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ABSTRACT 

 

The main objective of this paper is to develop a stochastic time series model with trend, periodic 

and irregular components using a ten years IWR decade data for three different types of cotton 

crops cultivated in Gezira Scheme, SUDAN. The model was applied to cotton Brackat and then 

used to Shmbat & Akala cotton. In the analysis of IWR time series the correlogram technique 

was used to detect the periodicity which then smoothed by Fourier series method. The series is 

then tested for stationary and the dependent part of irregular component is found to be well 

expressed by the first order autoregressive model for all the crops. The developed model 

superimposes a periodic-deterministic process and an irregular component. 

 

INTRODUCTION 

 

The design and operation of an irrigation project requires detailed information about the 

irrigation needs of a specific crop with respect to time. Various methods are used to provide this 

information.  Most of the existing methods are either deterministic or probabilistic in nature. 

While the former do not consider the random effect of the various input parameters, the latter 

employs the concept of probability to the extent that the time-based characteristics of irrigation 

needs are ignored. With the ever-increasing demand for water, these methods are no longer 

sufficient.  The irrigation needs of a crop are stochastic in nature because they are affected by the 

random climatologic parameters (Gupta et. al. 1986), i.e. stochastic climate variations are 

transferred to become stochastic component of irrigation water requirements. Hence, the 

irrigation needs should be computed considering both the deterministic and stochastic parts of 

the process. Considering all other factors, soil, topography, quality of water, irrigation methods 

and practices, etc., known or assumed. The irrigation need is a function of the stochastic variation 

of the local weather i.e., evapotranspiration rates and precipitation. Accordingly, stochastic 

analysis of irrigation requirement time series will provide a mathematical model that accounts 

for the deterministic and stochastic portions and also reflect the decade variations of irrigation 

needs of a crop. 
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During the past years many investigators have analyzed the time series of stream flow and rainfall 

and developed the autoregressive, trigonometric regression and other forms of the stochastic 

models for data generation. However, the study on the stochastic structure of irrigation 

requirement time series has not been made (Gupta, et. al. 1986). 

 

METHODOLOGY 

 

This model is based upon a simple linear programming approach. Analysis was done to achieve 

the following objectives: 

 To test the stationarity of the IWR time series, 

 To identify and remove the trend and periodic components, 

 To study the structure of the dependent stochastic component, and 

 To recognize the independent stochastic component using diagnostic checking approach. 

, irrigation water requirement tThe general additive model used to describe the time series X

(IWR) is given as: 

 

 

In which 

 irregular the=  tperiodic component, Z the=  tTrend component at time t = 1, 2… N; P =t T

component having a dependent and independent parts and, N = number of data points. 

)tTrend Component (T 

, 3..... n, n = number of seasons] , 2= 1 , iiwas identified by using the seasonal IWR values [S tT

obtained by the algebraic sum of IWR decade data during each season. For detecting trend, a 

hypothesis of no-trend was made and the following statistical test was selected to check the 

hypothesis. 

Turning Point Test 

 1-iis either greater than S i, a turning point R occurs at time i, and its Sian observed sequence SIn 

or less than the two adjacent values. The expected number of R in a random series has  i+1and S

mean and Variance that can be determined as following: 

 

Mean E(R) = 2(n-2)/3                                                   (2) 

 

Var V(R) = (16n-29/90)                                                   (3) 
 

can be expressed as standard measures, that is: /Consequently m 
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was compared with  /approximately as a standard normal variant. The value of m is treated Which

is within the  /its value from tables at 5% or 1% level of significance. If the calculated value of m

limits, then the hypothesis of no trend will be accepted, but if present, then it will be removed. 

After removing the trend, a trend-free series can be obtained.  Periodic Component (Pt) 

given as is  (Matalas, 1967) which period gramis modelled by Shetters  )tThe seasonal cycle, (P

follows. 
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The Fourier  h/2.kspan of periodicity, k= number of harmonics, 1In which h= time 

of equation (4) are computed by the following: kand B KA coefficients 

 

 

 

 

 

 

 

 tcomputed Pof harmonic then, the  number was then computed using equation (4) for particular tP

for further  twould be removed from original series which leaves only the irregular component Z

analysis. 

)Zt(Component  rregularI 

would be the combined effect of the weighted sum  itat time  tIt was assumed that the value of Z

th order -can be represented by the p ts so that the dependent part of Zof the past value

autoregressive process AR (p), and is governed by the following equation: 
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?2
a, is a white noise process with zero mean and a finite variance ta Where 

 

 And ...2, 1+1) and the parameters ) process is characterised by the number (AR ( The

. The fitting procedure of this model involves two stages (Box and Jenkins, 1976):2
a 

(1) Selection of the model order, p; and (2) Estimation of autoregressive coefficients1, 2... 

. The residual orderthe residual variance method was used to obtain the , orderFor selection of 

) can be computed using the following equation:s
2variance (Z 

 

 

sum of square);  ) (residualc…2c2-1c1-op)(c-) = (N,…,q2,q1,qIn which Z(

= 0,1,2,3,4,5 respectively . The value , functions at lags  auto covariance.are ...………….c1,c0c

was computed as; for any  of c 

 

 

.mean).) denotes the mathematical expectation (E ( And). tZE (=   Where 

d by equation (9), gave the appropriate order of the ) compute( 2
SZThe minimum value of 

. For representing the dependence structure of IWR time series, the parameterautograssive 

as: be determined) can (rautocorrelation coefficients  

 

 

expressed  ,artial autoregressive coefficients computed by Eq. (10), the p   For each value of c

could be computed by using the following regressive formula, (Kottegoda, as  function of r

1980): 
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In which k=1, 2... 

The first three linear autoregressive orders (i.e.  =1,  =2, and = 3 of equation (8) usually are 

of  tgood approximation for representing the time series. Then they can be used to analyze the Z

IWR time series. 

from the independent one, the following expression  tIn order to separate the dependent portion of Z

can be used. 

 

 

series is called the residual series in the subsequent discussion.t a The 
 

 

Diagnostic Checking 
Diagnostic checking is used for statistically verifying the adequacy of the formulated model. Diagnostic 

was done to confirm the randomness of the residuals, which is the condition for accepting the formulated 

autoregressive model. For this paper, the residual series was examined for any lack of randomness. 

Autocorrelation coefficients of residual series for lag1 (L1=50) were computed and were drawn against L1 

with 95% confidence limits. If the obtained correlogram fits within the limits, then it can be proved that 

residuals are normally distributed with zero mean and var = (1/L). 

Model Efficiency 

Nash and Sutcliffe (1970) can describe the overall model fit using model efficiency criterion 

such as that provided. The form of this criterion is: 

Where: 
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Model Application, Cotton (Barakat) 

The methodology described in the above part was used in investigating the structure of time 

series of irrigation water requirements (IWR) for three different types of crops in Gezira Scheme. 

Computing the crop Evapotranspiration and effective rainfall obtained the IWR values during 

growing period (1980-1989) for three different cotton crops (Akala; Barakat and Shambat). The 

growing period of each crop was divided into 20 sub-periods, each of one-decade duration.The 

IWR time series is composed of its decade values of ten cropping seasons in the present analysis, 

the efficiency of the irrigation system has not been considered, hence the data of IWR has to be 

adjusted in order to obtain the gross IWR of the crop.  Table (1) shows a few statistical 

characteristics of the decade IWR that indicates that the coefficient of variation range from 

0.0173 to 0.1424, which signifies the importance of temporal variability of IWR values. The 

in table (1) are also significantly different from zero,  )pr(ation coefficient values of serial correl

which shows that IWR is mutually dependent.  Thus, the IWR time series can be modelled on 

stochastic Theory. Fig. (1) Shows the mean values of the decade IWR of a cotton crop over a ten 

periods under analysis. 
 

Table (1): Statistical Characteristics of Season IWR series of Cotton (Barakat) 
Season No. 

No. 

Total (mm) Avg. (mm) Std. pC pr 

1 231.2 23.12 3.293023 0.142432 0.9103 

2 234.99 23.499 2.069785 0.08808 0.7525 

3 233.5 23.35 2.096691 0.089794 0.5234 

4 234.18 23.418 1.766055 0.075414 0.2443 

5 285.5 28.55 3.632189 0.127222 -0.0486 

6 360.75 36.075 3.719848 0.103114 -0.3212 

7 445.84 44.584 3.995487 0.089617 -0.5522 

8 538.55 53.855 4.592417 0.085274 -0.7319 

9 659.21 65.921 3.331778 0.050542 -0.8294 

10 709.5 70.950 1.228341 0.017313 -0.8568 

11 729.32 72.932 1.289787 0.017685 -0.8195 

12 715.25 71.525 1.514238 0.021171 -0.7184 

13 703.59 70.359 2.559507 0.036378 -0.5375 

14 628.24 62.824 2.838302 0.045179 -0.3130 

15 590.73 59.073 3.657085 0.061908 -0.0453 

16 523.16 52.316 2.104457 0.040226 0.2357 

17 494.34 49.434 2.740400 0.055524 0.5072 

18 443.48 44.348 1.709300 0.038543 0.7276 

19 442.15 44.215 2.660774 0.060178 0.8864 

20 415.76 41.576 2.230093 0.053639 0.9610 
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Fig (1): Mean Decade Values of IWR for Cotton (Bracket) 
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Removal of Components of IWR time Series 

Trend Components 

Before we actually estimate the trend, the first thing to find is whether or not any trend is present at 

all. To check this, tests for randomness were performed on the series using Turing point test as 

are 937.3,  ,for ten seasons iThe seasonal values, S .mean)/ standard deviation-R= (follows: m’ 

984.4, 951.041, 979.4, 951.97, 978.33, 949.86, 980.76, 950.5 and 955.68mm.  The computed m', for 

It 0 at 5% level of significance. 1.96its of the turning point test is 1.38, which is within the lim

is treated as the trend free series. tin the IWR time series, hence X treveals the absence of T 

Periodic Component 

 3)( Fig in series was confirmed by the oscillating shape of the correlogram IWR int of P Presence

which has peaks at lags equal 20 and other multiples of it, indicating the time span of periodicity 

as 20 decades. 

Table (2): Smoothing via Constrained Fourier Series of Cotton Crop (Brakat) data 
 

Number of harmonic Fourier coefficients Amplitude nce accounted by the Varia

harmonics thj  A(j) B(j) 

1 -17.59 -15.67 23.56 93.23 

2 5.21 -1.29 5.37 4.84 
 

Table (2) reflects the percentage of variance accounted for by a certain number of harmonics as 

of the  tonic only. For representing the P93.23% which recommends the selection of the first harm

    17.59 and-are given in Table (3) were found to be  kand B kIWR time series, Fourier coefficients A

can be expressed as: t15.67 respectively, therefore P- 

thus obtained was removed  t00). The P=2max17) for all values of t (t. (was computed using Eq tP

.tfrom the original time series in order to get a new stationary series Z 

Irregular Component 

in regressive or Morkov schemes to the series as outlined -was analysed by fitting the auto tZ

equation (8) 
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as shown in  2e model was determined by comparing the order of the model and its RThe order of th

Table (5), also the correlogrom of residual series in Fig (4) with 95% tolerance limit indicates that 

. may be expressed as:tre ZTherefo.is 0.911  1The empirical values of the model is within order 1. 

 

1. Then the   1-satisfies the condition  1The AR (1) is stationary because the parameter 

developed model describes the periodic irregular behaviour of the original series and it is a trend 

free series. 

 18911.0 1 ttt aZZ  
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The IWR Model 

The developed model is a super position of a harmonic-deterministic process and first order 

Markorv Model and it can be denoted as follows: 

 

 
 
 

The three terms constitute the deterministic part of the IWR time series.  The first term is a constant, 

indicating the arithmetic mean of IWR. The second and third terms are the harmonic portion of the 

deterministic part, and are functions of time. The fourth term represents the dependent stochastic 

component of the model. The last term is a random independent part of the stochastic component 

with a zero mean. The formulated model was subjected to various checks to test its adequacy for 

representing the time dependent structure of the IWR.  The correlogram in Fig. (4) Shows that 

almost all the auto - correlation coefficient has a mean value of 0.00126, nearly zero, and the 

variance of 0.021, which is approximately (1/50 = 0.02).This leads to the conclusion that the 

residuals are independent and normally distributed.   
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Fig (3): Correlogram of season IWR for Cotton (Braket) 
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The IWR, generated by the model, were plotted with corresponding observed values in Fig (5) 

which indicates closeness of the values, and thereby reflects the appropriateness of the formulated 

IWR model. Therefore, the model may be employed to generate decade IWR values of cotton 

crops for use in planning and designing irrigation projects. (3): 

 

 

 

 

 

Smoothing via Constrained Fourier series for Cotton (Shambat) 

Number of 

harmonic 

Fourier coefficients Amplitude Variance accounted by the 

jth harmonics A(j) B(j) 

1 -2.46 -1.49 2.88 16.95 

2 -4.18 1.31 4.38 39.23 
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Fig. (5): Comparison of Observed and Estimated Decade IWR for Cotton (Brakat)
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Table (4): Smoothing via Constrained Fourier series for Cotton (Akala) 

Number of 

harmonic 

Fourier coefficients Amplitude Variance accounted by the 

jth harmonics A(j) B(j) 

1 -8.8 -0.51 9 94 

2 0.09 -0.7 0.75 0.59 
 

Table (5): Comparing Model Parameters and Efficiency 
 

Auto Model 

order p Estimated Parameters 

Model 

 2Efficiency R

% 

Types of Crops 

1 2 3 4 

1 

2 

0.9105 

1.34 

 

-0.468 

 

 

 84.20 

65.97 
Cotton 

Shambat 
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3 
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0.7116 

0.843 

0.84 

0.84 

 

-0.184 

-0.166 

-0.18 

 

 

-0.022 

0.038 
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Model Application to Shambat & Akala 

The cotton crop (Brakat) was taken as an example for the modelling. The study demonstrated 

that the formulation of such a model is feasible. Also mathematical expressions were developed 

for two other cotton crops, Shambat and Akala. It was found that decade time series of irrigation 

requirement was trend-free because the computed turning point test (m’) for Shamabat & Akala 

were found to be 1.167 and 1.65 respectively. These were within the limits of 1.96 at 5% level of 

significance, and it was periodic stochastic in nature. Hence the developed model superimposed a 

periodic – deterministic process and irregular component. The deterministic portion of the 

irrigation requirement series was analyzed using correlogram and Fourier series. Tables (3) & (4) 

show the periodic component of the IWR represented by the first harmonic for the Cotton 

Shambat and second harmonic for Cotton Akala respectively. Table (5) shows that the time 

dependence of the stochastic portion may be approximated by the first order auto- regressive 

model for both crops with constant auto-regressive coefficients of 0.7116 for Shambat and 0.81 

for Akala. 

The IWR generated by the formulated model, were plotted with corresponding observed values and 

were shown in fig. (8) and fig. (7) For Shambat and Akala Cotton with 60% and 73% efficiencies 

respectively. 

 

CONCLUSION AND RECOMMENDATIONS 

 
The study demonstrated that the formulation of such a model is feasible. Also mathematical 

expressions were developed for two other cotton crops, Shambat and Akala. It was found that 

decade time series of irrigation requirement was trend-free because the computed turning point 

test (m’) for Shamabat & Akala were found to be 1.167 and 1.65 respectively. The developed 

periodic-stochastic model then used for representing the time based 
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 الملخص

ان  الهدف  الأساسي  لهذه  الورقة  هو  تطوير  نموذج  رياضي  يساعد  في  ايجاد  التنبوءات  بكمية  

المياه  المتوقعة  إستخدامها  لاغراض  الري  وهذا  النموذج  يعتمد  أساساً  على  طريقة  السلاسل  الزمنية  

 ئية .بمكونات  ثلاثة  هي  الانحدار  والدورية  والعشوا

لا ( اتم  تطبيق  هذا  النموذج  على  محاصيل  القطن  والتي  تزرع  بالسودان  )بركات  شمبات  وأك

حيث استخدمت  عدة  تقينات  لاجراء  المحاكاة  الرياضية  في  السلاسل  الزمنية  الأمر  الذي  ساعدنا  في  

الكشف  عن  وجود  بعض  الظواهر  من  عدمها ) الانحدار ( حتى  تمكنا  من  ايجاد  علاقة  رياضية  

 مبنية  على  الدورية  والعشوائية.

 

 

 
 
 
 

 

 

 

 

 

 


