed zone (described by binary matrix T) in white.

7.3.2 Wake, orography model and wind speed simulation

In this work the wake model previously described in Section 7.2 is considered. Though it is a
simple model, it works really well to simulate a real turbine's wake, obtaining a good balance
between model's complexity and �nal performance. Moreover, several new concepts are consid-
ered in the problem formulation tackled in this work: �rst of all, note that none of the previous
approaches to the problem takes into account the wind farm's orography or variations on wind
speed. The existence of hills within the wind farm makes that the wind speed is di�erent at
the top of the hill or at the bottom of the corresponding valley. In order to take this important
point into account, the concept of wind speed multipliers is included in the problem de�nition, in
such a way that a higher point will be characterized by having a larger wind multiplier. Thus,
when the wind speed associated to a given point in the wind farm is modi�ed by means of the
wind multiplier, the orography of the wind farm is being taken into account. Figure 7.3 shows
and example of the wind multipliers in the previous wind farm example. Red areas stand for the
largest wind multipliers, whereas blue areas stand for the smallest wind multipliers. This can be
obtain by means of di�erent software like CFD etc.

The wind speed modeling in a given point of the wind farm has been calculated in the follow-
ing way: for each direction of the wind rose in the wind farm considered, a set of Monte Carlo
simulations of t years wind are carried out, using a Weibull probability density function for the
wind speed module. The result of the Monte Carlo simulation is weighted by the corresponding
probability extracted from the wind rose and by the wind speed multipliers (in order to include
the orography of the wind farm). The power curve shown in Figure 7.4 is used to obtain the
power production associated to the wind speed in a given wind turbine.

7.3.3 Cost model

The cost model used in this work is based on a simpli�ed model of investment/bene�t
considerations, similar to the one proposed in [144]. Speci�cally, the considered cost model
includes wind turbines installation cost (Ci) and connection between turbines and road
construction costs (CC

ij ), modeled as the Euclidean distance between turbine i and j. Also,
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Figure 7.2: Example of the template to generate the wind farm shape.

the considered model includes the net bene�t obtained from the energy produced in t years (Bt).
All these parameters are measured in Euros. The objective function to be maximized is:

φ(Ξ) = Bt −N · Ci −
N∑
i=1

∑
j<i

CC
ij (7.14)

where N stands for the number of wind turbines installed in the wind farm. Note that no al-
ternative costs such as the operational costs (OPEX) are considered in this objective function.
However, it is good enough to show the performance of the di�erent compared algorithms.

7.4 GHWTP: a greedy-constructive heuristic for wind turbines
positioning

An heuristic approach to solve the wind turbine location problem with the proposed optimization
model(see previous section) is �rst proposed: the Greedy Heuristic for Wind Turbines Position-
ing (GHWTP). There are previous works in the literature dealing with heuristics for optimal
positioning of wind turbines in wind farms [131]; here, an ad-hoc heuristic approach is presented,
which takes into account all the peculiarities of the considered optimization model.

The proposed heuristic can be considered as a greedy-constructive approach, based on ex-
ploiting the best locating points in terms of the objective function φ. The heuristic starts with
the location of the point in the wind farm with the maximum wind speed (simulated in the way
described in Section 7.3.2). A wind turbine is located at this point. The wind speed values in
other points of the wind farm are then modi�ed applying the wake model (Figure 7.5), taking into
account the wind rose, and then another point to locate the second wind turbine is selected by
considering the point which maximizes the objective function φ, i.e. point with maximum wind
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Figure 7.3: Example of wind speed multipliers and orography model induced; (a) wind speed
multipliers; (b) Orography model induced by the wind multipliers.

speed and with the minimum possible value of the connection term among turbines. This proce-
dure is carried out until the desired number of wind turbines (N) are positioned in the wind farm.

1. Locate the point in the wind farm with maximum wind and positioning there the �rst wind
turbine.

2. Correct the wind speed in neighbor points to turbines taking into account the wake model
and wind rose considered.
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Figure 7.4: Power curve used in the simulations.
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Figure 7.5: Modi�cation of wind speed values when applying the wake model.

3. Locate the point in the wind farm which maximizes Equation (7.14), and set there the
following wind turbine.

4. If N wind turbines have been installed, then stop. Otherwise go to step 2.

The distance between turbines is calculated in each iteration of the algorithm and as a part
of the �tness calculation. To help us understand how the algorithm works, Figures 7.6 and 7.7
show di�erent steps of the algorithm, in which a new turbine is added.

Note that the GHWTP takes into account the best points in terms of wind speed, but also
in terms of the distance among wind turbines in Equation (7.14). The main characteristics of
this heuristic is that it is really fast, and provides a reasonable solution in terms of the objective
function given by Equation (7.14). However, it is not an optimal approach, since the positioning
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Figure 7.6: Example of turbines connection for a given wind farm. (a) Location of the �rst turbine
in the maximum wind point; (b) Location of the turbine 2; (c) Location of the turbine 3; (d) Location
of the turbine 4.

of the �rst wind turbines a�ect the positioning of the last ones, and suboptimal solutions may
appear.

7.4.1 Case of study. How GHWTP works

To check the performance of the constructive heuristic and see the dependence between the
objective function and the distance between turbines, the di�erential bene�t obtain in each step
of the algorithm is represented in Figure 7.9. This di�erential bene�t is the bene�t obtained
when having i turbines, the i + 1 turbine is installed, for a wind farm given in Figure 7.8.
Note that locating a new turbine always produces a bene�t, it is nonsense that a new turbine
generates losses. Moreover, with this example, it is clari�ed and exempli�ed the dependence
of the objective function (Equation 7.14) with the distance. In Figure 7.9, when installing the
turbine # 9 or # 13, the bene�t is signi�cantly lower. This is due to the fact that the distance
between turbines 8 and 9 and between turbines 12 and 13 is bigger than in other cases, and thus
the bene�ts are lower because of the penalization of the distance (huge road construction costs).
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Figure 7.7: Connection after the location of 20 turbines.
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Figure 7.8: Wind farm under study.
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7.5 The Evolutionary algorithm proposed

In Chapter 3, evolutionary algorithms (EAs) have already been described. However, in order to
adapt the EA to the characteristics and constraints of the tackled problem, the evolutionary op-
erators must be modi�ed. Next the main characteristics of the evolutionary algorithm proposed
are described, including the algorithm's initialization and selection, crossover and mutation op-
erators proposed.
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Figure 7.9: Di�erential bene�t for 10 years of simulation, using the proposed GHWTP.

1. Generate an initial population of µ individuals (solutions). Let t be a counter for the
number of generations, set it to t = 1. Each individual is taken as a matrix of integer
vectors Ξ = (xi, yi), i = 1, . . . , N , where each xi stands for the x-coordinate of turbine i in
the background square considered, and each yi stands for the y-coordinates (xi = 1, . . . ,K,
yi = 1, . . . ,K). Note that every location point of a given solution Ξ, lets say (x, y),
must ful�l a number of requisites to be considered as feasible: �rst, all the location points
should be within the wind farm surface, i.e, the associate value in matrix T must be 1
(Txy = 1,∀ x, y). Second, a given turbine situated at a point (x, y) must be at least at a
distance D of any other turbine. The initial individuals of the population are generated in
such a way that these constraints are ful�lled.

2. Evaluate the �tness value for each individual Ξ of the population using the problem's
objective function φ.

3. Generate an o�spring population, of length µ, applying one-point crossover operator [44]
and mutation operator. The crossover operator is applied in the traditional way (Figure
7.10 shows an example). On the other hand, mutation operator is carried out by randomly
changing couples of speci�c points (xi, yi) to (x′i, y

′
i), (see Figure 7.11 as an example).
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4. Correct the o�spring population in such a way that all their individuals are feasible (ful�l
the problem's constraints). Note that the crossover operator may produce solutions within a
distance D of another turbine, and mutation operator, in addition, may produce solutions
which are outside the wind farm points de�ned by matrix T. In order to correct these
unfeasible solutions, a modi�cation of unfeasible points is applied after each round of
crossover and mutation, by using two random numbers r, s ∈ [−2D, 2D]: a given unfeasible
point (x, y) is modi�ed to (x+ r, y + s) until it is feasible.

5. Selection: Pass the best individual found so far in the evolution to the next generation.
Conduct then pairwise comparison over the union of parents and o�spring remaining: for
each individual, p opponents are chosen uniformly at random from all the parents and
o�spring. The best individual in these p is selected to survive for the next generation. This
process is repeated until a new parent generation of µ individuals is obtained.

6. Evaluate the �tness value for each individual Ξ of the new parent population using the
problem's objective function φ.

7. Stop if the stopping criterion is satis�ed, and if not, set t = t+1 and go to Step 3. In this
case, the stopping criterion established is that the best solution found by the algorithm is
not improved during K generations, or, alternatively, the algorithm reaches to a maximum
number of generations max_ite.

When working with the GHWTP, the �tness value of the solution is calculated iteratively,
and in each step of the algorithm the objective function is calculated (and its associated value of
distance between turbine i− 1 and turbine i). However, in the evolutionary algorithm, all the N
turbines are located at once, so a new mechanism to connect the turbines has to be implemented.

The �tness will depend on the way the connection is made. To put it simple, the �rst installed
turbine is chosen (the one appearing �rst in the coordinates vector). Now, among the rest of the
turbines, the one that maximices the �tness function is chosen. That way, those two turbines are
the endpoints of the path. Then, among the rest of the turbines, we have to select the turbine
that maximices the �tness function, taking as the distance value the distance between the turbine
and each of the endpoints of our path. The chosen turbine will now be the new endpoint of the
path, and the former endpoint is now in the path. Iteratively, the connection is made. Note that
turbines can be added to the path in both of the sides of the path, so the path is not built in a
single direction as it is with the GHWTP.

7.5.1 Seeding the EA with the GHWTP

This work also deals with the idea of using the solution obtained by the GHWTP as starting
point for the EA (seed the EA). Many researchers have proposed to seed EAs with good initial
solutions whenever it is possible, obtaining important improvements in the algorithm's conver-
gence and quality of the solutions obtained. In this case it is proposed to seed part of the initial
EA population with the GHWTP solution and some variations of this solution (obtained by
means of mutation), and also to include randomly generated individuals to complete the initial
population of the EA.
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Figure 7.10: Example of the one-point crossover implemented in the proposed EA, in an example
with N = 10 wind turbines; (a) inial couples of individuals and random-picked crossover point; (b)
Final crossed individuals.
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Figure 7.11: Example of the mutation operator implemented: �rst a number of points are randomly
selected to be mutated. Second, new values are randomly selected in K×K and substitute previous
values.

This way of initializing the evolutionary algorithm should improve the �nal solution obtained
by the EA, since due to the elitist selection implemented, the best individual in a generation is
maintained in the next generation. Thus, at least the EA seeded by the GHWTP will obtained
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this solution as the best one. Moreover, it has been found that the seeded EA improves signi�-
cantly the GHWTP solution, and the convergence of the algorithm is much better than the EA
without this intelligent initialization, as will be shown in the experimental results.

7.6 Experiments and results

The experiments carried out and the results obtained, when the optimization model and the
proposed algorithms are applied to di�erent wind farms (di�erent wind farm shape, orography
and wind speed), are presented here. Two di�erent wind farms are obtained, generating shape
matrices T, with 15 di�erent orographies each.

7.6.1 General features

In order to characterise a wind farm, a grid of K × K,K = 500 is set. A basic cell size of
10m×10m is considered, so the wind farms used in the experiments are framed by a 5km×5km
surface. It should be pointed out that the number of cells and the resolution of them can be
adjusted, being able to deal with larger wind farms or with higher precision. Another important
parameter to be taken into account when locating the turbines is the minimum deployment dis-
tance D. Because of the rotor diameter, at least, a distance D of 90 meters has to exist between
turbines. Besides, a �xed number of turbines N = 20 are being located.

The wind speed is simulated, as described in Section 7.3.2, with a Weibull probabilistic dis-
tribution. The Weibull parameters considered are: λ = 10 and β = 1, 6. The parameter λ is
the mean value of the Weibull function, the mean wind speed value in this case; β is the shape
parameter. The value of β = 1, 6 is the one that best �t the real wind performance. Figure 7.12
shows the wind rose considered, extracted from a real wind farm in southern Spain, except from
the wind speed module, constant in our case.

To characterise the objective function (Equation 7.14) the values of the parameters are set.
The cost for the connection of wind towers and road construction (Cc

ij) has been set to 105

Euros/Km. The cost of each tower has been estimated to be Ci = 106 Euros. Regarding the
calculation of the estimated bene�t Bt(Ξ) in the wind farm: 75 Euros/Mwatt-h, 3000 e�ective-
hours/year and a period of t = 10 years of simulation are considered in the simulations.

The parameters of the evolutive algorithm are:

• The population size is µ = 50.

• During the recombination process, µ new individuals are generated. The mutation proba-
bility is p = 0, 01.

• In the selection process, a probabilistic tournament, 20 individuals randomly chosen �ght.
The tournament is carried out until a population of µ individuals is reached.
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Figure 7.12: Wind rose considered in the simulations.

7.6.2 Results

Table 7.1 and 7.2 show the comparison between the GHWTP, EA and SEA algorithms in the two
wind farm shapes considered, respectively. Note that the EA is able to obtain better solutions
than the GHWTP in all the simulations. The SEA, however, outperforms the GHWTP and the
EA in all the experiments carried out. Note the di�erences in performance obtained between
the SEA and EA. It indicates that a good initialization procedure leads to a much better perfor-
mance of the algorithm. On the other hand, in these tables it is possible to see the di�erences
introduced by considering the orography of the wind farm, since the only di�erences between
the di�erent instances in both cases is the orography considered (random values of wind speed
multipliers).

Figures 7.13 (a), (b) and (c) show an example of the solution obtained by the GHWTP,
EA and SEA, respectively, in one instance of the wind farm #1. It is possible to see that the
solutions obtained by the three algorithms considered ful�l the constraint given by the minimum
deployment distance D (marked in the �gures by the corresponding radius around a positioned
wind turbine). Figures 7.14 (a), (b) and (c) shows an example for wind farm #2.

7.7 Conclusions

A novel evolutionary algorithm has been considered, initially seeded with the solution of a greedy
approach, in a problem of optimal location of wind turbines in wind farms. A novel optimization
model has also been proposed, which includes some new aspects such as wind farm shape, orog-
raphy and di�erent costs in the objective function. The wind farm shape models implies that any
shape of any wind farm can be considered, while previous approaches only considered squared
farms, limiting the design of a real wind farm. The orography model allows us to simulate the
e�ect of the topography in the wind speed. Moreover, the wind does not blow always with the
same intensity or direction, thus a good simulation of wind speed is needed. Finally, the costs



7.7. Conclusions 109

Table 7.1: Objective function values (in Euros/107), in the 15 di�erent simulations performed,
obtained by the GHWTP heuristic, Evolutionary Algorithm and Seeded Evolutionary Algorithm
proposed for the wind farm #1.

# instance GHWTP EA SEA

1 2.063 2.748 4.992

2 1.844 4.569 5.852

3 2.454 4.671 5.936

4 1.752 4.035 4.728

5 3.264 4.565 4.873

6 1.945 3.768 5.576

7 1.899 2.913 3.813

8 1.841 4.520 4.992

9 1.854 4.368 4.731

10 1.670 3.953 4.467

11 1.755 3.242 4.881

12 0.883 2.399 3.374

13 2.247 3.660 4.853

14 1.684 3.206 4.040

15 2.851 3.648 4.685
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Table 7.2: Objective function values (in Euros/107), in the 15 di�erent simulations performed,
obtained by the GHWTP heuristic, Evolutionary Algorithm and Seeded Evolutionary Algorithm
proposed for the wind farm #2.

# instance GHWTP EA SEA

1 2.283 3.613 3.483

2 3.305 5.029 5.262

3 1.002 3.741 3.642

4 1.697 4.364 5.662

5 2.171 3.818 3.990

6 1.849 3.964 4.403

7 1.683 3.334 4.350

8 1.776 4.530 3.915

9 1.201 4.046 5.642

10 2.813 3.934 4.517

11 1.676 3.590 4.039

12 1.778 3.647 4.371

13 1.767 3.170 4.959

14 2.837 4.534 4.834

15 1.575 4.072 4.832

model includes several novelties, and is based on the bene�t obtained from the energy production
and the costs of wind turbines, installation and road construction.

Several experiments have been carried out, where the performance of the proposed algorithms
is shown. A greedy heuristic, an evolutionary algorithm and an evolutionary algorithm seeded
with the solution found by the heuristic are tested. It is shown the good performance of the
seeded evolutionary in the design of wind farms.
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Figure 7.13: Final wind turbines disposition, security radius and wind multipliers; (a) GHWTP;
(b) EA; (c) SEA.



112 Chapter 7. On-shore wind farm design with evolutionary algorithms

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(b)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(c)

Figure 7.14: Final wind turbines disposition, security radius and wind multipliers; (a) GHWTP;
(b) EA; (c) SEA.
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Chapter 8

Final remarks and future lines of work

In this thesis we have tackled a number of problems that arise in the process of prospection, plan-
ning and management of on-shore wind farms. Speci�cally, we have solved a problem of wind
speed reconstruction from pressure patterns, useful in wind farms prospection to avoid issues
related to scarce of wind speed data. A novel problem of spatial reconstruction of wind speed
statistics (through the reconstruction of the Weibull parameters at di�erent points of the wind
farm) has been also tackled. This problem is useful both in prospection and also in micrositing
(�nal layout) of the wind farms. A novel algorithm for turbines layout in on-shore wind farms has
been proposed, and �nally a problem of gap reconstruction in wind speed series and short-term
wind speed prediction from neighbor towers is tackled using fast-training neural computation
techniques.

In wind speed reconstruction, we have developed a hybrid genetic-Support Vector Regression
algorithm, which is able to locate the best points at a grid of pressure, and use these data to
obtain a robust wind speed reconstruction from this pressure pattern. The algorithm has been
tested in three di�erent sites and an algorithm based on Weather Regimes is used for comparison
purposes. Both techniques show a good performance,obtaining an excellent average reconstruc-
tion of wind speed values, but missing maximum and minimum values in most cases. However,
the aim of these algorithms is to obtain a general good reconstruction, that is completely ob-
tained by the developed approach. The problem of spatial reconstruction of wind speed statistics
is also useful in the prospection process of the wind farm. It consists of modifying wind speed
numerical models outputs using the data from some measuring towers installed in the prospection
zone. The �nal objective is to obtain a surface of wind speed values with tunable resolution, by
means of computational techniques. In this case we have developed a number of novel heuristic
approaches to obtain this surface. An additional novelty of the proposal is to work with ma-
trices of Weibull parameters (A and k) in the prospection zone, which can be later converted
into wind speed values. We have developed two di�erent heuristics, one of them based on evo-
lutionary computation to take into account the correction from the di�erent measuring towers
in this process. Results in two di�erent prospection sites with di�erent number of measuring
towers have been obtained. First, in a case with a large number of measuring towers (13), the
results of the surface obtained is excellent in terms of a measure of error using a cross validation
process. In the second case with a lower number of towers (6), the results are poorer as expected,
and also we have shown that the surface cannot be generated with information from less than
4 measuring stations. In the problem of on-shore wind farm micrositing we have developed a
new approach based on evolutionary computation. Speci�cally, the problem tackled included
a model of orography, a model of wind farm shape, and we have also included costs from civil
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works needed to connect the wind turbines. An evolutionary approach seeded with and heuristic
algorithm at the initialization has been developed. We have shown the excellent performance
of the proposal in several simulations, outperforming the behaviour of a greedy algorithm and
also the performance of the evolutionary algorithm without smart initialization. Finally, we have
shown the performance of a number of fast-training neural algorithms in wind speed series re-
construction from neighbor measuring towers. A software based on Extreme Learning Machines,
GMDHs (fast-training approaches), and also on SVR and MLPs networks have been developed
and tested by comparison with the multi-linear regression, which is the technique currently used
by the majority of wind speed managers. Clear advantages of using the fast-training and alter-
native machine learning algorithms instead of the multi-linear regression have been shown.

In terms of results, the works developed in this thesis has produced 4 articles in top interna-
tional journals (see Appendix A), an invited review for the initial number of another international
journal, 4 articles in national and international conferences and a software license (RMCPO, see
Chapter 5), currently under exploitation by Iberdrola in the management of wind farms.

Regarding future lines of research, this thesis, due to its wide range of applications, opens a
broad amount of possible research lines in the near future.

1. A line we have already followed has been to extend the meteorological variables for wind
speed reconstruction to other di�erent from pressure patterns. This implies to reduce
the size of the grid considered (because the number of variables grow exponentially), and
improve the feature selection process in order to locate the best set of variables to carry out
the wind speed reconstruction. The idea of extend this problem to medium and long-term
wind speed prediction has been also considered as a valuable future research line of this
thesis.

2. A second line of future work we like to highlight is related to the problem of spatial
reconstruction of wind speed numerical models in wind farms. In this case, it is possible to
change the heuristics proposed in a number of ways, for example by changing the in�uence
of the neighbor towers or even including exogenous variables that may be available in the
area.

3. Maybe the most promising future work is related to the extension of the micrositing
approach (turbines layout) in this work. O�-shore wind farms can be also design using
the proposed techniques, but new constraints must be included, such as di�erent wakes
behaviour, in�uence of neighbor wind farms, dead zones design (for example to plan
heliports or ports for wind farm maintenance, etc.). Also, in on-shore design, the
improvement of the proposed approach is possible by including alternative constraints
and costs (�nancing of the wind farm to be included in the �nal revenue from the facility).
This problem can also be tackled as a multi-objective problem, exploiting the large number
of approaches existing for this type of problems. The exploration of alternative algorithms
di�erent from evolutionary computation is also a must: since the publication of the article
describing our proposal for on-shore layout, more than 50 works have cited our paper
(Google Scholar data), and a large number of novel approaches have been proposed. The
idea is to extend our proposal by including some of the new ideas given in these works for
speci�c problems or sites, etc. The exploration of variable-length algorithms can also be a
promising future line of research, which would deal with problems in which the number of
turbines is open, instead of �xed, as our current approach.
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4. A future line of research out of the speci�c problems tackled in this thesis is to evaluate the
e�ect of climate change in the production of wind energy, and the other way around, the
e�ect of renewable energy in climate change mitigation. We are aware of di�erent works
related to this interesting area, such as [53, 138]. The idea is to exploit our know-how in
Machine Learning to obtain new results in this topic.
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Appendix A

List of publications

This section is a compilation of the scienti�c publications produced as a result of this research
work, apart from those other studies conducted during the training process.

A.1 Papers related to the research work performed in this PhD.

Papers in international journals

1. B. Saavedra-Moreno, A. Iglesia, J. Magdalena-Saiz, L. Carro-Calvo, L. Durán, S. Salcedo-
Sanz, �Surface wind speed reconstruction from synoptic pressure �elds: machine learning
versus weather regimes classi�cation techniques�, Wind Energy, 2014. (JCR: 3.069)

2. B. Saavedra-Moreno, S. Salcedo-Sanz, C. Casanova-Mateo, J. A. Portilla-Figueras and L.
Prieto, �Heuristic correction of wind speed mesoscale models simulations for wind farms
prospecting and micrositing�, Journal of Wind Engineering and Industrial Aerodynamics,
vol.130, pp. 1-15, 2014. (JCR: 1.414)

3. B. Saavedra-Moreno, S. Salcedo-Sanz, L. Carro-Calvo, J. Gascón-Moreno, S. Jiménez-
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5. B. Saavedra-Moreno, S. Salcedo-Sanz, A. Paniagua-Tineo, L. Prieto, A. Portilla-Figueras,
�Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in
wind farms", Renewable Energy, vol. 36, pp. 2838-2844, 2011, (JCR: 3.476).

International conferences

1. B. Saavedra-Moreno, S. Salcedo-Sanz, L. Carro-Calvo, J. A. Portilla-Figueras and
J. Magdalena-Saiz, �Reconstruction of wind speed based on synoptic pressure values
and Support Vector regression�, The 14th International Conference on Intelligent Data
Engineering and Automated Learning (IDEAL'2013), Heifei, China, October, 2013.

2. B. Saavedra-Moreno, S. Salcedo-Sanz, A. Paniagua-Tineo, J. Gascón-Moreno, A. Portilla-
Figueras, �Optimal Evolutionary Wind Turbine Placement in Wind Farms Considering New
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