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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 13, Issue 01, May 2020, 211-228
DOI: 10.1285/i20705948v13n1p211

Different causes of closure of small
business enterprises: alternative models

for competing risks survival analysis

Chrys Caroni∗a and Francesca Pierrib

aNational Technical University of Athens, Department of Mathematics , Zografou Campus,
Athens 15780, Greece

bUniversity of Perugia, Department of Economics, Via Pascoli 20, 06123 Perugia, Italy

Published: 02 May 2020

We examine the time until closure of Small Business Enterprises in Um-
bria, Italy between 2008 and 2013, and the factors that influence it. Earlier
analysis, using Cox regression, considered “failure” (closure) from any cause.
However, there are different reasons for inactivity: voluntary winding-up
(1808 of 15184 firms in our data, 59.3% of the 3049 failures); bankruptcy
(236, 7.7%); and closure without action by creditors or courts (1005, 33.0%).
While the earlier analysis provides a valuable overall picture, it is also inter-
esting to examine the separate causes, their rates of occurrence and which
factors influence them separately. We do this using competing risks analyses,
employing both of the regression methods that are prominent in the liter-
ature, based on cause-specific and sub-distribution hazard functions (Fine-
Gray model). Furthermore, a proportional odds model was used to estimate
cumulative incidences of failure by cause. Data included the firm’s year
of foundation, location, legal form and sector of activity. Financial indexes
were constructed from annual balance sheets. The date and reason for closure
were recorded if the firm ceased activity. Findings included major differences
between types of firm; for example, cooperatives had greatly increased haz-
ards for winding-up (HR of 2.44 and 2.61 in the two approaches) but greatly
reduced hazards for closure (0.48 and 0.45) compared to publicly traded com-
panies. All-causes analysis averaged these strong effects into an insignificant
one (1.05). Coefficients from the proportional odds model were similar to
those from the Fine-Gray model, but have the advantage of interpretability.
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1 Introduction

There is a substantial literature on statistical modelling to predict the failure of business
enterprises (Balcaen and Ooghe, 2006). Starting with Ohlson (1980), logistic regression
with the occurrence of the failure event as dependent variable became established as
the predominant method. Subsequently, models that had originally been developed in
other fields under the name of survival analysis were introduced for predicting business
failure or default (Narain, 1992; Banasik et al., 1999; Shumway, 2001). Survival models
examine not only whether or not the event occurs, but also the time elapsed until it
happens. These models have been developed very extensively in medical statistics (for
example: Therneau and Grambsch, 2013; Hosmer et al., 2008; Collett, 2015) and also,
under the name of reliability analysis, in engineering and technological fields.

A previous paper has presented an analysis of the time until closure of Small Business
Enterprises in a region of Italy, and of the factors that influence it, using the Cox
regression method of survival analysis with time-varying covariates (Pierri and Caroni,
2017). That study examined the occurrence of the event of the firm’s “failure” (closure),
irrespective of its cause.

However, different routes to an enterprise’s inactivity exist: voluntary winding-up,
dissolution or liquidation; bankruptcy; and closure without action by creditors or the
courts. Balcaen et al. (2012) discussed in detail the need to analyse the determinants of
different types of exit from the economic system. However, their study was based on a
sample of distressed firms, so that exits could only be analysed comparatively between
modes of exit (using a nested logit model), and not in relation to healthy firms as is
done in a survival analysis.

In the terminology of survival analysis, different causes of failure are “competing risks”:
it is as if the various processes that can lead to failure are in a race with each other to be
the first to cause failure. Although the earlier all-causes analysis is important in itself,
because it provides an overall picture of the life-course of firms, it is also interesting
to examine the separate causes, the rates at which they operate and the factors that
influence them (which may not be the same for every cause). In the present paper, we
carry out such an analysis of the separate causes, using competing risks methodology
from survival analysis. The application is to Small Business Enterprises in the Umbria
Region of Italy over the period 2008-2013.

There have been several previous competing risks analyses in the economics and finan-
cial literature: recent examples include Bhattacharjee et al. (2009); Chancharat et al.
(2010); Kwon and Hahn (2010); Sohn and Jeon (2010) and Amendola et al. (2015). One
approach - the cause-specific hazards analysis which we describe in the following section
- predominates. However, another important methodology in the analysis of competing
risks, using sub-distribution hazards (which we also describe below), does not seem to
have been adopted in this literature although it is familiar in other areas of application.
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In this article, we will present and apply these two main approaches to competing risk
data and discuss their use in applications of the type examined here. Furthermore, we
also present and apply an alternative model which is not based on hazard functions,
namely a proportional odds model. Our main purpose is the methodological presenta-
tion of these approaches. The discussion emphasises the important differences between
the models in terms of which aspect of the survival analysis problem is the focus of
interest, and in the interpretability of parameter estimates. Thus the analyst will be
better able to choose the appropriate technique in any given problem.

2 Methodology: cause-specific and subdistribution hazards

We start by recalling the basic functions that are most important in the analysis of
lifetime data, working first in the context without competing risks. We denote by T the
random time until the event and by β the vector of coefficients that expresses the effects
of the elements of a vector of covariates x upon T . The values of these covariates for a
given firm will here be assumed to be measured at time zero and to be independent of
time. Naturally, an item of fundamental interest is the survival function

S(t|x) = P (T > t|x) , (1)

which expresses the probability that a firm will remain in operation until at least time
t. The complement of the survival function is F (t|x) = P (T ≤ t|x) which is the cumu-
lative incidence function giving the probability of failure up to time t. In our modeling
framework, a central role is occupied by the hazard function h(t) which expresses the
instantaneous rate of failure at time t among firms that have survived that long:

h(t) = lim
δt→0

P [t < T ≤ t+ δt|T > t]

δt
=
f(t)

S(t)
. (2)

Because h(t|x) and S(t|x) are linked by the equation

S(t|x) = e−H(t|x) , (3)

where the cumulative hazard H(t|x) is the integral of h(τ |x) over time τ from zero to t,
it follows that the hazard rate and cumulative incidence provide equivalent information.
One can be derived from the other. In the proportional hazards (PH) model, which
includes Cox regression, the covariates act multiplicatively on a baseline hazard rate
h0(t) through the factor eβ

′x:

h(t|x) = h0(t) exp
{
β′x
}

(4)

(in the usual specification of the PH model). From equation (3),

S(t|x) = S0(t)
eβ
′x
, (5)

where S0(t) is the baseline survival function corresponding to the baseline hazard h0(t).
The effect of covariate xi is expressed by the hazard ratio eβi : an increase of one unit in



214 Caroni, Pierri

the value xi (with the values of other covariates remaining unchanged) multiplies, from
(4), the hazard by this amount while, from (5), the survival function is raised to this
power. In this sense, therefore, the coefficients β show the effect of each covariate on
both the rate (hazard function) and risk (one minus the survival function) of failure.

Now we consider the case of competing risks. There are two principal approaches to
the analysis of the data, employing (a) cause-specific hazard functions, or (b) subdis-
tribution hazards (Putter et al., 2007). These alternative approaches exist because the
basic identity between hazard functions and survival functions given by equation (3)
when there are no competing risks, does not extend to the context of competing risks.
Therefore, in the words of Andersen and Keiding (2012), the “one-to-one correspondence
between cause-specific hazard and cumulative incidence, between rate and risk, is lost”.
It becomes necessary to concentrate on the one aspect of the problem or the other.

Simply extending the notation of equation (2), we define the cause-specific hazard for
the kth of K causes as

hk(t) = lim
δt→0

P [t < T ≤ t+ δt
⋂
D = k|T > t]

δt
, (6)

where D denotes the cause of failure. Thus hk(t)δt is the probability of failure from
cause k in the interval [t, t+δt) given that the firm has survived until time t. The cause-
specific hazard is clearly the appropriate definition of the instantaneous rate of failure
from cause k among the surviving firms at time t. It does not, however, lead directly to
the cumulative incidence of failure from this cause along the lines of equation (5). This
is because survival to time t depends not only on the hazard from this one cause but
also on the hazards of all the other causes as well. It is not possible to fail from cause k
at time t unless the firm has avoided failure from all causes so far. Therefore, one cause
cannot be considered in isolation from the others.

The cumulative incidence of failure cause k can be estimated correctly from the sub-
distribution hazard function (Fine and Gray, 1999)

hsk(t) = lim
δt→0

P [t < T ≤ t+ δt
⋂
D = k|T > t

⋃
(T ≤ t ∩D 6= k)]

δt
, (7)

which gives the instantaneous rate of failure in firms that have not yet experienced an
event of type k, although they may have experienced a different event. In contrast, the
hazard in equation (6) refers simply to failure in firms that have not yet experienced
any event. Thus the practical difference lies in the set of firms that are counted as being
at risk at time t. For the cause-specific hazard of equation (6), the risk set consists of
the firms that still survive at time t, exactly as in standard survival analysis without
competing risks. However, for the subdistribution hazard of equation (7), the risk set
for cause k is augmented by the inclusion of the firms that have already failed before
time t, but from causes other than cause k (despite the fact that, obviously, they cannot
in fact fail again).

Both versions of the hazard function under competing risks, equations (6) and (7),
can be extended to include the multiplicative effects of covariates exactly as in the pro-
portional hazards model defined by equation (4). They are, however, different models
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and the values taken by the regression coefficient βi of a covariate may be quite different
between the two. In fact, it must be borne in mind that it is only the coefficients of the
cause-specific model that have a straightforward interpretation; those of the subdistri-
bution model do not. In the former case, the hazard ratio eβi gives the multiplicative
effect of covariate xi on the cause-specific hazard function, in exactly the same way as
for the standard Cox model. Thus it is directly related to a meaningful quantity, namely,
the probability of the occurrence of an event of the relevant type in an existing unit.
Superficially, the corresponding hazard ratio for the subdistribution hazard model ap-
pears to have a very similar interpretation because it acts multiplicatively on the hazard
rate given by equation (7); however, the fact that the risk set includes units that no
longer exist, means that it is not actually a physically meaningful quantity. For more
discussion of the interpretation and misinterpretation of hazard ratios, see in particular
Austin and Fine (2017).

The point of working with the subdistribution hazard is that it leads to correct estima-
tion of the cumulative incidence of failure from cause k and the effect that the covariates
have on this, in a form similar to equation (5) above. From equation (7), the relation is

hsk(t) = − d

dt
ln (1− Fk(t)) , (8)

where Fk(t) is the cumulative incidence of this cause, defined by

F (t) = P (T ≤ t ∩D = k) .

(This is the subdistribution function of cause k, so called because, unlike a proper
distribution function, it does not tend to one as t tends to infinity: in fact, F (t) →
P (D = k) < 1, t → ∞). Note that this definition has the desirable property that the
sum of the separate cumulative incidences of the various causes at any time equals the
overall cumulative incidence of failure from any cause by that time

F (t) = P (T ≤ t) =
∑
k

Fk(t).

In contrast, this requirement is not met by “cumulative incidences” calculated from
cause-specific hazards. For example, it is well known that if a separate Kaplan-Meier
type estimate of survival is calculated for each cause (treating failures from other causes
as censored, as indicated above), then the total of the “incidences” obtained as one minus
survival will be greater than one: incidences are overestimated. This can be seen from
the fact that the cumulative incidence (subdistribution function) can also be written as

Fk(t) =

∫ t

0
hk(τ)S(τ)dτ , (9)

where S(τ) = 1−F (τ), whereas the corresponding quantity obtained from cause-specific
hazards is given by ∫ t

0
hk(τ)Sk(τ)dτ , (10)
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where Sk(τ) = exp (−Hk(τ)) and Hk(τ) =
∫ τ
0 hk(s)ds. However, S(τ) ≤ Sk(τ) for all τ ,

showing that (10) is greater than (9) in general (Putter et al., 2007).
From the above discussion of the definitions of these hazard functions, it can be seen

that a standard program for fitting the Cox model can always be employed in order to
calculate a cause-specific hazard: it suffices to fit the Cox model to a data set in which
only failure from the cause of interest is treated as a failure event. A failure from any
other cause is treated as censored at its failure time, with the result that it is removed
from the risk set from that point onwards. On the other hand, the situation is not always
so simple for subdistribution hazards, where a firm that has failed from another cause
must remain in the study beyond its own failure time. If there is random right censoring,
it is necessary to estimate the distribution of censoring times in order to estimate how
long the firm would have been under observation in the absence of an event. However, if
all censoring is “administrative” or “complete” (Fine and Gray, 1999) - that is, censoring
takes place at a pre-determined time (usually the end of the study) without any losses to
follow-up - then we know what the potential observation time is and hence for how long
the firm must remain in the risk set. Under these circumstances, a standard program for
fitting the Cox model can be employed to estimate the subdistribution hazard of failure
from cause k simply by constructing a data set in which firms that fail from other causes
are treated as censored at the end of their potential (not actual) observation periods.
In the more general case, the estimated survival function of time to censoring is used to
weight contributions to the risk set for cause k from firms that have already failed from
competing causes, employing an inverse probability of censoring weighting technique,
implemented in appropriate software such as the R package cmprsk (Gray, 2019).

3 An alternative: the proportional odds model

Given the growing number of articles in the literature that compare the cause-specific and
subdistribution hazards approaches, in combination with a Cox-type regression model
for the effect of covariates, it appears that these two methods - singly or in combination
(Latouche et al., 2013) - will dominate applications of competing risk analysis in the
near future, just as Cox regression itself dominates single-cause survival analysis in many
fields. But, whereas the cause-specific approach is clear and meaningful, it does not lead
to correct estimation of cumulative incidences, as explained above. The subdistribution
hazard methodology presented in the previous section, which overcomes this difficulty,
suffers from lack of interpretability of the regression coefficients and violates reality by
keeping firms in the risk set after they have failed. This is a technical device that some
analysts are unwilling to accept (Andersen and Keiding, 2012). Therefore, it is worth
exploring alternatives.

Supposing as usual a multiplicative effect of covariates x as in (4), the cumulative
incidence in the Fine-Gray model given by (8) is equivalent to the model

log (− log (1− Fk (t|x))) = log (A (t)) + β′x

where A(t) is an unspecified, non-decreasing function. The appearance here of the



Electronic Journal of Applied Statistical Analysis 217

complementary log-log link function suggests that this model is a special case within a
wider class of transformation models that employ other link functions. (See, for example,
Mao and Lin, 2017). In particular, the logit link function, so familiar from logistic
regression, could be used. This gives a proportional odds cumulative incidence model
for competing risks

logit Fk (t|x) = log
Fk (t|x)

1− Fk (t|x)
= log (A (t)) + β′x

(Eriksson et al., 2015). One immediate advantage of this compared to the Fine-Gray
model is the more direct interpretability of the coefficients β as odds ratios. Software
for this approach is implemented in the R package ‘timereg’ (Scheike and Zhang, 2011;
Scheike, 2019).

4 Application

The data available to us were drawn from two files provided by the Chamber of Com-
merce of Perugia: the Business Register of Companies in the Region of Umbria, Italy,
and annual balance sheets for capital companies for the years 2008-2013. Background
data included the firm’s year of foundation, location, legal form and economic sector of
activity. Financial indexes were constructed from the firm’s balance sheets. If the firm
ceased activity, the date of closure and the reason for closure were recorded in the data
base. Further details of the data are given by Pierri and Caroni (2017).

We analysed the subsequent survival of firms that were in operation at the start of
2008, using covariates measured at this baseline. Of the 15184 enterprises included in our
data set, 3049 (20.1%) became inactive during this period of economic crisis up to the
end of the study period in 2013 and were thus counted as failing. The frequencies of the
three different routes to inactivity were as follows: voluntary winding-up, dissolution or
liquidation (1808 firms, 59.3% of the failures); bankruptcy (236 firms, 7.7%); and closure
without action by creditors or the courts (1005 firms, 33.0%).

Before considering the effect of covariates on failure and survival, we first look at
non-parametric Kaplan-Meier survival estimates. Figure 1 shows the estimated survival
for each cause separately and also for failure from any cause. The estimates for each
cause separately treat failures from other causes as right-censored at their failure times;
in other words, they correspond to the cause-specific method. It can be seen that,
from the beginning, voluntary winding-up occurs at a faster rate than closure without
action by creditors or courts, which in turn occurs faster than bankruptcy. The cause-
specific survival probabilities at 6 years are 0.8445, 0.9120 and 0.9762 in these three
curves. Adding the cause-specific failure incidences at each time point gives the upper
curve plotted in Figure 2. For example, at 6 years, the ”total incidence” appears by this
method to be (1 - 0.8445)+(1 - 0.9120)+(1 - 0.9762)=0.2673. However, the true incidence
of any failure is obtained as 1 minus the any-cause survival estimate from Figure 1. This
is shown in the lower curve of Figure 2, which reaches 0.2481 at 6 years. The difference
between the two curves is small up to this time point in these data, in which failures
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Figure 1: Kaplan-Meier estimates of survival in relation to different causes and any cause
of a firm’s failure. From top to bottom, the lines refer to: bankruptcy; closure;
voluntary winding-up; and any cause.

(especially from the third cause) are occurring quite rarely in comparison to some other
applications that one comes across in the literature, but nevertheless illustrates the
point made above that the cause-specific approach overestimates the overall incidence
of failure. If follow-up were extended, the curves would diverge substantially as the
numerical difference between equations (9) and (10) increases.

We now turn to examining the effect of a range of covariates on failure, applying the
proportional hazards assumption to both the cause-specific and subdistribution hazard
models described above. The covariates, which refer to the firm’s activity, location,
age and financial performance, are listed in Table 1. Both analyses were carried out
by backward elimination of non-significant (p > 0.05) covariates. Table 2 shows sum-
mary statistics and Table 3 shows the estimated hazard ratios (HR) and 95% confidence
intervals (CI) for the significant covariates.

It is apparent that in this particular application there are no great differences between
the results of the two approaches. That is, the factors that influence the risk are basically
the same as those that influence the rate of failures. However, on comparing results for
different causes (within either approach), large differences emerge. We observe some
covariates that have effects for one cause but not others (for example, the firm’s sector
of economic activity and the geographical location), others that affect all causes but with
notably unequal HR (for example, debt ratios) and still others that affect different causes
in opposite directions - reducing the hazard for one cause, increasing it for another (for
example, the type of firm).
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Figure 2: Cumulative incidence estimated from cause-specific hazards (upper curve) and
any-cause analysis (lower curve).

In the case of the debt ratio, it appears that a high value increases the risk of the
firm’s failure by any route, but especially heightens the risk of bankruptcy. Regarding
the firm’s area of economic activity, Table 3 shows significant effects only in relation to
bankruptcy, for which every sector has a substantially elevated HR in comparison to the
reference sector, which is Agriculture, but only the Manufacturing and Construction sec-
tors have a 95% CI that excludes the value one. Overall, there were no great differences
between sectors in the proportion of failures, which ranged from 21.4% in Tourism and
Construction to 16.6% in Agriculture (Table 4). However, there were differences between
modes of failure, most noticeably with regard to bankruptcy. This is the failure mode
presenting least often (only 7.7% of firms went bankrupt in the six-year period), but
was twice as common (around 10% of failures) among firms in the sectors of Commerce,
Construction and Manufacturing as in Tourism and Other Services (both around 5%),
where in turn it was twice as common as in Agriculture, in which it occurred very rarely
(only 2 cases, 2.6% of the failures in this sector) (Table 4).

Table 4 also shows failures by type of firm. Cooperatives had a higher failure rate
(25.5%) over the six-year period than other types and three-quarters of their failures took
the form of winding-up. In contrast, not much more than a quarter of the failures of
publicly-traded companies took this form, with limited-liability companies in between.
Correspondingly, closure was much more common among publicly-traded companies
than among limited-liability companies and cooperatives. This explains the opposite
directions of the HR in Table 3. Cooperatives and limited-liability companies tend to
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Table 1: Covariates investigated in the survival analyses. In addition, the firm’s Activity
Sector (6 categories), Legal Form (3 categories) and Geographical Location (2
categories) were represented by indicator variables.

Abbreviation Variable

CR Current Ratio

QR Quick Ratio

L Leverage

IRR Investment Rigidity Ratio

TAR Tangible Assets Ratio

IAR Intangible Assets Ratio

FFAR Financial Fixed Assets Ratio

OFAR Other Fixed Assets Ratio

IER Investment Elasticity Ratio

IIR Inventories Impact Ratio

LR Liquidity Ratio

STLR Short Term Liquidity Ratio

LTLR Long Term Liquidity Ratio

ER Equity Ratio

DR Debt Ratio

PDR Permanent Debt Ratio

CDR Current Debt Ratio

ROA Return on Assets

ROE Return on Equity

ROT Return on Turnover

ROS Return on Sales

TUR Turnover

agree arrangements with creditors and avoid total closure.

We note that the Cox regression for all-causes failure, also shown in Table 3, gives
an HR of 1.05 for cooperatives and 0.84 for limited-liability companies versus publicly-
traded companies, neither significantly different from one. The only significant com-
parison among firm types in that analysis is between cooperative and limited liability
companies (HR=1.25, CI=1.10 - 1.42; not shown in table). These results would suggest
that the type of firm has only a small impact on failure rates and risks, thereby masking
the rather large differences that the more detailed competing risks analysis brings to
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Table 2: Robust summary statistics for the covariates that were found to be statistically
significant (p < 0.05) in the final model: winsorized mean values and standard
deviation based on Gini’s mean difference, obtained from the SAS procedure
PROC UNIVARIATE.

Cause of failure

Survivors Failure Winding-up Closure Bankruptcy

(n=12135) (n=3049) (n=1808) (n=1005) (n=236)

TAR 0.126 (0.206) 0.053 (0.125) 0.043 (0.106) 0.080 (0.162) 0.051 (0.106)

IAR 0.019 (0.056) 0.022 (0.070) 0.024 (0.078) 0.166 (0.059) 0.168 (0.052)

FFAR 0.006 (0.045) 0.010 (0.070) 0.007 (0.056) 0.015 (0.099) 0.015 (0.046)

IIR 0.070 (0.152) 0.048 (0.125) 0.045 (0.118) 0.040 (0.126) 0.091 (0.161)

STLR 0.051 (0.107) 0.037 (0.102) 0.045 (0.117) 0.028 (0.086) 0.017 (0.048)

ER 0.236 (0.321) 0.213 (1.569) 0.201 (2.294) 0.277 (0.505) 0.007 (0.451)

DR 0.700 (0.327) 0.715 (0.496) 0.726 (0.530) 0.670 (0.436) 0.854 (0.444)

PDR 0.170 (0.220) 0.144 (0.211) 0.143 (0.211) 0.149 (0.222) 0.134 (0.159)

CDR 0.508 (0.388) 0.551 (1.489) 0.566 (2.159) 0.507 (0.499) 0.704 (0.508)

ROA 0.004 (0.153) -0.078 (0.893) -0.101 (1.279) -0.043 (0.334) -0.076 (0.301)

AGE 5.965 (8.396) 4.829 (6.875) 4.698 (6.787) 4.728 (6.845) 6.266 (7.601)

light.

With respect to the geographical location (Table 3) we notice it affects only the volun-
tary winding-up, with a quite similar intensity in both approaches and in Cox regression
for any cause. Overall there were no great differences in the distribution of failures (Ta-
ble 4) between Perugia and Terni, even though there is a higher percentage of closure
in the first (34.1%) than in the second (30.0%), the opposite for winding-up (58.2% and
62.1% respectively).

Looking at the significant financial indexes (TAR, IAR and FFAR), Table 3 shows
that a higher value of IAR strongly increases the hazard of voluntary winding-up in both
approaches (HR of 2.11 and 2.08). FFAR also affects the hazard of winding-up (HR of
1.59 and 1.46), and acts on the hazard of closure extremely strongly (4.00 and 3.80). In
the Cox model for all-causes failure, the HR of 2.31 is a sort of average between these
effects. TAR influences hazards in the opposite direction to the other financial indexes,
with lower values implying increased hazards.

Finally, Table 5 presents for comparison the effects of the covariates on cumulative
incidences in two alternative models: hazard ratios from the Fine-Gray model for sub-
distribution hazards (already given in Table 3) and the odds ratios obtained by fitting
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Table 4: Distribution of causes of failure, by Activity Sector, Legal Form and Geograph-
ical Location of the firm.

Closure Winding-up Bankruptcy Total Total Total %

Inactive Active Inactive

Activity Sector

Agriculture N 30 46 2 78 393 471 16.6

% 38.5 59.0 2.6

Commerce N 170 322 51 543 2412 2955 18.4

% 31.3 59.3 9.4

Construction N 176 331 59 566 2085 2651 21.4

% 31.1 58.5 10.4

Manufacturing N 158 278 59 495 2175 2670 18.5

% 31.9 56.2 11.9

Other Services N 351 592 45 988 3677 4665 21.2

% 35.5 59.9 4.6

Tourism N 120 239 20 379 1393 1772 21.4

% 31.7 63.1 5.3

Legal Form

Cooperative N 56 193 7 256 747 1003 25.5

% 21.9 75.4 2.7

Limited Liability N 897 1592 224 2713 11063 13776 19.7

% 33.1 58.7 8.3

Publicly-traded N 52 23 5 80 325 405 19.8

% 65.0 28.8 6.3

Location

Perugia N 748 1275 168 2191 9145 11336 19.3

% 34.1 58.2 7.7

Terni N 257 533 68 858 2990 3848 22.3

% 30.0 62.1 7.9

Total N 1005 1808 236 3049 12135 15184 20.1

% 33.0 59.3 7.7

the proportional odds model. We repeat that hazard ratios obtained from the Fine-Gray
model do not have a direct interpretation; this is one of the reasons for preferring the
proportional odds model, in which an odds ratio has the interpretation familiar from
logistic regression. Thus, for example, the odds of winding-up by a given time are 1.21
times greater (95% confidence interval 1.09 - 1.36) for a firm in Terni compared to one
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in Perugia, all other things being equal. This happens to be equal to the hazard ratio,
but this is just a coincidence. However, examining the table, none of the covariate ef-
fects differs between the models to the extent that conclusions regarding their relative
importance would be changed.

5 Discussion

The topic of competing risks has a very long history (it is said to go back to Daniel
Bernoulli in 1760) and whole books have been written about it (David and Moeschberger,
1978; Crowder, 2001). Yet many general texts on survival analysis and reliability - even
one as extensive as Therneau and Grambsch (2013) - barely mention the subject. For
this reason, and given the fairly recent development of some of the methodology, quite a
large number of expository articles can be found in a variety of journals. The emphasis of
these is on the contrast between the cause-specific and subdistribution hazard regression
models, usually in a medical context: see, among others, Putter et al. (2007); Bakoyannis
and Touloumi (2012); Dignam et al. (2012); Haller et al. (2013) and Austin and Fine
(2017). One paper giving a view of reliability and other fields of application is Ma and
Krings (2008). Several papers present computational procedures in detail. Kohl et al.
(2015) describe a SAS macro for the subdistribution hazards regression model. Others
(Putter et al., 2007; Scrucca et al., 2007; Haller et al., 2013) employ the R programming
language and in particular the cmprsk package (Gray, 2019). Austin and Fine (2017)
describe the application of SAS and R in detail and also mention the facilities available
in Stata. Bakoyannis and Touloumi (2012) refer to R and Stata.

The cause-specific hazard regression approach possesses the major advantage of great
simplicity, being, in effect, simply a repeated application of the Cox semiparametric
proportional hazards model which is so widely employed as to have become almost
synonymous with survival analysis for many users. That predominance is probably
undesirable, given that even Cox himself in his original publication emphasised that the
proportional hazards assumption is essentially an entirely empirical convenience (Cox,
1972) and other authors have stressed that in general there is no physical or biological
basis for it (for example: Elsayed and Chan, 1990; Oakes, 2013). Other models deserve
wider attention, notably the accelerated failure time model which is generally preferred
over the proportional hazards model by reliability engineers but is seen less often in other
fields (Hougaard, 1999; Hutton and Monaghan, 2002). Fine and Gray’s subdistribution
hazard regression approach is less easy to implement in the general case although not
when there is only administrative censoring with no losses to follow-up, as in the present
application.

The cause-specific and subdistribution hazard regression approaches focus on different
aspects of survival, rate and risk, as described earlier in the present paper. Which aspect
is the more important may depend on the chief aim of the study. The consensus in the
literature seems to be that cause-specific hazards are more appropriate for uncovering
the causes (or, at least, the correlates) of failures whereas subdistribution hazards, by
producing the correct incidence functions, should be used for developing predictive mod-
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els (Lau et al., 2009). In particular, the latter is what is required in applications such
as the one described here and in credit-scoring, where the interest lies mainly in the
prediction of failure over the duration of the study, given a set of covariates recorded at
the baseline.

However, some authors recommend, for a full understanding of the issue under study,
that both approaches should be applied (e.g. Latouche et al., 2013). This is despite the
fact that it is not possible for both of these regression models to possess the proportional
hazards property; thus, if the cause-specific hazards is correctly specified as proportional
hazards, then the other model would be misspecified as proportional hazards. Neverthe-
less, there is evidence that the subdistribution hazards model in this form is still useful
under these circumstances (Grambauer et al., 2010; Latouche et al., 2013).

The proportional odds model has seen little use so far. The availability of a program
in the R language may lead to its wider adoption. It is important for users to be aware
that various options are available for competing risks analysis and not be limited to a
single choice as has unfortunately happened, in effect, for many users of single-cause
survival analysis.
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