
Periodicals of Engineering and Natural Sciences  ISSN 2303-4521 

Vol. 8, No. 2, June 2020, pp.262-271 

 562 

  

Bayesian group Lasso regression for left-censored data 
 

Saja Hussein Aljanabi, Rahim Alhamzawi 

Statistics Department, College of Administration and Economics, University of Al-Qadisiyah 

 

ABSTRACT   

In this paper, a new approach for model selection in left-censored regression has been presented. 

Specifically, we proposed a new Bayesian group Lasso for variable selection and coefficient estimation in 

left-censored data (BGLRLC). A new hierarchical Bayesian modeling for group Lasso has introduced, which 

motivate us to propose a new Gibbs sampler for sampling the parameters from the posteriors. The 
performance of the proposed approach is examined through simulation studies and a real data analysis. 

Results show that the proposed approach performs well in comparison to other existing methods. 

Keywords:  Left-censored regression, Bayesian group Lasso left-censored regression (BGLRLC), 

Variable selection (VS) 

Corresponding Author: 

Saja Hussein Aljanabi,  

Statistics Department, 

College of Administration and Economics, 

University of Al-Qadisiyah, Al-Diwaniyah, Iraq 

E-mail: sajaljanabi@yahoo.com 

1. Introduction  

Statistics is an influential tool for measuring the impact of experimental data and for drawing the accurate 

conclusions from it. The importance of statistics appears in demonstrating different phenomena by models that 

are closer to the reality. The latent variable in left censored model contains a large number of observations that 

are less than a certain value. These data have been widely employed in many fields of science such as economy, 

epidemiology, chemistry, and geology. The left-censored regression model assumes 

𝑦𝑖 = {
𝑦𝑖

∗       𝑖𝑓        𝑦𝑖
∗  > 𝑐 

𝑐         𝑖𝑓       𝑦𝑖
∗   ≤ 𝑐 ,

 

where 𝑦𝑖 is the observed dependent variable, 𝑐 denotes to the left-censored point, and 𝑦𝑖
∗ is unobserved 

dependent variable defined as follows 

                                  𝑦𝑖
∗ = 𝒙𝑖

𝑡𝜷 + 휀𝑖  ,    𝑖 = 1, … , 𝑛 ,                                                (1) 

Here, 𝒙𝒊
𝑡 is a 1 × 𝑘 matrix of covariates, 𝜷 = (𝛽1, … , 𝛽𝐺) 𝑡 , and 휀𝒊 ~𝑁(0, 𝜎2). 

The important problem in the censored regression model is selecting important covariates to increase the 

accuracy of the model and build a good predictive model. Specifically, as number of variables has been greater 

in comparison to the sample size or when there is a strong correlation between the covariates, the variance-

covariance matrix is singular. Therefore, several methods were introduced to select important variables. For 

this reason, Akaike, in 1974, presented Akaike Information Criterion (AIC) to select a good predictive model 

[1]. However, AIC produces the inconsistent model [2]. So, AIC is weak in selecting the optimal model when 

𝑛 < 𝑘 ([3]. 

Schwarz presented the Bayesian Information Criterion (BIC) for overcoming problems regarding AIC. 

Specifically, BIC produces a consistent model. However, the performance of BIC does not work satisfactorily 

when 𝑘 > 𝑛 [4]. 
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The authors of [5] provided an algorithm to deal with the problem of variables selection and to overcome the 

problem of (AIC) and (BIC). This algorithm is called stochastic search variable selection (SSVS). Although 

such algorithm produces a good model, it consumes a lot of time and sometimes it does not acquire the correct 

model. 

Recently, regularization approaches were suggested for estimating parameters and selecting variables 

simultaneously. For example, Ridge regression presented in [6], addressed problem of linear multiplicity by 

making the variance of the estimations slightly smaller. Later, Tibshirani suggested the Lasso regression by 

imposing an 𝐿1 − norm  for ordinary least squares (OLS) [7]. Although this is an attractive feature, lasso 

regression does not select variables well when the explanatory variables are larger than the sample size(𝑘 >

𝑛), or when there is a strong correlation between the covariates. To overcome the downsides regarding lasso 

regression, Zou and Hastie assumed elastic net regression [8], which compromises between the lasso ridge 

penalty(𝐿2) as well as penalty ( 𝐿1). This method performs well in selecting the important variables and 

estimating the parameters regarding model with regard to high correlations between variables or even when 

(𝑘 > 𝑛), as well as group selection. However, it has required high computational cost. Thus, many researchers 

have proposed ways to solve the problem of group selection and grouping structure of between covariates. 

Bakin proposed in [9], the development of group lasso as well as the development of group selection methods 

presented in [10]. Kim et al., presented Lasso group within the generalized linear models [11]. Meier and 

Bühlmann proposed Lasso group with the logistic regression [12]. The absolute general punishment method 

provided by [13] is an extension of the Lasso method.  Hashem et al., proposed Bayesian quantile regression 

with group lasso penalty [14]. 

The aim of this study, as compared with above studies, is to present new group Lasso for selecting groups 

regarding the significant variables of left-censored regression. After that, novel Gibbs algorithm for sampling 

parameters with regard to the variable selection has been conducted. Simulation results as well as real data 

analysis indicated that the proposed new approach executed excellently in superior results as compared to the 

present approaches in the literatures.  

2. Bayesian group Lasso with left-censored  

The Lasso group estimator has been suggested by Yuan and Lin in 2006 to solve the following problem[10]: 

             �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑦 − 𝑋𝛽)𝑡(𝑦 − 𝑋𝛽) + ∑ 𝜆𝑔‖𝛽𝑔‖𝐺
𝑔=1 ,                                    (2) 

where 𝑦 = (𝑦1, … 𝑦𝑛)𝑡 , 𝜆𝑔 ≥ 0  is the regularization parameters, G is sizes of the groups and ‖𝛽𝒈‖ is the 

𝐿1 penalty of 𝛽𝒈. The Lasso group performs well when the structure of the group of variables is known [15]. 

The attractive feature of this method is the feasibility to get rid of a group of unimportant variables by making 

their coefficients equal to zero at the same time [11]. This leads to automatic variable selection and estimation 

of parameters simultaneously. This method has diverse solutions on the level of groups [10]. Lasso group is a 

generalization or expansion for Lasso as Lasso can be distinctive condition related to the Lasso group. Kyung 

et al., in 2010, suggested Bayesian group lasso for a linear regression model as treatment of Lasso group for 

overcoming problems of covariance matrix estimation. Similar to the Bayesian lasso, Kyung et al., proposed 

a hierarchical representation for the Lasso group imposed on each group a multi-Laplace prior [16]. Based on 

[10], the Bayesian group lasso for censored data can be written as: 

                �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑦∗ − 𝑋𝛽)𝑡(𝑦∗ − 𝑋𝛽) + ∑ 𝜆𝑔‖𝛽𝑔‖ 𝐺
𝑔=1 .                               (3) 

Based on [17-21], a key step in any Bayesian analysis is the prior distribution.  Based on [22], we assign the 

following prior distribution for 𝜷 to proceed a Bayesian analysis as follows: 

𝜋(𝜷) = 𝐶(𝜆)𝑒𝑥𝑝(−𝜆‖𝛽𝑔‖),  
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Here, 𝐶(𝜆) =
𝝀𝑘

2𝑘. Thus, we get: 

𝜋(𝜷) =
𝜆𝑘

2𝑘
𝑒𝑥𝑝(−𝜆‖𝛽𝑔‖) 

=
𝜆𝑘+1

2𝑘
∫ 𝑒𝑥𝑝{−𝜆𝑠}𝑑𝑠

 

‖𝜷‖1<𝑠

 

Let 𝑉𝑘(𝑄) =
2𝑘𝑠𝑘

Γ(𝑘+1)
 , 𝑠 > 0 

= ∫
𝜆𝑘+1

Γ(𝑘 + 1)
𝑠𝑘𝑒𝑥𝑝{−𝜆𝑠}𝑑𝑠

 

‖𝜷‖1<𝑠

 

This study will convert the above-mentioned formula in the following way: 

Assuming    𝑟 = 𝜆 𝑠         ⟹      𝑑𝑟 = 𝜆 𝑑𝑠   

                𝑠 =
𝑟

𝜆
             ⟹      𝑑𝑠 =

𝑑𝑟

𝜆
     

Then, 

𝜆𝑘

2𝑘
𝑒−𝜆‖𝛽𝑔‖ = ∫

𝜆𝑘+1

Γ(𝑘 + 1)
  

 

‖𝜆𝛽‖<𝑟

(
𝑟

𝜆
)

𝑘

exp(−𝑟) 
𝑑𝑟

𝜆
 

                         = ∫
1

Γ(𝑘+1)

 

‖𝜆𝛽‖<𝑟
 𝑟𝑘  exp(−𝑟)  𝑑𝑟                                                   (4) 

2.1. Bayesian hierarchical model 

This study will provide Bayesian hierarchical model based on hierarchical model reported in [22] as follows: 

𝒚∗|𝑿, 𝜷, 𝜎2  ~  𝑁𝑛(𝑋𝜷, 𝜎2In) 

     𝑦𝑖 = 𝑚𝑎𝑥{𝑦𝑖
∗, 𝑐} ,       𝑖 = 1, … , 𝑛 

𝑦𝑖
∗ = 𝒙𝑖

𝒕𝜷 + 휀𝑖                               

      𝛽𝑔|𝑟𝑔  ~ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑓𝑜𝑟 𝑔 = 1, … , 𝐺 ,                                            (5)      

𝑟1, … , 𝑟𝐺|𝜆1, … , 𝜆𝐺   ~  ∏ 𝐺𝑎𝑚𝑚𝑎(𝑘𝐺
𝑔=1  ,1) , 

Here, 𝑚𝑔 is the dimension of 𝑔, 

𝜎2~
𝑏ℎ

Γ(ℎ)
𝜎2−ℎ−1

exp (−
𝑏

𝜎2
) , 𝑏, ℎ > 0 

𝜆𝑔  ~ 𝑔𝑎𝑚𝑚𝑎 (𝑓, 𝑑) 

2.2. Full conditional distribution 

The full conditional distribution is related to 𝑦𝑖
∗ is as follows: 

𝑦𝑖
∗|𝑦𝑖, 𝜷~ {

𝛿(𝑦𝑖)                              𝑖𝑓  𝑦𝑖 > 𝑐 ,

𝑁(𝒙𝒊
′𝜷 , 𝜎2)                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
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where 𝛿  can be defined as degenerated distribution. Based on [22], the full conditional posterior distribution 

regarding (𝜷) is as follows: 

 𝜋(𝜷|𝒚∗, 𝑿, 𝜆) ∝ 𝜋(𝒚∗|𝑿, 𝜷, 𝜎2)𝜋(𝜷|𝜆) 

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝑦∗ − 𝑋𝛽)𝑡(𝑦∗ − 𝑋𝛽)} ∏ 𝐼

𝐺

𝑔=1

{‖𝛽𝑔‖ <
𝑟𝑔

𝜆𝑔
} 

𝜷|𝒚∗, 𝑿, 𝒓, 𝜎2, 𝜆1, … , 𝜆𝐺~ 𝑁𝑘(�̂�, 𝜎2(𝑿𝒕𝑿)−1) ∏ 𝐼

𝐺

𝑔=1

{−
𝑟𝑔

𝜆𝑔
< 𝛽𝑔 <

𝑟𝑔

𝜆𝑔
} , (6) 

Here,  �̂� = (𝑋𝑡𝑋) −1𝑋𝑡𝑦∗ 

Thus, full conditional posterior distribution regarding (𝒓) is as follows: 

𝜋(𝒓|𝒚∗, 𝑿, 𝜷, 𝜆) ∝ 𝜋(𝒓)𝐼{𝑟𝑔 > 𝜆𝑔‖𝛽𝑔‖} 

𝒓|𝒚∗, 𝑿, 𝜷, 𝜆1, . . , 𝜆𝐺  ~ ∏ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1)𝐼{𝑟𝑔 > 𝜆𝑔‖𝛽𝑔‖}

𝐺

𝑔=1

,                         (7) 

Similarly, the full conditional posterior distribution regarding 𝜋(𝜎2) is as follows: 

𝜋(𝜎2|𝒚∗, 𝑿, 𝜷) ∝ 𝜋(𝒚∗|𝑿, 𝜷, 𝜎2)𝜋(𝜎2) 

∝ (𝜎2)−
𝑛
2 𝑒𝑥𝑝 {−

1

2𝜎2
(𝑦∗ − 𝑋𝛽)𝑡(𝑦∗ − 𝑋𝛽)}

𝑏ℎ

Γ(ℎ)
𝜎2−ℎ−1

exp (−
𝑏

𝜎2
) 

𝜎2|𝒚∗, 𝑿, 𝜷  ~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (
𝑛

2
+ ℎ,   

1

2
(𝑦∗ − 𝑋𝛽)𝑡(𝑦∗ − 𝑋𝛽) + 𝑏)     (8) 

𝜋(𝜆|𝜷)  ∝ 𝜋(𝜷|𝜆)  𝜋(𝜆) 

 ∝ 𝜆𝑔
𝑚𝑔 𝜆𝑔

𝑓−1𝑒𝑥𝑝(−𝜆𝑑) ∏ {𝜆𝑔 <
𝑟𝑔

‖𝛽𝑔‖
}

𝐺

𝑔=1

 

 ∝ 𝜆𝑔
(𝑚𝑔+𝑓)−1𝑒𝑥𝑝(−𝜆𝑑)   ∏ {𝜆𝑔 <

𝑟𝑔

‖𝛽𝑔‖
}

𝐺

𝑔=1

 

                          𝜆𝑔  ~𝑔𝑎𝑚𝑚𝑎 ((𝑚𝑔 + 𝑓), 𝑑)  ∏ {𝜆𝑔 <
𝑟𝑔

‖𝛽𝑔‖
}𝐺

𝑔=1                                       (9)  

3. Computation 

The conditional posterior distributions of each parameter have a standard model. This enables us to Gibbs 

sampling with regard to the model’s parameters. The full common distributions can be found by applying the 

MCMC algorithm as follows: 

1- Updating  𝑦𝑖
∗ 
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𝑦𝑖
∗|𝑦𝑖, 𝜷~ {

𝛿(𝑦𝑖)                              𝑖𝑓  𝑦𝑖 > 𝑐

𝑁(𝒙𝒊
′𝜷 , 𝜎2)                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

              

2- Updating (𝜷) from multivariate normal distribution with mean (𝑋𝑡𝑋) −1𝑋𝑡𝑦∗ and the variance 

(𝜎2(𝑋𝑡𝑋)−1). 

3- Updating (𝑟𝑔) from exponential distribution (𝜆𝑔)𝐼{𝑟 > ‖𝜆𝑔𝛽𝑔‖} as follows: 

 𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑟𝑔
∗ ~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1). 

𝑟𝑔 = 𝑟𝑔
∗ + ‖𝜆𝑔𝛽𝑔‖ 

4- Updating  (𝜎2) from the Inverse Gamma with shape parameter 
𝑛

2
+ ℎ  in addition to rate parameter  

(
(𝑦∗−𝑋𝛽)𝑡(𝑦∗−𝑋𝛽)

2
+ 𝑏). 

5-Updating (λ
g

) from Gamma distribution, the shape (𝑚𝑔 + 𝑓)  as well as rate (𝑑) 

4.  Simulation studies 

In this section, we have demonstrated the performance of the proposed method for Bayesian group lasso 

regression for left censored data (BGLRLC) by simulations. This method is compared with the standard left-

censored regression (SLCR), Bayesian left censored regression (BLCR) and Bayesian Lasso left censored 

regression (BLLCR). These four methods are assessed based on the median of mean absolute deviations over 

250 simulations. The convergence of the BLLCR algorithm is checked by trace plots using the coda package 

in R. We also display the histograms of the posterior samples of BLLCR algorithm using the psych package 

in R.  

 

4.1. Simulation 1 

This simulation study considers prediction accuracy with 5 variables simulated from standard multivariate 

normal distribution. We simulate 100 observations from the model:  

𝑦𝑖 =  max {𝑦𝑖
∗, 0} 

where 𝑦𝑖
∗ = 𝒙𝑖

𝑡𝜷 + 𝑖     and    𝒙𝑖
𝑡 represents a vector of 6 covariates and 𝑖 is simulated from standard normal 

distribution.  The true regression coefficients, including the intercept term, are 𝛽 = ((0, 2, 0), (0, 0, 0)) 

which divided in two groups (0, 2, 0) 𝑎𝑛𝑑   (0, 0, 0).   Of the 100 observations, fifty of them are censored. 

Therefore, the censoring ratio is 50%. 

 

Table 1 explains the MMAD results for simulation 1. We can observe that the BGLRLC has smallest MMAD 

and SD, which confirms that our proposed method performs better than the other methods in terms of MMAD 

and SD.  

Table 1.  MMADs for Simulation 1 

Method MMAD SD 

BGLRLC 0.4012 0.0811 

SLCR 0.6644 0.1576 

BLCR 0.8614 0.0824 

BLLCR 0.4146 0.1415 
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Table 2 explains the parameter estimates for simulation 1. We can see from Table 2 that the BGLRLC gives 

very closed results to the true values compared to the other methods. 

 

Table 2. Parameter estimations for simulation 1 

Method   𝜷𝟎      𝜷𝟏    𝜷𝟐    𝜷𝟑    𝜷𝟒     𝜷𝟓 

𝜷 (True) 0.00000 2.00000 0.00000 0.00000 0.00000 0.00000 

BGLRLC 0.00000 1.77659 0.00000 0.1875 0.00000 -0.15947 

SLCR 
-

0.16671 
1.91309 0.01213 0.10076 -0.12246 -0.33888 

BLCR 
-

0.42281 
2.06575 0.00501 0.09376 -0.10687 -0.35883 

The trace plots in Figure 1 show that the samples of the BGLRLC method traverse the posterior space very 

fast. 

 
Figure 1.  Trace plots for the variables in Simulation 1 
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The posterior histograms of the BGLRLC method in Figure 2 show that the conditional posteriors, indeed, the 

desired stationary truncated univariate normal distributions. 

 
 

Figure 2. Posterior histograms for simulation 1 

 

4.2. Simulation 2 

This simulation study is similar to simulation 1 except that we set the following: 

𝛽 = ((1, 2, 0), (0, 0, 0), (1, 1, 0), (0, 0, 0), (1, 1, 0)). This setup allows us to illustrate  the 

performance of the BGLRLC method  in the case with group structures in the covariates.  

Table 3 explains the MMAD results for simulation 1. We can see that the BGLRLC has smallest MMAD and 

SD compared to the other methods in the comparison.  

Table 3. MMADs for Simulation 2 

Method       MMAD          SD 

BGLRLC 1.00315 0.11384 

SLCR 1.04711 0.14893 

BLCR 1.01459 0.45348 

BLLCR 1.00395 0.19435 
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5. Real data 

We illustrate the proposed method with the data of the absence of university students. This dataset has 200 

observations on 19 variables.  The response variable is the number of absence days, while the other eighteen 

variables are covariates as follows: 

𝑦 :         The number of absence days. 

𝑥1:         Gender. 

𝑥2:         Age. 

x3:         Social status. 

x4:        The distance between the student's residence and the university in ( km). 

x5:        Student bears a number of family responsibilities.                 

x6:        Family problems that occur within the family. 

x7:        Student health status (chronic diseases). 

x8:        The death of a family member or relatives. 

x9:        Inability to get up early.  

x10:       Stay up late on social media, late at night. 

x11:       The psychological state of the student. 

x12:       Suffering from insomnia at night. 

x13:        Preparing for exams (revision). 

x14:       There is no limitation by management and teachers in accounting for absent students. 

x15:       Excessive demand for homework and failure to perform it. 

x16:       Bad weather (rain, hail,).  

x17:       The security situation in the student's surrounding  environment. 

x18:       Feeling satisfied with his affiliation with the university or his major. 

 

Table 4. Posterior mean for parameter estimates of real data example 

BLCR SLCR BLLCR BGLRLC Variables 

7.192 7.105 6.991 7.291 Intercept 

-0.417 -0.407 0 0 X1 

-0.026 -0.024 0.181 0.219 X2 

0.461 0.322 0 0 X3 

0.022 0.022 0.034 0 X4 

-0.077 -0.078 0 0 X5 

-0.187 -0.188 0 0 X6 

-0.658 -0.681 0 0 X7 

0.388 0.398 0.387 0.392 X8 

0.079 0.088 0 0 X9 

0.059 0.053 0 0 X10 

0.896 0.937 0 0 X11 

-0.215 -0.216 0 0 X12 

-0.309 -0.32 0 0 X13 

0.22 0.226 0 0 X14 

0.228 0.242 0 0 X15 

0.198 0.194 0 0 X16 

-0.094 -0.104 0 0 X17 

-0.219 -0.221 0 0 X18 
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Table 4 summarized the results of the real data example. To evaluate the methods, the DIC was computed for 

the four methods of BGLRLC, BLLCR, SLCR, and BLCR. The values were 1101.2219, 1273.448, 1192.844 

and 1153.2781, respectively. The results of DIC show that the BGLRLC has better performance than the other 

methods. 

 

6. Conclusions 

This paper introduced a new procedure for selecting the left-censored regression model using the SUM as the 

prior distribution. Additionally, we introduced a new model for the Bayesian hierarchy of the Lasso group, 

which motivates us to suggest a new Gibbs sampling tool for sampling parameters. Simulation results and 

analyses of the absence of university students have shown that our procedure performed in a higher 

performance as compared to other procedures in the literature. 
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