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Canonical correlation analysis (CCA) is often used to analyze correlations
between the variables of two random vectors. As an extension of CCA,
multiple-set canonical correlation analysis (MCCA) was proposed to analyze
correlations between multiple-set random vectors. However, sometimes in-
terpreting MCCA results may not be as straightforward as interpreting CCA
results. Principal CCA (PCCA), which uses CCA between two sets of prin-
cipal component (PC) scores, was proposed to address these difficulties in
CCA. We propose multiple-set PCCA (MPCCA) by applying the idea to
multiple-set of PC scores. PCs are ranked in descending order according to
the amount of information they contain. Therefore, it is enough to use only
a few PC scores from the top instead of using all PC scores. Decreasing
the number of PC makes it easy to interpret the result. We confirmed the
effectiveness of MPCCA using simulation studies and a practical example.

keywords: Canonical correlation analysis, Multiple-set, Multivariate anal-
ysis, Principal components analysis.

1 Introduction

Canonical correlation analysis (CCA) is often used to examine the relationship between
the variables of two random vectors (Anderson, 1951, 2003; Hotelling, 1935, 1936). How-
ever, the canonical variables may not to be easy to interpret (Ter Braak, 1990), and it
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may be difficult to estimate the inverse matrix necessary for CCA if a high correlation
coefficient is included in the correlation matrix. Principal CCA (PCCA) was proposed as
one method to address these difficulties (Yamamoto et al., 2007). PCCA is CCA of two
sets of principal component (PC) scores, where each set of PC scores (or components)
is calculated from individual random vectors using principal component analysis (PCA)
(Anderson, 1963, 2003; Hotelling, 1933). PC scores have two characteristics: (I) PCA
transforms a given data set of correlated variables into a new data set of uncorrelated
variables, or PC scores, and (II) PCs are ranked in descending order according to the
amount of information they contain. Thus, when the researcher uses PCCA, only a few
PCs with high information content are used in many cases. When comparing PCCA
using only a few PCs from the top and PCCA using all PCs, there is only a small
loss of information. It is easier to interpret PCCA results using only a few PCs from
the top. The following methods were proposed for determining the number of PCs for
PCCA: cumulative contribution rate (Palatella et al., 2010), Kaiser criterion (Skourkeas
et al., 2013), information criterion (Ogura, 2010; Ogura et al., 2013). As a theoreti-
cal verification of PCCA, Sugiyama et al. (2007) showed that the limit distribution of
the difference between principal canonical correlation coefficient (PCCC) in PCCA and
canonical correlation coefficient (CCC) in CCA was a normal distribution.

By extending CCA, multiple-set CCA (MCCA) was proposed as an analysis method
to determine relevance among three or more sets (Hwang et al., 2013; Kettenring, 1971).
The canonical variables of CCA were determined to maximize CCC, but the number of
multiple-set CCCs (MCCCs) in k sets were obtained kC2. Because there are no canoni-
cal variables that maximize all MCCCs at the same time, several criteria to determine
MCCCs were proposed by Kettenring (1971); Tenenhaus and Tenenhaus (2011) ((i) the
maximum sum of MCCCs, (ii) the maximum sum of squares of MCCCs, (iii) the maxi-
mum sum of absolute values of MCCCs, etc.). MCCA results are complicated because
they are interpreted using the canonical variables of each set and several MCCCs. There-
fore, interpretation of MCCA results may not be as straightforward as interpretation of
CCA results. As a method to address these difficulties, we extend the idea of PCCA
and propose multiple-set PCCA (MPCCA). That is, PC scores are calculated for each
set, and MCCA is performed between PC scores in each set. Similarly to PCCA, it
is possible to select the number of PC scores used by MPCCA. PCA can be based on
either the covariance matrix or the correlation matrix. The cumulative contribution
rate criterion can be used for both of the covariance matrix and the correlation matrix.
In this paper, the number of PC scores used for MPCCA is determined based on the
cumulative contribution rate criterion that can be used with high versatility. Because
the calculation of MPCCC is more complicated than that of PCCC, it is difficult to
verify using the same theoretically techniques. Therefore, we verify the effectiveness of
MPCCA with several population correlation matrices in simulation studies. We used
a combination of the following conditions for verification: the correlation levels within
blocks, scored as high or low, and the correlation levels between blocks, scored as high
or low. Furthermore, using a practical example, we consider whether interpretation of
MPCCA is simpler than interpretation of MCCA.

In Section 2, we derive MPCCA in population and sample. In Section 3, we verify
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the effectiveness of MPCCA by several simulation studies. In Section 4, we discusses
interpretation of MPCCA results using a practical example. In Section 5, we examine
the difference of MPCCCs by some cumulative contribution rate criteria. Conclusions
are presented in Section 6.

2 Derivation of MPCCA

CCC between two sets is determined to be the maximum in CCA. However, the number
of MCCCs is kC2 in the case of k-set. Several methods for determining MCCCs have
been proposed by Kettenring (1971); Tenenhaus and Tenenhaus (2011). We extend those
methods to MPCCA.

2.1 Population of MPCCA

We summarize the notation based on Anderson (2003); Ogura et al. (2013). Suppose the
random vector X of (p1 + · · ·+ pk) components has a covariance matrix Ψ. Because we
are only interested in the variance and covariance in this section, we assume E(X) = 0
without loss of generality. We partition X into X(1), . . . ,X(k) of p1, . . . , pk components,
respectively, as follows:

X =


X(1)

...

X(k)

 , X(1) =


x
(1)
1
...

x
(1)
p1

 , . . . ,X(k) =


x
(k)
1
...

x
(k)
pk

 .

Similarly, the {(p1 + · · ·+ pk)× (p1 + · · ·+ pk)} covariance matrix Ψ is partitioned into
a pi × pj matrix Ψ(ij) (i, j = 1, . . . , k):

Ψ = Cov(X) =


Ψ(11) · · · Ψ(1k)

...
. . .

...

Ψ(k1) · · · Ψ(kk)

 . (1)

Let λ
(1)
1 ≥ · · · ≥ λ

(1)
p1 > 0 be the ordered latent roots of Ψ(11), and let γ

(1)
1 , . . . ,γ

(1)
p1 be

the corresponding latent vectors with γ
(1)
a

′
γ
(1)
a′ = δaa′ , where δaa′ is the Kronecker delta,

i.e., δaa = 1 and δaa′ = 0 for a 6= a′. This definition is repeated. Let λ
(k)
1 ≥ · · · ≥ λ(k)pk > 0

be the ordered latent roots of Ψ(kk), and let γ
(k)
1 , . . . , γ

(k)
pk be the corresponding latent

vectors with γ
(k)
a

′
γ
(k)
a′ = δaa′ . We can decompose Ψ(11), . . . ,Ψ(kk) as

Γ(1)′Ψ(11)Γ(1) = Σ(11) = Λ(1), . . . ,Γ(k)′Ψ(kk)Γ(k) = Σ(kk) = Λ(k), (2)

where Λ(1) = diag(λ
(1)
1 , . . . , λ

(1)
p1 ), . . . ,Λ(k) = diag(λ

(k)
1 , . . . , λ

(k)
pk ) are the diagonal matri-

ces, and Γ(1) = (γ
(1)
1 · · ·γ

(1)
p1 ), . . . ,Γ(k) = (γ

(k)
1 · · ·γ

(k)
pk ) are the orthonormal matrices.
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PC scores of X(1), . . . ,X(k) are then defined by U (1) = Γ(1)′X(1), . . . ,U (k) = Γ(k)′X(k).
We denote PC scores as

U =


U (1)

...

U (k)

 , U (1) =


u
(1)
1
...

u
(1)
p1

 , . . . ,U (k) =


u
(k)
1
...

u
(k)
pk

 .

Because PCs descend in the order of the amount of information that they contain, we
use the first to q1th PC scores of U (1). This definition is repeated. The first to qkth PC
scores of U (k) are defined as (1 ≤ q1 ≤ p1, . . . , 1 ≤ qk ≤ pk):

U (1)∗ =


u
(1)
1
...

u
(1)
q1

 , . . . ,U (k)∗ =


u
(k)
1
...

u
(k)
qk

 .

The covariance matrix of

U∗ =


U (1)∗

...

U (k)∗


is defined by

Cov(U∗) = Σ∗ =


Σ(11)∗ · · · Σ(1k)∗

...
...

Σ(k1)∗ · · · Σ(kk)∗

 , (3)

where Σ(ij)∗ is a qi × qj matrix. There is a relationship between Ψ and Σ∗ such that

Γ∗′ΨΓ∗ = Σ∗, (4)

which can be expressed as

Σ∗ =


Γ(1)∗′Ψ(11)Γ(1)∗ · · · Γ(1)∗′Ψ(1k)Γ(k)∗

...
...

Γ(k)∗′Ψ(k1)Γ(1)∗ · · · Γ(k)∗′Ψ(kk)Γ(k)∗



=


Λ(1)∗ Γ(1)∗′Ψ(1k)Γ(k)∗

. . .

Γ(k)∗′Ψ(k1)Γ(1)∗ Λ(k)∗

 ,

where

Γ∗ =


Γ(1)∗ 0

. . .

0 Γ(k)∗

 , Γ(1)∗ = (γ
(1)
1 · · ·γ

(1)
q1 ), . . . ,Γ(k)∗ = (γ

(k)
1 · · ·γ

(k)
qk

),
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and Λ(1)∗ = diag(λ
(1)
1 , . . . , λ

(1)
q1 ), . . ., Λ(k)∗ = diag(λ

(k)
1 , . . . , λ

(k)
qk ).

Consider an arbitrary linear combination, v(i)∗ = α(i)∗′U (i)∗, of U (i)∗ in the same

method as CCA, where α(i)∗ = (α
(i)∗
1 · · ·α(i)∗

qi )′. Because the correlation of c1v
(i)∗ and

c2v
(j)∗ is the same as the correlation of v(i)∗ and v(j)∗ (c1, c2: constant), we can apply

arbitrary normalization to α(i)∗. We require α(i)∗ to be such that v(i)∗ has unit variance:

1 = E(v(i)∗2) = E(α(i)∗′U (i)∗U (i)∗′α(i)∗) = α(i)∗′Σ(ii)∗α(i)∗.

We note that E(v(i)∗) = E(α(i)∗′U (i)∗) = α(i)∗′E(U (i)∗) = 0. The correlation between
v(i)∗ and v(j)∗ is

E(v(i)∗v(j)∗) = E(α(i)∗′U (i)∗U (j)∗′α(j)∗) = α(i)∗′Σ(ij)∗α(j)∗.

CCA defines the canonical variables such that CCC is maximized. MCCA requires a
criterion for determining the canonical variables for MCCC calculated for each set. The
following three methods are proposed as criteria focused on MCCCs (Kettenring, 1971;
Tenenhaus and Tenenhaus, 2011): (i) the maximum sum of MCCCs for all combinations
(SUMCOR), (ii) the maximum sum of squares of MCCCs for all combinations (SSQ-
COR), and (iii) the maximum sum of absolute values of MCCCs for all combinations
(SABSCOR).

First, we discuss using SUMCOR. To obtain the first MPCCCs of all combinations,

we take α(i)∗ = α
(i)∗
1 = (α

(i)∗
11 · · ·α

(i)∗
1qi

)′. v
(i)∗
1 = α

(i)∗
1

′
U (i)∗ is the normalized linear

combination of U (i)∗ with the maximum sum of the correlation coefficients for all com-
binations:

max
α(1)∗

1 ,...,α(k)∗
1

k−1∑
i=1

k∑
j=i+1

α
(i)∗
1

′
Σ(ij)∗α

(j)∗
1 , (5)

where the condition of E(v
(i)∗2
1 ) = 1 is satisfied. The first MPCCCs are defined as

ρ
(ij)∗
1 = Cor(v

(i)∗
1 , v

(j)∗
1 ). To obtain the bth MPCCC for all combinations, we take

α(i)∗ = α
(i)∗
b = (α

(i)∗
b1 · · ·α

(i)∗
bqi

)′ (b = 2, . . . ,min(qi)). We consider finding the bth linear

combination of U (i)∗, say v
(i)∗
b = α

(i)∗
b

′
U (i)∗, corresponding to all linear combinations

that are uncorrelated with v
(i)∗
1 , . . ., v

(i)∗
b−1. These have the maximum sum of correlation

coefficients for all combinations:

max
α(1)∗

b ,...,α(k)∗
b

k−1∑
i=1

k∑
j=i+1

α
(i)∗
b

′
Σ(ij)∗α

(j)∗
b , (6)

where the conditions of E(v
(i)∗2
b ) = 1 and E(v

(i)∗
1 v

(i)∗
b ) = · · · = E(v

(i)∗
b−1v

(i)∗
b ) = 0 are

satisfied (b = 1, . . . ,min(qi)). The bth MPCCCs are defined as ρ
(ij)∗
b = Cor(v

(i)∗
b , v

(j)∗
b ).

This method of analysis includes CCA as a special case when k = 2.
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Similarly, the first MPCCCs using SSQCOR and SABSCOR are calculated using α
(i)∗
1

set as follows:

SSQCOR : max
α(1)∗

1 ,...,α(k)∗
1

k−1∑
i=1

k∑
j=i+1

(
α

(i)∗
1

′
Σ(ij)∗α

(j)∗
1

)2
, (7)

SABSCOR : max
α(1)∗

1 ,...,α(k)∗
1

k−1∑
i=1

k∑
j=i+1

∣∣∣α(i)∗
1

′
Σ(ij)∗α

(j)∗
1

∣∣∣ , (8)

where the condition of E(v
(i)∗2
1 ) = 1 is satisfied. The bth MPCCCs using SSQCOR and

SABSCOR are calculated using α
(i)∗
b set as follows:

SSQCOR : max
α(1)∗

b ,...,α(k)∗
b

k−1∑
i=1

k∑
j=i+1

(
α

(i)∗
b

′
Σ(ij)∗α

(j)∗
b

)2
, (9)

SABSCOR : max
α(1)∗

b ,...,α(k)∗
b

k−1∑
i=1

k∑
j=i+1

∣∣∣α(i)∗
b

′
Σ(ij)∗α

(j)∗
b

∣∣∣ , (10)

where the conditions of E(v
(i)∗2
b ) = 1 and E(v

(i)∗
1 v

(i)∗
b ) = · · · = E(v

(i)∗
b−1v

(i)∗
b ) = 0 are

satisfied.
We show a conceptual diagram of MPCCA in Figure 1, when k = 3, p1 = p2 = p3 = 5

and q1 = q2 = q3 = 2.

2.2 Estimation of MPCCA

Let T be the sample covariance matrix based on the sample

X =


X(1)

...

X(k)

 , X(1) =


x
(1)
1
...

x
(1)
p1

 , . . . ,X(k) =


x
(k)
1
...

x
(k)
pk


of size N = n+ 1, and partition T as

T =


T (11) · · · T (1k)

...
...

T (k1) · · · T (kk)


in accordance with the partition of X. The latent roots λ

(i)
1 ≥ · · · ≥ λ

(i)
pi of Ψ(ii) and

the corresponding latent vectors γ
(i)
1 , . . . ,γ

(i)
pi are then estimated using the latent roots

`
(i)
1 ≥ · · · ≥ `

(i)
pi of T (ii) and the corresponding latent vectors h

(i)
1 , . . .h

(i)
pi . We can

decompose T (11), . . . , T (kk) as

H(i)′T (ii)H(i) = S(ii) = D(i),
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Figure 1: Conceptual diagram of MPCCA when k = 3, p1 = p2 = p3 = 5 and q1 = q2 =
q3 = 2. First, each set of PC scores is calculated from the individual random
vectors using PCA. Second, MCCA is applied using selected PC scores.

where D(i) = diag(`
(i)
1 , . . . , `

(i)
pi ) is the diagonal matrix, and H(i) = (h

(i)
1 · · ·h

(i)
pi ) is the

orthonormal matrix. PC scores of X(i) are defined by U (i) = H(i)X(i). We use the first
to qith PC score of U (i) (1 ≤ qi ≤ pi):

U (1)∗ =


u
(1)
1
...

u
(1)
q1

 , · · · ,U (k)∗ =


u
(k)
1
...

u
(k)
qk

 .

The covariance matrix of

U∗ =


U (1)∗

...

U (k)∗


is then estimated by Σ∗:

S∗ = H∗′TH∗

=


S(11)∗ · · · S(1k)∗

...
...

S(k1)∗ · · · S(kk)∗

 =


D(1)∗ H(1)∗′T (1k)H(k)∗

. . .

H(k)∗′T (k1)H(1)∗ D(k)∗

 ,
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where

H∗ =


H(1)∗ 0

. . .

0 H(k)∗

 , H(i)∗ = (h
(i)
1 · · ·h

(i)
qi ),

and the diagonal matrix is given as D(i)∗ = diag(`
(i)
1 , . . . , `

(i)
qi ). Using the same pro-

cedure as Subsection 2.1, the bth MPCCCs are estimated to be r
(ij)∗
b = ρ̂

(ij)∗
b (b =

1, . . . ,min(qi)).

3 Simulation studies

It was difficult to verify the effectiveness of MPCCA by a logical method because the
calculation of MPCCC was complicated. We verified the effectiveness of MPCCA by
simulation studies in five cases. We used Mathematica version 11.0 (Wolfram Research,
2016) for the calculation of MPCCA and MCCA. The population correlation levels within
and between blocks were set for the following four cases (k = 3):

• Case 1: The correlation levels within blocks and between blocks were high (p1 =
p2 = p3 = 5).

• Case 2: The correlation level within blocks was high, and the correlation level
between blocks was low (p1 = 9, p2 = 10, p3 = 11).

• Case 3: The correlation level within blocks was low, and the correlation level
between blocks was high (p1 = p2 = p3 = 5).

• Case 4: The correlation levels within blocks and between blocks were low (p1 = 9,
p2 = 10, p3 = 11).

In this paper, the correlation level was determined as follows. For each correlation
matrix Φ(ii) or Φ(ij), the number of correlation coefficient absolute values at or above
0.4 was counted. If the mean of count was greater than or equal to 2 within blocks Φ(ii),
the correlation level within blocks was defined as high. Otherwise, the correlation level
within blocks was defined as low. Similarly, if the mean of count was greater than or
equal to 2 between blocks Φ(ij), the correlation level between blocks was defined as high.
Otherwise, the correlation level between blocks was defined as low. Furthermore, Case 5
was set to verify validity when k = 4. The correlation levels within blocks and between
blocks were high (p1 = 5, p2 = 6, p3 = 7, p4 = 8). Palatella et al. (2010) selected
3 PC scores from 15 PC scores using the 95% cumulative contribution rate criterion.
However, using the 95% cumulative contribution rate criterion for most datasets would
hardly reduce the number of PC scores. If the 95% cumulative contribution rate criterion
was used in practical example of Section 4, all PC scores would be used without any
decrease. In this paper, the 70% cumulative contribution rate criterion was used to
reduce the number of PC scores while retaining a lot of information from the original
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dataset. We examined the difference in results obtained using the 60%, 70%, and 80%
cumulative contribution rate criteria in Section 5.

The simulation study was conducted using the following procedure:

1. Generate X of sample size N , where X ∼ N(0 ,Ψ).

2. Calculate the covariance matrix T = Cov(X), and partition T for each set: T (ii)

(i = 1, . . . , k).

3. Applying PCA for each T (ii), transform X into U .

4. Set U∗ using the 70% cumulative contribution rate criterion from U .

5. Calculate MPCCCs from U∗, and MCCCs from X.

6. Independently, repeat steps 1–5 10,000 times.

7. Calculate the mean and the standard deviation (SD) of MPCCC and MCCC.

3.1 Simulation studies for three sets

The population covariance matrix Ψ1 in Case 1 was given as follows:

Ψ1 =

 Ψ
(11)
1 Ψ

(12)
1 Ψ

(13)
1

Ψ
(21)
1 Ψ

(22)
1 Ψ

(23)
1

Ψ
(31)
1 Ψ

(32)
1 Ψ

(33)
1

 ,

Ψ
(11)
1 =


58.8

−65.1 248.6

−17.0 34.3 256.6

−30.7 87.4 105.5 303.2

65.7 −136.9 −53.1 −103.8 249.0

 ,

Ψ
(21)
1 = Ψ

(12)
1

′
=


−25.7 70.9 13.5 14.4 −49.2

2.3 −25.1 −157.4 −97.1 14.6

32.2 −85.3 −18.1 −1.3 67.9

−0.4 1.7 101.8 93.4 −36.3

37.0 −81.7 −9.8 −43.7 102.5

 ,

Ψ
(31)
1 = Ψ

(13)
1

′
=


17.8 −60.1 −44.3 −32.9 46.7

35.6 −92.0 −30.0 −53.6 70.2

3.7 −4.7 −65.3 −47.6 16.9

−16.3 21.1 74.4 88.1 −48.0

−55.0 166.9 59.0 87.9 −127.0

 ,
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Ψ
(22)
1 =


139.3

−5.5 357.9

−38.5 38.1 113.8

14.5 −134.8 −14.6 204.1

−60.4 1.4 46.8 −40.3 154.1

 ,

Ψ
(32)
1 = Ψ

(23)
1

′
=


−41.4 27.6 8.6 −17.2 33.4

−38.7 17.7 30.3 −8.2 32.1

−6.9 75.6 11.8 −36.3 2.8

2.1 −78.1 −3.9 63.5 −16.3

109.9 −18.9 −44.6 20.1 −80.8

 ,

Ψ
(33)
1 =


60.5

35.1 57.7

26.2 12.2 56.0

−15.5 −16.8 −28.6 68.8

−91.2 −78.5 −38.5 36.8 237.8

 .

The population correlation matrix Φ1 transformed from Ψ1 was shown in Supplementary
Material 2; the correlation levels within blocks and between blocks were found to be

high. We applied PCA to Ψ
(11)
1 , Ψ

(22)
1 , and Ψ

(33)
1 . Table 1 showed the latent roots,

contribution rate, cumulative contribution rate, and the latent vectors. Using the 70%
cumulative contribution rate criterion, the variables for PC scores used in MPCCA were
q1 = q2 = q3 = 2. We calculated population MPCCCs using q1 = q2 = q3 = 2 and
population MCCCs using all variables (p1 = p2 = p3 = 5). The results using the criteria
of SUMCOR, SSQCOR, and SABSCOR were shown in Table 2. Population MPCCC
and MCCC had little difference between the three criteria.

The simulation study results using SUMCOR were shown in Table 3. Since each the
SD was small, we compared the mean. For N = 100, the difference between the first

MPCCCs and MCCCs were less than 0.1: (r̄
(12)
1 − r̄(12)∗1 , r̄

(13)
1 − r̄(13)∗1 , r̄

(23)
1 − r̄(23)∗1 ) =

(0.081, 0.067, 0.044), where r̄
(ij)∗
b and r̄

(ij)
b were the mean of the simulation study re-

sults in MPCCCs and MCCCs, respectively. The difference between the second MPC-

CCs and MCCCs were less than 0.15: (r̄
(12)
2 − r̄

(12)∗
2 , r̄

(13)
2 − r̄

(13)∗
2 , r̄

(23)
2 − r̄

(23)∗
2 ) =

(0.083, 0.134, 0.062). Thus, the overall interpretation was not changed by this difference.
When N increased, the difference between MPCCCs and MCCCs tended to decrease.
Thus, MPCCA was a reliable indicator for the analysis results, even for N = 100.

CCCs were known to have a positive bias (Lawley, 1959). Similarly, MPCCCs and
MCCCs were considered to have the bias. Thus, we investigated the bias of MPCCCs
and MCCCs. The differences between the population and the mean of the simulation
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study results in MPCCCs and MCCCs were given below:

(r̄
(12)∗
1 − ρ(12)∗1 , r̄

(13)∗
1 − ρ(13)∗1 , r̄

(23)∗
1 − ρ(23)∗1 ) = (0.057, 0.021, 0.005),

(r̄
(12)∗
2 − ρ(12)∗2 , r̄

(13)∗
2 − ρ(13)∗2 , r̄

(23)∗
2 − ρ(23)∗2 ) = (−0.081,−0.046,−0.019),

(r̄
(12)
1 − ρ(12)1 , r̄

(13)
1 − ρ(13)1 , r̄

(23)
1 − ρ(23)1 ) = (0.036, 0.032, 0.042),

(r̄
(12)
2 − ρ(12)2 , r̄

(13)
2 − ρ(13)2 , r̄

(23)
2 − ρ(23)2 ) = (0.014,−0.021, 0.002),

when N = 100. As N increased to 150 and 200 in MPCCCs and MCCCs, the mean
of the simulation study results approached the population, and the SD became smaller.
The bias was included in MPCCCs and MCCCs, but its influence was minimal on the
simulation study results in Case 1.

The simulation study results using SSQCOR and SABSCOR were shown in Supple-
mentary Material 4. The simulation study results of SUMCOR and SSQCOR similar,
but MPCCCs and MCCCs of SABSCOR were occasionally small. That is, in the sim-
ulation study results of SABSCOR, the mean of MPCCCs and MCCCs was small, and
the SD of MPCCCs and MCCCs was large. Therefore, we recommend using SUMCOR
and SSQCOR in MPCCA. Since SUMCOR and SSQCOR gave similar results, we only
discussed SUMCOR in this paper.

Since the simulation study results were stable at N = 100 in Case 1, we ran the
simulation study with N = 100 in Cases 2, 3, 4, and 5. The population covariance
matrices in Cases 2, 3, and 4 were shown as Ψ2, Ψ3 and Ψ4 in Supplementary Material 1,
and the population correlation matrices were shown as Φ2, Φ3 and Φ4 in Supplementary
Material 2, respectively. The results of PCA for Cases 2, 3, and 4 were shown in Tables
C2, C3, and C4 in Supplementary Material 3. Using the 70% cumulative contribution
rate criterion, PC scores used in Case 2 were q1 = 3, q2 = 4, q3 = 5, PC scores used
in Case 3 were q1 = q2 = q3 = 2, and PC scores used in Case 4 were q1 = 5, q2 = 6,
q3 = 7. The simulation study results of MPCCCs and MCCCs for Cases 2, 3, and 4 were
shown in Tables 4, 5, and 6, respectively. Since our purpose was to compare MPCCC
and MCCC, each table showed MPCCC from 1st to q1th, MCCC also showed the same
1st to q1th.

For Case 2, the difference between MCCCs and MPCCCs were given below:

(r̄
(12)
1 − r̄(12)∗1 , r̄

(13)
1 − r̄(13)∗1 , r̄

(23)
1 − r̄(23)∗1 ) = (0.109, 0.104, 0.069),

(r̄
(12)
2 − r̄(12)∗2 , r̄

(13)
2 − r̄(13)∗2 , r̄

(23)
2 − r̄(23)∗2 ) = (0.099, 0.130, 0.136),

(r̄
(12)
3 − r̄(12)∗3 , r̄

(13)
3 − r̄(13)∗3 , r̄

(23)
3 − r̄(23)∗3 ) = (0.214, 0.297, 0.228).

The first differences were about 0.1, and the second differences were less than 0.15, the
third differences were greater than 0.2. Although MPCCCs loss seemed to be large,
these differences were due to the large bias. The differences between the population and
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the mean of the simulation study results in MPCCCs and MCCCs were given below:

(r̄
(12)∗
1 − ρ(12)∗1 , r̄

(13)∗
1 − ρ(13)∗1 , r̄

(23)∗
1 − ρ(23)∗1 ) = (0.057, 0.035, 0.018),

(r̄
(12)∗
2 − ρ(12)∗2 , r̄

(13)∗
2 − ρ(13)∗2 , r̄

(23)∗
2 − ρ(23)∗2 ) = (−0.006,−0.011, 0.064),

(r̄
(12)∗
3 − ρ(12)∗3 , r̄

(13)∗
3 − ρ(13)∗3 , r̄

(23)∗
3 − ρ(23)∗3 ) = (−0.028, 0.056,−0.005),

(r̄
(12)
1 − ρ(12)1 , r̄

(13)
1 − ρ(13)1 , r̄

(23)
1 − ρ(23)1 ) = (0.134, 0.108, 0.056),

(r̄
(12)
2 − ρ(12)2 , r̄

(13)
2 − ρ(13)2 , r̄

(23)
2 − ρ(23)2 ) = (0.100, 0.067, 0.054),

(r̄
(12)
3 − ρ(12)3 , r̄

(13)
3 − ρ(13)3 , r̄

(23)
3 − ρ(23)3 ) = (0.147, 0.208, 0.130).

MCCCs with many variables had to consider the influence of bias. It was an advantage
that MPCCCs with only the selected PC score had less bias.

For Case 3, the difference between MCCCs and MPCCCs were given below:

(r̄
(12)
1 − r̄(12)∗1 , r̄

(13)
1 − r̄(13)∗1 , r̄

(23)
1 − r̄(23)∗1 ) = (0.380, 0.192, 0.343),

(r̄
(12)
2 − r̄(12)∗2 , r̄

(13)
2 − r̄(13)∗2 , r̄

(23)
2 − r̄(23)∗2 ) = (0.278, 0.477, 0.423).

The first MCCCs were highly correlated, but the correlation between the first MPCCCs
was small compared with that for MCCCs. The second MCCCs showed the high correla-
tion, but the second MPCCCs showed low correlation. Therefore, reasonable simulation
study results were obtained by MCCA, but not by MPCCA.

In Case 4, because the correlation level within blocks was low, the deviation of the
latent root was small. Therefore, there was no advantage using PC score. When popula-
tion MCCCs were small, the population and the mean of the simulation study results in
MPCCCs were also small. Therefore, we could not determine the relationship between
the three sets in this case.

From these simulation study results, it was found that whether the application of
MPCCA was effective could be judged by the correlation matrix. MPCCA with a re-
duced number of PC scores showed the simulation study results similar to MCCA using
all variables when the correlation levels within blocks and between blocks were high.
On the other hand, MPCCA has the following disadvantages: (i) MPCCCs were small
when MCCCs were small; (ii) many PC scores were required for the 70% cumulative
contribution rate criterion when the differences between sets of latent roots were small;
and (iii) MPCCCs were small when the correlation level between blocks was small, even
if MCCCs were large.

3.2 Simulation studies of four sets

This subsection examined the effectiveness of MPCCA for four sets in Case 5. The popu-
lation covariance matrix Ψ5 was shown in Supplementary Material 1, and the population
correlation matrix Φ5 was shown in Supplementary Material 2. The results of PCA were
shown Table C5 in Supplementary Material 3. Using the 70% cumulative contribution
rate criterion, PC scores used in Case 5 were q5 = q5 = 2, q5 = q5 = 3. Table 4 showed
the simulation study results from MPCCC and MCCC.
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For Case 5, the difference between MCCCs and MPCCCs were shown below:

(r̄
(12)
1 − r̄(12)∗1 , r̄

(13)
1 − r̄(13)∗1 , r̄

(14)
1 − r̄(14)∗1 , r̄

(23)
1 − r̄(23)∗1 , r̄

(24)
1 − r̄(24)∗1 , r̄

(34)
1 − r̄(34)∗1 )

= (−0.014, 0.046, 0.070, 0.120, 0.088, 0.026),

(r̄
(12)
2 − r̄(12)∗2 , r̄

(13)
2 − r̄(13)∗2 , r̄

(14)
2 − r̄(14)∗2 , r̄

(23)
2 − r̄(23)∗2 , r̄

(24)
2 − r̄(24)∗2 , r̄

(34)
2 − r̄(34)∗2 )

= (0.047, 0.071, 0.097, 0.197, 0.173, 0.046).

The first differences were less than 0.1, except for r̄
(23)
1 −r̄(23)∗1 , and the second differences

were less than 0.1, except for r̄
(23)
2 − r̄

(23)∗
2 and r̄

(24)
2 − r̄

(24)∗
2 . The reason for these

larger differences was that the biases were large for MCCCs: r̄
(23)
1 − ρ

(23)
1 = 0.082,

r̄
(23)
2 − ρ

(23)
2 = 0.096, and r̄

(24)
2 − ρ

(24)
2 = 0.111. In contrast, the biases of the same

combination of MPCCCs were small: r̄
(23)∗
1 − ρ(23)∗1 = 0.024, r̄

(23)∗
2 − ρ(23)∗2 = −0.003,

and r̄
(24)∗
2 − ρ

(24)∗
2 = −0.013. We also found that the bias decreased as the variable

decreased in Case 5.

3.3 Computation time

The computation time required for MPCCA and MCCA was longer than that for the
CCA. The condition in (6) became complicated when min(qi) and k increase, so the
calculation time of MPCCA (or MCCA) became long. We measured the computation
time of MPCCA 10,000 times for N = 100, 150, 200, k = 3, 4, and q = 2, 3, 4, 5, where
q = q1 = · · · = qk. Table 8 showed the mean of the computation time for MPCCA. When
k = 3, the mean of the computation time in q = 5 was about 24 times as long as that of
q = 2 for every N . When k = 4, the mean of the computation time in q = 5 was about
14 times as long as that of q = 2 for every N . The computation time also increased with
N or k, but could be shortened by decreasing PC score. Thus, to reduce the variables
in terms of the computation time, MPCCA had merit. Note that, although MPCCA
and MCCA differed with regard to whether PC scores were used, the time required to
convert random vectors to PC scores was very short.

4 Practical example

We used the educational data to illustrate the performance of three sets in MPCCA.
The three sets were obtained from the academic records of 147 high-school seniors,
specifically, their first- and second-grade academic records, and the scores from the Joint
First-Stage Achievement Test (these data were obtained by personal communication
with Prof. Takakazu Sugiyama). The Joint First-Stage Achievement Test was a general,
basic content exam for first- and second-grades in Japanese high schools. This test was
used to select university applicants in Japan. The three sets were adjusted to obtain
data within the range of 0-100. We arrived at the following covariance matrix T for

X(1) = (x
(1)
1 , . . . , x

(1)
5 )′ (representing the academic records of high-school seniors in the

first-grade), X(2) = (x
(2)
1 , . . . , x

(2)
5 )′ (representing the academic records of high-school
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seniors in the second-grade), and X(3) = (x
(3)
1 , . . . , x

(3)
5 )′ (representing the Joint First-

Stage Achievement Test scores), where x
(1)
1 , x

(2)
1 , and x

(3)
1 were English, x

(1)
2 , x

(2)
2 , and

x
(3)
2 were Japanese, x

(1)
3 , x

(2)
3 , and x

(3)
3 were Mathematics, x

(1)
4 , x

(2)
4 , and x

(3)
4 were

Science, and x
(1)
5 , x

(2)
5 , and x

(3)
5 were Social Studies:

T =

 T (11) T (12) T (13)

T (21) T (22) T (23)

T (31) T (32) T (33)

 ,

T (11) =


366.5

209.4 358.2

159.2 90.9 352.9

88.8 85.7 174.4 406.8

113.7 196.0 35.5 91.1 359.6

 ,

T (21) = T (12)′ =


265.2 236.9 128.9 110.6 157.2

168.3 274.0 28.1 59.6 192.0

138.6 94.2 200.7 231.9 44.0

96.2 153.5 135.3 223.4 88.1

129.6 186.5 60.8 145.8 162.1

 ,

T (31) = T (13)′ =


189.0 180.7 68.9 32.8 109.3

48.1 113.4 −65.2 −17.9 106.6

91.5 64.1 332.8 335.7 −30.3

56.4 54.8 140.0 294.2 1.8

121.6 169.2 25.6 83.0 127.8

 ,

T (22) =


339.5

229.7 363.8

105.7 70.7 368.0

117.9 131.0 161.8 416.6

164.9 187.3 109.1 152.2 390.3

 ,

T (32) = T (23)′ =


246.7 156.3 56.0 61.0 105.1

83.1 173.2 −28.9 −0.3 157.7

28.8 −34.8 364.9 216.4 36.6

36.0 14.7 243.0 222.1 102.7

174.3 190.3 37.2 118.5 235.7

 ,
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T (33) =


546.7

130.5 473.8

26.5 −162.2 1392.6

67.4 −50.7 494.3 782.3

229.1 175.8 6.2 181.7 574.5

 .

We then applied PCA to each of T (11), T (22), and T (33); the results obtained were shown
in Table 9.

When the 70% cumulative contribution rate criterion was used, the variables for PC
scores used in MPCCA were q1 = 3, q2 = q3 = 2. From the result of the latent vectors,
the first PCs of X(1)∗ and X(2)∗ were the sum of all subjects. The first PC of X(3)∗ was
to the Science course. The second PCs of X(1)∗ and X(2)∗ distinguished the liberal arts
course from the science course. The second PC of X(3)∗ was the Liberal Arts course.
The third PC of X(1)∗ was English and Mathematics versus Science and Social Studies.

MPCCCs using q1 = 3 and q2 = q3 = 2, and MCCCs using all of the variables
were summarized in Table 10. The difference between the first MPCCC and MCCC
was small: r

(12)
1 − r(12)∗1 = 0.064, r

(13)
1 − r(13)∗1 = 0.022 and r

(23)
1 − r(23)∗1 = 0.015. The

difference between the second MPCCC and MCCC was also small: r
(12)
2 −r(12)∗2 = 0.065,

r
(13)
2 − r(13)∗2 = 0.117 and r

(23)
2 − r(23)∗2 = 0.047. Because the difference between the first

MPCCCs and first MCCCs were less than 0.1, and the second MPCCCs and second
MCCCs were less than 0.15, interpretation between the three sets could be considered
as being almost the same in MPCCA and MCCA.

The coefficients of the canonical variables in MPCCA and MCCA were shown in
Table 11. In the first MPCCCs, α

(1)∗
11 , α

(2)∗
11 , α

(3)∗
11 , and α

(3)∗
12 were large and positive.

Considering the characteristics of each PC and the first coefficients of the canonical
variables in MPCCA, the first MPCCCs were the relevance of the sums of all subjects
in the first- and second-grade academic records, and the Joint First-Stage Achievement

Test. In the second MPCCCs, α
(1)∗
22 , α

(2)∗
22 , and α

(3)∗
32 were large and positive, and

α
(3)∗
31 was large and negative. Considering the characteristics of each PC and the second

coefficients of the canonical variables in MPCCA, the second MPCCCs were the relevance
of the difference between the Science and Liberal Arts courses in the first- and second-
grade academic records, and the Joint First-Stage Achievement Test.

In the first MCCCs, α
(1)
12 , α

(1)
14 , α

(2)
11 , α

(2)
13 , α

(3)
11 , α

(3)
13 , α

(3)
14 , and α

(3)
15 were greater than 0.2.

They were English, Japanese, and Science in the first-grade academic record, English and
Mathematics in the second-grade academic record, and English, Mathematics, Science,
and Social Studies in the Joint First-Stage Achievement Test. It was difficult to interpret

the relationship between them. In the second MCCCs, α
(i)
21 , α

(i)
22 , and α

(i)
25 were negative,

and α
(i)
23 and α

(i)
24 were positive in all three sets. Considering the characteristics of each

PC and the second coefficients of the canonical variables in MCCA, the second MCCCs
were the relevance of the coefficients were distinguished by differences between Science
and Liberal Arts courses.

Since the number of large coefficients of the canonical variables was a little in MPCCA,
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interpretations of the first and second MPCCC were easy. However, interpretation of
the first MPCCC was difficult because there were many large coefficients in MCCA.

5 Optimal cumulative contribution rate criterion in
MPCCCs

We compare MPCCCs when the number of PC scores used in MPCCA determined by the
60% or 80% cumulative contribution rate criterion and the 70% cumulative contribution
rate criterion.

In simulation study of Case 1, using the 60% cumulative contribution rate criterion,
the variables for PC scores used in MPCCA were q1 = q2 = 2, q3 = 1 from Table 1.

Then, the simulation study results of the first MPCCCs were (r̄
(12)∗
1 , r̄

(13)∗
1 , r̄

(23)∗
1 ) =

(0.585, 0.726, 0.568) for N = 100. These results were small compared to the first MPC-
CCs in Table 3. The second MCCCs using all variables were large values, but only the
first MPCCCs were obtained. Using the 80% cumulative contribution rate criterion, the
variables for PC scores used in MPCCA were q1 = q2 = 3, q3 = 2 from Table 1. Then, the

simulation study results of the first and the second MPCCCs were (r̄
(12)∗
1 , r̄

(13)∗
1 , r̄

(23)∗
1 ) =

(0.669, 0.753, 0.702) and (r̄
(12)∗
2 , r̄

(13)∗
2 , r̄

(23)∗
2 ) = (0.573, 0.688, 0.584) for N = 100, respec-

tively. The first and the second MPCCCs were larger than those in Table 3, but their
differences were small.

In practical example, using the 60% cumulative contribution rate criterion, the vari-
ables for PC scores used in MPCCA were q1 = 2, q2 = q3 = 1 from Table 9 and

the first MPCCCs were obtained as (r
(12)∗
1 , r

(13)∗
1 , r

(23)∗
1 ) = (0.748, 0.496, 0.279). Since

the first MPCCCs determined by the 70% cumulative contribution rate criterion were

(r
(12)∗
1 , r

(13)∗
1 , r

(23)∗
1 ) = (0.800, 0.549, 0.571) from Table 10, r

(23)∗
1 using the 60% cumula-

tive contribution rate criterion was much smaller than the 70% cumulative contribution
rate criterion. The second MCCCs using all variables were large values, but only the
first MPCCCs were obtained. Using the 80% cumulative contribution rate criterion,
the variables for PC scores used in MPCCA were q1 = q2 = q3 = 3 from Table 9 and

the first to third MPCCCs were obtained as (r
(12)∗
1 , r

(13)∗
1 , r

(23)∗
1 ) = (0.831, 0.547, 0.579),

(r
(12)∗
2 , r

(13)∗
2 , r

(23)∗
2 ) = (0.689, 0.573, 0.664), (r

(12)∗
3 , r

(13)∗
3 , r

(23)∗
3 ) = (0.298, 0.198, 0.218),

respectively. Since the second MPCCCs determined by the 70% cumulative contribu-

tion rate criterion were (r
(12)∗
2 , r

(13)∗
2 , r

(23)∗
2 ) = (0.646, 0.454, 0.615) from Table 10, the

difference between the first and second MPCCCs using the 80% cumulative contribution
rate criterion and the 70% cumulative contribution rate criterion were small. Comparing
the third MCCCs using all variables in Table 10 and the third MPCCCs using the 80%
cumulative contribution rate criterion, the third MPCCCs using the 80% cumulative
contribution rate criterion were much smaller than the third MCCCs. MPCCCs using
the 60% cumulative contribution rate criterion had large losses, and MPCCCs using the
80% cumulative contribution rate criterion had many PC scores but less advantages.
Therefore, MPCCCs using the 70% cumulative contribution rate criterion were found to
give reasonable results.
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6 Conclusions

We proposed MPCCA for a relevance analysis method for multiple-set. Because PCs
were ranked in order according to the amount of information they contain, we used a

few PC scores such that U (1)∗ = (u
(1)
1 · · · u(1)q1 )′, . . ., U (k)∗ = (u

(k)
1 · · · u(k)qk )′. From

simulation study results and numerical example, we found that selecting PC scores using
the 70% cumulative contribution rate criterion yielded reasonable results. The criteria
for determining MCCCs were proposed as SUMCOR, SSQCOR, and SABSCOR, and
we extended them to the criteria for determining MPCCCs. The simulation study re-
sults showed that SUMCOR and SSQCOR gave similar results. However, the simulation
study results using SABCOR were sometimes much smaller than population MPCCCs.
Therefore, we discussed the results using SUMCOR in this paper. Furthermore, MPC-
CCs and MCCCs were compared using five simulation studies. From the simulation
study results, when the correlation level within blocks was high, MPCCA analysis was
effective. On the other hand, when the correlation level within blocks was low, MPCCA
did not work well. Thus, whether it will be effective to use MPCCA can be judged
from the correlation level within blocks. We compared MPCCA and MCCA using the
practical example and also compared interpretation of those results. With regard to the
canonical variables, because there were a few large coefficients in MPCCA, the result
was easy to interpret. However, in MCCA, there were many large coefficients, making
interpretation of the results more difficult.
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Table 1: PCA for each population covariance matrix in Case 1. The underline showed
the 70% cumulative contribution rate.

1st 2nd 3rd 4th 5th

Ψ
(11)
1 Latent roots 549.8 258.7 162.9 110.4 34.3

Contribution rate 0.493 0.232 0.146 0.099 0.031

Cumulative contribution rate 0.493 0.724 0.870 0.969 1.000

Latent vectors x
(1)
1 0.182 −0.168 −0.089 0.016 0.965

x
(1)
2 −0.484 0.497 0.151 0.681 0.181

x
(1)
3 −0.367 −0.661 0.650 0.074 0.013

x
(1)
4 −0.571 −0.388 −0.722 0.045 −0.027

x
(1)
5 0.522 −0.371 −0.161 0.727 −0.190

Ψ
(22)
1 Latent roots 445.6 236.3 131.3 86.0 70.0

Contribution rate 0.460 0.244 0.135 0.089 0.072

Cumulative contribution rate 0.460 0.704 0.839 0.928 1.000

Latent vectors x
(2)
1 −0.079 0.567 0.254 0.771 0.118

x
(2)
2 0.842 0.275 −0.391 −0.025 0.250

x
(2)
3 0.144 −0.365 −0.398 0.513 −0.652

x
(2)
4 −0.502 0.115 −0.779 0.066 0.352

x
(2)
5 0.113 −0.676 0.136 0.371 0.612

Ψ
(33)
1 Latent roots 323.7 75.1 37.5 27.9 16.7

Contribution rate 0.673 0.156 0.078 0.058 0.035

Cumulative contribution rate 0.673 0.829 0.907 0.965 1.000

Latent vectors x
(3)
1 −0.362 −0.011 −0.366 0.275 0.812

x
(3)
2 −0.315 −0.077 0.331 0.842 −0.278

x
(3)
3 −0.190 0.564 −0.677 0.108 −0.419

x
(3)
4 0.185 −0.778 −0.542 0.139 −0.219

x
(3)
5 0.837 0.266 −0.068 0.430 0.200
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Table 2: Population MPCCC using q1 = q2 = q3 = 2 and MCCC using all variables
(p1 = p2 = p3 = 5) in Case 1.

MPCCC MCCC

q1 = q2 = q3 = 2 p1 = p2 = p3 = 5

b = 1 b = 2 b = 1 b = 2 b = 3 b = 4 b = 5

SUMCOR

ρ
(12)∗
b 0.566 0.586 ρ

(12)
b 0.668 0.574 0.350 0.015 0.010

ρ
(13)∗
b 0.731 0.697 ρ

(13)
b 0.787 0.806 0.181 0.174 0.047

ρ
(23)∗
b 0.671 0.577 ρ

(23)
b 0.663 0.617 0.328 0.344 0.106

SSQCOR

ρ
(12)∗
b 0.563 0.589 ρ

(12)
b 0.664 0.573 0.313 0.112 0.035

ρ
(13)∗
b 0.739 0.689 ρ

(13)
b 0.804 0.795 0.019 0.174 0.041

ρ
(23)∗
b 0.666 0.582 ρ

(23)
b 0.663 0.629 0.435 0.250 0.114

SABSCOR

ρ
(12)∗
b 0.566 0.586 ρ

(12)
b 0.668 0.574 0.252 0.210 0.022

ρ
(13)∗
b 0.731 0.697 ρ

(13)
b 0.787 0.806 0.224 0.035 0.062

ρ
(23)∗
b 0.671 0.577 ρ

(23)
b 0.677 0.618 0.393 0.185 0.120
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Table 3: Simulation study results by SUMCOR for MPCCC using q1 = q2 = q3 = 2 and
MCCC using all the variables (p1 = p2 = p3 = 5) in Case 1 (10,000 times).

MPCCC MCCC

N q1 = q2 = q3 = 2 p1 = p2 = p3 = 5

b = 1 b = 2 b = 1 b = 2 b = 3 b = 4 b = 5

100 Mean r
(12)∗
b 0.623 0.505 r

(12)
b 0.704 0.588 0.346 0.156 0.079

SD 0.063 0.094 0.048 0.063 0.103 0.095 0.060

Mean r
(13)∗
b 0.752 0.651 r

(13)
b 0.819 0.785 0.290 0.185 0.084

SD 0.053 0.102 0.045 0.058 0.100 0.100 0.062

Mean r
(23)∗
b 0.676 0.558 r

(23)
b 0.719 0.620 0.400 0.290 0.111

SD 0.062 0.087 0.053 0.071 0.095 0.112 0.079

150 Mean r
(12)∗
b 0.613 0.525 r

(12)
b 0.690 0.585 0.336 0.128 0.067

SD 0.053 0.070 0.041 0.053 0.095 0.085 0.051

Mean r
(13)∗
b 0.747 0.665 r

(13)
b 0.813 0.787 0.259 0.175 0.074

SD 0.047 0.077 0.043 0.053 0.092 0.096 0.055

Mean r
(23)∗
b 0.670 0.567 r

(23)
b 0.704 0.619 0.380 0.299 0.107

SD 0.054 0.071 0.049 0.064 0.086 0.104 0.070

200 Mean r
(12)∗
b 0.606 0.536 r

(12)
b 0.684 0.583 0.337 0.107 0.060

SD 0.049 0.059 0.037 0.047 0.084 0.078 0.045

Mean r
(13)∗
b 0.743 0.674 r

(13)
b 0.807 0.791 0.243 0.173 0.066

SD 0.044 0.067 0.041 0.049 0.085 0.092 0.050

Mean r
(23)∗
b 0.668 0.573 r

(23)
b 0.698 0.618 0.368 0.305 0.105

SD 0.049 0.062 0.046 0.058 0.081 0.097 0.065



68 Ogura, Murakami

Table 4: MPCCC using q1 = 3, q2 = 4, q3 = 5, and MCCC using all the variables
(p1 = 9, p2 = 10, p3 = 11) in the population and the simulation study results
(10,000 times) in Case 2.

MPCCC MCCC

q1 = 3, q2 = 4, q3 = 5 p1 = 9, p2 = 10, p3 = 11

b = 1 b = 2 b = 3 b = 1 b = 2 b = 3

Population ρ
(12)∗
b 0.467 0.448 0.328 ρ

(12)
b 0.499 0.440 0.366

ρ
(13)∗
b 0.510 0.382 0.127 ρ

(13)
b 0.540 0.456 0.273

ρ
(23)∗
b 0.619 0.380 0.312 ρ

(23)
b 0.650 0.526 0.405

Simulation Mean r
(12)∗
b 0.524 0.441 0.300 r

(12)
b 0.633 0.540 0.514

N = 100 SD 0.069 0.079 0.104 0.053 0.078 0.066

Mean r
(13)∗
b 0.545 0.393 0.184 r

(13)
b 0.648 0.523 0.480

SD 0.070 0.089 0.102 0.052 0.089 0.068

Mean r
(23)∗
b 0.637 0.444 0.307 r

(23)
b 0.706 0.580 0.535

SD 0.065 0.090 0.106 0.051 0.089 0.072



Electronic Journal of Applied Statistical Analysis 69

Table 5: MPCCC using q1 = q2 = q3 = 2, and MCCC using all the variables (p1 = p2 =
p3 = 5) in the population and the simulation study results (10,000 times) in
Case 3.

MPCCC MCCC

q1 = q2 = q3 = 2 p1 = p2 = p3 = 5

b = 1 b = 2 b = 1 b = 2

Population ρ
(12)∗
b 0.406 0.228 ρ

(12)
b 0.790 0.440

ρ
(13)∗
b 0.655 0.024 ρ

(13)
b 0.838 0.516

ρ
(23)∗
b 0.503 0.064 ρ

(23)
b 0.851 0.454

Simulation Mean r
(12)∗
b 0.424 0.216 r

(12)
b 0.804 0.494

N = 100 SD 0.091 0.099 0.036 0.077

Mean r
(13)∗
b 0.654 0.089 r

(13)
b 0.846 0.567

SD 0.062 0.067 0.030 0.072

Mean r
(23)∗
b 0.515 0.098 r

(23)
b 0.858 0.521

SD 0.092 0.072 0.026 0.072
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Table 6: MPCCC using q1 = 5, q2 = 6, q3 = 7, and MCCC using all the variables
(p1 = 9, p2 = 10, p3 = 11) in the population and the simulation study results
(10,000 times) in Case 4.

MPCCC MCCC

q1 = 5, q2 = 6, q3 = 7 p1 = 9, p2 = 10, p3 = 11

b = 1 b = 2 b = 3 b = 1 b = 2 b = 3

Population ρ
(12)∗
b 0.302 0.358 0.253 ρ

(12)
b 0.485 0.331 0.412

ρ
(13)∗
b 0.344 0.284 0.147 ρ

(13)
b 0.372 0.361 0.245

ρ
(23)∗
b 0.355 0.232 0.162 ρ

(23)
b 0.363 0.345 0.332

Simulation Mean r
(12)∗
b 0.488 0.399 0.312 r

(12)
b 0.605 0.525 0.477

N = 100 SD 0.080 0.086 0.090 0.060 0.069 0.069

Mean r
(13)∗
b 0.465 0.371 0.286 r

(13)
b 0.570 0.485 0.453

SD 0.077 0.084 0.085 0.058 0.078 0.067

Mean r
(23)∗
b 0.469 0.387 0.314 r

(23)
b 0.578 0.503 0.470

SD 0.075 0.080 0.083 0.058 0.074 0.066
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Table 7: MPCCC using q1 = q2 = 2, q3 = q4 = 3, and MCCC using all the variables
(p1 = 5, p2 = 6, p3 = 7, p4 = 8) in the population and the simulation study
results (10,000 times) in Case 5.

MPCCC MCCC

q1 = q2 = 2, q3 = q4 = 3 p1 = 5, p2 = 6, p3 = 7, p4 = 8

b = 1 b = 2 b = 1 b = 2

Population ρ
(12)∗
b 0.725 0.388 ρ

(12)
b 0.748 0.417

ρ
(13)∗
b 0.519 0.355 ρ

(13)
b 0.523 0.410

ρ
(14)∗
b 0.439 0.269 ρ

(14)
b 0.456 0.283

ρ
(23)∗
b 0.357 0.212 ρ

(23)
b 0.419 0.310

ρ
(24)∗
b 0.546 0.450 ρ

(24)
b 0.588 0.499

ρ
(34)∗
b 0.728 0.528 ρ

(34)
b 0.725 0.538

Simulation Mean r
(12)∗
b 0.720 0.371 r

(12)
b 0.707 0.418

N = 100 SD 0.128 0.161 0.168 0.149

Mean r
(13)∗
b 0.521 0.342 r

(13)
b 0.567 0.413

SD 0.097 0.113 0.081 0.120

Mean r
(14)∗
b 0.450 0.259 r

(14)
b 0.520 0.356

SD 0.096 0.094 0.083 0.097

Mean r
(23)∗
b 0.381 0.209 r

(23)
b 0.502 0.406

SD 0.096 0.096 0.081 0.101

Mean r
(24)∗
b 0.553 0.437 r

(24)
b 0.641 0.610

SD 0.089 0.098 0.075 0.122

Mean r
(34)∗
b 0.696 0.520 r

(34)
b 0.722 0.566

SD 0.132 0.139 0.092 0.128
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Table 8: Mean of the computation time to calculate MPCCA (Unit: Second).

k N \ q 2 3 4 5

3 100 0.7 4.7 9.5 16.6

150 0.8 5.6 11.4 19.0

200 1.0 6.4 15.1 25.8

4 100 1.8 6.6 13.3 25.3

150 2.1 7.4 14.6 30.2

200 2.3 8.4 18.4 36.5
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Table 9: Results of PCA in educational data. The underline showed the 70% cumulative
contribution rate.

1st 2nd 3rd 4th 5th

T (11) Latent roots 872.6 408.4 289.5 152.3 121.1

Contribution rate 0.473 0.221 0.157 0.083 0.066

Cumulative contribution rate 0.473 0.695 0.852 0.934 1.000

Latent vectors x
(1)
1 0.498 −0.123 0.552 0.313 −0.577

x
(1)
2 0.498 −0.408 0.064 0.258 0.717

x
(1)
3 0.408 0.512 0.333 −0.645 0.211

x
(1)
4 0.418 0.583 −0.551 0.422 −0.061

x
(1)
5 0.403 −0.465 −0.526 −0.491 −0.322

T (22) Latent roots 954.7 363.1 233.0 212.5 115.0

Contribution rate 0.508 0.193 0.124 0.113 0.061

Cumulative contribution rate 0.508 0.702 0.826 0.939 1.000

Latent vectors x
(2)
1 0.455 −0.339 −0.322 0.320 −0.687

x
(2)
2 0.474 −0.456 −0.029 0.299 0.691

x
(2)
3 0.355 0.611 −0.670 −0.129 0.188

x
(2)
4 0.458 0.522 0.628 0.339 −0.090

x
(2)
5 0.482 −0.178 0.229 −0.822 −0.083

T (33) Latent roots 1698.2 949.7 489.4 356.0 276.5

Contribution rate 0.450 0.252 0.130 0.094 0.073

Cumulative contribution rate 0.450 0.702 0.832 0.927 1.000

Latent vectors x
(3)
1 0.050 0.540 −0.409 −0.658 0.325

x
(3)
2 −0.118 0.423 −0.264 0.728 0.455

x
(3)
3 0.859 −0.181 −0.445 0.144 −0.099

x
(3)
4 0.489 0.264 0.747 −0.030 0.364

x
(3)
5 0.076 0.653 0.085 0.125 −0.738
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Table 10: MPCCC using q1 = 3 and q2 = q3 = 2, and MCCC using all variables (p1 =
p2 = p3 = 5) in educational data.

MPCCC MCCC

q1 = 3, q2 = q3 = 2 p1 = p2 = p3 = 5

b = 1 b = 2 b = 1 b = 2 b = 3 b = 4 b = 5

r
(12)∗
b 0.800 0.646 r

(12)
b 0.865 0.711 0.496 0.132 0.088

r
(13)∗
b 0.549 0.454 r

(13)
b 0.571 0.571 0.303 0.147 0.058

r
(23)∗
b 0.571 0.615 r

(23)
b 0.586 0.662 0.496 0.168 0.013

Table 11: Coefficients of the canonical variables in MPCCA and MCCA.

MPCCA MCCA

q1 = 3, q2 = q3 = 2 p1 = p2 = p3 = 5

b = 1 b = 2 b = 1 b = 2 b = 3 b = 4 b = 5

α
(1)∗
b1 0.033 −0.009 α

(1)
b1 0.017 −0.014 −0.044 −0.047 −0.009

α
(1)∗
b2 0.012 0.041 α

(1)
b2 0.021 −0.025 0.029 0.045 −0.039

α
(1)∗
b3 −0.007 −0.029 α

(1)
b3 0.010 0.025 −0.024 0.048 0.027

α
(1)
b4 0.025 0.026 0.031 −0.030 −0.011

α
(1)
b5 −0.002 −0.019 0.006 −0.010 0.060

α
(2)∗
b1 0.031 −0.009 α

(2)
b1 0.029 −0.014 −0.061 −0.027 −0.006

α
(2)∗
b2 0.014 0.050 α

(2)
b2 −0.001 −0.033 0.032 0.056 −0.011

α
(2)
b3 0.023 0.033 −0.001 0.033 0.027

α
(2)
b4 0.013 0.016 0.016 −0.019 −0.047

α
(2)
b5 0.007 −0.010 0.030 0.037 0.037

α
(3)∗
b1 0.038 −0.031 α

(3)
b1 0.042 −0.028 −0.071 −0.008 0.037

α
(3)∗
b2 0.041 0.050 α

(3)
b2 0.008 −0.030 0.056 0.060 0.051

α
(3)
b3 0.026 0.020 −0.005 0.047 −0.024

α
(3)
b4 0.021 0.030 0.031 −0.047 0.053

α
(3)
b5 0.024 −0.030 0.031 −0.026 −0.082


