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Resumen 
 
 
 
 
 
La región Mediterránea se caracteriza por una fuerte interacción entre mar y 

atmósfera y por sistemas dominantes de alta y baja presión que resultan en un 

clima complejo y fuertemente estacional. Las proyecciones para el clima futuro 

obtenidas forzando el clima con concentraciones crecientes de gases a efecto 

invernadero muestran como esta región sea un “hotspot” del cambio climático 

proyectado por el siglo 21. La vulnerabilidad del clima Mediterráneo al cambio 

climático en curso, y el importante papel que la interacción océano-atmósfera 

juega en esta región, ha motivado la comunidad científica europea en coordinar 

un esfuerzo común finalizado a la realización de simulaciones regionales acopladas 

regionales. Este esfuerzo común se ha formalizado en el marco del proyecto Med-

CORDEX que tiene como objetivos primarios tanto lo de mejorar el conocimiento 

de la variabilidad climática y de la tendencia en el clima del pasado, como de 

proporcionar proyecciones para el clima futuro con mayor precisión y exactitud. 

Parte de este trabajo de tesis ha sido desarrollado como contribución al proyecto 

Med-CORDEX.  

 

En este trabajo de tesis se analiza un ensamble de modelos regionales climáticos 

(RCMs) para estudiar la variabilidad climática de la región mediterránea y de la 

Península Ibérica (IP). A pesar de que de la IP sea una región relativamente 

pequeña, su clima, que está influenciado tanto por el océano Atlántico como por 

el mar Mediterráneo, presenta una gran variedad climática. Puesto que la 



  

 
 

variabilidad climática de la IP y de la región Mediterránea están conectadas, un 

estudio integrado de las dos regiones resulta ser un marco excelente para 

investigar los mecanismos físicos responsables de la variabilidad climática 

observada en estas regiones.   

 

Aunque los proyectos de investigación que han producidos los ensembles de RCM 

usados en este trabajo han realizados simulaciones tanto para el clima actual 

como para el clima futuro, este manuscrito solo presenta los resultados obtenidos 

para las simulaciones del clima actual. Como primer paso nos hemos enfocado en 

la variabilidad climáticas de la cuenca mediterránea y en particular en la 

variabilidad asociada con el intercambio de calor entre el océano y la atmósfera. 

Este flujo de calor a la interfaz mar-aire afecta a muchos procesos que controlan 

el clima del Mediterráneo como, por ejemplo, la formación de aguas profunda, 

que es el principal motor de la circulación termohalina. Combinando modelos y 

observaciones, se ha podido asociar los primeros dos modos de variabilidad del 

flujo de calor a la interfaz mar-aire con algunos patrones de variabilidad 

atmosférica de gran escala. Además, calculando el balance calor entre mar y 

atmósfera, hemos identificado los mecanismos físicos que conectan la variabilidad 

de los flujos de calor con los patrones de variabilidad atmosférica. 

 

Una vez valorada la variabilidad de los flujos de calor en la cuenca Mediterránea, 

se ha estudiado la variabilidad de la IP usando un ensemble de RCM formado por 

4 modelos. En particular, se han investigado el estado medio de parámetros 

básicos atmosféricos y la variabilidad interanual de los extremos de temperatura 

y precipitación. También se ha valorado la distribución espacial de los eventos 

extremos y, comparando los cuatro RCMs, se han identificado las regiones con 

alta y baja variabilidad interna.    
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Abstract 
 
 

 

The Mediterranean region is characterized by intense air-sea interaction and 

dominant high and low pressure systems that results in a complex and strongly 

seasonal climate system. Future climate projections performed with increasing 

concentrations of greenhouse gases, have revealed this region to be one of the 

climate change “hot spots” of the 21st century. The vulnerability of the 

Mediterranean climate system to the ongoing climate change, and the crucial role 

that air-sea interaction plays in this region, have motived the European scientific 

community at coordinating the climate modeling community towards the 

development of fully coupled regional climate models. This common effort has 

been formalized under the Med-CORDEX project, which primary goals are to 

improve understanding of past climate variability and trends, and to provide more 

accurate and reliable future projections. Part of this thesis is a contribution to the 

Med-CORDEX project. 

  

In this thesis work we use multi-model ensembles of regional climate models 

(RCMs) to study the climate variability of the Mediterranean Sea and of the Iberian 

Peninsula(IP). Despite its relatively small extension, the IP, which is influenced by 

both Atlantic and Mediterranean basins, presents a large variety of climates. Since 

the IP climate variability is linked to the Mediterranean Climate, an integrated 

study of the two regions results in an excellent framework to investigate the 

physical mechanisms responsible for the observed climate in these regions.  



  

 
 

The research projects that produced the RCM multi-model ensembles used in this 

thesis work, have produced both present- and future-time simulations. However, 

in this manuscript we present only the results of the present-time model outputs.  

First, we focused on the Mediterranean basin climate variability, and in particular 

on the variability of its air-sea heat fluxes, which affect several climate processes 

controlling the Mediterranean climate. These include the winter formation of deep 

waters, which is the primary driver of the Mediterranean Sea overturning 

circulation.  Combing models and observations, we were able to connect the two 

leading modes of air-sea heat flux variability with large-scale atmospheric 

teleconnection patterns. Also, by performing a budget analysis, we were able to 

explain the physical mechanism linking these teleconnection patterns with the air-

sea heat flux variability.  

 

Once assessed the heat fluxes variability of the Mediterranean Sea, we connected 

this to the climate variability of the IP using a 4-model ensemble of RCM. In 

particular, we investigated mean fields of basic atmospheric parameters and the 

interannual variability of temperature and precipitation extremes. We assessed 

the spatial distribution of extreme events statistics and, comparing the four RCMs, 

we identified regions with high and low internal variability as well as with large 

bias among the models.  
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CHAPTER 1  
 

Introduction 
 
 

It  seems that the 

inf luence of  your teacher has  

been to  g ive you a fa lse  idea of  

what are worthwhi le  problems .  

The worthwhi le  prob lems are the 

ones  you can real ly so lve or  he lp 

so lve ,  the  ones  you can real ly 

contribute  something to .  A 

prob lem is  grand in science i f  i t  

l ies  before us  unsolved and we 

see  some way for  us  to  make 

some headway into  i t .  

 

Richard P. Feynman - Letter to Koichi   
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In the last few decades, we have seen an increasing effort to understand the cause 

and consequences of the ongoing climate change. These efforts culminate with 

the intergovernmental panel on climate change (IPCC) reports which the 

international community produce every few years since the first assessment 

report that was completed in 1990.  The last assessment report (AR5), completed 

in 2014, concluded that the warming of the climate system is unequivocal, and 

since the 1950s, many of the observed changes are unprecedented over decades 

to millennia. Moreover, the report attribute this ongoing global warming to human 

influence with an estimate probability between 95 to 100%. However, it is 

important to notice that global warming effects are spatially highly variable. In 

fact, although in most of the globe the Earth’s surface temperature is projected 

to increase, there are certain regions where this parameter is projected to remain 

stable or even decrease. Indeed, our main concern isn’t the warming but the 

climate change, which we may not be able to predict and thus mitigate its effect 

of human society. 

 

Although the definition of global warming is associated with an increase in 

temperature, in some regions other physical parameters represent better the 

changes experienced by the local climate. For instance, major climate changes in 

the tropics and in the Mediterranean region are associated with precipitation 

rather than temperature. The Mediterranean region is one of the climate change 

hot-spots highlighted by the IPCC simulations (de Sherbinin 2014; Giorgi 2006). 

In particular, climate models are coherently projecting a pronounced decrease in 

precipitation, especially in the warm season, except for the northern 

Mediterranean areas (e.g. the Alps) in winter. The projected decrease in 

precipitation is especially pronounced in the Iberian Peninsula (IP), which will be 

likely suffering of more frequent and more extreme drought events. This particular 

vulnerability of the IP is consistent with previous paleoclimate studies revealing 

the strong climate sensitivity of this region to global-scale natural variability 

occurring from thousand-year to million-year timescales (e.g., Cacho et al., 

2010).  

 

http://link.springer.com/article/10.1007/s00382-016-3129-0/fulltext.html#CR10
http://link.springer.com/article/10.1007/s00382-016-3129-0/fulltext.html#CR14
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This strong climate sensitivity that characterize the IP has attracted the interested 

of the climate modelling community resulting in several climate changes studies 

focusing in this region. For instance, Moberg et al. (2000) quantify an increased 

in the temperature of the IP of about 5% analyzing the period 1880-1998. 

However, this modest increase in temperature becomes much larger when the 

analysis is done using the second half of the 20th century (Klein Tank et al., 2002). 

These studies agree that the global warming observed in the IP is all but uniform, 

both in space and time. During the 20th century, depending of the region, we 

observed periods of hiatus as well as of strong warming (Staudt et. al., 2005). 

Moreover, these changes are characterized by distinct trends for minimum and 

maximum temperature that change according to the seasons.  

 

This vulnerability of the Mediterranan and IP climate motivate us to focus this 

thesis work on the natural and forced climate variability of these regions. Most of 

the IP climate is a subclimate of the Mediterranean climate. Therefore, we focused 

first on the inter-annual variability of the Mediterranean Basin and then we moved 

our focus on the IP, which we study characterizing mean value and extreme 

events for temperature and precipitation in the present-time climate. In recent 

times we have assisted to important advances in the development of the climate 

models and their sub-components. This is not surprising since climate models are 

the best tool available to produce climate projection (e.g., Gutiérrez y Pons, 2006; 

Räisänen, 2007; Flato et al., 2013) and to test hypothesis on the physical 

mechanics responsible for the observed climate. In this thesis work, we used a 

combination of several regional climate models and observational dataset to 

improve our knowledge on the climate variability of both Mediterranean and IP 

regions.   

 

1.1  Climate models 

 
Climate modelling is the most common approach to investigate natural and forced 

climate variability on a wide range of time scales. A climate model is a computer 
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program aim to simulate physical and chemical processes occurring in the climate 

system and described by mathematical equations. These equations describe the 

temporal evolution of all the components of the climate system and are solved 

numerically using high performance computing systems. These models span a 

wide range of complexity that goes from the simplicity of zero-dimensional Earth’s 

energy budget model to the complexity of the so called Earth system 

models(ESMs), which are commonly build by coupling an ocean general circulation 

model (GCM) to an atmospheric GCM. In a 3D model the equation are discretized 

on a finite 3D grid and in each grid point an approximate solution of the governing 

equation is obtained by solving the equation numerically. For instance, in the case 

of an atmospheric GCM, in each point of the grid we will have an approximation 

for the pressure, the temperature, the humidity, wind components, the 

precipitation and other variables.  

 

The ESM simulate the entire globe, which translates in a spatial resolution 

currently used to perform the simulations between 0.25 to 3 degrees (these 

values are for atmospheric GCMs since oceanic counterparts are currently using 

spatial resolutions up to 0.1 degree). With the computing power currently 

available is impossible to simulate the whole Earth’s climate at higher resolution. 

However, there are several important oceanic and atmospheric processes 

responsible for shaping the observed climate that require higher resolution to be 

accurately represented in the models. Perhaps the most important process 

strongly misrepresented in the GCMs is the orographic precipitation, which occurs 

when a moist flow is forced to raise topographic features such mountains and or 

hills. Misrepresenting the precipitation, impacts the hydrological cycle, the energy 

budget and in turn the atmospheric circulation. Moreover, this limitation in 

computer power prevent the realization of large ensembles of simulations that 

have been shown to be necessary disentailing the climate change signals from the 

natural climate variability, which is probably responsible for high internal 

variability characteristic of model simulations (Deser et al. ,2014; Thomson et al., 

2015).  
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One way to overcome the shortcomings associated with the low spatial resolution 

of the ESM is to embed a regional climate models(RCMs), which domain cover 

only a limited part of the Earth’s surface inside the GCM domain. Since the RCM 

domain is “small” it is possible to increase its grid spatial resolution keeping 

contained the computational cost. This approach, referred to as “nesting” allows 

for the regional climate model to produce results with spatial resolutions between 

5 and 50 km.  Information from the GCM is used to drive the RCM by establishing 

the initial condition and providing the boundary conditions for each time steps. 

RCMs provide dynamically downscaled climate information within the region of 

interest, allowing to tackle some of these challenges that face state of the art 

ESMs, as RCMs can account for climate phenomena and characteristics that are 

influenced by variable orography, land–sea and other surface contrasts, as well 

as various short-duration and spatially sharp extreme events, and small-scale 

weather features, providing information on these phenomena and characteristics 

for regional-to-local climate change assessment, climate change scenario 

analyses, and impact studies that currently are not provided by global models.  

 

At this point, naturally raises the question of how much, if any, is the RCM output 

better than the driving global data (these possible improvements by the RCM are 

commonly termed “added value”). The superiority of the RCM output over the 

driving global data is not obvious: first, climate is by its very nature a large scale 

phenomenon, and current ESMs are able to reproduce adequately large scale 

patterns such as the intertropical convergence zone, or the monsoon circulation 

in the subtropics; and second, in most cases the spatial scale of these climate 

features are larger than the domain size of most regional models. Moreover, it 

has been argued that regional models are developed to reproduce an observed 

climatology rather than to predict the change of the climatology in response to a 

changing climate (Kerr, 2013) although, it seems that the global models also 

suffer at some extent of a similar problem. It has been argued that the inability 

of GCMs to simulate the global warming hiatus is at some extent due to the fact 

that global coupled models are tuned to simulate the climate characteristics of a 

given period, excluding the simulation of the hiatus. Also, it has been argued that 
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due to uncertainties related to lateral boundary conditions and model biases, 

regional climate models could essentially add meaningless spatial detail, limiting 

considerably their usefulness (Xie et al., 2015). However, a number of recent 

studies demonstrate added value of RCM. Feser et al. (2011) analyzed different 

regional atmospheric models for reanalysis hindcast simulations and simulations 

driven by climate model output. They argue that for atmospheric regional models 

there is a clear added value associated with the better representation of the 

orography, which improve the representation of those parameters that exhibit 

high spatial variability such as near surface temperature rather than sea level 

pressure. 

 

Taking in mind advantages and shortcomings associated with the use of RCM and 

considering the limited extension of the study area of this research work, the 

Mediterranean and the IP, we choice to adopt a regional climate modelling 

framework to address our scientific questions, which are presented in details the 

next chapters.    

 

1.2 Thesis structure  

 
This research work, presented here in five chapters, has resulted in four scientific 

articles published in peer-reviewed scientific journals. Two articles have been 

published in Climate Research, one in Bulletin of American Meteorological Society, 

and one in Climate Dynamics. 

 

This first chapter, named Introduction, presents the research subject, the 

scientific background, research motivations and goals, and the approach used to 

archive the goals. The second chapter presents the MED-CORDEX initiative, which 

is a unique framework where research community make use of both regional 

atmospheric, land surface, river and oceanic climate models and coupled regional 

climate system models for increasing the reliability of past and future regional 

climate information and understanding the processes that are responsible for the 
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Mediterranean climate variability and trends. In the third chapter, we use multiple 

observational datasets and a multi-model ensemble of 12 simulations to provide 

a more robust assessment of the statistical behavior of Mediterranean surface 

heat flux winter variability and to diagnose the mechanisms underlying links to 

the regional footprint of large-scale atmospheric teleconnection patterns. The 

fourth chapter focuses on the current climate of the IP and consists of two 

published works on present-time climate conditions with focus on mean fields and 

extreme events for temperature and precipitation. Last chapter, the fifth, remarks 

the main conclusion of this research study and present the lines of work that 

further research will follow.      
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CHAPTER 2  
 
 

Med-CORDEX initiative for 
Mediterranean Climate studies 

   
 

There were many,  

many f ine reasons  not  to  go ,  but  

attempting to  c l imb Everest  i s  

an intrins ical ly  irrational  act—

a triumph of  des ire  over 

sensibi l i ty .  Any person who 

would serious ly consider i t  i s  

a lmost  by  def init ion beyond the 

sway of  reasoned argument .  

Jon Kraukauer - Into Thin Air 

 

 

It  has  been said 

that man is  a  rational  animal .  

Al l  my l i fe  I  have been 

searching for  evidence which 

could support  this .  

Bertrand Russell 

 

http://www.quotationspage.com/quote/884.html
http://www.quotationspage.com/quote/884.html
http://www.quotationspage.com/quote/884.html
http://www.quotationspage.com/quote/884.html
http://www.quotationspage.com/quote/884.html
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This chapter presents the Med-CORDEX initiative, which is a European project 

aims at coordinating the Mediterranean climate modeling community towards the 

development of fully coupled regional climate simulations. The primary goals of 

Med-CORDEX are to improve understanding of past climate variability and trends, 

and to provide more accurate and reliable future projections. The chapter 3, which 

has been fully published in the peer-reviewd journal Climate Dynamics represent 

my personal contribution to the Med-CORDEX effort. The content of this chapter 

has been published in the following manuscripts:  

Ruti P., Somot S., Dubois C., Calmanti S., Ahrens B., Aznar R., Bartholy J., 
Béranger K., Bastin S., Brauch J., Calvet J.C., Carillo A., Alias A., Decharme B., 
Dell’Aquila A., Djurdjevic V., Drobinski P., Elizalde Arellano A., Gaertner M., Galan 
P., Gallardo C., Giorgi F., Gualdi S., Bellucci A., Harzallah A., Herrmann M., Jacob 
D., Khodayar S., Krichak S., Lebeaupin C., Lheveder B., Li L., Liguori G., Lionello 
P., Baris O., Rajkovic B., Sevault F., Sannino G., 2015: MED-CORDEX Initiative 
for Mediterranean Climate Studies. Bulletin of the American Meteorological 
Society, doi:10.1175/BAMS-D-14-00176.1.  
    

 
2.1 Abstract  

 
The Mediterranean is expected to be one of the most prominent and vulnerable 

climate change “hot spots” of the 21st century, and the physical mechanisms 

underlying this finding are still not clear. Furthermore complex interactions and 

feedbacks involving ocean-atmosphere-land-biogeochemical processes play a 

prominent role in modulating the climate and environment of the Mediterranean 

region on a range of spatial and temporal scales. Therefore it is critical to provide 

robust climate change information for use in Vulnerability/Impact/Adaptation 

assessment studies considering the Mediterranean as a fully coupled 

environmental system. The Med-CORDEX initiative aims at coordinating the 

Mediterranean climate modeling community towards the development of fully 

coupled regional climate simulations, improving all relevant components of the 

system, from atmosphere and ocean dynamics to land surface, hydrology and 

biogeochemical processes. The primary goals of Med-CORDEX are to improve 

http://dx.doi.org/10.1175/BAMS-D-14-00176.1
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understanding of past climate variability and trends, and to provide more accurate 

and reliable future projections, assessing in a quantitative and robust way the 

added value of using high resolution and coupled regional climate models. The 

coordination activities and the scientific outcomes of Med-CORDEX can produce 

an important framework to foster the development of regional earth system 

models in several key regions worldwide. 

 
2.2 Introduction 

 
The Mediterranean basin is characterized by complex coastlines and topographical 

features, such as the Alpine, Apennine, Pyrenees and Balkan mountain chains, the 

Italian and Hellenic peninsulas and large islands (Balearic, Sicily, Sardinia, 

Corsica, Crete and Cyprus). From the meteorological and climatic point of view 

this morphological complexity leads to fine scale spatial and temporal variability 

(Ruti et al. 2008, Chronis et al., 2010, Dobrinski et al. 2014), along with the 

formation of intense weather phenomena (Ducrocq et al. 2014, Tous et al. 2014). 

A typical example of such phenomena is the Mistral wind, which blows through 

the Rhone valley into the Gulf of Lions and across to Corsica and Sardinia through 

the Strait of Bonifacio (Chronis et al., 2010). Another example is the Bora wind, 

which blows in a north-easterly direction across a series of topographical channels 

into the North Adriatic Sea. Several coastal areas of the Central (e.g. the Gulf of 

Genoa) and Eastern (e.g. Cyprus island) Mediterranean are also centers of 

topographically-induced intense cyclogenesis (e.g. Buzzi and Tibaldi 1978; Alpert 

et al. 1995). Such events, in addition to having catastrophic consequences on 

different sectors of society, dramatically influence the Mediterranean ocean 

circulation (Herrmann and Somot 2008, Durrieu de Madron et al. 2013) through 

deep and bottom water formation. 

 

The Mediterranean Sea is a semi-enclosed and evaporative basin in which a wide 

range of oceanic processes and interactions of regional interest occur. It is 

connected to the Atlantic Ocean by the shallow Strait of Gibraltar and is composed 
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of two basins of similar size, i.e. the Western and the Eastern Mediterranean Seas, 

separated by the shallow Strait of Sicily. It is also connected to the Black Sea to 

the northeast through the Bosphorus channel. In the Strait of Gibraltar, the 

comparatively fresher and warmer Atlantic water flows into the Mediterranean Sea 

at the surface to compensate for the negative mass balance inside the basin 

(where evaporation is greater than precipitation and river runoff) and to replace 

cooler and saltier Mediterranean water flowing out at depth into the Atlantic. 

Moreover, the Mediterranean water outflow strengthens and stabilizes the Atlantic 

Meridional Overturning Circulation through warm and saline water input (Artale et 

al., 2006; Ivaninovic et al., 2014). 

 

Deep Mediterranean water is produced at different locations by intense air–sea 

interactions: in the Gulf of Lions (western Mediterranean), the Southern Adriatic, 

the northeast Levantine basin and the Aegean Sea in the eastern Mediterranean 

(see MEDOC group, 1970; Roether et al. 1996). The basin’s circulation is 5 

characterized by the presence of sub-basin gyres, intense mesoscale variability 

and a strong seasonal signal. Interannual variability is also observed, mostly 

related to the interannual variability of atmospheric forcings (Josey 2003; Mertens 

and Schott 1998; Vilibić and Orlić 2002; Herrmann et al., 2010; Josey et al., 2011; 

L'Heveder et al. 2013). Such physical processes have two critical characteristics: 

first, they derive from strong air–sea coupling and, second, they occur at fine 

spatial scales because the Rossby radius of deformation varies from 5 to 12 Km 

throughout the Mediterranean, setting the scales at which important energy 

redistribution processes occur. In order to explicitly resolve with high spatial 

resolution the two-way interactions at the atmosphere–ocean interface, fully-

coupled high resolution atmosphere-ocean regional climate models (RCMs) are 

needed (Somot et al., 2008, The PROTHEUS group, 2010; Dell'Aquila et al., 2012; 

Gualdi et al. 2013). 

 

Another important forcing of Mediterranean climate is due to aerosols of natural 

and anthropogenic sources (Lelieveld et al., 2002). Saharan dust outbreaks can 

carry large amounts of particulate material over the Mediterranean and Central 
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European regions (Moulin et al., 1998), modifying not only the radiative budget 

of the basin through their microphysical and optical properties (Bergamo et al., 

2008), but also the basin bio- geochemical cycle (Guieu et al., 2010). Moreover, 

air pollution emissions by industries and large urban areas around the 

Mediterranean and in Central Europe can further affect regional air quality, surface 

energy and water budgets (Lelieveld et al., 2002). Biomass burning and forest 

fires constitute another important source of carbonaceous aerosols in summer 

(Sciare et al., 2008). 

 

It is thus clear that complex interactions and feedbacks involving ocean, 

atmosphere, land and biogeochemical processes, along with the effects of 

complex morphological features, play a prominent role in modulating the climate 

of the Mediterranean region on a range of spatial and temporal scales. In addition, 

different generations of model projections have indicated that the Mediterranean 

is expected to be one of the most prominent and vulnerable climate change “hot 

spots” of the 21st century (Giorgi, 2006; Diffenbaugh and Giorgi 2012), and the 

physical mechanisms underlying this finding are still not clear. Indeed, several 

components of the Euro-Mediterranean climate have been already changing in the 

last decades. Over the Mediterranean, mean temperature has increased more 

than the global average, mean annual precipitation has decreased since the mid-

20th century, and trends towards more frequent and longer heat waves and fewer 

extremely cold days and nights have been observed (IPCC 2013). Since the 

1960s, the mean heat wave intensity, length and number across the Eastern 

Mediterranean region have increased by a factor of five or more (Kuglitsch et al., 

2010; Ulbrich et al., 2012). In a study of European river flows by Stahl et al. 

(2010), a regionally coherent picture of annual stream-flow trends emerged, with 

negative trends in the 6 southern and eastern regions, suggesting that the 

observed drying trend is reflected in the state of rivers. This hydrologic trend 

should amplify in the future (Schneider et al., 2013). 

 

These examples show that there is a growing and challenging need to better 

understand the processes that make the Mediterranean especially sensitive to 
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natural variability, global warming and local/regional forcings, particularly in view 

of the need to describe the interactions across all components of the regional 

hydrological cycle. Since the early' 90s, a number of research and intercomparison 

projects have focused on downscaling global climate simulations (reanalysis or 

Global Climate Models [GCMs]) over the Euro-Mediterranean region (RACCS, 

Machenauer et al., 1996a, Christensen et al., 1997; MERCURE, Machenauer et al., 

1996b; STARDEX, Goodess, 2003; PRUDENCE, Christensen et al., 2007; 

ENSEMBLES, Van der Linden P and Mitchell JFB 2009; CIRCE, Gualdi et al., 2013). 

Building on these programs, and as part of the CORDEX (COordinated Regional 

Downscaling EXperiment) international effort (Giorgi et al., 2009), Med-CORDEX 

is a unique framework in which the research community makes use of coupled 

regional atmospheric, land surface, river, and ocean climate models, along with 

individual components of these systems run at very high resolution, to increase 

the reliability and process-based understanding of past and future fine scale 

climate information for the region. Med-CORDEX aims at addressing a number of 

key scientific challenges, including: 

 
x To develop fully-coupled Regional Climate System Models (RCSM) for the 

Mediterranean basin (Figure 1), considering and improving all relevant 

components of the system, i.e. atmosphere, ocean, land surface, 

hydrology and biogeochemistry;  

x To improve understanding of past climate variability and trends, and to 

provide more accurate and reliable future projections at high resolution, 

with emphasis on the role of coupled component interactions, fine scale 

processes and extreme events;  

x To assess in a quantitative and robust way the Added Value of using high 

resolution and coupled RCMs;  

x To coordinate the Mediterranean RCM community and promote the 

production of large model ensembles following internationally accepted 

protocols such as CMIP and CORDEX in order to optimally assess 

reliability and uncertainties in regional climate projections;  
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x To promote, gather and organize the use of ground-based and satellite-

based observational data into tailored datasets for use in climate process 

evaluation;  

x To strengthen the link with the Vulnerability/Impacts /Adaptation (VIA) 

research community through the provision of tailored climate information 

data-sets usable in VIA studies and in the development 7 of response 

policies. 

 

 
Figure1. Maximum model integration area for coupled systems. 
 
Having defined these primary goals of the program, in the next sections we first 

provide an historical perspective of Med-CORDEX and present illustrative results 

from the first Med-CORDEX activities. We then discuss the Med-CORDEX plans 

and how they will contribute to address the scientific challenges outlined above. 
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Details on the model configurations and simulations can be found in 

www.medcordex.eu. 

 

 

2.3 Background of the Med-CORDEX initiative and the 

production phase 

 

The current CORDEX protocol envisions two simulation streams with RCMs run 

over continental scale domains covering essentially all land regions of the World 

at ~50 km grid spacing (Giorgi et al. 2009): in the first stream the RCMs are run 

in the so-called perfect boundary condition experiment mode, in which data from 

one of the most recent and high-resolution reanalysis (ERA-interim, Dee et al. 

2011) provide the lateral meteorological boundary conditions for the RCMs. The 

ERA-Interim data are available for the period 1979-2013 and these simulations 

serve the purpose of assessing and optimizing the model performance against 

observations for the period (Giorgi and Mearns 1999). The second stream, which 

provides the climate change information for VIA use, consists of climate 

projections for the late 20th and full 21st century (1950-2100 or 1970-2100) with 

the RCMs driven at the lateral boundaries by fields from different GCMs from the 

Climate Model Intercomparison Project 5 (CMIP5, http://cmip-

pcmdi.llnl.gov/cmip5/). More detail on the CORDEX experimental protocol can be 

found in http://wcrp-cordex.ipsl.jussieu.fr/. 

 
In order to address the specific research challenges outlined in the previous 

section, the Med-CORDEX 

phase 1 protocol adds to this base framework the following tiers: 
 

x Production of ensembles of simulations with coupled Regional Climate 

System Models (RCSMs) 

http://www.medcordex.eu/
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x including fully interactive Atmosphere-Land-River-Ocean components, 

covering the whole 

x Mediterranean basin and its catchment basin at an intermediate grid 

spacing of ~20-50 km; 

x Production of corresponding stand-alone simulations for all individual 

components in order to asses the importance of the coupled modeling 

approach; 

x Use of the most recent validation data available, including datasets 

obtained from HyMeX (Ducrocq et al. 2014, Drobinski et al. 2014) field 

campaigns; 

x Production of high-resolution simulations (~12 km grid spacing) to assess 

the added-value of high resolution in a number of relevant metrics, and in 

particular topography-forced spatial patterns, the simulation of mesoscale 

phenomena, precipitation intensity distributions, strong wind systems and 

extreme events; 

x Advancement of regional reanalyses to serve as reference datasets and 

ocean initial conditions 
 

The Med-CORDEX phase 1 gathers 22 different modelling groups from 9 countries 

(France, Italy, Spain,Serbia, Greece, Turkey, Tunisia, Germany, Hungary) in 

Europe, Middle-East and North-Africa and more than 75 active members of the 

modelling and evaluation teams that can follow the activities through a dedicated 

emailing list (medcordex@hymex.org) and web page (www.medcordex.eu). Since 

2009, yearly side meetings at the HyMeX international workshops as well as four 

dedicated Med-CORDEX meetings (Toulouse in September 2009, Toulouse in 

March 2012, Palaiseau in May 2014, Mykonos in September 2015) have been 

organized thanks to the Mediterranean Integrated Studies at Regional And Local 

Scales (MISTRALS) meta-program which supports HyMeX. 

 

Twelve coupled RCSMs covering the whole Mediterranean and its catchment basin 

have been developed, which include coupling of regional atmosphere and ocean 

components (see www.medcordex.eu for more details). Some models also include 
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coupling with river runoff, thereby closing the water cycle of the basin. Med-

CORDEX is therefore the largest international coordinated multi-model initiative 

using fully-coupled RCSMs to provide long-term projections in a standardized and 

open way. 

 

In addition to the 12 RCSMs, Med-CORDEX also includes the participation of 13 

stand-alone atmosphere RCMs used at various resolutions (150 km, 50 km, 25 

km, 12 km), as well as 10 stand-alone ocean models (resolution from 25 km to 3 

km) and 4 stand-alone land surface models (50 km). Coordinated hindcast 

simulation ensembles for each of these components and for the coupled RCSMs 

have been completed and intercompared 

(http://www.medcordex.eu/simulations.php). All runs are documented through 

metadata forms. The ERA-Interim driven runs cover the 1989-2013 or the 1979-

2013 periods (the latter having been available only late in the program), with 25 

runs completed with atmosphere-only RCMs, 9 runs with coupled RCSMs, 4 runs 

with land-surface regional models (forced by ERA-Interim fields corrected 

following the WATCH protocol; Szczypta et al. 2012), and 11 runs with the ocean 

regional models (forced by ERA-Interim fields; Macias et al. 2013; or by dynamical 

downscaling of the reanalysis; Herrmann et al. 2010). In addition regional climate 

change simulations for the atmosphere (15 runs), ocean (1 run) and RCSMs (5 

runs) have been performed using the RCP8.5 and RCP4.5 scenarios for the 1950-

2100 period, with boundary fields from 6 different CMIP5 GCMs. 

 

A centralized Med-CORDEX database was developed at ENEA in order to host the 

model outputs in the CORDEX standardized format and to provide information to 

the data producers and users (www.medcordex.eu). The Med-CORDEX data are 

freely available for non-commercial use. Ocean, land, river and atmosphere 

variables are available at various frequencies from monthly to 3-hourly. Currently, 

the database includes more than 3 Tb of data and 110.000 files. File format 

standardization, a powerfull search 10 tool and on-line computation service, 

allows an optimal download and use of the data (120.000 data files downloaded 

for a total of 5 Tb by the 130 registered users). Each simulation is described by 
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the data providers through metadata files completed on-line and hosted by the 

HyMeX database. 

 

2.4 Illustrative examples of Med-CORDEX scientific 

achievements 

 

In this section we provide a sample of results from the Phase I Med-CORDEX 

activities aimed at illustrating the types of analyses which are carried out in order 

to address the scientific issues highlighted in the previous sections. In particular, 

the examples below serve to illustrate the added value of the Med-CORDEX 

strategy based on the use of high resolution and coupled RCMs in better capturing 

climate statistics important for VIA applications and in improving the 

understanding of model errors. We also stress that many studies are still ongoing 

on the anlsysi of the Med-CORDEX experiments available to date. 

 
2.4.1 The atmospheric component: Mediterranean cyclones and 

associated extremes 

 

 

-- Cyclogenesis 

 

Alpine lee cyclogenesis represents a paradigmatic example of a geophysical 

process which can integrate different spatial and temporal scales. It characterizes 

most of the winter rainfall variability over the Alpine region and produces 

orographic rainfall extremes. During the beginning stages of the event, a vortex 

develops on the cyclonic shear side of the Mistrals in a strong confluent 

frontogenesis area over the sea. In its mature phase, lee-cyclogenesis has a 

typical baroclinic evolution with spatial scales of the order of the Rossby radius of 

deformation (Buzzi and Tibaldi 1978). This type of cyclone draws moisture and 

energy from the adjacent western Mediterranean Sea and it leads to the 



 Chapter 2 – Med-CORDEX initiative for Mediterranean Climate studies 
  

___________________________________________________________________________ 
20 
 

occurrence of extreme precipitation events over the surrounding coastal and 

mountain areas, often causing floods of exceptional severity (Rudari et al 2004; 

Pfahl and Wernli 2012, Ducrocq et al. 2014). 
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Figure 2. Frequency of cyclone occurrence per 1000km² per 25 days for autumns and 
winters of the period 1989-2008. For example, a 10% value suggests the occurrence of 
10 cyclones in a 1000km² area in 25 days. Values exceeding 100% suggest the 
occurrence of more than one cyclone a) ERA-Interim; b) Protheus coupled run; c) 
Morce-Med coupled run; d) CNRM-RCSM4 coupled run. 
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Figure 2 shows the spatial patterns of cyclone center density (or cyclone 

frequency) for different ERA-Interim driven Med-CORDEX experiments, along with 

the driving ERA-interim data themselves, during the autumn and winter seasons 

for the years 1989-2008 (for methods see Flaounas et al. 2013). Here only two-

way coupled RCSMs (~25-30 km grid spacing) are considered. Overall, a 

qualitative agreement between the ERA-Interim and model simulated spatial 

structures is found, as all models and reanalysis identify the major oceanic cyclone 

activity areas over the Western Mediterranean, along the Turkey coast line and 

over the Black sea. Many cyclones originate around the Alps and the Gulf of Lions 

and Genoa, over the Aegean sea, and over the Iberian Peninsula and Atlas chain 

(Campins et al., 2011 and references therein). Moreover, all models reproduce 

the oceanic cyclone activity over the Adriatic sea. Low pressure centers crossing 

this small basin surrounded by complex topography are well captured by the 

RCSMs at high-resolution, while the coarser resolution ERA-interim reanalysis 

does not simulate such small low centers. This result thus illustrates the added-

value of the increase in resolution achievable with RCMs (Flaounas et al. 2013). 

The role of the ocean-atmosphere coupling in the representation of the 

Mediterranean cyclone life cycle (cyclogenesis, life time, intensity) has also been 

assessed by Sanna et al. (2013) and Akhtar et al. (2014), showing an improved 

representation of SST patterns and lower atmospheric stability compared to 

atmosphere-alone models. 

 

 

 -- Intense precipitation events 

 

Most of the severe rainfall events observed over the complex topography 

surrounding the Mediterranean basin occur in autumn, and model resolution is 

expected to be a key factor in simulating such events. Figure 3 shows the 99% 

quantile of autumn daily precipitation (mm/day) for the period 1989-2008 for 

ERA-interim (Panel 3a) and the COSMO-CLM and ALADIN regional simulations 

(driven by ERA-Interim fields) at 50 km (Panels 3c and 3e) and 12 km (Panels 3d 
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and 3f) grid spacing over the Med-CORDEX domain. In order to measure the 

model performance in reproducing the tail of the distribution with respect to an 

observation- based fine scale dataset, the same results are shown over france in 

Figure 4, where they are compared to a high-resolution mesoscale atmospheric 

analysis for rainfall (Système d’analyse fournissant des renseignements 

atmosphériques à la neige, SAFRAN, Quintana-Seguí et a., 2008). The results of 

Figure 3 and 4 clearly show that ALADIN and COSMO-CLM are able to simulate 

the tail of the probability distribution function of rainfall intensity with an 

increasing accuracy going from 50 to 12 km grid spacing. In particular, the 12 km 

versions are able to capture not only the topographic effect on extreme rainfall 

events but also the land-sea contrast along the Mediterranean coasts. By contrast, 

the ERA-Interim reanalysis and the coarse resolution ALADIN model strongly 

underestimate the magnitudes of these precipitation extremes (Figures 3a, b; 4a). 

The results shown in Figure 3 and 4 were also confirmed by the study of Harader 

et al. (2015) based on different quantitative metrics of model performance. 
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Figure 3. 99% quantile of daily precipitation (mm/day) in SON for the period 1989-
2008 : a) ERA-interim reanalysis; b) ALADIN-Climat model 150 Kms ; c) COSMO-CLM 
model 50kms forced by ERA-interim reanalysis; d) COSMO-CLM model 12kms; e) 
ALADIN-Climat model 50 kms; f) idem for 12 kms. 
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Figure 4. 99% quantile of daily precipitation (mm/day) in SON for the period 1989-
2008 : a) ERA-interim renalysis ; b) SAFRAN renalysis 9 kms; c) COSMO-CLM model 
50kms; d) COSMO-CLM model 12kms; e) ALADIN-Climat model 50 kms; f) idem for 12 
kms. 
 
The added-value highlighted over France in Figure 4 is found also when the 

regional models are forced by GCMs. For example, Torma et al. (2015) found a 

strong improvement in the simulation of precipitaiton spatial patterns, daily 

precipitaiton distributions and extremes over the Alpine region in high resolution 

RCMs compared to the driving GCMs (not shown). They also showed how the high 
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resolution representation of topography can substantially affect the precipitation 

change signal, for example during the summer when high elevation heating 

induces a positive precipitaiotn change over the high elevations of the Alpine 

chain. In addition, the influence of high-frequency ocean-atmosphere coupling on 

heavy precipitation case studies was investigated using twin experiments with a 

RCSM and the associated atmospheric RCM driven by observed SST and by the 

RCSM SST (Lebeaupin-Brossier et al. 2013; Berthou et al. 2014, 2015). These 

studies found that the coupling significantly influences the event intensity and 

position. 

 

 

-- Intense wind events 

 

Another extreme phenomenon often associated with Mediterranean cyclones is 

the occurrence of strong winds over the sea (Ruti et al, 2008; Herrmann et al. 

2011) accompanied by intense air-sea exchanges (Herrmann and Somot 2008, 

Durrieu de Madron et al. 2013) which can lead to ocean deep convection in various 

sites of the Mediterranean Sea (Herrmann and Somot 2008, Herrmann et al. 2010, 

Beuvier et al. 2010). In such phenomena, the wind strength and direction are 

fundamental parameters which determine the vorticity and turbulent forcing for 

the ocean. Following two pioneering studies (Ruti et al 2008, Herrmann and Somot 

2008) and new satellite-based datasets (Chronis et al. 2010), from an analysis of 

Med-CORDEX experiments with the regional model ALADIN at various resolutions 

(grid spacing of 125 km, 50 km and 12 km), Herrmann et al. (2011) confirmed 

the added-value of using high-resolution RCMs in simulating the wind field over 

the sea. They demonstrated that the 50-km resolution is a minimum to reproduce 

the sea wind field and that the 12-km resolution adds value close to the coastline. 

Note that the conclusions of this study were then used to design some of the Med-

CORDEX RCSM experiments (Sevault et al. 2014, Nabat et al. 2014). 

 

Figure 5 generalizes this result in a multi-model context. It shows plots of wind 

speed distribution over two main convective sites, the Gulf of Lion and the Ligurian 
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sea, for several models (coupled and uncoupled, 50 km and 12 km resolution) 

compared to Quikscat, ERA-interim and buoy (LION and AZUR) wind speed data. 

The models capture most of the observed variability at the LION buoy, while some 

discrepancies are seen at the AZUR site. The main wind regime into the Gulf of 

Lion is associated to the Tramontane and Mistral strong northwesterly winds which 

blow through the Garonne and Rhone valleys driven by large scale 13 pressure 

patterns. Over the Côte d'Azur site, two main regimes are present, i.e. from the 

northeast (associated to the Mistral) and from the southwest, due to atmospheric 

highs entering the gulf of Lion from the west or southwest and stationing over the 

Gulf of Genoa. The latter regime is not well reproduced by both the models and 

the reanalysis (Ruti et al., 2008). During the winter season, the wind forcing over 

the Gulf of Lion is reproduced reasonably well, suggesting a good skill in 

simulating related convective processes, however, the winter high wind speed tail 

is not well captured. Overall, Figure 5 shows that the 12km RCMs (COSMO-CLM, 

ALADIN-Climate) improve the representation of the wind probability density 

function at both locations with respect to the corresponding 50km versions and 

the coarse resolution ERA- Interim reanalysis. Conversely, the coupled model 

(PROTHEUS) does not show a clear improvement with respect to the uncoupled 

model for this specific variable and site (Herrmann et al. 2011).
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Figure 5. Plots of wind speed distribution at Lion and Azur buoy locations for several models in comparing to Quikscat, 
1008 ERainterim and buoy wind speed. Whole time period (2000-2008) and the seasons. 
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2.4.2 Other components of the system: Mediterranean Sea, river 

discharge and aerosols 

 

-- SST and water and heat budgets 

 

The Mediterranean Sea is characterized by a negative water budget (excess 

evaporation compared to freshwater input) balanced by a two-layer exchange at 

the Strait of Gibraltar composed of a warm and fresh upper water inflow from the 

Atlantic superimposed to a cooler and saltier Mediterranean outflow. Light and 

fresh Atlantic water is transformed into denser water through interactions with 

the atmosphere that renew the Mediterranean waters at intermediate and deep 

levels and drive the Mediterranean thermohaline circulation. 

 

The Mediterranean Sea water and heat budgets (MSWB and MSHB, respectively) 

can be seen as good integrators of climate variability at seasonal to interannual 

and decadal scales. A series of Med-CORDEX articles demonstrated how they are 

also main drivers for key Mediterranean phenomena, such as open-sea deep 

convection (Josey et al. 2011, Papadopoulos et al. 2012), Mediterranean 

thermohaline circulation (Adloff et al. 2015), strait transport (Soto-Navarro et al. 

2014), river discharge (Sevault et al. 2014), energy and water sources for 

Mediterranean cyclones (Sanna et al. 2013, Akthar et al. 2014) and coastal heavy 

precipitation events (Berthou et al. 2014, 2015). In addition, the feedback of the 

Mediterranean Sea on the atmosphere through water and energy exchanges is of 

paramount importance to evaluate the impact of climate variability and change 

on human activities in the context of global warming. In this regard, of particular 

relevance is the effect of an increase of ocean heat content on the frequency and 

intensity of high- impact weather events and on sea level rise. 14 Two multi-

model studies within the frame of the ENSEMBLES and CIRCE projects (Sanchez-

Gomez et al. 2011 and Dubois et al. 2012) demonstrated that (i) the observed 

references for the MSWB and MSHB terms (evaporation, precipitation, river runoff, 

Black Sea freshwater inputs, shortwave radiation, longwave radiation, sensible 
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heat flux, latent heat flux) are far from being accurate and (ii) state-of-the-art 

RCMs still show large deficiencies in reproducing these terms at various scale 

(mean state, spatial pattern, interannual variability and trends). Due to the central 

role of the MSWB and MSHB in the Mediterranean climate, improving their 

representation in climate models and understanding their variability is one of the 

key challenge in Med-CORDEX. A large number of studies on this topic using Med-

CORDEX simulations are still on-going but preliminary results are summarized 

here. 

 

Dubois et al. (2012) demonstrated that the SST is one of the main factors driving 

the errors in the MSWB and MSHB terms. Figure 6 shows the interannual time 

series of SST averaged over the whole Mediterranean basin for ERA-Interim driven 

runs. Over the period 1980-2010, the interannual variability is well reproduced in 

all simulations, however a cold bias is found in most experiments. This error could 

be related to the model configurations, since in most Med-CORDEX models the 

first ocean level is about 5 meters deep, while the models with a reduced bias 

have a thinner first ocean level, about 1 m (yellow, light blue and green lines in 

the figure). It is also found that the SST trend is weaker in the models than in 

observations, perhaps as a result of the lack of representation of aerosol effects 

(see below). 
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Figure 6. SST interannual variability time series for the values averaged over the Med 
Sea basin. In grey the observed references:(Satellite, Rixen, EN4), in Black dashed: 
ERA-Interim. All coupled simulations are in colors. In red: CNRM, in blue: LMDZ, in 
brown: INSTM, in yellow: GUF, in purple:ENEA-PROTHEUS, in pink:UniBel, in light 
blue:CMCC and in green: MORCE-MED. 
 
Local evaluations of SST can be carried out using sea buoy data. Figure 7 shows 

a comparison between the LION buoy SST data (42.1°N, 4.7°E, North-West 

Mediterranean) and four Med-CORDEX coupled RCSMs at the daily temporal scale. 

The four coupled simulations agree in reproducing the seasonal cycle (Figure 7a) 

and the inter-annual variability of the observed SST (Figure 7b). The simulated 

SST distributions are then compared with observed SSTs in daily quantile-quantile 

plots for Winter (Figure 7c) and Summer (Figure 7d). In Winter, the central 

quantiles of the distribution are overestimated by all models, while the high end 

of the range is underestimated, a behavior which is probably due to the 

misrepresentation of ocean deep convective phenomena. In summer (Figure 7d), 

however, most of the models are able to reproduce the observed distribution (with 

two exceptions of underestimation). 
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Figure 7. SST validation of the SST at the Lion buoy location (Lat: 42.10N, Lon: 4.70E) 
for different coupled models over the ERA-interim period: a) the time series; b) the 
annual cycle; c) DJF qq-plot; d) JJA qq-plot. CNRM coupled model, coupling the Limited 
Area Model ALADIN-Climate with the ocean model NEMOMED8 (red), CMCC, COSMO 
atmospheric model coupled with OPA ocean model (green), ENEA, RegCM4 regional 
atmospheric model coupled with MIT ocean model (blue), LATMOS, WRF atmospheric 
model coupled with NEMOMED8 ocean model (orange). 
 
Finally, the evaluation of various terms of the surface MSWB and MSHB in some 

of the Med-CORDEX RCSMs and the corresponding RCMs is reported in L'Heveder 

et al. (2013), Sevault et al. (2014), 15 Lebeaupin-Brossier et al. (2015). Despite 

remaining biases in some the terms, these studies consistently demonstrate the 

added-value of the coupled vs. the uncoupled approach to reproduce the 

Mediterranean water and heat budgets. 
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-- Mediterranean ocean circulations, temperature and salinity 

 

The ocean surface and thermohaline circulations are the engines of the heat and 

salt spatial redistribution and, in the vertical, determine the penetration of the 

climate change signal into the deep layers of the Mediterranean Sea. Within Med-

CORDEX, various elements of the Mediterranean Sea circulation have been 

evaluated either in the RCSMs or in the stand-alone regional ocean models. For 

example, Soto-Navarro et al. (2014) evaluated the Strait of Gibraltar flow in an 

ensemble of NEMO-MED models using various horizontal and vertical resolutions 

and different forcings, while Pascual et al. (2014) and Meissignac et al. (2011) 

evaluated the eddy turbulent kinetic energy and sea level variability in a flux-

driven ocean model. 

 

The Mediterranean Sea thermohaline circulation is a complex and challenging 

phenomenon (MEDOC group 1970, Mertens and Schott 1998). It has been 

evaluated in many configurations of the Med-CORDEX models for the Eastern 

Mediterranean Basin in relation to the so-called Eastern Mediterranean Transient 

(Vervatis et al. 2013, Georgiou et al. 2014, Sevault et al. 2014) and for the 

Western Mediterranean Basin targeting the understanding of deep water 

formation (Beuvier et al. 2012, L'Heveder et al. 2013, Sevault et al. 2014). Note 

that RCSMs often show very good behaviours in simulating the interannual to 

decadal variability of the Mediterranean Sea thermohaline circulation (L'Heveder 

et al. 2013, Sevault et al. 2014) and sometimes are even better than the 

comparable flux-driven ocean runs (compare for example Sevault et al. 2014 and 

Beuvier et al. 2010). 

 

Med-CORDEX offers a unique framework to intercompare various ocean models 

and better understand the way they reproduce the Mediterranean Sea circulation. 

We present here a first multi-model diagnostic study of stand-alone Med-CORDEX 

regional ocean models (figure 8) by analyzing the heat and salt content of the 

whole Mediterranean Sea (expressed as average temperature and salinity). The 
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ocean models are driven by different atmospheric forcings produced by dynamical 

downscaling of the ERA-40 or ERA-interim reanalyses. Two quality controlled 

subsurface ocean temperature and salinity observational data-sets are used for 

evaluation purposes (MedAtlas-II, Rixen et al 2005 and EN3, Ingleby and 

Huddleston 2007). The models represent quite well the inter-annual variability 

and long term trend of temperature, although 16 significant biases and differences 

can be found across the models. The choice of physical parameterizations 

(Sanchez-Gomez et al. 2011, Di Luca et al. 2012), and in particular the 

representation of clouds and turbulent fluxes, as well as the choice of system 

components (aerosols, ocean coupling, river coupling) are the dominant factors 

explaining the model biases and spread. 
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Figure 8. Time series of Mediterranean heat and salt content, defined as volume 
average of temperature (a) and salinity (b) for ocean stand-alone simulations using 
different atmospheric forcing produced by downscaling global reanalysis. 
 
By comparison, the reproduction of salinity seems to be quite problematic both in 

terms of inter-annual variability and long term trends, also probably due to 

deficiencies in the observation sampling. In fact, the number, spatio-temporal 

coverage and quality of salinity in-situ observations is worse than for temperature, 
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leading to sampling errors when producing the gridded-products (Rixen et al. 

2005, Jordà and Gomis 2013, Llasses et al. 2015). 

 

 

-- River discharge 

 

Med-CORDEX is also contributing to the integration of all components of the 

hydrological cycle throughout the coupling of land and ocean via river discharge. 

As an example of this contribution, Figure 9 shows the seasonal cycle of runoff for 

the most important Mediterranean rivers in observations and as computed by the 

river routing models embedded in two of the Med-CORDEX RCSMs. It can be seen 

that, although the amplitude of the seasonal cycle of discharge is mostly 

overestimated, the phase of this cycle, and in particular the peak discharge 

months, are well captured for all catchments. River discharge is an integrator of 

different processes, such as precipitation, soil infiltration, snowmelt and river 

routing, so that such type of analysis can provide valuable information on the 

ability of the coupled RCSMs to simulate the full hydrologic cycle of the basin. 

Other evaluations of river discharge can be found in Szczypta et al. (2012) for 

stand-alone land-hydrology models and in Sevault et al. (2014) for the CNRM 

coupled model RCSM4
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Figure 9. Seasonal cycle of runoff for the most important Mediterranean rivers. Black, ENEA coupled system; red, 
1033 CNRM; green, observations. Average for the reference period 1970-2000. The four catchments are: the Ebro in Spain, 
1034 the Rhone in France and Switzerland, the Po plus Adige in Northern Italy, the Danube.
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-- Aerosols 

 

Aerosols of natural and anthropogenic sources are an important component of the 

Mediterranean climate system. Within the Med-CORDEX context, the influence of 

the aerosol direct effect on biases, interannual variability and long-term trends of 

temperature and shortwave and longwave radiation have been investigated by 

Nabat et al. (2014, 2015a,b). In particular, Nabat et al. (2014) showed that the 

underestimation of the SST trend by the Med-CORDEX models noted in previous 

sections is at least partly due to the lack of the representation in the models of 

the decrease in European anthropogenic aerosol emissions starting from the 

1980s, which resulted from stricter air pollution legislations and the economic 

crisis in Eastern Europe. This aerosol decreasing trend induces a positive surface 

shortwave trend and a detectable SST warming trend. Nabat et al. (2015a,b) then 

demonstrate the clear added-value in using coupled RCSMs with respect to SST-

driven RCMs for the simulation of regional aerosol effects. These effects are indeed 

amplified when the Mediterranean SST is able to cool or warm in response to the 

aerosol radiative forcing over the sea. Aerosol-ocean-atmosphere regional 

feedbacks were highlighted by Nabat et al. (2015a,b) as important factors for the 

low-level humidity advection from the Eastern Mediterranean Sea towards the 

Sahara with a potential effect on the African monsoon. 

 

 

2.4.3 Strengthening the link with the VIA research community 

 

An important connection has been established between Med-CORDEX climate 

modeling groups and key impact sectors (ocean acidification, forest ecosystem, 

marine ecosystem, sea level). Through the use of Med-CORDEX simulations, 

several studies have been conducted to evaluate the climate variability and 

change impact on the Mediterranean region, here we provide key examples to 

marine ecosystems. Although marine ecosystems are influenced by many factors 
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such as eutrophication and overfishing, rising atmospheric CO2 and climate 

change are associated with shifts in temperature, circulation, stratification, and 

ocean acidification, with potentially wide-ranging biological impacts. A certain 

effort has been devoted to better link climate models with ecosystem models. It 

has been demonstrated that the use of modeled weather data can yield predictions 

similar to those generated from measured data, but only when data are provided 

at relatively high frequency. Montalto et al. (2014) modeled the effects of 

environmental change on the physiological response of an ecologically and 

commercially important species of mussel in the Mediterranean. Their results 

suggest that ecosystem model skill can be significantly influenced by the temporal 

resolution of environmental data. In addition, a better use of Mediterranean 

climate model information into community ecology models limits the uncertainty 

of future ranges of marine species (Hattab et al., 2014). Auger et al. (2014) 

analyzed the role of the winter mixing on the inter-annual variability of 

Mediterranean plankton dynamics using a high-resolution coupled hydrodynamic-

biogeochemical model. They demonstrated how winter mixing induced inter-

annual variability of winter nutrient contents controls spring primary production. 

Going from sub-regional to local impacts, Andrello et al. (2015) analyzed how the 

climate change will influence connectivity of marine protected areas over the 

period 1970-2099. 

 
 

2.5 Med-CORDEX future plans 

While considerable work is still ongoing on the analysis of the Med-CORDEX 

experiments completed to date, the discussion has started on the identification of 

key future challenges to be addressed by Med-CORDEX within the context of the 

next cycle of climate change research activities (e.g. the phase 6 of CMIP). Here 

we highlight three main foci for future Med-CORDEX activities: 

 

A. Understand the past variability of the Mediterranean regional 

climate system and characterize its possible future evolution, with 

emphasis on an integrated multi-component approach and on the 
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study and attribution of the relative role of different regional/local 

climate drivers (natural and anthropogenic aerosols, high-

resolution SST, land-use) with respect to the large-scale forcings 

(climate natural variability, greenhouse gas induced global climate 

change). 

 

 

Motivations : Over the Mediterranean area, recent studies have shown that 

natural and anthropogenic aerosols can improve the representation of the regional 

climate mean state (Nabat et al. 2015a), shortwave and temperature daily 

variability (Nabat et al. 2015b) and long-term trends (Nabat et al. 2014). In 

addition, Anav et al. (2010) show that human-induced land-use and land-cover 

changes can influence the Mediterranean climate, while Stéfanon et al. (2014) 

illustrate how an interactive representation of vegetation can contribute to 

develop positive feedbacks during extreme climate events such as droughts and 

heat waves. Auger et al. (2014) and Palmieri et al. (2015) suggest that long-term 

Mediterranean Sea biogeochemistry is reaching a mature state allowing the 

coupling with the other climate system components, and ocean waves not yet 

commonly represented in RCMs could also play a key role at the atmosphere- 

ocean interface (Kudryavtsev et al. 2014) and in influencing the regional aerosol 

load (Ovadnevaite et al. 2014). Finally, the key role of complex topography and 

coastlines in modulating regional climates and extreme events has been amply 

illustrated above. It is thus clear that an increased understanding of the role of 

regional/local vs. global drivers of climate change within the context of a fully 

interactive regional climate system is central for a better understanding of the 

impacts of global warming in the Mediterranean. 

 

Examples of scientific questions to be addressed within this challenge: 

What are the main drivers of the observed trends in Mediterranean SST ? Can we 

characterize, reproduce and explain the interannual variability of the 

Mediterranean salinity ? Can we quantify the role of the massive decrease in 

anthropogenic 19 aerosols in Europe on the Mediterranean climate trends since 
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1980 ? Can we reproduce and attribute the trends in latent heat loss and water 

mass observed over the Mediterranean Sea ? Can we reproduce and understand 

the regional/local sea level variability and change of the Mediterranean ? What 

are the main drivers of the Mediterranean river runoff long-term variability ? What 

are the main global and regional drivers of the climate variability of the 

Mediterranean aerosol load ? Can we characterize, reproduce and explain the 

interannual variability of the Mediterranean marine ecosystems ? Can we 

characterize, reproduce and explain the interannual variability and long-term 

trends of the Mediterranean climate extremes ? How will the Mediterranean 

regional climate and its various regional components evolve? How does the 

complex physiography of the Mediterranean region affect current and future 

climate trends over the region? 

 

Modelling framework: Exploring the relative role of the large-scale drivers 

versus regional forcings on the regional climate variability and change requires 

the development, evaluation and use of a new generation of Mediterranean 

Regional Earth System Models (RESMs) in which the various components of the 

climate system are fully coupled (as in RCSMs) and the human component if 

adequately considered. This new generation RESMs will allow the Med-CORDEX 

community to explore the complex interactions and regional feedbacks which 

modulate the climate of the region and will need to have sufficient horizontal 

resolution to adequtely capture the Mediterranean topography and coasline 

features. Specifically, an innovative aspect of 26 this coupling exercise will be the 

better representation in the models of the influence of human activities on regional 

climate drivers, such as aerosols land-use and land-cover, urbanization, dams, 

reservoirs and irrigation, air quality. 

 

Model evaluation: Evaluating RCSMs (or RESMs) is a new open challenge for the 

climate modelling community. Indeed high-resolution and multi-component 

observations are often missing at the regional scale. The future Med-CORDEX 

evaluation strategy will have to rely on a hierarchy of approaches : model 

evaluation on detailed case studies taken, for example, from the HyMeX, MerMex 
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or Charmex programmes, model evaluation against long-term multi-component 

in-situ super sites, evaluation using multi-component gridded products coming 

from satellite products or model-data regional reanalyses. 

 

B. Investigate, understand and improve the description of regional 

climate phenomena critical for determining past climate variability 

and future evolution of Mediterranean climate, with emphasis on 

phenomena of importance for VIA applications. 

 

Motivations : The Mediterranean is characterized by a plethora of phenomena of 

relevance not only for the climate of the region, but also for impacts on ecosystem 

and society: among others, heavy precipitation events, flash floods, 

Mediterranean cyclones and associated strong winds, strong air-sea exchanges 

and associated open-sea deep water formation, aerosol-radiation-cloud 

interactions, Mediterranean surface circulations, Mediterranean dense water 

formation and associated Mediterranean thermohaline circulation, droughts, heat 

waves, medicanes, strait transports, Mediterranean Sea oligotrophy and dynamic 

of the deep chlorophyll maximum. Med-CORDEX has evidenced a number of 

limitations of the present generation of models in simulating such events, tied to 

the coarse model resolution, drawbacks in model physics and dynamics 

representations, lack of descriptions of key feedbacks and interactions. Targeted 

activities will thus need to be designed in order to improve knowledge and 

modeling of these processes.  

 

Examples of scientific questions to be addressed: What are the main 

processes underlying the triggering and evolution of the Mediterranean heavy 

precipitation events (e.g. > 100 mm/d) ? Can we improve the representation and 

characterization of the Mediterranean cyclogenesis ? Are "Medicanes" going to be 

more frequent in the future? Can we improve the understanding and 

representation of the interactions and feedbacks that can enhance Mediterranean 

drought events ? Can we improve the understanding and representation of 

Mediterranean dense water formation phenomena in climate models ? Can we 
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improve the representation of the occurrence and characteristics of intense wind 

events (e.g. Mistral, Bora)? Can we improve the characterization of changes in 

storm surges as affected by regional sea level rise and the occurrence of intense 

storms?  

 

Modelling framework: RCMs allow us to test in a well-constrained framework 

many modeling options targeting the understanding and representation of key 

climate phenomena and their variability for a given region. Case studies, long-

term hindcast and historical-scenario configurations can be used towards this 

goal. Model improvements can be achieved by increasing the spatial resolution up 

to convection-resolving Atmosphere-RCMs or eddy-resolving Ocean-RCMs, by 

adding new components in the RCSMs (e.g. towards the development of RESMs 

including the human component) or by developing new targeted physical 

parameterizations. 

 

Model evaluation: This task will require the development of high quality, fine 

scale datasets suitable for the process-based assessments of the models. 

Improving the representation of regional phenomena in the Mediterranean RCMs 

will also strengthen collaborations with the observation and process-based 

analysis 21 communities (e.g. HyMeX), the numerical weather prediction 

communities and the global circulation model development community, as 

weather forecast models, RCMs and GCMs often share common deficiencies in 

reproducing some of the key regional climate phenomena. A further goal of this 

challenge is to provide a robust and quantitative assessment of the added value 

obtained in using RCSMs to simulate important regional phenomena over the 

region. 

 

C. Improve the characterization of the impacts of the Mediterranean 

climate variability and climate change on human activities and 

natural ecosystems, towards the development of actionable 

Mediterranean climate services. 
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Motivations: The increasing need to assess the impacts of climate variability and 

change over the Mediterranean requires a better characterization, in particular, of 

the uncertainties associated with regional climate projections. This in turn requires 

the completion of large ensembles of coordinated model experiments, both for the 

historical past and future climate conditions, with multiple models, scenarios, 

realizations and model configurations. Providing consistent and comprehensive 

scenarios for the various regional components of the Mediterranean climate 

system is also a key challenge. 

 

Climate services to be addressed: Covering the whole range of potential 

climate services is not feasible, thus the Med-CORDEX efforts will be directed 

towards providing climate information, and evaluation of related uncertainties, for 

areas that are specific to the Mediterranean, e.g.: maritime activities (ocean 

biodiversity and marine protected areas, maritime transport, ocean pollution, fish 

and fisheries, aquaculture), coastal activities such as tourism (coastal, islands, 

sea-related tourism), sustainable energy (solar energy, wave energy, wind farm, 

...), water resources and agriculture (combining human and climate influence), 

regional/local geoengineering, biodiversity conservation planning. 

 

Modelling framework: Targeted experiments will be designed to explore the 

importance of specific forcings (e.g. aerosols, land use, wave) in shaping the 

future of the Mediterranean climate. This will complement the completion of a 

large coordinated multi-model ensemble of regional climate change scenarios 

using RESMs and very high resolution atmospheric RCMs in coordination with the 

CMIP6 and CORDEX frameworks. This will require the development of strategies 

for the selection of CMIP6 GCMs to be used to drive the regional simulations. 

Climate change information concerning all the components of the regional climate 

will be provided in user-friendly format and with associated metadata. Post-

processing techniques will be needed to 22 distill the most robust and accurate 

information for use in VIA studies (e.g. model weighting, bias correction, local 

scale downscaling, specific sectorial indicators) and techniques will need to be 

developed for a quantitative estimation of uncertainties within a risk-based 
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probabilistic approach (e.g. Bayesian approaches). This activity will allow a strong 

interaction with the Med-CLIVAR community and will promote the Med-CORDEX 

results within the context of the next Intergovernmental Panel on Climate Change 

(IPCC) report or of a possible forthcoming Regional Assessment of Climate Change 

in the Mediterranean (RACCM). 

 

Future Med-CORDEX activities will gather momentum in the next decades for a 

number of reasons. The Mediterranean has been recognized as a hotspot for 

climate change, vulnerability, adaptation issues and biodiversity loss; the 

Mediterranean has been selected as a GEWEX region (HyMeX) and a CLIVAR focus 

area (Med-CLIVAR); the contacts between the RCM community and the 

observation and process community are already very strong, in particular due to 

long term initiatives such as HyMeX and Med-CLIVAR. In addition, most of the 

new Grand Challenges identified by the WCRP are particularly relevant within the 

Mediterranean context: (1) Clouds, Circulation and Climate Sensitivity can be 

explored at regional scale for an area that is particularly sensitive to global climate 

change, (2) Changes in the cryosphere can profoundly affect Alpine glaciers, (3) 

Climate Extremes are one of the key challenges for impacts in the Mediterranean, 

(5) Regional Sea-level Rise is highly relevant for Mediterranean coastal activities 

and ecosystems, and (6) Water Availability is a central issue in many water 

stressed areas of the Mediterranean. 

 

Med-CORDEX will provide an optimal framework for coordinating the modeling 

activities in the region towards addressing these challenges with common 

simulation protocols. We also envision an enhanced coordination with other 

CORDEX regional programs for which the Med-CORDEX specificities (coupled 

regional modeling, high resolution modeling, aerosol and land-use modeling) are 

especially relevant:, for example CORDEX Africa on the key topics of the dust 

aerosols and on the effect of the Mediterranean Sea on the African monsoon; 

Euro-CORDEX on the development of convection-resolving RCMs and the study of 

land use effects; Middle Eastern North Africa (MENA) domain concerning the water 

resources issue; and Arctic and Baltic communities for common developments of 
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coupled RESMs. The discussion on specific future experiment strategies and 

protocols for Med-CORDEX are currently under way and they will be finalized 

during the next Pan-CORDEX conference to take place in Stockholm in May 2016. 
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CHAPTER 3  
 
 

A multi-model ensemble view of 
winter heat flux dynamics and 

the dipole mode in the 
Mediterranean Sea  

   
 

The scientist  does  not  s tudy 

nature because i t  i s  useful  to  do 

so .  He studies  i t  because he takes  

p leasure in i t ,  and he takes  

p leasure in i t  because i t  i s  

beauti ful .  I f  nature were not  

beauti ful  i t  would not  be  worth 

knowing,  and l i fe  would not  be  

worth l iving .   

 

Henri Poincaré - Science and Method 

  

http://www.goodreads.com/author/show/5558801.Henri_Poincar_
http://www.goodreads.com/work/quotes/1002133
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This chapter, which is my personal contribution to the Med-COREDX project, 

investigates the Mediterranean Sea heat flux climate variability during winter in a 

set of 12 regional climate models as well as observations. The content of this 

chapter has been published in the following manuscripts:  

Liguori G., Di Lorenzo E., Cabos W., 2016: A multi-model ensemble view of 
winter heat flux dynamics and the dipole mode in the Mediterranean Sea. Climate 
Dynamics, doi: 10.1007/s00382-016-3129-0. 
 
 
 

3.1 Abstract  

Changes in surface heat fluxes affect several climate processes controlling the 

Mediterranean climate. These include the winter formation of deep waters, which 

is the primary driver of the Mediterranean Sea overturning circulation. Previous 

studies that characterize the spatial and temporal variability of surface heat flux 

anomalies over the basin reveal the existence of two statistically dominant 

patterns of variability: a monopole of uniform sign and an east-west dipole of 

opposite signs. In this work, we use the 12 regional climate model ensemble from 

the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric 

processes that control the variability of heat fluxes over the Mediterranean Sea 

from interannual to decadal timescales (here defined as timescales > 6 year). Our 

findings suggest that while the monopole structure captures variability in the 

winter- to-winter domain-average net heat flux, the dipole pattern tracks changes 

in the Mediterranean climate that are connected to the East Atlantic/Western 

Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the 

monopole exhibits significant differences in the spatial structure across the multi-

model ensemble, the dipole pattern is very robust and more clearly identifiable in 

the anomaly maps of individual years. A heat budget analysis of the dipole pattern 

reveals that changes in winds associated with the EA/WR pattern exert dominant 

control through both a direct effect on the latent heat flux (i.e., wind speed) and 

an indirect effect through specific humidity (e.g., wind advection). A simple 

reconstruction of the heat flux variability over the deep-water formation regions 

of the Gulf of Lion and the Aegean Sea reveals that the combination of the 

http://link.springer.com/article/10.1007/s00382-016-3129-0?wt_mc=internal.event.1.SEM.ArticleAuthorOnlineFirst
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monopole and dipole time series explains over 90% of the heat flux variance in 

these regions. Given the important role that surface heat flux anomalies play in 

deep-water formation and the regional climate, improving our knowledge on the 

dynamics controlling the leading modes of heat flux variability may enhance our 

predictability of the climate of the Mediterranean area.         

 
 

3.2 Introduction 

The Mediterranean Sea is a morphologically complex basin where intense local 

air-sea interactions together with the inflow of Atlantic water drive Mediterranean 

overturning circulation. Among the air-sea interactions, anomalies in the surface 

net heat flux (NHF) play a crucial role in the climate of the region (Haines and Wu 

1995; Madec et al. 1991; Roether et al. 1996; Theocharis et al. 1999), particularly 

in the formation of intermediate and deep-water masses, a process of 

fundamental importance for regional- and global-scale meridional overturning 

circulation (Artale et al. 2006; Calmanti et al. 2006; Josey 2003; Rahmstorf 1996; 

Rahmstorf 1998).  Therefore, to enhance our understanding of climate in this 

area, we must also improve our understanding of the air-sea exchange variability 

of NHF.   

 

The influence of large-scale atmospheric circulation on the air-sea NHF variability 

over the Mediterranean region is well represented by several relevant 

teleconnection patterns in this region (Josey et al. 2011; OrtizBevia et al. 2012). 

The patterns with the greatest impact (see Fig. 3) are the North Atlantic Oscillation 

(NAO) (Hurrell 1995), the Eastern Atlantic (EA) pattern (Wallace and Gutzler 

1981), the East Atlantic-Western Russia (EA/WR) pattern (Krichak et al. 2002), 

and the Scandinavian pattern (Bueh and Nakamura 2007).  The NAO pattern is 

characterized by two opposite centers of action with anomalously high and low 

pressure over Azores and Iceland islands, respectively. This mode controls the 

strength and direction of westerly winds and storm tracks across the North 

Atlantic. The EA pattern is characterized by a broad low-pressure system centered 

to the west of the British Isles, which is approximately midway between the two 

http://en.wikipedia.org/wiki/Wind
http://en.wikipedia.org/wiki/Storm
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centers of action of the NAO system. Negative phases of EA are associated with 

high pressure over the northern Atlantic and a relatively strong pressure gradient 

over the western Mediterranean. This pressure gradient produces a cold northerly 

airflow that enhances ocean heat loss over this region.  The EA/WR pattern is 

characterized by three alternate-in-sign centers of action located in the northern 

Atlantic, central Europe, and western Russia. Positive values of EA/WR are 

associated with northerly/southerly winds in the eastern/western Mediterranean. 

Finally, the SCAN pattern presents, in its positive phase, a dipole structure with a 

low pressure over the Iberian Peninsula and a high pressure over northwestern 

Russia. In its positive phase, this mode promotes weak low pressure and 

southerlies over the entire Mediterranean Sea.  

 

Josey et al. (2011) examined the impact of these modes on Mediterranean Sea 

surface heat flux during extreme seasons (i.e., summer and winter) and concluded 

that the NAO—the  dominant mode of atmospheric variability in this region—has 

a minor impact on NHF variability compared to the EA and EA/WR patterns, which 

explain the largest fraction of NHF variability.  Zveryaev and Hannachi (2011) 

found a direct link between the EA pattern and the leading mode of evaporation 

variability but no significant correlation with the EA/WR pattern. Papadopoulos et 

al. (2012b) identified two main responses of the NHF to the regional atmospheric 

teleconnection patterns:  a uniform basin-wide response and an out-of-phase 

response in the western and eastern sub-basins, which we will refer to as the 

dipole pattern.  While they found that the uniform response was attributed to the 

EA, the dipole pattern appeared to be a response to a combination of the first four 

modes of the Euro-Atlantic region (i.e., EA. EA/WR, NAO, and SCAN).  

 

These previous analyses provide an understanding of the statistical and in some 

cases, mechanistic, relationships between NHF variability in the Mediterranean 

Basin and large-scale atmospheric modes.  For instance, Josey et al. (2011) 

recognized that the EA mode has a coherent-basin-wide impact resulting from its 

associated northeasterly flow of cold dry air, which increases the air-sea humidity 

and temperature gradients and thus heat loss. The same work also connected the 
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EA/WR mode with the heat flux anomalies of opposite signs in the eastern and 

western Mediterranean Basins. They hypothesized that this pattern occurs 

because the mode (EA/WR) drives a northerly flow of cold dry air over the eastern 

basin, enhancing heat loss, and a southerly flow of relatively warm moist air over 

the western basin, weakening heat loss.  However, these studies focus on 

individual modeling or observational datasets to examine the spatial and temporal 

variability of surface heat fluxes. In this study, we use multiple observational 

datasets and 12 simulations of a multi-model ensemble to provide a more robust 

assessment of the statistical behavior of Mediterranean surface heat flux winter 

variability and to diagnose the mechanisms underlying links to the regional 

footprint of large-scale atmospheric teleconnection patterns. Moreover, this work 

is the first to assess the spatial and temporal variability of the Mediterranean air-

sea heat fluxes in a multi-model ensemble of high-resolution regional climate 

models. Such model outputs, which are commonly used to investigate the climate 

over a specific region, may also be used as surface boundary conditions for hind-

cast ocean simulations. In this regard, Herrmann and Somot (2008) have shown  

that  a correct representation of air-sea heat fluxes is crucial to accurately 

modeling the key aspects of the Mediterranean Sea circulation such as the deep 

convection of the northwestern Mediterranean Sea. 

 

Like many of the above-cited cited papers on the Mediterranean Sea heat flux 

variability, this paper focuses on the winter season.   Studying the cold season 

has many advantages.  For one, the formation of intermediate and deep water 

masses, which play a crucial role for the Mediterranean Sea circulation, is linked 

to air-sea heat flux exchanges occurring during the  winter (Lascaratos et al. 

1999).  Additionally, winter anomalies dominate the annual mean heat budget 

(Josey et al., 2011), and extreme heat loss during this season has been linked to 

profound deep-water changes known as the Eastern Mediterranean Transient 

(Josey et al., 2003). Furthermore, the influence of large-scale atmospheric modes 

on the Mediterranean climate is generally much stronger during the extreme 

seasons (i.e., winter and summer) than during the transition seasons (i.e., spring 

and fall). To examine the high- and low-frequency dynamics of heat flux variability 



 Chapter 3 – Heat flux dynamics and the dipole mode in the Mediterranean Sea 
  

___________________________________________________________________________ 
64 
 

in the Mediterranean Sea during the winter season, we combine two independent 

observational datasets with an ensemble of 12 high-resolution regional climate 

models.  This work primarily focuses on the relationship between the two leading 

modes of winter NHF variability, which closely track the latent heat flux (LHF), 

and the climate of the Euro-Mediterranean region. Section 2 presents the dataset 

and methodology for the computation of the leading modes of LHF variability and 

Section 3 a multi-model ensemble view of the spatial and temporal statistics of 

the modes.  Section 4 analyzes the relationships between the modes and large-

scale atmospheric forcing and Section 5 summarizes and discusses the results.      

 

3.3  Dataset and Methodology 

3.3.1 The observational datasets  

 
Before presenting the observational and modeling data used in this work, we 

would like to examine the relationship between NHF and LHF.  NHF consists of a 

balance of four components of heat flux:  LHF, sensible heat flux (SHF), longwave 

radiation (LWR), and shortwave radiation (SWR). The first two are turbulent while 

the last two are radiative. The estimation of these two kinds of heat fluxes involves 

measurements of different physical parameters, which are typically not available 

in observational datasets at the same spatial resolutions and temporal coverages.  

Table 1 shows the most commonly used observational datasets for both turbulent 

and radiative fluxes. 

 

 

 

 

 

 

 

 

Table 1 Observational datasets for the air-sea heat flux components. In bold, the 
datasets used in this work. 
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Variable  Dataset Period  Resolution 

Radiative fluxes 
(SWR and LWR) 

ISCCP2, NOC 1984-
2008,1980-
2004 

2.5deg. , 1deg. 

Turbulent 
fluxes 
(SHF and LHF) 

OAFlux, HOAPS,  
NOC 

1958-
2008,1988-
2005,1980-
2004 

1deg., 0.5deg., 
1deg. 

 Net heat flux 
(NHF) 

OAFlux, NOC 1958-2008, 
1980-2004 

1deg., 1deg. 

 

 

In this work, estimations of radiative fluxes come from a modified Mediterranean 

Sea version of the National Oceanography Centre 1.1 (NOC1.1 – hereafter 

referred to as NOC) dataset (Josey et al. 1999).  Estimations of turbulent fluxes 

come from two sources:  the NOC dataset and the Objectively Analyzed air-sea 

Fluxes (OAFlux). While the OAFlux dataset provides estimations for NHF, the NOC 

dataset does not, so we compute the NHF from its four heat-flux components.  

The NOC dataset is based on ship observations provided by the International 

Comprehensive Ocean–Atmosphere Data Set (ICOADS, Woodruff et al., 1998) and 

presented on a 1deg. x 1deg. spatial grid for the period 1979 to 2004.  The NOC 

dataset analyzed in our study is a modified version of the standard datasets 

computed using another formulation of the radiative flux components and 

analyzed by Josey et al. (2011).  Specifically, the longwave flux is estimated by 

an improved formula calibrated with in-situ measurements from the 

Mediterranean Sea (see Bignami et al. 1995). In addition, the shortwave flux has 

been corrected for aerosol loading following the method of Gilman and Garrett 

(1994).  OAFlux is a 50-year global dataset on a 1deg. x 1deg. grid for the period 

1958 to 2008.  This product is a result of merging satellite observations with 

surface moorings, ship reports, and atmospheric model reanalysis data.  

 

With the exception of the NOC dataset, which provides estimations at a 1deg. x 

1deg. resolution and covers the same period for all four components of the surface 

heat flux, radiative fluxes are available for shorter periods and lower spatial 
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resolution with respect to turbulent fluxes. For instance, the widely used 

International Satellite Cloud Climatology Project (ISCCP 2) dataset (Zhang et al. 

2004) provides gridded estimations on a 2.5deg. x 2.5deg. horizontal resolution 

that cover the period 1984 to 2009.  However, for the Mediterranean Sea, where 

important processes take place on a small scale, data with a spatial resolution of 

2.5deg. x 2.5deg. are mainly useful for basin-integrated budget purposes (e.g., 

Sanchez-Gomez et al. 2011).  Moreover, no estimations are available for radiative 

fluxes before 1980, and the longest period covered consists of 25 years (i.e., 

1984-2009 for ISCCP 2), which limits possible inferences on low-frequency 

variability. Therefore, the ISCCP 2 dataset is not used in this study. In contrast, 

datasets of turbulent flux estimates often cover a longer period with a higher 

spatial resolution such as the 0.5deg. x 0.5deg. for the Hamburg Ocean 

Atmosphere Parameters and Fluxes from the Satellite (HOAPS) dataset 

(Andersson et al. 2007) and 1deg. x 1deg. for the NOC and OAflux datasets. 

However, the HOAPS dataset has several limitations.  In addition to its relatively 

short coverage, HOAPS does not cover the Adriatic Sea, the Aegean Sea, or some 

coastal regions. This lack of spatial coverage strongly affects our ability to study 

air-sea heat exchange, as explained in the introduction and further confirmed by 

the strong variance shown by the multi-model ensemble (see next section).  For 

these reason, we select the NOC and OAflux for comparing the multi-model 

ensemble outputs to observational datasets.  

 

Our analyses mainly focuses on air-sea heat fluxes; however, in Section 3, we 

also use sea- level pressure (SLP) from the ERA40 reanalysis (Uppala et al. 2005), 

and in Section 4.2, we also use 2m air specific humidity and the SST from the 

OAflux database, and 10m winds from the NCEP reanalysis (Kalnay et al. 1996).  

To examine the influence of large-scale atmospheric circulation on the variability 

of air-sea heat fluxes over the Mediterranean region, we employ the NOAA Climate 

Prediction Centre (CPC) monthly mean values of the four prominent atmospheric 

modes of the Euro-Atlantic region (i.e., EA, EA/WR, NAO, and SCAN) for the period 

1958 to 2010. 
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3.3.2 Regional climate model experiments 

 

In addition to the above-presented observations, we use the multi-model dataset 

from the regional climate model experiments performed within the EU-FP6 

ENSEMBLES project framework.  In this work, we use 12 RCMs driven by the 

ERA40 reanalysis data and operating at a 25 km horizontal resolution. The models, 

which must cover a common minimum domain that includes the entire 

Mediterranean Sea, simulated the period 1961 to 2000.  The RCMs differ for the 

model setup and the grid specifications such as the rotation grid, and the number 

of vertical levels. Table 2 lists more details about the experiments and the 

ENSEMBLES project website (http://ensemblesrt3.dmi.dk) provides more 

information regarding each model.  

 

 

 

 

 

Table 2 Summary of the main features of the RCM used in the EU-FP6 ENSEMBLES 
project. [Table adapted from Sanchez-Gomez et al. (2011)] 
 

Institution  RCM Vertical 
 levels   Reference  

CNRM ALADIN 31 Radu et al. (2008) 

C4I RCA 31 Kjellstrom et al. (2005) 

DMI 
HIRHA
M 31 

Christensen et al. 
(1996) 

ETHZ CLM 21 Bhom et al. (2006) 

ICTP RegCM 34 
Georgi and Mearns 
(1999) 

KNMI RACMO 40 Lenderink et al. (2003) 

METNO 
HIRHA
M 31 

Haugen and 
Haakensatd(2006)  

METOHC HadRM 19 Collins et al. (2001) 

MPI REMO 27 Jacob (2001) 

SMHI RCA 24 Kjellstrom et al. (2005) 

http://ensemblesrt3.dmi.dk/
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UCLM 
PROME
S 28 Sanchez et al. (2004) 

OURANOS CRCM 28 Plummer et al. (2006) 
 
 

3.3.3 LHF as a proxy for NHF variability 

 
In the open ocean, turbulent latent heat flux generally controls the variability of 

the NHF (Alexander et al. 2002).  This finding also applies to the Mediterranean 

Sea (Garrett et al. 1993; Josey 2003; Josey et al. 2011; Papadopoulos et al. 

2012a), especially during the boreal winter (December–January–February–March, 

hereafter DJFM) when the short-wave component becomes less important than it 

is during the summer (June–July–August–September, hereafter JJAS). Fig. 1  

shows  maps of the winter mean and normalized standard deviation of NHF and 

LHF fields (A sign convention used is that fluxes out of the ocean are positive) for 

the multi-model ensemble and both observations, NOC and OAflux. These maps 

reveal different means but very similar normalized standard deviations in both 

observations and the multi-model ensemble mean (ENSm).  We normalized the 

standard deviation by its maximum value in order to use the same color scale and 

highlight the strong similarity of the spatial structure of LHF and NHF variances.  

 

This simple but fundamental analysis suggests that the winter NHF mean results 

from a combination of turbulent and radiative fluxes while its spatial variance, 

represented here by the standard deviation, is controlled by the LHF alone. 

Although both the mean and the standard deviation present significant 

differences, this result is valid for all of the analyzed datasets. ENSm and OAflux 

often present similar patterns while NOC shows somewhat different features. To 

identify regions with large inter-model uncertainties, we compute the spread 

among models as an inter-model standard deviation. This parameter, shown in 

Fig. 1, reveals a larger spread associated with the coastal region and the Aegean 

Sea for both NHF and LHF.  This result was already noted by Sanchez-Gomez et 

al. (2011), which uses the same multi-model ensemble to analyze heat and fresh 

water budgets in the Mediterranean Sea. In this work, the authors suggested that 
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the large spread in coastal regions and the land-enclosed basin (i.e., the Aegean 

Sea) are likely due to the difficulty in accurately representing processes related 

to the local wind fields, orography, and, in the case of the Aegean Sea, the locally 

increased internal variability of the RCMs.   
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Fig. 1 Spatial distribution of the temporal mean and normalized standard deviation of 
latent heat flux (LHF) and net heat flux (NHF) for the OAflux dataset, the NOC dataset, 
and the multi-model ensemble mean. The Period analyzed is 1961–2000 for RCM 
simulations and ENSm, 1980-2004 for NOC dataset, and 1958-2010 for OAflux dataset. 
A sign convention used is that fluxes into the ocean are positive. The Inter-model spread 



Chapter 3 – Heat flux dynamics and the dipole mode in the Mediterranean Sea 
  

___________________________________________________________________________ 
71 

 

has been calculated as the standard deviation of the individual model climatological 
winter mean. Units are in [W/m2] for the mean and the spread. The standard deviation 
has non-dimensional units as it has been normalized by its maximum value, which is 
indicated in each subfigure as “Max. σ” .   
 

 

Although Fig. 1a reveals that the spatial structures of winter LHF and NHF 

variances are similar, this does not assure similar variability of the two fields.  

However, a decomposition of the winter anomalies using empirical orthogonal 

functions (EOFs) and principal components (PCs) analysis reveals a close 

relationship between the spatial and temporal variability of NHF and LHF. The 

EOF/PC analysis decomposes the variance of the NHF and LHF into a dominant 

pattern of spatial variability (e.g., EOFs) and their associated temporal modulation 

(e.g., PCs). Fig. 2a shows the correlation coefficient (the methodology used to 

assess its statistical significance is explained in the caption of Fig. 2) between the 

first four PCs of NHF and LHF anomalies (i.e., NHFa and LHFa) during DJFM for 

the observational datasets, the simulations, and the ENSm (green, blue, and red 

rectangles, respectively).  On average, the two leading modes explain about 77% 

of the total variance. The correlations for the first two modes are generally very 

high and often close to one. For higher modes, the correlations slightly decrease, 

but they are considerably large even for the fourth mode. The uniquely low 

correlation value (i.e., PC4 of NOC) occurs when the order of the modes between 

LHF and NHF is inter-changed.  In fact, when this occurs, the correlation is close 

to zero because of the orthogonality condition of the PCs.  For instance, the 

correlation coefficient of LHF-PC4 and NHF-PC5 of NOC was about 0.90, confirming 

the expected change in the order of the PCs.  The results shown in Fig. 2a 

demonstrate that at least during the winter and for the first few modes, LHF 

variability strongly captures variations in the NHF. As discussed in Section 2.1, 

LHF estimates cover longer periods with a higher spatial resolution with respect 

to NHF estimates. Therefore, for the remainder of the analyses, we focus on winter 

LHF to diagnose the dynamics controlling the variability of the winter NHF.  Last, 

we would like to conclude this section by pointing out that at least for the first two 
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modes and especially for the RCMs, this close relationship between the LHF and 

NHF also holds, to some extent, during the summer season (Fig. 2b).  

 

 
Fig. 2 Panel (a) shows the correlation coefficients for first 4 PCs between winter (DJFM) 
anomalies of NHF and LHF for the  simulations, the multi-model ensemble mean 
(ENSm), the NOC and the OAflux datasets (grey, red, green, and blue rectangles, 
respectively). The grey shading indicates the absolute value of the correlation coefficient 
and boldface indicates a significant correlation at a 99% level. The significance of the 
correlation coefficients throughout this paper are estimated by computing empirical 
probability distribution functions (EPDFs) for the correlation coefficient of two red-noise 
time series with the same autoregression coefficients of those estimated in the original 
signals.  The EPDF is used to assess significance levels of 95% and 99%. In (b) the 
same analysis is performed using summer (JJAS) anomalies. 
 

3.4 Statistical Analysis of the Leading Modes of LHF 

To investigate the spatial and temporal structure of the interannual variability of 

Mediterranean LHFa during the boreal winter (DJFM), we perform an EOF analysis 

of the winter mean latent heat flux for both models and observations. In this paper 

before analyzing any dataset, we remove a linear trend for each grid point and 

for each time series (i.e., CPC indices). We restrict our statistical analysis to the 
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first two leading modes, as they explain most of the observed variability (in 

average 77% of the total variance). The steps of the analysis include (a) a 

description of the EOF structures, (b) a comparison between the models and 

observations, and (c) a correlation analysis of the PC1 and PC2 with known large-

scale atmospheric teleconnection patterns (i.e., NAO, EA, EA/WR, and SCAN). 

 

To characterize the temporal scales at which these teleconnections are more 

active, we also analyze the correlations for the low- and high-pass filtered PCs 

(below and above a period of 6 years). Finally, by comparing the results of the 

models and observations, we assess the capability of RCMs to represent the 

atmospheric teleconnections dynamics that affect LHF variability. To present the 

employed climatic indices and their relationship with the atmospheric circulation, 

we compute the correlation maps (Fig. 3) between the indices and the SLP of the 

multi-model ensemble mean and the ERA40 reanalysis. We choose the ERA40 

observational dataset since it has been used to drive the multi-model ensemble 

simulations, and thus it is important that the consistency between the large-scale 

features of the dynamical downscaling and of the forcing fields be checked. In 

addition to the correlation maps, we compute the inter-model spread to identify 

regions with large uncertainties among the models. Fig. 3 shows the correlation 

maps between the indices and the SLP of the ERA40 reanalysis and of the multi-

model ensemble mean along with the spread, as defined in Fig. 1.  

 

Fig. 3 reveals strong consistency between the multi-model ensemble mean and 

the ERA40 reanalysis. For all the analyzed climatic indices, the correlation map 

for ENSm is similar to that obtained for ERA40. One minor but noteworthy 

difference is the slightly smaller correlation for the center of action of the EA/WR 

mode in the multi-model ensemble mean. As the center of action of this mode is 

located far from the prescribed lateral boundary conditions, it is weakly influenced 

by the driving field and therefore more prone to revealing differences in the model 

dynamics.  The inter-model spread (last column) shows generally low values over 

the centers of action, again confirming that most of the models closely represent 

these atmospheric modes. Regions of high inter-model spread are mostly located 
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in the eastern part of the domain since the prevalent westerly flow, which 

characterizes the circulation of the region, exerts control from the western lateral 

boundary that decreases as it moves eastward. Moreover, except for NAO, which 

also shows a high spread over the northern Africa and eastern Mediterranean 

regions, high-spread areas are mostly over regions of low correlation, which can 

be partially explained by the weak atmospheric mode in regions where the internal 

variability of the models dominates the signal. 

 
 
Fig. 3 Correlation maps between indices of atmospheric variability and SLP during 
winter season (DJFM) for ERA40 (left column) and multi-model ensemble mean (ENSm; 
middle column). The figure shows also the inter-model spread (right column) calculated 
as in Fig. 1. 
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3.4.1 First mode 

 
Fig. 4 shows the first mode of the LHFa for both models and observations. The 

first four rows show the RCM fields while the fifth row presents the two 

independent observational datasets, NOC and OAflux, and the multi-model 

ensemble mean (ENSm).  In addition to the spatial pattern, each subfigure also 

shows the amount of explained variance and the temporal/spatial correlation 

between the associated PC1/EOF1 and OAflux PC1/EOF1. Before examining the 

spatial structure of the patterns, we report the explained variance for both models 

and observations. For RCMs, the explained variance associated with the first mode 

ranges from a minimum of 47% for UCLM to a maximum of 59% for OURANOS. 

The average value is 52%, and the associated standard deviation is 6%.  For the 

observations, the explained variance is 42% for the NOC and 58% for the OAflux, 

which reveals a range similar to the one find in the models even though we 

analyzed only two datasets. Thus, the amount of explained variance for each RCM 

is consistent with the uncertainty of the observations.  
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Fig. 4 Spatial patterns of the first mode (EOF1) of the winter mean LHFa for the 
observational datasets, the simulations, and the multi-model ensemble. Each subfigure 
also indicates the amount of explained variance (EV), and the values of the spatial and 
temporal correlation (SC and TC, respectively) between the simulated mode and the 
OAflux mode. The SC (TC) is obtained computing the spatial (temporal) correlation 
between the simulated and observed EOF1 (PC1).  Units are [W/m2]. 
 
The spatial pattern of EOF1 for both models and observations (Fig. 4) reflects 

coherent same-sign variations of LHF over the entire Mediterranean Basin. Despite 

some differences in the spatial representation of the EOF 1 that are also evident 

in the two observational datasets, the models and observations share important 

features such as large values of the loadings in the Gulf of Lion and the Ionian 

Sea and small loading values in the western-most region of the basin in the 

Alboran Sea. Both the Gulf of Lion and the Ionian Sea are locations of deep-water 

formation (Roether et al. 2007; Schroeder et al. 2008), and their appearance in 
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the first mode is not surprising because they are characterized by intense LHF 

variations at inter-seasonal and annual timescales. 

 

To evaluate the multi-model ensemble skills in reproducing the observed 

variability associated with the first mode, we have computed the correlations 

between PC1 of each RCM and OAflux. These correlations (Fig. 4) are generally 

very high with a mean value of 0.81 and a maximum of 0.90 for the ENSm. 

Physically, the PC1 time series represents the variability of the basin-averaged 

winter LHFa.  For both observations and simulations, represented here by the 

multi-model ensemble mean along with the inter-model spread, Fig. 5 shows the 

PC1 time series against the area-averaged basin winter LHFa time series. This 

figure reveals how PC1 nearly parallels the basin-averaged mean value with 

correlation coefficients as high as 0.99 for both observations and simulations. 

Therefore, we conclude that the multi-model ensemble is able to capture the 

temporal variability of the first mode despite some differences in the spatial 

patterns of the individual models that likely reflect uncertainty associated with 

regional expressions of the large-scale dynamics of basin-wide warming and 

cooling 

 

3.4.1.1      Interannual to decadal links to the regional climate 
 
The EOF analyses of spatial modes (Fig. 4) show relatively inconsistent patterns 

among the models, which are able to track a high correlation with observations in 

time. Now, we examine the links between the leading mode of variability of the 

Mediterranean latent heat flux and the patterns of regional atmospheric 

circulation.  We compute the correlations between the leading PCs and the four 

climate indices (i.e., NAO, EA, EA/WR and the SCAN) with larger impact on the 

Mediterranean region.  Moreover, to characterize the temporal scales at which 

these teleconnections are active, we analyze high- and low-pass filtered time 

series. The filtering method that we use is a simple Fourier filter.  After performing 

an FFT analysis, we reconstruct the time series using only selected Fourier 

components.  In particular, for the high- and low-frequency analyses, we retain 
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Fourier components that are shorter and longer than a six-year period, 

respectively.  With the aim of separate interannual (1-6yr) and decadal (8-12yr) 

timescales, we decided, after performing some sensitivity tests, to choose six 

years as the threshold at which we separate these scales. Fig. 6 shows the 

correlations for the non-filtered (NF) time series as well as for the high-passed 

(HP) and low-passed (LP) time series.  The boldfaced numbers in Fig. 6 indicate 

a significant correlation at a 99% level.   

 

In agreement with previous studies of Josey et al. (2011), Zveryaev, and 

Hannachi (2011), the first mode is highly correlated with the EA mode (see also 

Fig. 5, bottom time series). The NF correlations reveal that, except for two RCMs 

(i.e., CNRS and DMI), all models show noteworthy correlations above 0.44 with a 

value of 0.52 for the ENSm, which is very close to the correlation found for the 

OAflux dataset. The connection between the EA mode and the heat fluxes over 

the Mediterranean Sea can be summarized as follows: the negative phases of EA 

are associated with anticyclonic circulation centered over the northern Atlantic 

and a relatively strong pressure gradient over the western Mediterranean that 

produces a cold northerly airflow, which, in turn, enhances ocean heat loss over 

this region. However, the correlation maps in Papadopoulos et al. (2011) show 

that the LHFa in the westernmost part of the basin is mostly independent from 

the EA mode, which is consistent with the low value of the first mode loading over 

this region.  Although we remove a linear trend for each grid point from the 

dataset before performing the EOF analysis, the PC1 shows strong multi-decadal 

variability that result in a negative trend after 1990, which is not present in the 

EA time series (Fig. 5).   Previous studies have already reported such a trend in 

the Mediterranean Sea LHF, which has been attributed to SST-driven changes in 

the surface humidity gradient linked to global warming (Mariotti 2010; Skliris et 

al. 2011). The EA represents a large-scale atmospheric mode of variability, but it 

does not capture these basin-scale signals (e.g., the LHF trend).   
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Fig. 5 Time series of normalized PC1 (Solid line) and normalized basin-averaged winter 
LHF anomalies (Dashed line) for ENSm (in red), NOC, (in green), and OAflux (in blue). 
In the lower part the PC1s are compared with the EA index(grey line). The red shading, 
representing the inter-model spread, has been calculated as the standard deviation of 
the individual model value of the PC1 and of the basin-averaged winter LHF anomaly.  
All timeseries are normalized by their standard deviations therefore units are in standard 
deviations (std).  
 
 
An examination of filtered time series correlations reveals a noteworthy feature of 

the PC1-EA relationship:  except for NOC, the correlation is slightly enhanced by 

the low-pass filter.  Although not present in the OAflux dataset, Fig. 6 reveals an 

interesting high-frequency correlation between the PC1 and the EA/WR mode in 

most of the models, the ENSm, and the NOC dataset.   Regarding the other 

regional climate indices, that is, the NAO and SCAN indices, Fig. 6 reveals low 

correlations, mostly below the significance level.   While the NAO index presents 

a significant correlation only for the LP time series of OAflux and CNRM, the SCAN 

presents significant correlation only for few RCMs.  These analyses confirmed the 

PC1-EA relationship and revealed a slight increase in this teleconnection at periods 

longer than six years. Although rather speculative, these analyses also suggest a 

high frequency (i.e., periods shorter than six years) relationship between the PC1 

and the EA/WR mode.   
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Fig.6 Values of the correlation coefficient between the winter (DJFM) LHFa-PC1 time 
series and the corresponding winter indices of the four main atmospheric modes. The 
Period analyzed is 1961–2000 for RCM simulations and ENSm (respectively grey and red 
rectangles), 1980-2004 for NOC dataset (green rectangle), and 1958-2010 for OAflux 
dataset (blue rectangle). The grey shading indicates the absolute value of the correlation 
coefficient and boldface indicates a significant correlation at a 99% level. In addition to 
the non-filtered (NF) time series we also analyzed high-pass (HP) and low-pass (LP) 
filtered time series. For the high- and low-frequency analysis, we retained Fourier 
components shorter and longer than a 6-year period, respectively. 
 

 
 
 

3.4.2 Second mode 

 

Unlike the first mode, the spatial pattern of the second mode shows strong 

consistency among the models and the observations (Fig. 7). For instance, the 

spatial correlation between the RCMs and the OAflux is generally strong, ranging 

from a minimum of 0.92 for ICTP to a maximum of 0.97 for MPI.   This mode is 

characterized by a well-defined dipole structure that represents opposite 

variations of LHF in the eastern and western parts of the Mediterranean Sea.  

While the positive pole of the dipole structure is almost always located in the GOL 

region, the negative pole is not always located in the same region. The negative 
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pole is often located in the Aegean Sea, but in many cases, it appears to be spread 

between two locations, the Aegean Sea and the area south of Cyprus (Fig. 7).  

Moreover, the slightly diverse character of NOC, which does not show any clear 

pole in the Eastern basin, is worth mentioning.  Compared to the first mode, the 

explained variance of the second mode shows a remarkable difference between 

RCMs and observations.  While the explained variance for the RCMs is always 

above 24%, with most of the models around 26%, the explained variance for the 

observations is smaller, 20% for OAflux and only 16% for NOC.  The PC2 time 

series for the observational datasets are always significantly correlated with those 

of the models (Fig. 8). Excluding CNRS, the correlation is always above 0.63 with 

an average value of 0.75 and a maximum value of 0.83 (C4I).  

 
Fig. 7 The same as Fig. 4, but for the second mode. 
 

 
3.4.2.1    Interannual to decadal links to the regional climate 
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We examine the links between PC2 and the four atmospheric climate modes, 

shown in Fig. 9. Except for several RCMs and the NOC dataset, the NF time series 

reveal significant correlations between the PC2 and the EA/WR index, ranging 

from 0.38 to 0.53 (the time series of the PC2 and the EA/WR index are shown in 

Fig. 8).  

 

 
Fig. 8 Time series of normalized PC2 for ENSm (in red), NOC, (in green), and OAflux (in 
blue). The grey line is the EA/WR index. The red shading, representing the inter-model 
spread, has been calculated as the standard deviation of the individual model value of 
the PC1 and of the basin-averaged winter LHF anomaly.  All timeseries are normalized 
by their standard deviations therefore units are in standard deviations (std). 
 

Moreover, the analyses of the low- and high- frequency-filtered time series (Fig. 

9) reveal that this correlation is significantly enhanced by the low-pass filter with 

average correlation coefficients of about 0.68.  Josey et al. (2011) were the first 

to recognize the influence of the EA/WR in the analysis of a NCEP/NCAR and 

ARPERA datasets.  They showed that the EA/WR mode is associated with an east-

west dipole structure in the heat exchange, which is characterized by an 

approximately equal opposite signal of about 15 Wm-2. However, as noted by 

others (Papadopoulos et al. 2012b), the time series of the PC2 is also connected 

to other teleconnection patterns in this region.  To better understand the large-

scale dynamics underlying the expression of this dipole mode (DM), we conduct a 

diagnostic and budget analysis of the LHF dipole during the period when this mode 

is most active.  
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Fig. 9 The same as Fig. 6, but for PC2. 
 

 

3.5 Decomposing the Temporal and Spatial Dynamics 

of the Dipole Mode  

As statistically derived modes are constrained to be orthogonal while physical 

modes may show some inter-dependence, they do not always reflect real physical 

modes (Simmons et al. 1983).  Thus, the physical interpretation of the statistically 

derived modes (e.g., DM) can be controversial (Dommenget and Latif 2003).  

Furthermore, a close explained variance of higher order EOFs might indicate that 

two or more EOFs capture oscillations or propagation dynamics in the physical 

field.  To determine if the variance associated with the DM (EOF2) is statistically 

distinct from the variance associated with higher modes, we compute the 

uncertainties of each eigenvalue using North’s rule (North et al. 1982). This 

analysis reveals that PC1 and PC2 (i.e., DM) have well-separated eigenvalues at 

the 95% significance level in OAflux and ENSm, but not in NOC, which has 
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overlapping second and third eigenvalues. This last result may partially explain 

why the EOF2 of NOC shows a relatively distinct pattern among all of the analyzed 

datasets (see Fig. 7).   The statistical significance of the DM (EOF2) does not 

guarantee the existence of a real physical mode. Moreover, the explained variance 

of the DM is about one-third of the variance explained by the first mode, and 

therefore, even if it is a real structure, the dipole may not be physically relevant.  

Therefore, we dedicate this section to assess the relevance, the physical meaning, 

and the dynamics of the DM.  

 

3.5.1 Is the dipole structure a relevant feature in the 

Mediterranean?  

 
The first issue we wish to address is whether the DM represents a real feature of 

the Mediterranean climate. To answer this question, we examine how often the 

first and second mode (i.e., the monopole and the dipole) structures occur in the 

winter anomalies of the raw data. To this end, we compute the spatial correlation 

between each mode and the winter anomalies of LHF for both models and 

observations (Fig. 10).  We find that while EOF1 explains most of the variance in 

the LHF, it is EOF2 (the DM) that occurs more frequently in the anomaly structure 

in both observations and models (e.g., the ENSm). While EOF1 captures strong 

interannual events and tracks the large-scale mean, EOF2 captures the recurring 

spatial pattern, which often emerges as a dipole structure. Although this spatially 

predominant role of the DM occurs in all the analyzed datasets, we should note 

several important differences. First, OAflux and ENSm show similar correlations, 

which is consistent with the strong correlations between their first two modes (see 

Section 3). In contrast, NOC shows no clear dominance of EOF2 in the spatial 

structure and misses the peaks of correlations above 0.80, which characterizes 

the EOF2 of OAFlux and ENSm.  
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Fig. 10 Values of the spatial correlation coefficient between the winter mean LHFa 
pattern and the corresponding two leading EOFs for ENSm (1961-2000), NOC (1980-
2004), and OAflux (1958-2010).   
 

 

Another feature in Fig. 10 worth noting is related to the OAflux correlations series 

in the period 2000 to 2010.  Starting from the year 1998, the first mode becomes 

dominant, and the dipole correlation does not exceed 0.55.  This rapid change in 

the time series may suggest a non-stationary statistic for LHF.  As both NOC and 

the models do not cover this period, we cannot use them to support or contrast 

this hypothesis.  However, we test the stationary time series by splitting the 52-

year long OAflux data into 13-year sub-periods and re-computing the EOF analysis 

in each period (Fig. 11). The comparison of the second modes of all of these 

periods reveals a substantial difference in the EOF2 pattern of the last sub-period 

(1998-2010), which does no longer shows the characteristic dipole pattern and in 

which the explained variance drops to 7%.  We also note that by excluding this 

period from the OAflux EOF decomposition, we find an explained variance for the 

EOF2 of 26%, which is close to what is explained by the ENSm-EOF2 (27%).  Far 

from being conclusive, this observed change in the EOF2 structure during the 
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1998 to 2010 period may suggest a recent change in the climate controls of this 

region. The high number of years with anomalies resembling the dipole structure 

(e.g., spatial correlations as high as 0.80) is an indication that this statistical mode 

is an expression of a real physical mechanism. In the next section, we explore the 

forcing dynamics that lead to the DM. 

 

 
Fig. 11 EOF1 and EOF2 of winter LHFa for OAflux dataset computed over different 
periods:(a,b) 1959-1971; (c,d) 1972-1984; (e,f) 1985-1997; (g,h) 1998-2010.  Units 
are in [W/m2] 
 

3.5.2 What mechanism controls the dipole mode? 

 

From the previous analysis, we conclude that the DM is a recurrent physical 

structure in the Mediterranean Sea and controls an important fraction of the 

spatial and temporal variability of the LHF anomalies.  Josey et al. (2011) used a 

regression analysis to relate this dipole structure to the EA/WR pattern and 
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hypothesized that “the EA/WR pattern produces a northerly flow of cold dry air 

over the eastern basin and a southerly flow of relatively warm moist air over the 

western basin, leading to significant heat flux anomalies that are opposite in sign.” 

Following this hypothesis, we perform a budget analysis to reconstruct the 

contribution of winds, humidity, and sea surface temperature on the LHF field 

using a bulk formula. The bulk formula consists of physical parameterizations that 

generally relate SST and atmospheric boundary layer variables with air-sea 

exchange fluxes of heat, momentum, and mass (e.g., Josey et al. 1999; Vickers 

and Mahrt 2006). In particular, we estimate the LHF field from wind speed ( ), 

2m air specific humidity (Qa), and SST.  We examine this relationship to quantify 

the contribution of each to the generation of the DM. We isolate each variable 

contribution by computing the “partial” composites of LHF anomalies for years 

(the winter season) when the DM is most active.  We obtain these partial 

composites by calculating the LHF field using the composite for one variable and 

the climatologies of the other two. With this approach, the reconstructed LHF field 

will retain the contributions to the DM resulting from a particular variable, allowing 

its quantification by subtracting the partial LHF composite from the total LHF 

composite. For the composite, we select years in which the absolute value of the 

PC2 was above a threshold value set to 1.3, and then we subtract the average 

field of the positive years from the average field of the negative years. For this 

analysis, we use the RCMs, the ENSm, and the OAflux observational dataset, 

which does not provide ; as a result, we obtain this variable from the NCEP 

dataset (reanalysis).  

 

Before presenting the parameter-specific contributions to the DM, we verify that 

our bulk formula can effectively reconstruct the LHF field. In Fig. 12, the first 

column shows the winter LHFa composite while the second column shows the 

same field but reconstructed using the bulk formula with the composites of , 

Qa, and SST. Despite some minor differences, these two columns are similar and 

therefore, we conclude that the reconstruction is successful. It is worth 

mentioning that the DM composite pattern of the models can differ. For instance, 
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OURANOS shows a weak dipole while ETZH shows a strong dipole. We present the 

specific contributions of  and Qa to the DM mode in the third and in the fourth 

columns, respectively, of Fig. 12.  This figure does not show the SST contribution 

to the LHFa composite, as this is significantly smaller than  and Qa 

contributions. While  and Qa are the dominant contributors to the east-west 

anomaly of opposite signs, their contributions differ. In both the observation and 

the ENSm, the LHF reconstruction composite obtained using Qa anomalies, 

produces strong negative LHF anomalies in a range of -15 to -20 W/m2 in the 

eastern basin and weak positive anomalies in a range of 5 to 10 W/m2 in the 

western basin.  This spatial pattern closely resembles the corresponding DM 

presented in the second column of Fig. 12 and the EOF2 patterns of Fig. 7. The 

LHF reconstruction composite obtained using the  composite produces negative 

anomalies in a range of -3 to -7 W/m2 in the eastern basin and positive anomalies 

of 5 to 10 W/m2 in the western basin. This pattern accounts for the amplitude of 

the positive anomalies in the western basin. This analysis helps us identify specific 

humidity as an important contributor to the DM. In the next section, we 

investigate the mechanism controlling the Qa in the OAflux observational dataset. 
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Fig.12 LHFa composites. Bulk formula reconstruction of the LHF anomalies using 
combination of climatological and composite fields of SST, wind speed (|u|), and 2m air 
specific humidity (Qa). For the composite, we selected years where the absolute value of 
the PC2 were above a threshold value set to 1.3 units. Then we subtracted the average 
field of the positive years to the average field of the negative years. The first column 
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shows the LHFa composite computed directly from the dataset (no bulk formula is used) 
while the second column shows the reconstruction using all composite fields. In the third 
and fourth column, only one composite filed is used for each reconstruction, respectively, 
|u|, and Qa. For the OAflux reconstruction we used |u| from NCEP reanalysis. Units are 
[W/m2]. 
 

3.5.2.1 What mechanism controls the Qa?  
 
The LHF reconstruction exercise reveals that both winds and relative humidity play 

an important role in the formation of the DM. However, the role of winds is likely 

not limited to direct effects on the LHF. If we examine a composite of wind 

direction anomalies during DM, we find southerly winds over the western basin 

and northerly winds over the eastern basin (Fig. 13a). As we have hypothesized, 

this dipole in the wind direction has an indirect effect on the LHF through the 

horizontal advection dynamics of the Qa (e.g., transporting dryer northern air 

over the eastern basin and wetter southern air over the western basin during the 

positive phase of the DM). The rate of change of Qa associated with changes in 

horizontal advection is 

 
 
where 𝑢⃗ 𝐻 and ∇𝐻𝑄𝑎 denote the horizontal wind vector and the horizontal gradient 

of 𝑄𝑎, respectively, and the second term on the right represents the dissipation of 

the specific humidity with timescale 𝜏. If we split both wind field and specific 

humidity into both a mean component, or climatological component, and a 

fluctuation around the mean state, or an anomaly with respect to the climatology, 

we derive    

 
Combining (1), (2a), and (2b), and neglecting the second-order term, 𝑢⃗ 𝐻𝑎𝑛𝑜 ∙
∇𝐻𝑄𝑎𝑎𝑛𝑜, we obtain      
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This equation can be interpreted as follows. The rate of change of the Qa anomaly 

resulting from advection processes is the sum of two contributions: the mean 

advection of the Qa anomaly and an anomalous advection of the mean specific 

humidity.  

Given that  𝜕𝑡 ≪ 𝜏, the dominant balance in Eq. 3, obtained by setting the right-

hand side to zero, results in an explicit solution for the specific humidity: 

 

 
 
To evaluate the contribution of each advective component to the Qa tendency 

associated with the DM, we define the anomalous terms of Eq. 4 using the 

composites of values during years in which the DM was strong.  Furthermore, to 

optimize the fit of Eq. 4 when reconstructing the DM-driven 𝑄𝑎𝑎𝑛𝑜 (Fig. 13a,b), the 

dissipation timescale is set to 𝜏 = 0.5d, which lies within the range of the 

dissipation timescales (𝜏𝑚𝑖𝑛 = 6 ℎ𝑜𝑢𝑟𝑠, 𝜏𝑚𝑎𝑥 = 3 𝑑𝑎𝑦𝑠, 𝜏𝑚𝑒𝑎𝑛 = 1 𝑑𝑎𝑦 ) estimated from 

the auto-decorrelation function of six-hourly specific humidity data over the 

Mediterranean. A comparison of the advection contributions (Fig. 13c,d) reveals 

that anomalous advection dominates the spatial structure and size of the 𝑄𝑎𝑎𝑛𝑜 

(Fig. 13a). Large values of the anomalous advection term 𝑢⃗ 𝐻𝑎𝑛𝑜 ∙ ∇𝐻𝑄𝑎𝑐𝑙𝑚 are due to 

the component of anomalous wind circulation oriented normal to the mean 

gradient of 𝑄𝑎𝑐𝑙𝑚. This finding is consistent with our initial hypothesis:  that changes 

in winds play an even more important indirect role in the LHF dipole by influencing 

the advection dynamics of the Qa. Although this analysis does not constitute a full 

budget of the Qa, it does suggest that wind-induced anomalous advection is a 

major contributor to the dipole in Qa. 
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Fig.13 (a) Specific humidity anomaly composite for years of strong-phase DM. (b) 
Specific humidity anomaly computed using Eq. 4 with τ = 12 hours. (c) and (d) show the 
two terms of the right hand side of Eq. 4 representing the mean  advection of the 
specific humidity anomaly and of the anomalous advection of the mean specific 
humidity, respectively.  In this analysis, we used 2m air specific humidity from OAflux, 
and 10m wind components from NCEP reanalysis. Units are in [g kg2]. 
 

3.6 Summary and Discussion 

In this work, we used two observational datasets, OAflux and NOC, and an 

ensemble of 12 RCMs from the EU-FP6 ENSEMBLES to investigate the dynamics 

of winter heat flux variability in the Mediterranean Basin from interannual to 

decadal time scales during 1958 to 2011. We described the first two leading 

modes as they appear in both observational and model data, and then we studied 

how they are connected with the most relevant atmospheric modes of variability 

for the Mediterranean region.  The first few EOFs of NHF and LHF were strongly 

correlated (R=~0.99) and the LHF dominated NHF spatial and temporal variability 

(Fig. 1 and 2). Thus, our analysis focused on identifying the dynamics controlling 

the two dominant modes of LHF variability, which explains about ~80% of the 

total variance (e.g., Papadopoulos et al. 2012b; Ruiz et al. 2008; Zveryaev and 

Hannachi 2011) (Figs. 4 and 7).  
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The first mode of LHF has been characterized by a monopole and reflects coherent 

variations over the entire Mediterranean Basin. Depending on the datasets, this 

mode explains about 40% to 60% of the total variance.  Its temporal variability, 

which tracks the domain average fluctuations of LHF (up to R=0.99, see Fig. 5), 

is strongly correlated with the atmospheric variability of the EA (R=0.5) (Zveryaev 

and Hannachi 2011). However, we found that the PC1 of LHF exhibited, after 

1990, a clear trend not visible in the EA index. The nature of this LHF trend has 

been attributed to SST-driven changes in the surface humidity gradient linked to 

global warming (Mariotti 2010; Skliris et al. 2011). Moreover, using six-year low- 

and high-pass filtered time series on the detrended data, we found (Fig. 6) that 

the dynamical link between the first mode and the EA slightly decreased at high 

frequencies while it increased at low frequencies.  

 

In contrast to the first mode, the second mode (i.e., DM) of LHF does not show 

any trend and has been characterized by a well-defined dipole structure, which 

represents opposite variations of LHF in the eastern and western Mediterranean 

Sea basins. Depending on the datasets analyzed this mode explains from 16% to 

26% of the total variance. The analysis of the LHF PC2 revealed a significant 

correlation with the EA/WR index, which to the best of our knowledge is a new 

finding. While previous studies have characterized this DM statistically, we 

explored the spatial relevance and forcing dynamics of the mode.  Given that the 

dipole could emerge statistically as an orthogonal pattern to the first EOF, we 

assessed the relevance of this mode examining how often the DM explains the 

spatial structure of the observed interannual anomalies of LHF. Our analysis 

revealed that despite the DM accounts only for about one fifth of the total 

variance, the spatial pattern of LHF winter anomaly is often determined by the 

phase of the second mode, which recurrently shows spatial correlations with 

observations above R=0.80 (Fig. 10). 

 

To understand the mechanism responsible for the generation of the DM, we 

performed a budget analysis of the LHF winter anomalies using bulk formulas. We 

found that the main driver of the dipole structure is associated with changes in 
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the regional atmospheric circulation of EA/WR mode. Changes in the winds impact 

the LHF primarily through the specific humidity and wind speed (Fig. 12). The 

changes in specific humidity are controlled by the EA/WR wind-induced anomalous 

advection of cold (dry) air masses from the northeast and warm (moist) air 

masses from the southwest (Fig. 13). Although this work focuses on statistically 

derived modes of LHFa, there are direct connections between these modes and 

fundamental processes, such as the deep water formation in the main convection 

regions occurring, occurring in the basin. To establish a relationship between the 

results of our EOF analysis and the deep water formation, we examined the time 

series of the winter latent heat flux in the convection regions defined as in Josey 

at al. (2011). There are three specific regions in the Mediterranean Sea where 

dense water formations occur: the Gulf of Lions (GOL), the Aegean Sea (EAG), 

and the southern Adriatic Sea (ADR). Fig. 14a shows the time series of the box-

averaged LHFa for both observations and models. Except for the GOL region, and 

similar to most of the analyses performed in this work, OAflux and ENSm are 

highly correlated while NOC shows some major differences. Most of the models 

(grey curves of Fig. 14a) are close to the ENSm in all the regions analyzed and 

the inter-model spread is significant only for few models and only during few 

specific winters. Overall, the simulations are consistent with OAflux observations.  

 

To assess the importance of the first two basin modes of LHFa in the air-sea heat 

exchange over the convection regions, we computed the correlation between the 

box-averaged time series and the first two PCs (Fig. 14b). In addition, we 

estimated the total variance explained by these two modes by computing the 

correlation between these box-averaged anomalies and the best fitting model 

obtained by linearly combining the PCs (LIN, LIN= α PC1 + β PC2, where α and β 

are two fitting parameters determined by solving the least square problem). For 

both observations and models, the two leading modes show large loading in the 

GOL region (Fig. 4 and 7); therefore, it is not surprising that both PCs, and thus 

the LIN models, are significantly correlated with the LHFa times series in that 

region. The correlation for OAflux and ENSm is about 0.70 for both PCs, and it 

increases to 0.96 for the LIN model of OAflux and 0.99 for that of ENSm. Excluding 
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the NOC dataset, in the Aegean Sea region we found significant correlations for 

PCs of OAflux, ENSm, and most of the models. However, in this region, the PC1 

is more strongly correlated than PC2 (e.g., for OAflux, R=0.86 for PC1 and R=-

0.34 for PC2), which shows negative correlations that are consistent with the 

dipole nature of the second mode. The situation is different for the ADR region, 

where, except for the NOC dataset, PC1 shows the highest correlation among the 

all the convection regions considered, and PC2 is never significantly correlated. 

The last result is not surprising if one considers that in the ADR region the EOF2 

loading is almost null (Fig. 7). In conclusion, the LHFa time series in the convection 

regions are tightly connected to the first two leading modes of LHFa, which when 

combined (i.e., LIN model) explain most of the LHF variability in the convection 

regions.  
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Fig.14 Variability over the convection regions.  (a) Time series of winter LHF anomalies 
for observations, models, and ENSm, in the three main dense water formation regions: 
Gulf of Lion (GOL), southern Adriatic Sea (ADR), and Aegean Sea (AEG). (b) Correlation 
between the first two leading PCs and the time series presented in (a). The “LIN” raw 
shows the correlation between the box-averaged winter LHF anomalies and the best 
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linear model obtained by linearly combining the first two PCs. The magenta outlined 
regions in the map between figures (a) and (b) show the areas chosen for the 
calculation of the box-averaged time series shown in (a). In the subfigure (a) units are 
in [W/m2]. 
 
We note that the DM structure has weakened during the last decades (1996-2010) 

and its pattern appears less frequently in the LHF anomaly maps (Fig. 10, OAflux). 

Further analyses using EOFs reveal that the statistics of the DM are no longer 

stationary after the 1990s, and the DM no longer emerges as the second mode. 

Given the important role that the DM plays in determining the pattern of LHF 

anomalies, which in turn is an important factor controlling the deep water 

formation (e.g., Josey 2003), understanding significance and dynamics of these 

decadal changes in the DM  may enhance our predictability of the Mediterranean 

climate. Furthermore, previous studies report how this region is one of the climate 

change hot-spots highlighted by the IPCC simulations (de Sherbinin 2014; Giorgi 

2006). Further analyses, for example of MedCORDEX and CMIP5 climate models, 

are required to explore if these recent decadal changes in the DM are linked to 

climate change or natural internal variability. 
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This chapter we studied the present climate variability of the Iberian Peninsula 

using a multi-model ensemble of 4 regional climate models and observations. We 

first focused on the mean fields and interannual variability and then investigated 

climate extremes of temperature and precipitation. The content of this chapter 

has been published in the following manuscripts:  

 
Jimenez-Guerrero P, Montavez JP, Dominguez M, Romera R, Fita L, Fernandez J, 
Cabos WD, Liguori G, Gaertner MA (2013)  
Mean Fields and Interannual Variability in RCM Simulations over Spain: The 
ESCENA Project.  
Clim Res 57 (3): 201–20. 
   
Dominguez M, Romera R, Sanchez E, Fita L, Fernandez J, Jimenez-Guerrero 
P, Montavez JP, Cabos WD, Liguori G, Gaertner MA (2013)  
Present-climate precipitation and temperature extremes over Spain from a set of 
high resolution RCMs.  
Clim Res 58: 149-164, doi: 10.3354/cr01186 
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We have a c losed circ le  

of  consistency here :  the  laws of  

physics  produce complex 

systems ,  and these  complex 

systems lead to  consciousness ,  

which then produces  

mathematics ,  which can then 

encode in a  succinct  and 

inspiring way the very 

under lying laws of  physics  that  

gave rise  to  i t .  
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5.1   General conclusions  
 
 

• The Mediterranean is expected to be one of the most prominent and 

vulnerable climate change "hot spots" of the 21st century, and the 

physical mechanisms underlying this finding are still not clear. 

• Despite the limitation and the uncertainty characterizing the regional 

climate models, the multi-model ensemble has proven to be a valid 

approach to study the observed climate for both Mediterranean Basin 

and Iberian Peninsula climate.    

• The quality of the observational datasets is crucial to evaluate 

correctly the simulated present climate and to assess model biases 

essential for climate projections evaluation.  

• The comparison between model and observations based on 

subregions with coherent climate has proven to improve the model 

validation and highlight model specific biases     

 

5.2   Conclusions by chapters   
 

 

Med-CORDEX initiative for Mediterranean Climate studies  

 

• To provide robust climate change information for use in 

Vulnerability/Impact/Adaptation assessment studies is important to 

consider the Mediterranean as a fully coupled environmental system.  

• The Med-CORDEX initiative aims at coordinating the Mediterranean 

climate modeling community towards the development of fully 

coupled regional climate simulations, improving all relevant 
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components of the system, from atmosphere and ocean dynamics to 

land surface, hydrology and biogeochemical processes. 

• The coordination activities and the scientific outcomes of Med-

CORDEX can produce an important framework to foster the 

development of regional earth system models in several key regions 

worldwide. 

 

A multi-model ensemble view of winter heat flux dynamics and 

the dipole mode in the Mediterranean Sea  

 

 

• The variability of the air-sea heat fluxes is strongly captured by the 

variability in the latent heat flux, which has available estimations 

covering longer period with higher spatial resolution. In winter, the 

first few modes of variability between net and latent heat flux are 

essentially the same.    

• The second mode of winter heat flux variability, which contribute to 

the anomaly maps of individual year more than the leading mode, is 

connected to the East Atlantic/Western Russia (EA/WR) atmospheric 

teleconnection pattern.    

• A simple reconstruction of the heat flux variability over 

Mediterranean Sea deep-water formation regions reveals that the 

combination of the first two modes explains over 90% of the heat 

flux variance in these regions. 

 

Climate variability of the Iberian Peninsula 
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• No single model outperforms the rest of the models for all the 

variables analyzed. Depending on the variable and season, different 

models stand out. 

• The different performance of the RCMs in different seasons and 

variables encourages the use of the whole ensemble of simulations, 

taking the range of biases as an indicator of model uncertainty.  

• The ensemble of simulations is able to correct the problems 

associated with the interannual variability for precipitation, showing 

substantially higher temporal correlation than the best individual 

model. 

• The northern coast is an area with low the consecutive dry days (<1 

mm) and high very heavy precipitation days’ index values. By 

contrast, the spread of the results for the southwestern area is 

higher, and there is a clear tendency of most models to 

underestimate precipitation. 

• All the models simulate correctly the spatial distribution of the 

temperature percentile. REMO, which is the only model which 

compare well with the observed percentile of maximum temperature, 

overestimate the indices related with the minimum temperature  
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