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Abstract 

The World Health Organization reports that falls are the second-leading cause of accidental 

death among senior adults around the world. Currently, a research team at William & Mary’s 

Department of Kinesiology & Health Sciences attempts to recognize and correct aging-related 

factors that can result in falling. To meet this goal, the members of that team videotape walking 

tests to examine individual gait parameters of older subjects. However, they undergo a slow, 

laborious process of analyzing video frame by video frame to obtain such parameters. This project 

uses computer vision software to reconstruct walking models from residents of an independent 

living retirement community. Those subjects have agreed to be tested bi-annually and to report 

their fall history. Videos previously recorded demonstrate a variety of walks. Our 

procedures use several OpenCV-Python functions to detect, label, and follow markers that have 

been placed on the subjects’ shoes and knees. The trajectories followed by these markers allow us 

to generate walking models with gait parameters, such as the step height and the ankle 

dorsiflexion angle. This computer vision video analysis runs unsupervised to reduce processing 

time dramatically while enhancing the accuracy of a variety of measurements. Therefore, our 

data processing techniques will enable our kinesiology investigators to quickly generate a more 

extensive data set to learn how falling problems develop.  This outcome will allow them to develop 

and to test exercises that can reduce those problems and prevent future falls for older subjects. 

Keywords: computer vision, falls, gait, seniors 
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Chapter 1: Project Background and Objectives 
 
Section 1.1: Falls in Human Health 

Kellog International defines a fall as an event that involves intentional or unintentional 

resting on the ground or floor [1]. The World Health Organization (WHO) states that falls are the 

second leading cause of accidental death worldwide [2]. In a 2017 issue of IEEE Pulse, falls are 

also the sixth leading cause of death among the elderly in the United States [3]. About 28-35 

percent of adults over the age of 65 are falling each year [4]. These statistics are growing with age, 

frailty level, and gait variability. By 2050, over 1 in 5 individuals will be seniors, which results in 

higher rates of fall-related injuries at 20-30 percent and emergency visits at 10-15 percent [4][5]. 

With gait as a manner of walking and a measurable fall risk factor, developing fall 

prevention systems becomes possible. A research team under Dr. Kabalan Chaccour of Antonine 

University in Lebanon describes those systems as devices that can sense, process, and 

communicate essential data in the event of a fall [1]. To this day, falls prevention is one of the 

most pressing issues that require collaboration between a scientist and an engineer. In health 

science, measuring the gait of the senior-aged subject is crucial to establishing thresholds for when 

he or she is likely to fall. 

Section 1.2: Current Studies in Greater Williamsburg 

In 2018, the Department of Kinesiology and Health Sciences at the College of William & 

Mary established the Center for Balance and Aging Studies (CBAS) [6]. Since then, principal 

investigators Dr. Evie Burnet and Dr. Michael Deschenes, and student research assistants search 

for and evaluate factors that can increase fall risk among local senior citizens. Williamsburg 

Landing and the James City County Recreation Center have proposed to collaborate with CBAS 

on intervening with and evaluating participating senior adults to collect gait measurements [7]. So 
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far at Williamsburg Landing, CBAS utilizes the GAITRite walkway and high-speed camera 

systems to detect different motions that can lead to a fall [8]. GAITRite is a computer-connected, 

pressure-sensitive pathway system that records each footstep along a subject’s walking path. A 

video camera films the passage through the GAITRite mat to track the subject’s step height and 

ankle dorsiflexion angle [8]. 

The data from gait analysis tests at Williamsburg Landing suggest that future data should 

be automated. Currently, the kinesiology team observes and interprets videos frame by frame to 

manually measure step heights and angles. These tasks do not provide necessarily accurate 

information because the camera may not be viewing the limbs from a correct angle [9]. The 

development of new technologies is thus necessary to retest the subjects to gather measurements 

that are more accurate and readable. In fact, this project intends to use image processing methods, 

such as computer vision—which is defined in Section 1.4—to quickly collect and interpret gait 

data from desired video or photo elements. 

Section 1.3: Video Frame Illustration 

 
Figure 1.1: Original Video Frame. An original video labeled “S10.B1” is displayed to the user before any computer 

vision techniques can be applied [10]. 
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Figure 1.1 is an original video frame from an AVI file titled “S10.B1,” which shows a 

principal investigator and a test subject walking down the GAITRite mat, as well as that subject 

stepping over a foam block barrier [10]. The black dots described as hand-drawn gait markers were 

attached to the subject’s legs because the kinesiology researchers elected to undergo the time-

consuming procedure of measuring those markers in each frame. A possible argument for why 

videotaping a walking subject is necessary is that it not only syncs with the footprint path that 

GAITRite creates, but it also provides an opportunity for estimating step height and foot flex angle 

before considering any new technologies. Without image processing automating the video frame 

analysis, the researchers will spend more time producing complex data by frequently pausing 

videos, measuring objects with pixels, and observing how the feet extend. 

Section 1.4: Description of Computer Vision 

Computer vision is an interdisciplinary field of science that enables computers to see and 

process digital images and videos. At the forefront of such high-tech disciplines as electrical 

engineering and computer science, the significance of computer vision rests with the recognition, 

reconstruction, generation, and processing of images to solve vision problems. Likewise, 

developing algorithms and building models of the human visual system have sparked interest 

among computer scientists, neuroscientists, and physicists [11].  

The most popular and well-documented open-source library for programmers who are new 

to image processing is OpenCV, which is short for Open Source Computer Vision. Started by Gary 

Bradsky in 1999 [12], OpenCV is expanding to support a variety of algorithms related to computer 

vision and machine learning. Also, it endorses several programming languages such as C++, 

Python, and Java, and it is available to download on Windows, Linux, Android, and Mac OS [13]. 

Several tutorials in the OpenCV documentation navigate this project to down-selection to specific 
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methods for video processing and feature detection deemed appropriate for gait characterization 

[14]. 

Section 1.5: Project Roadmap 

The next few chapters lay out a computer vision procedure that CBAS can use in the future.  

First, Chapter 2 describes four standard feature detectors—FAST, ORB, Canny Edge, and Hough 

Line—that attempted to locate the subject’s spots but expected unnecessary details from them and 

other video elements. Those methods were tried out before a blob detector was chosen to pinpoint 

the markers precisely. Next, Chapter 3 defines blobs and explains how one would prioritize the 

selection of blob detector video parameters and adjust their values to detect most of the subject’s 

markers with similar size, shape, and color. Afterward, Chapter 4 delineates the process of 

matching and renumbering markers between frames based on changes in physical location so that 

one can establish useful trajectories during walking activity. In Chapter 5, if a blob is on the same 

location within the leg but its label changes, a few algorithms plot multiple trajectories at once and 

detect any stable regions indicating that the blob belongs to a shoe. Chapter 5 also notes the missing 

trajectory regions for the right-legged markers, which can impact the ability to carefully 

correspond the blobs to human features, such as the knee, ankle, toe, or heel. Lastly, Chapter 6 

describes the outcomes of the project and the remaining tasks to include extracting step height and 

foot flexure from the blob positions and using the blob detector on other videos. 
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Chapter 2: Standard Computer Vision Feature Detectors 

 This chapter outlines some of OpenCV’s image processing and feature detection methods 

aimed at analyzing the physical details of an image or video. Algorithms that quickly detect corners 

and other points of interest include FAST and ORB. Others, including the Canny edge detector 

and Hough line transform, would instead draw along the boundaries of some video elements. The 

FAST, ORB, Canny, and Hough methods meant to find but did not pay any more considerable 

attention to all the subject’s markers. Instead, they look for objects with too many details and 

corners in the objects they are programmed to find. 

Section 2.1: FAST 

In 2006, Edward Rosten and Tom Drummond, who are researchers of engineering at 

Cambridge University, created the Features from Accelerated Segment Test (FAST) [15]. FAST 

is a corner detection algorithm that considers pixels along the keypoints for threshold analysis [16]. 

 
Figure 2.1: How FAST Works. The FAST algorithm is detecting a corner of a window and evaluates pixel p as 

either a corner or non-corner based on the brightness of 16 pixels around p [15]. 
 

In Figure 2.1, the algorithm considers a circle composed of 16 pixels (marked by white, 

highlighted squares) around corner candidate p. Let Ip be the intensity of pixel p, and t be the 

threshold value. Pixel p can be a corner if there are n continuous pixels in the circle that are brighter 

than Ip + t or darker than Ip – t, as indicated by the white dashed lines in the figure. Let n = 12 



6 
 

because it allows for a high-speed test to discard a high number of non-corners to solely examine 

the following compass direction pixels: 1, 5, 9, and 13. For p to be a corner, at least three of the 

compass direction pixels must be brighter than Ip + t or darker than Ip – t. FAST will then evaluate 

all pixels in the circle to apply to other corner candidates [15]. 

The FAST algorithm is essential for targeting and analyzing corners of features, which are 

small image patches that are independent of image scaling, rotation, and illumination changes. 

FAST is also successful at determining the status of corner candidate p so it can establish a 

keypoint, that is, the coordinate position where the feature has been detected. 

Upon execution, FAST typically found over a hundred keypoints, or objects of interest, 

while only very few of them were the desired shoe markers. Even then, not all the markers were 

designated as keypoints (see Figure 2.2). In a Python program called TKinter_FAST.py, FAST 

interacts with TKinter, which is a standard Python interface to a GUI toolkit that opens a 

computer’s file directory and enables the display of file types given in the source (e.g., jpeg and 

avi). TKinter also makes the program interactive by allowing the user to magnify regions of 

interest. The FAST algorithm will then apply to that region to calculate keypoint locations. 

Although it was one of the first steps toward detecting the desired video features, it returned an 

excessive number of keypoints. This situation can hinder the user’s ability to know what the exact 

coordinates are for each desired shoe marker. 

 
Figure 2.2: FAST Implementation. The FAST algorithm applies to a region of interest surrounding the shoes. A few 

out of the many keypoints detected the black shoe markers to be further analyzed. 
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Section 2.2: ORB 

Along with the FAST detector, OpenCV offers BRIEF (Binary Robust Independent 

Elementary Features), which is a feature descriptor that is crucial for classifying and matching 

keypoints between frames to be discussed in Chapter 4. Another feature detector, ORB (Oriented 

FAST and Rotated BRIEF), combines the best aspects of FAST and BRIEF and adjusts them to 

enhance video analysis and improve keypoint detection performance [17]. First presented by Ethan 

Rublee et al. of the Willow Garage robotics company in 2011, ORB is rotation-invariant and noise-

resistant while being more efficient and faster than other feature detectors [18]. 

This project’s implementation of ORB can recognize a smaller number of video features 

and thus utilize fewer keypoints. In Figure 2.3, two ORB keypoints have successfully landed on 

the shoe markers. Selecting a region of interest via TKinter still helps with narrowing the number 

of keypoints down to the ones that are of interest to the user. Expanded that region would have 

helped target all the markers, yet the user may need to find ways to use the same number of 

keypoints as that of those spots. 

 
Figure 2.3: ORB Implementation. ORB improves video analysis with less image noise and rotation, thus reducing 

the keypoints, especially to such desired features as the black shoe markers. 
 

Section 2.3: Canny Edges 

In addition to the feature detectors, OpenCV provides the Canny edge detection algorithm 

for detecting a wide range of edges in an image. The algorithm goes through multiple stages to 

include reducing noise in the image, finding the intensity gradient of the image, removing pixels 
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that do not constitute an edge, and setting threshold values to classify edges [19]. Edges were 

considerable in attempting to detect shoe markers (see Figure 2.4). Moreover, they can shed light 

on the threshold and other factors that can impact the ability to draw keypoints along the 

boundaries of each spot. 

 
Figure 2.4: Canny Edge Implementation. Canny edge detection helps to visualize the edges of each feature so the 

user can easily find the shoe markers. 
 

Section 2.4: Hough Lines 

Hough lines are comparable to Canny edges because they are detectable with any shape, 

even if it becomes distorted [20]. Figure 2.5 uses the probabilistic Hough transform, which is the 

optimization of a normal Hough transform that takes a randomized set of points suitable for line 

detection [20]. Although it is not a feature detector, the Hough line drawing method could be useful 

for asking questions about how far per second each subject could proceed on a walkway. The 

program, FindHoughLinesProb.py, holds the line-drawing algorithms that could be a beneficial 

source for generating and animating walking models to automate step height and angle 

measurements. 
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Figure 2.5: Hough Line Implementation. The probabilistic Hough transform paints straight lines on the subjects and 

the background to mark the edges of any object that it sees as essential.  
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Chapter 3: Properties & Behaviors of a Blob Detector 

The objectives of this chapter include understanding what a blob is and how it can help 

with the detection of desired video features. One should also know how to choose among the five 

parameters—area, circularity, threshold, inertia, and convexity—that can impact the way a blob 

detector works to pinpoint desired features. Setting those parameters at appropriate values for the 

gait video can assist with increasing awareness of the subject’s markers to be followed, as well as 

making the blobs located elsewhere less critical. 

Section 3.1: Definition and Characterization of Blobs 

The FAST, ORB, Canny Edge, and Hough Line detector algorithms did not adequately 

show the quantitative detection of all the black markers on a subject’s shoes and knees. However, 

they served as important precursors to a method that precisely targets those spots based on their 

color, shape, and size. Blob detection is the method that achieves this task. A blob is a region of 

similar color or light that is localized within an image or video. Characterizing a blob requires an 

algorithm under a class called SimpleBlobDetector to extract the blob from an image [21]. First, 

the program, FindBlobs_OriginalParams.py, sets up the default parameters for 

SimpleBlobDetector described by 

params = cv2.SimpleBlobDetector_Params() 

Next, it reads five parameters associated with blob detection (see Figure 3.1): (1) threshold, 

which is the color intensity value of the pixel that can apply to grayscale images and can range 

between 0 and 255; (2) area, which is the number of pixels that constitute an element; (3) 

circularity, which is a measurement of how close to a perfect circle an element is; (4) convexity, 

which is a measurement of whether the element is convex or concave; and (5) inertia, which is a 

measurement of how elongated or elliptic an element is [22]. 
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Figure 3.1: Visual Definitions of Blob Parameters. [22] uses visuals to define the blob detector parameters above. 

Note that inertia and convexity were neglected for this project. 
 

Both threshold and area have minimum and maximum values that consider the number of 

pixels of different thresholds to determine the presence of a blob. Circularity, convexity, and inertia 

all carry only one value describing the variations of a typical shape, such as a circle. Since the 

spots on a subject’s shoes and knees are all circular, the user can select and evaluate the values of 

circularity along with the area and threshold ranges. Inertia and convexity were turned off in all 

Python programs concerning blob detection because they do not support the identification of blobs 

whose roundness matters in collecting accurate gait data. 

Section 3.2: Choice of Parameters 

To consider desired image features as blobs, the user needs to choose detector parameters 

along with their values appropriate for those features with similar colors and shapes. Changing 

only one parameter while leaving others with default values will cause the image to display a 

doorknob, electrical outlets, a head of hair, and other objects as if they are blobs (see Figure 3.2). 

Setting any parameter closer to zero can lead to randomized blobs—large and small—that detect 

any shape with a stable or unstable structure. 
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Figure 3.2: Poor Blob Detection. A poor selection of parameters and their values can ruin the blob detector’s 

performance and produce keypoints other than those on the subject’s knees and shoes. 
 

 
Figure 3.3: Blob Detection with Default Parameter Values. If the blob detector performs with default parameters, 

this could help the user with selecting the parameters that are important for targeting the subject’s markers. 
 

Selecting blob detector parameters begins with understanding the default values for three 

out of the five variables. The threshold was 50-220, the area was 25-5000, and the circularity was 

about 0.8 (see Figure 3.3). From there, the changes in area and circularity follow a similar trend as 

increasing their values results in fewer blobs in the image; decreasing them results in more blobs. 

Figures 3.4 and 3.5 display sensitivity graphs stressing the impact of minimum area and circularity 

on blob presence. The graph in Figure 3.4 suggests that a small value of the minimum area is 
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essential for detecting even the smallest markers on the subject that otherwise go unnoticed. To 

explain Figure 3.5, a high value for circularity is appropriate for targeting the subject’s markers, 

which resemble hand-drawn, non-perfect circles. 

 
Figure 3.4: Sensitivity Chart for Minimum Area. Increasing the value for the minimum area creates a sensitivity 

graph for the total number of desired blobs. The maximum number for detecting all those blobs, in this case, was 12, 
and it was subject to change. 

 

 
Figure 3.5: Sensitivity Chart for Circularity. Increasing the value for circularity creates a sensitivity graph for the 

total number of desired blobs. The maximum number for detecting all those blobs, in this case, was 0.83, and it was 
subject to change. 

 
 The user has the option to label detected keypoints with coordinate information. After 

drawing them as red circles, the Python algorithm below stores rounded values for the x- and y- 

coordinates of each blob before giving it a number label. Those labels are necessary for 
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distinguishing parameter information among multiple blobs and for determining the human 

features that each blob is associated with. 

im_with_keypoints = cv2.drawKeypoints(frame, keypoints, np.array([]), 
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 

for k in range(0,len(keypoints)): 
cx = round(keypoints[k].pt[0]) 
cy = round(keypoints[k].pt[1]) 
cv2.putText(im_with_keypoints, str(k), (cx, cy), 

cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255)) 
 
Additionally, the blob detector can assist with multiple thresholds of keypoints that change 

the area of the spots, which can also impact how circular the spots are. Therefore, two experiments 

were performed to discover the behavior of the detector when the user sets the threshold step to 10 

and turns off the circularity. 

A program called MultipleThresholds_Step10.py produces expanded two keypoints 

(namely Keypoints 1 and 4) in a specific frame with the application of threshold ranges with a 

threshold step of 10. It allows the user to observe how much the area of the blob is changing as the 

threshold increases. The pixel threshold matrices next to the keypoints help conclude that the 

threshold range can dictate the ability to locate blobs based on the number of black pixels that 

make up the area (see Figure 3.6). 

 
Figure 3.6: Keypoint Analysis with Threshold Step. MultipleThresholds_Step10.py presents the analysis of zoomed-
in, pixelated blobs with binary threshold steps of 10. This procedure demonstrates how smaller threshold increases 

can reveal the best blob area and circularity to detect. 
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In another program called MultipleThresholds_CircOff.py, the user turns off the circularity 

of the blobs by setting it to False. That program expands and applies thresholds for two keypoints 

in a specific frame. It also allows for comparisons between a non-circular blob (namely Keypoint 

1) and a circular blob (namely Keypoint 16) (see Figure 3.7). In a later experiment, Keypoint 16 

was not detected despite being circular and having a smaller area. A noticeable difference between 

the two blobs is that Keypoint 1 has a darker center in the middle, which allows for more robust 

detection performance. Given this, the user should set the circularity back to True to detect blobs 

within a specific range of thresholds. 

 
Figure 3.7: Keypoint Analysis with Lack of Circularity. MultipleThresholds_CircOff.py presents the analysis of 

zoomed-in, pixelated blobs with a lack of circularity. This procedure demonstrates how the detection of circular and 
non-circular blobs should be supported with threshold ranges to be used later in the project. 

 
Today, the project uses the following parameters to assist with identifying and following 

the desired blobs on the subject: (1) the threshold ranges from 40-200 with a threshold step of 20, 

(2) the area ranges from 8-40, and (3) the circularity is equal to 0.85 (see Figure 3.8). With these 

values, the average number of detected markers per frame is 6.33, while the average number of 

blobs located away from the subject’s legs is 1.72 per frame. With an average of 8.05 total blobs 

per frame, the blob detector can find, on average, 78.63 percent of the desired blobs per frame. In 
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this case, the current blob parameters allow for the flexibility of detecting the best blobs and the 

greater importance of following them frame by frame based on changes in coordinate positions. 

 
Figure 3.8: Blob Detection with Current Parameter Values. The current parameter values precisely pinpoint the 

subject’s blobs that the user would like to identify and follow to establish trajectories. 
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Chapter 4: Correlation of Blobs Between Frames 

 This chapter provides the definitions of descriptors and descriptor matchers to help 

understand how the computer vision software works to classify and match blobs between frames. 

This project performs different matching procedures for two groups of blobs: those that were 

readily identified and those that remain unidentified. The usage of new keypoint labels allows for 

the creation of trajectories that measure (x, y)-coordinate position changes throughout the video. 

Section 4.1: Blob Classification 

 After this project initializes the blob detector as a subroutine and sets up other video-related 

variables for displaying the images, it proceeds to classify and match keypoints with similar 

coordinates between two frames. OpenCV contains a framework for two-dimensional features 

called xfeatures2d and a class reference for creating BRIEF descriptor generators described by: 

descriptor = cv2.xfeatures2d.BriefDescriptorExtractor_create() 

 Descriptors, in general, are characteristics of the keypoints that are numerical and point to 

the area of the image that the keypoint references. They usually describe the shape of a detected 

object, but they are insensitive to rotations and scale changes. BRIEF, which was previously 

mentioned in Chapter 2, is a feature descriptor that provides a shortcut to finding binary strings. It 

reads an image to carefully select a set of n (x, y) location pairs, compare those coordinates for 

pixel intensity and obtain an n-dimensional bitstring. Once a match has been made, BRIEF will 

use the Hamming distance to show that the location pairs are at least close to each other [23]. 

Hamming distance is defined as the number of different bits in corresponding positions in two 

bitstrings. For example, the distance between 01110 and 01100 is 1, and the distance between 

10100 and 10001 is 2 [24]. 
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 Another object along with the BRIEF descriptor is the Brute-Force descriptor matcher, or 

BFMatcher, which finds one of the closest secondary descriptors by trying each one to create a 

match for each primary descriptor. 

bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) 

 The parameter cv2.NORM_HAMMING is the Hamming distance because the Python 

program is using the BRIEF descriptor in addition to the blob detector, and crossCheck is set to 

true if the BFMatcher will return the coordinate pairs that are consistent between multiple frames 

[25]. 

A program named VideoBlobsIdentifiedFinal.py first initializes the blob detector, BRIEF 

descriptor, brute-force matcher, and empty keypoint and descriptor lists. Afterward, it can start 

reading the frames to extract the keypoints for previous frame j and current frame j + 1 from a list 

of keypoints. Also, the program will use the BFMatcher to compute the descriptors for each blob 

found in the frame. Essentially, it proceeds to create a blob name list and a list of lists for keeping 

track of the blob identification numbers per frame. The next blob name to use depends on the 

current length of an array of keypoints. Based on the list of blobs per frame, the program intends 

to list the frames where a blob at the current frame j + 1 was last found. Suppose frame j + 1 = 86, 

where all desired blobs have been detected and are newly numbered after the program tries to 

match them to those found in frame j = 85 (see Figure 4.1b). This new way of numbering is 

different from the original, where those same blobs were not carrying the same labels then (see 

Figure 4.1a). Keeping evidence of the blobs’ names and locations thus plays a significant role in 

giving the BFMatcher the ability to match most keypoints if they are slightly moving from one 

coordinate position to another. 
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Figure 4.1: Initial Versus New Blob Labeling. (a) The initial labeling of blobs deals with numbers ranging up to the 
last keypoint index value in Frame 86. (b) A new way of numbering the blobs involves matching blobs to those 

found in the previous Frame 85. 

 

Section 4.2: Descriptor Matching 

Section 4.2.1: Blobs Already Identified 

 VideoBlobsIdentifiedFinal.py starts with retrieving keypoints for previous frame j from a 

list of keypoints and comparing them to those found in current frame j + 1 under the BFMatcher. 

It then builds a list of unmatched blobs and that of blob names in the current frame. An example 

of an unmatched blob to be included in the current blob list is Blob #10, which may appear in 

frame 86 if it was not last found in frame 85 but rather in frame 83 (see Figure 4.2). A matching 

test exists to compare the distance of keypoint descriptors to a user-specified distance threshold. 

The program will pass the matching test if the descriptor distances in coordinates are less than the 

pixel threshold values. Following that result, it can generate raw and corrected matches of blob 

descriptors between two frames while keeping track of the unmatched blobs and current blob lists. 

This procedure is increasingly useful for identifying blobs that were left unnoticed so the user can 

observe that a specific blob manages to move with the same label for most of the video. 
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Figure 4.2: Tracking an Unidentified Blob. This visual representation of tracking Blob #10 shows that it went 

unnoticed two frames before it reappeared in Frame 86. Blob #10 can be included in the list of blobs in frame 86 if 
the program can match it with Frame 83. 

 
Section 4.2.2: Blobs Still Unidentified 

 For any blob still not identified, the program gathers the frames where it is located and 

discards the current and previous ones. While the unmatched blobs and the most recently checked 

frames are available for further investigation, the program will carry the evidence of blobs to 

identify and frames to test with the most recent frame being used first. From there, it can match 

the descriptors between a current frame and a frame to check before it passes another match test. 

The BFMatcher will compute new matches with blobs still unidentified so the program can update 

for every current frame a list of blob identification numbers and a list of each blob’s frame history. 

A blob without any matches will be discarded. If there are no more unmatched blobs to identify 

and no more frames to check, then the program can append the unmatched blobs to the current 

frame and renumber them. 

Section 4.2.3: The Blob Renumbering Process 

Suppose all the blobs have been renumbered within the first 170 frames. In this case, the 

list of blob names will hold 131 distinct numbers. Some of those names are not independent of 

each other because at least two of them belong to one of the subject’s eight markers. For example, 

the video shows that Blob #7 and Blob #79 both represent the same blob within the left shoe. In 

an ideal scenario, if the program exactly matches all eight markers between frames, then the blob 
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naming list would not have more than eight numbers. Currently, 116 of the names in this project 

represent the least essential blobs, and 15 are placed onto the legs. About 87 percent of those 

desired names cooperate as two or more labels for the same marker (see Table 4.1). Although 

multiple names can help continue with following a blob throughout the walk, they can lead to such 

issues as misidentified blobs and multiple placements of a single blob label, which are discussed 

further in the next section. 

Marker Location Blob Name(s) Quantity of Names on Marker 
Left Heel 7, 79 2 
Left Toe 5, 17, 87 3 
Left Ankle 6, 83 2 
Left Knee 1 1 
Right Heel 20 1 
Right Toe 45, 61 2 
Right Ankle 19, 41 2 
Right Knee 10, 76 2 

Table 4.1: Marker Name Placement. Fifteen desired blob names are assigned physical marker locations on the 
subject. 

 

Section 4.3: Plotting Blob Trajectories 

 A trajectory is usually defined as a path an object follows as it moves through space. An 

example of a trajectory can be a path an airplane takes as it flies into the open sky. In the context 

of this project, VideoBlobsIdentifiedFinal.py has each of the subject’s eight blobs relocate to 

different coordinate positions throughout the video to create paths of walking motion. The 

resulting paths come as two separate plots: (1) one plot involving a blob’s locations along the x-

axis per frame, and (2) another involving that same blob’s locations along the y-axis per frame. 

Both plots are imperative to analyze in that the user reviews the video to see whether the blob 

displayed in the frames is the same as the blob that leaves behind coordinate-based trajectories. 

Note that the y-axis of the video is measured from top to bottom, and the x-axis is measured from 

left to right (see Figure 4.3). 
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Figure 4.3: Video Axis Measurements. The way the video axes are measured will affect how the blobs’ trajectories 

will appear along the axes. 
 

 VideoBlobsIdentifiedFinal.py contains an algorithm that records information about the 

blobs’ (x, y)-coordinates with corresponding frames. Suppose one of those blobs is labeled #7, and 

the video is 240 frames long. If Blob #7 is present in any of the first 170 frames this project 

analyzes, the algorithm will extract a keypoint for that frame and match it with the location of Blob 

#7 within each list of blobs per frame. The frame numbers and (x, y)-coordinates for Blob #7 can 

then be stored into arrays that help plot trajectories over time. The plots with flat regions between 

frames 60 and 90 and steep regions between frames 30 and 50 indicate that Blob #7 belongs to the 

left shoe, particularly at the heel, which is stationary in between the swing stages of walking 

activity (see Figure 4.4). 
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Figure 4.4: First Trajectory Example. The x- and y-coordinate trajectories for Blob #7 represent a shoe that is 
stationary between frames 60 and 90, as indicated by a flat trajectory region. Note that the points in Frames 10 
through 19 are missing (circled) because the blob detector was unable to find the left heel blob even after some 

success at the beginning of the video. 
 

Section 4.3.1: Missing Trajectory Points 

Trajectories, including the one in Figure 4.4, may have points that are missing because a 

blob did not appear in one or more frames. If the missing trajectory region is small, the user can 

write an algorithm that draws a line determined by the mathematical distance between two points 

(see Figure 4.5). In contrast, if a trajectory is missing several points, it may not provide sufficient 

information for whether a blob is worth following during walking activity. In that regard, blobs 

that are not detected imply the need for unsupervised video analysis, which can help fix data-

related flaws in the marker tracking process. 
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Figure 4.5: How to Fill in Trajectory Gaps. A new algorithm should be able to compute the mathematical distance 
between the last point before the missing region (orange) and the first point after it (magenta). That distance should 

be used to determine the length of the straight line (black and dashed), resolving the error of blob non-detection. 

Section 4.3.2: Blob Misidentification 

 The discontinuities in any trajectory stress that a blob is misidentified. Figure 4.6, for 

instance, holds many misidentified points from the beginning of the video to Frame 45, where the 

x-coordinate for Blob #17 makes a sudden jump from a flat trajectory region. A numerical label 

that changed from 5 to 17 when Blob #17 switches marker positions at Frame 45 is the primary 

evidence supporting that error (see Figure 4.7). In searching for discontinuities, an algorithm could 

find the slope of the trajectories that could be impacted by the renumbering of blobs. 
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Figure 4.6: Spotting Trajectory Discontinuities. The discontinuities in the x- and y-coordinate trajectories for Blob 

#17 (circled) resulted from the renumbering and misidentification of blobs between frames. 
 

    
Figure 4.7: Video Proof for Discontinuities. To prove that discontinuities in the trajectory occurred in Figure 4.5, 
Frames 35 and 45 demonstrate a label change for the left toe marker. That spot started as Blob #5 (blue circle); by 
Frame 45, Blob #17 (yellow circle) suddenly leaped from the right toe to the left toe to renumber the marker. This 

event means that Blob #17 was misidentified on the right shoe in the earlier frames. 
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Chapter 5: Association of Blobs with Human Features 

 In this chapter, an algorithm attempts to plot the blob with different names to make 

extended trajectories of the toe, heel, ankle, or knee. The best trajectories of this project are 

associated with the shoe, which creates stable regions in between steps. Relabeling the blobs with 

human features can be useful if a program can mathematically detect the stable regions and 

acknowledge the differences between the left- and right-legged markers. 

Section 5.1: Combining Multiple Trajectories 

 To review, the trajectory-drawing algorithm in VideoBlobsIdentifiedFinal.py checks for 

blobs with user-specified labels in each frame so it can plot their migrations between coordinate 

positions throughout the video. The user can also specify two blobs with labels differing from each 

other, and the algorithm can simultaneously follow each blob to plot separate trajectories in one 

graph. This situation allows for the combination of more than one blob to display a complete 

trajectory of a blob located on the subject’s toe, heel, knee, or ankle. 

 As discussed in Chapter 4, Blob #7 is associated with the left heel, but the user wants to 

analyze another blob to produce a full trajectory of that human feature. Suppose that the second 

blob is labeled #79, which appeared at the heel after Blob #7 last appeared at frame 109 (see Figure 

5.1). 

 
Figure 5.1: Two Names for One Marker. Blob #7 becomes Blob #79, which leads to the end of its trajectory in one 

plot and lets a different label take over the rest of the trajectory in another plot. 
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Comparing y-coordinate trajectories for Blobs #7 and #79 urges an algorithm to recognize 

that the peak of the walking path was split in half while the subject steps over the foam block (see 

Figure 5.2). 

 
Figure 5.2: Trajectories for Two Names. The changes in blob labels have split the left heel trajectory near the peak 

of the walking motion. An algorithm is needed to handle the plotting of both blobs to piece the trajectories together. 
 

The algorithm sees that Blob #7 was reaching toward the peak of the highest step before it 

disappeared, and Blob #79 appeared late to finish the rest of that step. Those scenarios help that 

algorithm ensure that none of the frames have both blobs, which in turn can be suitable for 

combining their trajectories. Also, the ending point of Blob #7 and the starting point of Blob #79 

happened to share similar coordinates given that no other blob interferes with the last few frames 

for Blob #7 and the first few frames for Blob #79. If the algorithm sees this type of blob correlation 

between frames, it can proceed with merging the two trajectories to establish a complete path of 

the left heel marker (see Figure 5.3). 

While x-coordinate trajectories move downward as the physical blob moves toward the 

left, y-coordinate trajectories provide an accurate measure of the distance each blob makes from 

the ground so long as it is near the bottom of the shoe. The changes in y-coordinate positions are 

also useful for differentiating shoes from the knees as the knee trajectories, such as those in Figure 

5.4, represent the markers that are located between the thigh and the calf and are slightly moving 

during stationary leg activity. This situation suggests that, although they produce well-defined 
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trajectories, the knee markers do not establish as many stable regions as the shoe markers, which 

are much closer to the ground according to the video’s y-coordinate scale (see Figure 4.2). A final 

implication for combining blobs is that, after the detection of any stable regions, the relative 

coordinates say where the blobs are located within the subject. 

 

 
Figure 5.3: Combined Left Heel Trajectory. A y-coordinate trajectory shows the left heel rising and falling during 

the steps and staying put between them. The rise of the heel is highest when the subject steps over the block.  
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Figure 5.4: Left Knee Trajectory. The knee trajectories are different from the shoe trajectories because the knee is 

nowhere near the ground but is slightly flexing while the leg is standing upright between frames 0 and 25 and 
between frames 60 and 95. 

 

Section 5.1.1: Blobs Appearing Twice in One Frame 

 In trajectories such as those in Figure 5.5, a blob can be found in at least two different 

places within a single frame. The name of that blob is also misidentified as if it appeared twice 

simultaneously. To resolve this error, the user would create an algorithm that keeps track of the 

frequency of a blob’s appearance per frame. That program would then need to make sure that no 

frame has a blob appearing more than once. This proposed solution helps improve blob 
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identification further by avoiding the combination of trajectories that causes twice-appearing blobs 

per frame. 

 
Figure 5.5: Twice-Appearing Blobs at the Left Toe. The left toe blob is a good example for illustrating twice-

appearing blobs in many single frames (boxed). Three blobs were used to produce the above plots, which resulted in 
discontinuity and misidentification problems among blob names. 

 
Section 5.2: Stability of Trajectory Regions 

The best way to associate a blob with the subject’s shoes is to find a region of its trajectory 

that is stable in between steps. Returning to the heel trajectory at Figure 5.3, the user can determine 

the start and end frames that constitute a region indicating that the shoe was planted firmly on the 

ground. In VideoBlobsIdentifiedFinal.py, another algorithm exists to calculate the standard 
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deviation of the (x, y)-coordinates for every ten frames within the entire trajectory. It then 

establishes a condition for which a frame belongs to the stable region should the standard deviation 

be less than or equal to 0.1. For instance, the heel trajectory enters the stable region at frame 62 

when the subject finishes the first step. It will leave that region at frame 81 as the subject is about 

to start another step. 

The significance of automating the detection of stable trajectory regions with standard 

deviations is that the blob should not make significant shifts between coordinates if it is considered 

a toe, heel, or ankle. Furthermore, its association with some human feature depends on its 

movement over time; no movement usually means the blob associates well with the shoe. This 

notion is also true when the heel and toe blobs create a stable trajectory region within the same 

frame interval because both are right next to the floor. A horizontal distance between them based 

on their coordinate locations is beneficial for which the user can argue that the shoes are best for 

determining whether a blob makes little to no movement against the floor. 

Section 5.3: Left-Side Versus Right-Side Markers 

The video is showing the left side of the subject, causing the blobs on the right leg to hide 

often as opposed to those on the left leg. This situation can lead to missing regions among the 

trajectories created for the right-sided blobs, regardless of their association with human features. 

Blob #20 is one of those blobs that is located on the right heel and stays in its current position even 

when the left leg covers it (see Figures 5.6-5.8). The ability for it to remain in its physical location 

requires that the blob detector adequately knows the size, shape, and color properties unique to 

Blob #20. This concept also applies to Blob #1, which is a left knee blob that is not difficult for 

the user to follow (see Figure 5.4). In the case of right-sided blobs, the detector should recognize 

that they are hiding often but reappear as if their characteristics are not significantly affected by 
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the coverage. If not, it will renumber the blobs, and the user will have to spend time piecing 

together multiple trajectories to claim that those blobs belong to any right-legged human feature. 

 

 
Figure 5.6: Right Heel Trajectory. There are two missing regions that have been labeled to track how many times the 

right heel was hiding while creating an effective trajectory. 
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Figure 5.7: First Hiding Event. Frame 40 shows Blob #20 (circled) before the left shoe hid it during Frame 45, 
making this the first occurrence of blob hiding within the right heel trajectory. Frame 50 then shows Blob #20 in the 

same position. 

 

       

Figure 5.8: Second Hiding Event. Frame 73 shows Blob #20 (circled) before the left shoe hid it during Frame 78, 
making this the second occurrence of blob hiding within the right heel trajectory. Frame 83 then shows Blob #20 in 

the same position. 
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Chapter 6: Project Conclusions 

Section 6.1: Overall Review 

 The project was supposed to utilize computer vision functions to find, identify, and follow 

the markers on the walking subject so that their trajectories can become useful for reconstructing 

walking models with automated step height and angle measurements. With appropriate user-

selected values for area, circularity, and threshold; the blob detector can find up to 78.63 percent 

of the blobs located on the subject’s shoes and knees. This outcome leads to the effective matching 

of most blob descriptors between frames while the blobs found within the room are being 

discarded. In constructing and comparing complete trajectories of the left heel and left toe, the user 

can observe and find ways to correct the plots misidentifying the blobs that were physically located 

elsewhere in the video. Trajectories with flat regions indicate that the left foot is stable on the 

ground so long as the standard deviation of (x, y)-coordinate pairs among ten frames is rarely 

changing, making the shoe blobs more identifiable. Lastly, the blob positions where the left shoe 

is on the ground are being reidentified as either the toe, heel, or ankle. The relabeling of markers 

depends on how a Python program compares them in terms of y-coordinate positions, extends the 

comparison of blobs to the right leg, and maps out pixels on the ground. 

Section 6.2: Future Directions 

 If this project continues, it will involve piecing together all the individual blob trajectories 

that associate with each toe, ankle, heel, and knee. Afterward, the user will be able to take 

advantage of the complete trajectories to extract the step height from the blob positions. Mapping 

the ankle dorsiflexion angles between the blobs is another task to be completed when the user 

reconstructs walking models. Once the step height and angle are both found from one video, the 

software can apply to other videos where they involve subjects wearing differently colored clothes 
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and differently drawn markers. Minor modifications to the software can include adjusting the 

thresholds and other blob detector parameters. The kinesiology investigators will be able to benefit 

from this project’s data processing techniques because they need to generate a more 

comprehensive database to know what factors cause an older adult to fall. The software should be 

able to quickly process and return more accurate measurements that tell about the subjects at risk. 

The kinesiology team could also try out a more useful set of exercises to see whether the falls 

among the elderly become less frequent and are eventually preventable in the future. 
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Appendix A: Blob Detection & Identification Flowchart 
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Appendix B: List of OpenCV-Python Programs 

Program Name 
Last 
Modified Steps to Execution 

Page Number for 
Source Code 

VideoReadKinesiologyTesting.py 6/1/2019 Upon execution, the 
program outputs the 
video file in grayscale. 

49 

CannyEdge.py 6/1/2019 Upon execution, the 
program produces an 
image under the canny 
edge detection method. 

50 

FindHoughLinesProb.py 6/2/2019 Upon execution, the 
program creates an 
image with 
probabilistic Hough 
lines. 

51 

TKinter_FAST.py 6/5/2019 1. User chooses an 
image. 

2. User selects a 
region of interest 
(ROI) by dragging 
the box over the 
desired area with a 
mouse. 

3. Program crops the 
image to match the 
ROI. 

4. Program initiates 
the FAST method 
with default values. 

5. Program finds and 
draws the 
keypoints. 

6. Console shows all 
default parameters. 

52 

TKinter_ORB.py 6/10/2019 1. User chooses an 
image. 

2. User selects a 
region of interest 
(ROI) by dragging 
the box over the 
desired area with a 
mouse. 

53 



46 
 

3. Program crops the 
image to match the 
ROI. 

4. Program initiates 
the ORB method. 

5. Program finds and 
draws the 
keypoints. 

6. Console shows the 
number of 
keypoints and ROI 
coordinates. 

MultipleThresholds_Step10.py 7/10/2019 1. User selects a 
frame  

2. Program produces a 
blob detector frame 
with labeled 
keypoints. 

3. Program magnifies 
and crops the image 
for every keypoint 
detected. 

4. Program provides 
each keypoint with 
a range of 
thresholds specified 
by the user within 
the source code. 

54 

MultipleThresholds_CircOff.py 7/19/2019 1. User selects a 
frame 

2. Program produces a 
blob detector frame 
with labeled 
keypoints. 

3. Program magnifies 
and crops the image 
for every keypoint 
detected. 

4. Program provides 
each keypoint with 
a range of 
thresholds specified 
by the user within 
the source code. 
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FindBlobs_OriginalParams.py 7/25/2019 1. User chooses a jpeg 
image. 

62 
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2. Console prints the 
default and custom 
blob detector 
parameters. 

3. Program locates 
and draws 
keypoints 
Console prints the 
(x, y) coordinates 
and size/area for 
each keypoint. 

FindVideoBlobs.py 10/25/2019 1. User chooses an 
AVI video file. 

2. Program activates 
the blob detector, 
draws keypoints, 
and displays Frame 
1. 

3. User presses any 
key to move to the 
next frames. He or 
she will do so 240 
times. 

4. After 240 frames, 
the program 
terminates. 

64 

FindBlobs_NewParams.py 10/29/2019 1. User chooses a 
JPEG image. 

2. Program locates 
and draws 
keypoints. 

3. Program outputs 
the resulting image. 

4. Console prints the 
(x, y) coordinates 
and size/area for 
each keypoint. 
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VideoBlobsIdentifiedFeb24.py 4/18/2020 Not applicable. 69 
VideoBlobsIdentifiedFinal.py 5/8/2020 1. User selects an AVI 

video file. 
2. User inputs the 

final frame to 
analyze. 

3. Console prints the 
start and end frames 
for stable trajectory 

72 
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regions of the left 
heel and left toe. 

4. If displayFrame = 
True, the program 
displays every nth 
frame, where n is 
the number of 
frames between 
displays. 

5. If debug1 = True, 
the console prints 
generated matches 
from the first frame 
cycle for known 
blobs 

6. If debug2 = True, 
the console prints 
frames to check, 
missing blobs to 
identify, and the 
current frame being 
checked. 

7. If debug3 = True, 
the console prints 
generated matches 
from the second 
frame cycle for 
blobs still 
unidentified. 

8. If debug4 = True, 
the console prints 
the tallies of all the 
distinct blob names. 

9. With the Matplotlib 
library, the program 
displays x- and y-
coordinate 
trajectories per 
human feature.  
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Appendix C: Full-Length Source Codes (Electronic Copy Exclusive) 
 

VideoReadKinesiologyTesting.py 
 

import numpy as np 
import cv2 as cv2 
cap = cv2.VideoCapture('S10.B1.avi') 
while cap.isOpened(): 
    ret, frame = cap.read() 
    # if frame is read correctly ret is True 
    if not ret: 
        print("Can't receive frame (stream end?). Exiting ...") 
        break 
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 
    cv2.imshow('frame', gray) 
    if cv2.waitKey(1) == ord('q'): 
        break 
cap.release() 
cv2.destroyAllWindows()   
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CannyEdge.py 
 

import numpy as np 
import cv2 as cv2 
#from matplotlib import pyplot as plt 
 
img = cv2.imread('testframe50.jpg',0) 
edges = cv2.Canny(img,100,200) 
cv2.imshow('',edges)   
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FindHoughLinesProb.py 
 

import cv2 as cv 
import numpy as np 
img = cv.imread('testframe50.jpg') 
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY) 
edges = cv.Canny(gray,50,150,apertureSize = 3) 
lines = 
cv.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10) 
for line in lines: 
    x1,y1,x2,y2 = line[0] 
    cv.line(img,(x1,y1),(x2,y2),(0,255,0),2) 
#cv.imwrite('houghlines5.jpg',img) 
cv.imshow('houghlines',img)   
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TKinter_FAST.py 
 

import numpy as np 
import cv2 as cv2 
import tkinter as tk 
from tkinter import filedialog 
from tkinter import messagebox 
from tkinter import simpledialog 
 
root = tk.Tk() 
root.withdraw() 
application_window = tk.Tk() 
application_window.withdraw() 
file_path = filedialog.askopenfilename(initialdir = ".",title = 
"Select file",filetypes = (("jpeg files","*.jpg"),("all 
files","*.*"))) 
 
img = cv2.imread(file_path) 
img = img[50:770,:] 
print(file_path) 
 
cv2.imshow("Original",img) 
# Select ROI 
fromCenter = False 
r = cv2.selectROI("Original",img,fromCenter) 
# Crop image 
img = img[int(r[1]):int(r[1]+r[3]), int(r[0]):int(r[0]+r[2])] 
# Initiate FAST object with default values 
fast = cv2.FastFeatureDetector_create() 
# find and draw the keypoints 
kp = fast.detect(img,None) 
img2 = cv2.drawKeypoints(img, kp, None, color=(255,0,0)) 
#fast.setThreshold(1) 
# Print all default params 
print( "Threshold: {}".format(fast.getThreshold()) ) 
print( "nonmaxSuppression:{}".format(fast.getNonmaxSuppression()) ) 
print( "neighborhood: {}".format(fast.getType()) ) 
print( "Total Keypoints with nonmaxSuppression: {}".format(len(kp)) ) 
# Disable nonmaxSuppression 
fast.setNonmaxSuppression(0) 
kp = fast.detect(img,None) 
print( "Total Keypoints without nonmaxSuppression: {}".format(len(kp)) 
) 
img3 = cv2.drawKeypoints(img, kp, None, color=(255,0,0)) 
cv2.imshow('', img3)   
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TKinter_ORB.py 
 

import numpy as np 
import cv2 as cv 
import tkinter as tk 
from tkinter import filedialog 
from tkinter import messagebox 
from tkinter import simpledialog 
 
root = tk.Tk() 
root.withdraw() 
application_window = tk.Tk() 
application_window.withdraw() 
file_path = filedialog.askopenfilename(initialdir = ".",title = 
"Select file",filetypes = (("jpeg files","*.jpg"),("all 
files","*.*"))) 
 
img = cv.imread(file_path) 
#img =img[640:740,780:960] 
print(file_path) 
 
cv.imshow("Original",img) 
# Select ROI 
fromCenter = False 
print("Select Region of Interest") 
r = cv.selectROI("Original",img,fromCenter) 
print(r) 
# Crop image 
img = img[int(r[1]):int(r[1]+r[3]), int(r[0]):int(r[0]+r[2])] 
# Initiate ORB detector 
orb = cv.ORB_create() 
# find the keypoints with ORB 
kp = orb.detect(img,None) 
print(len(kp)) 
# compute the descriptors with ORB 
kp, des = orb.compute(img, kp) 
# draw only keypoints location,not size and orientation 
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0) 
cv.imshow("Final",img2) 
 
cv.waitKey(0) 
cv.destroyAllWindows()   
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MultipleThresholds_Step10.py 
 

import numpy as np 
import cv2 
import tkinter as tk 
from tkinter import filedialog 
from tkinter import messagebox 
from tkinter import simpledialog 
 
root = tk.Tk() 
root.withdraw() 
application_window = tk.Tk() 
application_window.withdraw() 
file_path = filedialog.askopenfilename(initialdir = ".",title = 
"Select file",filetypes = (("jpeg files","*.jpg"),("all 
files","*.*"))) 
 
# Reading the image 
img = cv2.imread(file_path) 
# img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
img = img[50:770,:] 
 
# Setup SimpleBlobDetector parameters. 
params = cv2.SimpleBlobDetector_Params() 
print(params) 
# Change thresholds 
params.minThreshold = 20 
params.maxThreshold = 220 
params.thresholdStep = 20 
 
# Filter by Area. 
params.filterByArea = True 
params.minArea = 5 
params.maxArea = 50 
 
# Filter by Circularity 
params.filterByCircularity = True 
params.minCircularity = 0.84 
 
# Filter by Convexity 
params.filterByConvexity = False 
#params.minConvexity = 0.7 
 
# Filter by Inertia 
params.filterByInertia = False 
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#params.minInertiaRatio = 0.01 
 
# Create a detector with the parameters 
detector = cv2.SimpleBlobDetector_create(params) 
 
# Detect blobs. 
keypoints1 = detector.detect(img) 
 
print(len(keypoints1)) 
 
# Draw detected blobs as red circles. 
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures 
# the size of the circle corresponds to the size of blob 
 
im_with_keypoints1 = cv2.drawKeypoints(img, keypoints1, np.array([]), 
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 
 
for k in range(0,9): 
    cx1 = round(keypoints1[k].pt[0]) 
    cy1 = round(keypoints1[k].pt[1]) 
    cv2.putText(im_with_keypoints1, str(k), (cx1, cy1), 
cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255)) 
     
# Show blobs 
cv2.imshow("Keypoints", im_with_keypoints1) 
# cv2.imshow("Keypoints 2", im_with_keypoints2) 
# cv2.imshow("Keypoints 3", im_with_keypoints3) 
 
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
# Create thresholded images 
rret,thresh1 = cv2.threshold(img1,130,255,cv2.THRESH_BINARY) 
rret,thresh2 = cv2.threshold(img1,140,255,cv2.THRESH_BINARY) 
rret,thresh3 = cv2.threshold(img1,150,255,cv2.THRESH_BINARY) 
rret,thresh4 = cv2.threshold(img1,160,255,cv2.THRESH_BINARY) 
 
threshImages = [thresh1,thresh2,thresh3,thresh4] 
threshValues = [130,140,150,160] 
 
# Cropping to Keypoint something 
 
for k in range(0,9): 
    # Cropped region is 2*halfWidth 
    halfWidth = 5 
    xVal1 = round(keypoints1[k].pt[0]-halfWidth) 
    xVal2 = round(keypoints1[k].pt[0]+halfWidth) 
    yVal1 = round(keypoints1[k].pt[1]-halfWidth) 
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    yVal2 = round(keypoints1[k].pt[1]+halfWidth) 
    print(k,keypoints1[k].pt,keypoints1[k].size) 
    #print(xVal1,':',xVal2) 
    #columns: Top to bottom, then rows: Left to Right 
        # This crops the orignal picture 
    crop1 = img1[yVal1:yVal2,xVal1:xVal2] 
    # Continue with this sequence! 
    # Aim for a window size of 250 X 250 to show the title 
    #    scalePixel1 = round(250/(xVal2_1-xVal1_1)) 
    scalePixel = 10; 
    #print(scalePixel) 
    pxFill = np.ones([scalePixel,scalePixel]) 
    #print(xVal2-xVal1) 
    scaleUp1 = cv2.resize(crop1,(scalePixel*2*halfWidth, 
scalePixel*2*halfWidth),cv2.INTER_NEAREST) 
    scaleUp2 = cv2.resize(crop1,(scalePixel*2*halfWidth, 
scalePixel*2*halfWidth),cv2.INTER_NEAREST) 
    # Now add pixelization back to eliminate the interpolation 
    # Remember that indices start at 0 
    # Use this if you want to see the smoothed image from opencv 
resize 
    #cv2.imshow('Smoothed Image',scaleUp) 
 
    # This repixelates the image to show the true data 
    # Original 
    for kRow in range(0,2*halfWidth-1): 
        for kCol in range(0, 2*halfWidth-1): 
            # Gray version 
            
scaleUp1[kRow*scalePixel:(kRow*scalePixel+scalePixel),kCol*scalePixel:
(kCol*scalePixel+scalePixel)] = crop1[kRow,kCol]*pxFill 
 
    windowName = 'Orig KeyPt '+str(k) 
    cv2.imshow(windowName, scaleUp1) 
    cv2.moveWindow(windowName, 200,200) 
 
    for kThresh in range(0,4): 
        currentThresh = threshImages[kThresh]  
        # This is the thresholded version 
            # This crops the first thresholded picture 
        threshCrop1 = currentThresh[yVal1:yVal2,xVal1:xVal2] 
        for kRow in range(0,2*halfWidth): 
            for kCol in range(0, 2*halfWidth): 
                # Gray version 
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scaleUp2[kRow*scalePixel:(kRow*scalePixel+scalePixel),kCol*scalePixel:
(kCol*scalePixel+scalePixel)] = threshCrop1[kRow,kCol]*pxFill 
 
        windowName = 'Thresh '+str(threshValues[kThresh])+' KeyPt 
'+str(k) 
        cv2.imshow(windowName, scaleUp2) 
        cv2.moveWindow(windowName, 200,200) 
 
# cv2.waitKey(0)    
# cv2.destroyAllWindows()   
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MultipleThresholds_CircOff.py 
 

import numpy as np 
import cv2 as cv2 
import tkinter as tk 
from tkinter import filedialog 
from tkinter import messagebox 
from tkinter import simpledialog 
 
root = tk.Tk() 
root.withdraw() 
application_window = tk.Tk() 
application_window.withdraw() 
file_path = filedialog.askopenfilename(initialdir = ".",title = 
"Select file",filetypes = (("jpeg files","*.jpg"),("all 
files","*.*"))) 
 
# Reading the image 
img = cv2.imread(file_path) 
img = img[50:770,:] 
 
# Setup SimpleBlobDetector parameters. 
params = cv2.SimpleBlobDetector_Params() 
print(params) 
# Change thresholds 
params.minThreshold = 80 
params.maxThreshold = 140 
 
params.thresholdStep = 20 
 
# Filter by Area. 
params.filterByArea = True 
params.minArea = 5 
params.maxArea = 50 
 
# Filter by Circularity 
params.filterByCircularity = False 
params.minCircularity = 0.84 
 
# params.minRepeatability = 1 
 
# Filter by Convexity 
params.filterByConvexity = False 
#params.minConvexity = 0.7 
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# Filter by Inertia 
params.filterByInertia = False 
#params.minInertiaRatio = 0.01 
 
# Create a detector with the parameters 
detector = cv2.SimpleBlobDetector_create(params) 
 
# Detect blobs. 
keypoints1 = detector.detect(img) 
 
print(len(keypoints1)) 
 
# Draw detected blobs as red circles. 
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures 
# the size of the circle corresponds to the size of blob 
 
im_with_keypoints1 = cv2.drawKeypoints(img, keypoints1, np.array([]), 
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 
 
for k in range(0,len(keypoints1)): 
    cx1 = round(keypoints1[k].pt[0]) 
    cy1 = round(keypoints1[k].pt[1]) 
    cv2.putText(im_with_keypoints1, str(k), (cx1, cy1), 
cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255)) 
     
# Show blobs 
cv2.imshow("Keypoints", im_with_keypoints1) 
# cv2.imshow("Keypoints 2", im_with_keypoints2) 
# cv2.imshow("Keypoints 3", im_with_keypoints3) 
 
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
# Create thresholded images 
rret,thresh1 = cv2.threshold(img1,80,255,cv2.THRESH_BINARY) 
rret,thresh2 = cv2.threshold(img1,140,255,cv2.THRESH_BINARY) 
 
threshImages = [thresh1,thresh2] 
threshValues = [80,140] 
 
# Cropping to Keypoint something 
 
for k in range(0,len(keypoints1)): 
    # Cropped region is 2*halfWidth 
    halfWidth = 5 
    xVal1 = round(keypoints1[k].pt[0]-halfWidth) 
    xVal2 = round(keypoints1[k].pt[0]+halfWidth) 
    yVal1 = round(keypoints1[k].pt[1]-halfWidth) 
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    yVal2 = round(keypoints1[k].pt[1]+halfWidth) 
    print(k,keypoints1[k].pt,keypoints1[k].size) 
    #print(xVal1,':',xVal2) 
    #columns: Top to bottom, then rows: Left to Right 
        # This crops the orignal picture 
    crop1 = img1[yVal1:yVal2,xVal1:xVal2] 
    # Continue with this sequence! 
    # Aim for a window size of 250 X 250 to show the title 
    #    scalePixel1 = round(250/(xVal2_1-xVal1_1)) 
    scalePixel = 10; 
    #print(scalePixel) 
    pxFill = np.ones([scalePixel,scalePixel]) 
    #print(xVal2-xVal1) 
    scaleUp1 = cv2.resize(crop1,(scalePixel*2*halfWidth, 
scalePixel*2*halfWidth),cv2.INTER_NEAREST) 
    scaleUp2 = cv2.resize(crop1,(scalePixel*2*halfWidth, 
scalePixel*2*halfWidth),cv2.INTER_NEAREST) 
    # Now add pixelization back to eliminate the interpolation 
    # Remember that indices start at 0 
    # Use this if you want to see the smoothed image from opencv 
resize 
    #cv2.imshow('Smoothed Image',scaleUp) 
 
    # This repixelates the image to show the true data 
    # Original 
    for kRow in range(0,2*halfWidth-1): 
        for kCol in range(0, 2*halfWidth-1): 
            # Gray version 
            
scaleUp1[kRow*scalePixel:(kRow*scalePixel+scalePixel),kCol*scalePixel:
(kCol*scalePixel+scalePixel)] = crop1[kRow,kCol]*pxFill 
 
    windowName = 'Orig KeyPt '+str(k) 
    cv2.imshow(windowName, scaleUp1) 
    cv2.moveWindow(windowName, 200,200) 
 
    for kThresh in range(0,2): 
        currentThresh = threshImages[kThresh]  
        # This is the thresholded version 
            # This crops the first thresholded picture 
        threshCrop1 = currentThresh[yVal1:yVal2,xVal1:xVal2] 
        for kRow in range(0,2*halfWidth): 
            for kCol in range(0, 2*halfWidth): 
                # Gray version 
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scaleUp2[kRow*scalePixel:(kRow*scalePixel+scalePixel),kCol*scalePixel:
(kCol*scalePixel+scalePixel)] = threshCrop1[kRow,kCol]*pxFill 
 
        windowName = 'Thresh '+str(threshValues[kThresh])+' KeyPt 
'+str(k) 
        cv2.imshow(windowName, scaleUp2) 
        cv2.moveWindow(windowName, 200,200) 
 
# cv2.waitKey(0)    
# cv2.destroyAllWindows()   
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FindBlobs_OriginalParams.py 
 

import numpy as np 
import cv2 
import tkinter as tk 
from tkinter import filedialog 
from tkinter import messagebox 
from tkinter import simpledialog 
#from matplotlib import pyplot as plt 
 
root = tk.Tk() 
root.withdraw() 
application_window = tk.Tk() 
application_window.withdraw() 
file_path = filedialog.askopenfilename(initialdir = ".",title = 
"Select file",filetypes = (("jpeg files","*.jpg"),("all 
files","*.*"))) 
 
img = cv2.imread(file_path) 
img =img[50:770,:] 
#print(file_path) 
 
# Setup SimpleBlobDetector parameters. 
params = cv2.SimpleBlobDetector_Params() 
 
# Define the default values of the blob parameters. 
print("Default Minimum Threshold: " + str(params.minThreshold)) 
print("Default Maximum Threshold: " + str(params.maxThreshold) + "\n") 
 
print("Default Minimum Area: " + str(params.minArea)) 
print("Default Maximum Area: " + str(params.maxArea) + "\n") 
 
print("Default Circularity: " + str(params.minCircularity) + "\n") 
 
print("Default Convexity: " + str(params.minConvexity) + "\n") 
 
print("Default Inertia Ratio: " + str(params.minInertiaRatio) + "\n") 
 
# Change thresholds 
params.minThreshold = 10 # Initial 10, Change to 1, then 180 
params.maxThreshold = 200 # Initial 200, Change to 20, then 300 
print("Custom Minimum Threshold: " + str(params.minThreshold)) 
print("Custom Maximum Threshold: " + str(params.maxThreshold) + "\n") 
 
# Filter by Area. 
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params.filterByArea = True 
params.minArea = 12 # Initial 12, Change to 1, then 17 
params.maxArea = 18 # Initial 18, Change to 14, then 30 
print("Custom Minimum Area: " + str(params.minArea)) 
print("Custom Maximum Area: " + str(params.maxArea) + "\n") 
 
# Filter by Circularity 
params.filterByCircularity = True 
params.minCircularity = 0.83 # Intial 0.83, Change to 0, then 0.5, 
then 1 
print("Custom Circularity: " + str(params.minCircularity) + "\n") 
 
# Filter by Convexity 
params.filterByConvexity = False 
params.minConvexity = 0.9 # Initial 0.9, change to 0.3, then 1 
print("Custom Convexity: " + str(params.minConvexity) + "\n") 
 
# Filter by Inertia 
params.filterByInertia = False 
params.minInertiaRatio = 0.6 
print("Custom Inertia Ratio: " + str(params.minInertiaRatio) + "\n") 
 
# Create a detector with the parameters 
detector = cv2.SimpleBlobDetector_create(params) 
 
# Detect blobs. 
keypoints = detector.detect(img) 
 
# Draw detected blobs as red circles. 
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures 
# the size of the circle corresponds to the size of blob 
 
im_with_keypoints = cv2.drawKeypoints(img, keypoints, np.array([]), 
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 
 
# Show blobs 
cv2.imshow("Keypoints", im_with_keypoints) 
 
# Print blob coordinates 
for k in range(0,len(keypoints)): 
    
print(round(keypoints[k].pt[0]),round(keypoints[k].pt[1]),round(keypoi
nts[k].size)) 
 
cv2.waitKey(0)    
cv2.destroyAllWindows()  
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FindVideoBlobs.py 
 

import numpy as np 
import cv2 as cv2 
import time 
import tkinter as tk 
from tkinter import filedialog 
from tkinter import messagebox 
from tkinter import simpledialog 
 
root = tk.Tk() 
root.withdraw() 
application_window = tk.Tk() 
application_window.withdraw() 
# Setup SimpleBlobDetector parameters. 
params = cv2.SimpleBlobDetector_Params() 
 
# Change thresholds 
params.minThreshold = 40 
params.maxThreshold = 200 
params.thresholdStep = 20 
 
 
# Filter by Area. 
params.filterByArea = True 
params.minArea = 8 
params.maxArea = 40 
 
# Filter by Circularity 
params.filterByCircularity = True 
params.minCircularity = 0.85 
 
# Filter by Convexity 
params.filterByConvexity = False 
params.minConvexity = 0.9 
 
# Filter by Inertia 
params.filterByInertia = False 
params.minInertiaRatio = 0.01 
 
# Create a detector with the parameters 
detector = cv2.SimpleBlobDetector_create(params) 
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file_path = filedialog.askopenfilename(initialdir = ".",title = 
"Select file",filetypes = (("jpeg files","*.avi"),("all 
files","*.*"))) 
 
cap = cv2.VideoCapture(file_path) 
outP = open("testOutNoRound.txt","w+") 
frameNo = 0; 
kpList = []; 
while cap.isOpened(): 
    ret, frame = cap.read() 
    #frame = cv2.bitwise_not(frame) 
    if ret: 
    # Detect Blobs 
        #keypoints = detector.detect(frame) 
        alpha = 1.1 
        beta = -50 
        frame = frame[50:770,:] 
        imgNew = frame.copy() 
        imgNew = cv2.convertScaleAbs(frame,imgNew, alpha,beta) 
 
        kpList.append(detector.detect(frame)); 
        keypoints = kpList[frameNo] 
        frameNo = frameNo + 1 
# Draw detected blobs as red circles. 
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures 
# the size of the circle corresponds to the size of blob 
        im_with_keypoints = cv2.drawKeypoints(frame, keypoints, 
np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 
# Show blobs 
        #cv2.destroyAllWindows() 
        if 'outText' in locals(): 
            cv2.destroyWindow(outText) 
        outText = "Frame: "+str(frameNo) 
        cv2.imshow(outText, im_with_keypoints) 
        cv2.moveWindow(outText,0,0) 
 
#        cv2.imshow('', im_with_keypoints) 
#        cv2.moveWindow('',0,0) 
 
 
        # This next step is necessary to force a draw. 
        cv2.waitKey(2) 
# Print blob coordinates 
        outP.write(str(frameNo)+" ") 
        for k in range(1,len(keypoints)): 
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            outP.write(str(keypoints[k].pt[0])+" 
"+str(keypoints[k].pt[1])+" ") 
        outP.write('\n') 
# Delay for 1/4 second 
# Only use this when writing to the same window 
# Otherwise there is a lot of flashing 
#        time.sleep(.25) 
# Delay until key is pressed 
        cv2.waitKey(0) 
    else: 
        outP.close() 
        cap.release() 
# cv2.destroyAllWindows() 
# Now, kpList is the set of all keypoints 
# For frame N, retrieve the keypoints by 
# keypoints = kpList[N-1] 
# To extract data from the third keypoint in frame 240, use 
# [x ,y] = kpList[239][2].pt 
# Or as 
# x = kpList[239][2].pt[0] 
# y = kpList[239][2].pt[1] 
 
 
# Here's a method to sort the keypoints 
# This assumes that the set of keypoints is a list called kpList 
# Define a method for the key 
#def sortSecond(val): 
# return val[1] 
# Now, I am creating a list of the keypoint number and the coordinates 
# I will use this on the first keypoint, kpList[N-1], and cycle 
through all 
# of the keypoints contained in it 
#for k in range(0,range(kpList[N-1])): 
# test.append([k,kpList[N-1][k].pt]) 
# Finally, I can sort it 
#test.sort(key = sortSecond) 
# The first element is the old keypoint listing 
# So test[0][0] is the index of the keypoint with the lowest x value  
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FindBlobs_NewParams.py 
 

import numpy as np 
import cv2 as cv2 
import tkinter as tk 
from tkinter import filedialog 
from tkinter import messagebox 
from tkinter import simpledialog 
#from matplotlib import pyplot as plt 
 
root = tk.Tk() 
root.withdraw() 
application_window = tk.Tk() 
application_window.withdraw() 
file_path = filedialog.askopenfilename(initialdir = ".",title = 
"Select file",filetypes = (("jpeg files","*.jpg"),("all 
files","*.*"))) 
 
img = cv2.imread(file_path) 
img = img[50:770,:] 
#print(file_path) 
 
# Setup SimpleBlobDetector parameters. 
params = cv2.SimpleBlobDetector_Params() 
 
# Change thresholds 
params.minThreshold = 40 
params.maxThreshold = 200 
params.thresholdStep = 20 
 
 
# Filter by Area. 
params.filterByArea = True 
params.minArea = 8 
params.maxArea = 40 
 
# Filter by Circularity 
params.filterByCircularity = True 
params.minCircularity = 0.85 
 
# Filter by Convexity 
params.filterByConvexity = False 
params.minConvexity = 0.9 
 
# Filter by Inertia 



68 
 

params.filterByInertia = False 
params.minInertiaRatio = 0.01 
 
# Create a detector with the parameters 
detector = cv2.SimpleBlobDetector_create(params) 
 
# Detect blobs. 
keypoints = detector.detect(img) 
 
# Draw detected blobs as red circles. 
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures 
# the size of the circle corresponds to the size of blob 
 
im_with_keypoints = cv2.drawKeypoints(img, keypoints, np.array([]), 
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 
 
# Show blobs 
cv2.imshow("Keypoints", im_with_keypoints) 
 
# Print blob coordinates 
for k in range(0,len(keypoints)): 
    
print(round(keypoints[k].pt[0]),round(keypoints[k].pt[1]),round(keypoi
nts[k].size)) 
 
cv2.waitKey(0)    
cv2.destroyAllWindows()   
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VideoBlobsIdentifiedFeb24.py 
 

import numpy as np 
import matplotlib.pyplot as plt 
import cv2 
import time 
from collections import Counter 
 
class Blob_Detector: 
 
    def __init__(self, params = 0): 
        self.params = params 
 
    def initialize_defaults(self, params): 
        # Define the default values of the blob parameters. 
        print("Default Minimum Threshold: " + 
str(params.minThreshold)) 
        print("Default Maximum Threshold: " + str(params.maxThreshold) 
+ "\n") 
 
        print("Default Minimum Area: " + str(params.minArea)) 
        print("Default Maximum Area: " + str(params.maxArea) + "\n") 
 
        print("Default Circularity: " + str(params.minCircularity) + 
"\n") 
 
        print("Default Convexity: " + str(params.minConvexity) + "\n") 
 
        print("Default Inertia Ratio: " + str(params.minInertiaRatio) 
+ "\n") 
 
    def adjust_parameters(self, params): 
        # Change thresholds 
        params.minThreshold = 40 
        params.maxThreshold = 200 
        params.thresholdStep = 20 
        # Filter by Area. 
        params.filterByArea = True 
        params.minArea = 8 
        params.maxArea = 40 
        # Filter by Circularity 
        params.filterByCircularity = True 
        params.minCircularity = 0.85 
        params.filterByConvexity = False 
        # Filter by Inertia 
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        params.filterByInertia = False 
 
class Blob_Id_Debug: 
 
    # Initialize the variables for the main class 
    def __init__(self, j = 1, k = 0, m = 0, n = 0, matches = [], desc 
= [], currentNames = [], 
                 framesToCheck = [], unmatchedBlobs = [], kpList = [], 
frameBlobs = []): 
        self.j = j 
        self.k = k 
        self.m = m 
        self.n = n 
        self.matches = matches 
        self.desc = desc 
        self.currentNames = currentNames 
        self.framesToCheck = framesToCheck 
        self.unmatchedBlobs = unmatchedBlobs 
        self.kpList = kpList 
        self.frameBlobs = frameBlobs 
 
    # Define three fucntions: first frame cycle, frame check for 
unmatched 
    # blobs, and second frame cycle. 
    def frame_cycle(self, j, k, m, n, matches, desc, currentNames): 
        for j in range(1, m): 
            bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) 
            matches = bf.match(desc[j],desc[j-1]); 
            print("\nFRAME #"+str(j+1)+":")           
            for k in range(0, n): 
                print('Raw match frame',j+1,' to 
frame',j,matches[k].queryIdx,matches[k].trainIdx,' Distance 
',matches[k].distance)         
                print('\n--> Current Frame',j+1,'Compare 
Frame',j,'Names',currentNames) 
 
    def frame_to_check(self, framesToCheck, unmatchedBlobs): 
        print('Frames to test: ',framesToCheck) 
        print('Blobs to identify: ',unmatchedBlobs) 
        print('Using Frame: ',framesToCheck[0]) 
 
    def frame_cycle_two(self, j, k, m, n, matches, desc, 
framesToCheck, kpList, frameBlobs): 
        for j in range(1, m): 
            bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) 
            matches = bf.match(desc[j],desc[framesToCheck[0]-1]) 
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            for k in range(0, n): 
                print('Raw match frame',j+1,' to 
frame',framesToCheck[0],matches[k].queryIdx,matches[k].trainIdx,' 
Distance ',matches[k].distance) 
                print('Found missing blob',matches[k].queryIdx,' as 
match',k) 
            print('Frame', j+1,' has',len(kpList[j]),' keypoints, 
labeled:',frameBlobs[j]) 
 
    # Indicate whether or not any function can be executed in the main 
source code. 
    def __str__(self): 
        if (self.frame_cycle() == True): 
            return str(self.j, self.k, self.m, self.n, self.matches, 
self.desc, self.currentNames) 
        if (self.frame_to_check() == True): 
            return str(self.framesToCheck, self.unmatchedBlobs) 
        if (self.frame_cycle_two() == True): 
            return str(self.j, self.k, self.m, self.n, self.matches, 
self.desc, self.framesToCheck, self.kpList, self.frameBlobs) 
        else: 
            return False 
 
class Blob_Frequency: 
 
    def __init__(self, i = 0, j = 1, frameBlobs = []): 
        self.i = i 
        self.j = j 
        self.frameBlobs = frameBlobs 
 
    def counter(self, i, j, frameBlobs): 
        blobFreq = frameBlobs[0] 
        for i in range(0,j): 
            blobFreq.extend(frameBlobs[i]) 
        print(Counter(blobFreq)) 
 
    def __str__(self): 
        return str(self.i, self.j, self.frameBlobs)  
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VideoBlobsIdentifiedFinal.py 
 

from VideoBlobsIdentifiedFeb24 import Blob_Detector, Blob_Id_Debug, 
Blob_Frequency 
import numpy as np 
import matplotlib.pyplot as plt 
import cv2 
import csv 
import math 
from math import sqrt 
from itertools import zip_longest 
import time 
from collections import Counter 
import tkinter as tk 
from tkinter import filedialog 
from tkinter import messagebox 
from tkinter import simpledialog 
 
displayFrame = False 
displayCorrect = True; 
displayOriginal = not displayCorrect; 
frameDivider = 10 #109;  # Number of frames between display 
classifierThreshold = 50 
debug1 = False 
debug2 = False 
debug3 = False 
debug4 = False 
 
# Can we change these thresholds that are tailored to each blob? 
xPixelThreshold = 20 #185 # 25 
yPixelThreshold = 25 #10000 # 10 
root = tk.Tk() 
root.withdraw() 
application_window = tk.Tk() 
application_window.withdraw() 
 
## BLOB DETECTOR SUB-ROUTINE ## 
# Setup SimpleBlobDetector parameters. 
params = cv2.SimpleBlobDetector_Params() 
blobSubRoutine = Blob_Detector() 
blobSubRoutine.adjust_parameters(params) 
 
# Create a detector with the parameters 
detector = cv2.SimpleBlobDetector_create(params) 
 



73 
 

# Create a descriptor generator 
descriptor = cv2.xfeatures2d.BriefDescriptorExtractor_create() 
# create BFMatcher object 
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) 
 
# Get file from dialog 
file_path = filedialog.askopenfilename(initialdir = ".",title = 
"Select file",filetypes = (("jpeg files","*.avi"),("all 
files","*.*"))) 
cap = cv2.VideoCapture(file_path) 
#outP = open("testOutNoRound.txt","w+") 
initialFrame = 0 
#initialFrame = int(input('Starting Video Frame: '))-1; 
#initialFrame = 1 
endFrame = int(input('Final Video Frame: ')); 
#endFrame = 120; 
frameNo = 0; 
ret = cap.set(cv2.CAP_PROP_POS_FRAMES,initialFrame) 
#print(ret) 
kpList = []; 
desc = []; 
images = []; 
while cap.isOpened(): 
    if (frameNo >= endFrame): break 
    ret, frame = cap.read() 
    if ret: 
        frameNo = frameNo + 1 
        if (frameNo > initialFrame): 
    # Detect Blobs 
            kpList.append(detector.detect(frame)); 
            keypoints = kpList[frameNo-1] 
            keypoints, desc1 = descriptor.compute(frame,keypoints) 
            desc.append(desc1); 
    # Draw detected blobs as red circles. 
    # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures 
    # the size of the circle corresponds to the size of blob 
        images.append(frame) 
    else: 
        cap.release() 
 
# create BFMatcher object 
# bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) 
# Classify blobs. 
# Start the name list 
blobNames = []; 
# Make a list of lists to keep track of the blobs in each frame 
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frameBlobs = []; 
# Keep track of next blob name to use 
keypoints = kpList[0] 
nextBlob = len(keypoints); 
# print('Frame 1 has',len(keypoints),' total keypoints'); # Note that 
frame counter starts at zero 
#print('No matches possible') 
#print('The next keypoint will be ',nextBlob) 
blobNames = [i for i in range(0,nextBlob)]; 
# Note the [:] to get the current values, rather than the list 
blobNames 
# because the list itself will continue to change 
frameBlobs.append(blobNames[:]); # This will only work for first frame 
blobLastSeen = [1 for i in range(0,nextBlob)]; 
### print('All blobs in Frame',1,' are:',frameBlobs[0]) 
 
im_with_keypoints = cv2.drawKeypoints(images[0], keypoints, 
np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 
for k in range(0,len(keypoints)): 
    cx = round(keypoints[k].pt[0]) 
    cy = round(keypoints[k].pt[1]) 
    cv2.putText(im_with_keypoints, str(k), (cx, cy), 
cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255)) 
windowName = 'Frame 1' 
if displayFrame: 
    cv2.imshow(windowName, im_with_keypoints) 
### This next step is necessary to force a draw. 
cv2.waitKey(2) 
##    if (debug1 == True): 
##        debug1 = Blob_Id_Debug() 
##        debug1.fc = Blob_Id_Debug().Frame_Count() 
# Start cycling through the frames 
for j in range(1,endFrame): # j is current frame index, so frameNo = 
j+1 
    kp1 = kpList[j-1]; # starts at kpList[0], frame 1 
    kp2 = kpList[j]; # starts at kpList[1], frame 2 
# Match descriptors. 
    matches = bf.match(desc[j],desc[j-1]); 
    # Check out https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher
/py_matcher.html 
    unmatchedBlobs = [i for i in range(0,len(kp2))]; 
# Create old and new Name lists 
 #   currentBlobs = [i for i in range(0,len(kp2))] 
    currentNames = [-1 for i in range(0,len(kp2))]; 
# Now we add the matched blobs 
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    for k in range(0,len(matches)): 
        matchxDist = (abs(kp1[matches[k].trainIdx].pt[0] - 
kp2[matches[k].queryIdx].pt[0]) < xPixelThreshold) 
        matchyDist = (abs(kp1[matches[k].trainIdx].pt[1] - 
kp2[matches[k].queryIdx].pt[1]) < yPixelThreshold) 
        # matchxDist = True 
        # matchyDist = True 
        matchTest = (matches[k].distance < classifierThreshold) and 
matchxDist and matchyDist 
        # matchTest = matchTest and not (frameBlobs[j-
1][matches[k].trainIdx] in currentNames) 
        if (matchTest): 
            # print('Raw match frame',j+1,' to 
frame',j,matches[k].queryIdx,matches[k].trainIdx,' Distance 
',matches[k].distance) 
            # print('Corrected 
Match',k,currentNames[matches[k].queryIdx],frameBlobs[j-
1][matches[k].trainIdx]) 
            currentNames[matches[k].queryIdx] = frameBlobs[j-
1][matches[k].trainIdx]; 
            blobLastSeen[frameBlobs[j-1][matches[k].trainIdx]] = j+1; 
            unmatchedBlobs.remove(matches[k].queryIdx) 
        if (debug1 == True): 
            debug1 = Blob_Id_Debug() 
            print(debug1.frame_cycle(j, k, endFrame, (len(matches)-1), 
matches, desc, currentNames[matches[k].queryIdx])) 
 
# Next, we add matches to the other frames 
# Collect all frames with unmatched blobs 
# set gives no duplicates 
    framesToCheck = set(blobLastSeen) 
# Remove the current frame and the previous one 
    framesToCheck.discard(j+1) 
    framesToCheck.discard(j) 
# reverse order to check the most recent frames first 
# Also make it a list so you can use subscripts 
    framesToCheck = list(sorted(framesToCheck, reverse = True)) 
# Now, do the checks when there are frames and unmatched blobs 
    while ((len(framesToCheck) > 0) and(len(unmatchedBlobs) > 0)): 
        kp1 = kpList[framesToCheck[0]-1]; 
        if (debug2 == True): 
            print('Frames to test: ',framesToCheck) 
            print('Blobs to identify: ',unmatchedBlobs) 
            print('Using Frame: ',framesToCheck[0]) 
# Match descriptors. 
        matches = bf.match(desc[j],desc[framesToCheck[0]-1]) 
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# Finally, go through the matches looking to match blobs still 
unidentified  
        for k in range(0,len(matches)): 
            #matchxDist = (abs(kp1[matches[k].trainIdx].pt[0] - 
kp2[matches[k].queryIdx].pt[0]) < xPixelThreshold) 
            matchxDist = (kp1[matches[k].trainIdx].pt[0] - 
kp2[matches[k].queryIdx].pt[0] < xPixelThreshold) 
            matchyDist = (abs(kp1[matches[k].trainIdx].pt[1] - 
kp2[matches[k].queryIdx].pt[1]) < yPixelThreshold) 
            matchxDist = True 
            # matchyDist = True 
            matchTest = (matches[k].distance < classifierThreshold) 
and matchxDist and matchyDist 
            matchTest = matchTest and not 
(frameBlobs[framesToCheck[0]-1][matches[k].trainIdx] in currentNames) 
            if (matchTest): 
                # print('Raw match frame',j+1,' to 
frame',framesToCheck[0],matches[k].queryIdx,matches[k].trainIdx,' 
Distance ',matches[k].distance) 
                if (unmatchedBlobs.count(matches[k].queryIdx) > 0): 
                    currentNames[matches[k].queryIdx] = 
frameBlobs[framesToCheck[0]-1][matches[k].trainIdx]; 
                    blobLastSeen[currentNames[matches[k].queryIdx]] = 
j+1; 
###                    print('Found missing 
blob',matches[k].queryIdx,' as match',k) 
                    unmatchedBlobs.remove(matches[k].queryIdx) 
                    if (debug3 == True): 
                        debug3 = Blob_Id_Debug() 
                        print(debug3.frame_cycle_two(j, k, endFrame, 
(len(matches)-1), matches, desc, framesToCheck, kpList, frameBlobs)) 
 
# Now finished this frame 
        del(framesToCheck[0]) 
# Finally, create new names for the unmatched blobs 
########### 
#  Problem is here 
# If an early identification is wrong 
# We are not checking to see if a later match is better 
# For example, frame 7 kp 6 gets matched to frame 6 kp 0 (called 0) 
# But also frame 7 kp 6 gets matched to frame 5 kp 6 (called 5) 
# The second match is better 
######### 
######### 
#  Possible solution: 
# Keep a vector of distances along with names 
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# If a later match has a smaller distance, use it 
# 
#########          
    for k in range(0,len(unmatchedBlobs)): 
        positionToFill = unmatchedBlobs[k]; 
        currentNames[positionToFill] = nextBlob; 
        nextBlob +=1 
        blobNames.append(unmatchedBlobs[k]); 
        blobLastSeen.append(j+1); # Frame number, not index    
 
# Next we add the whole list to the frame enumerator 
    frameBlobs.append(currentNames); 
 
    keypoints = kp2 
# This shows the original keypoint labels 
    im_with_keypoints = cv2.drawKeypoints(images[j], keypoints, 
np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 
    for k in range(0,len(keypoints)): 
        cx = round(keypoints[k].pt[0]) 
        cy = round(keypoints[k].pt[1]) 
         
        # Frame number, blob number, x-coord, y-coord 
        # print(j+1, currentNames[k], cx, cy) 
         
##            for k in range(0, len(matches)): 
##                print("Frame:",j+1, j, currentNames[k], cx, cy, 
matches[k].distance) 
##                print() 
        # cv2.putText(im_with_keypoints, str(frameBlobs[j][k]), (cx, 
cy), cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255)) 
# This shows the original keypoint labels 
        if displayOriginal: cv2.putText(im_with_keypoints, str(k), 
(cx, cy), cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255)) 
### This shows the corrected keypoint labels 
        if displayCorrect: cv2.putText(im_with_keypoints, 
str(frameBlobs[j][k]), (cx, cy), cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 
255)) 
    windowName = 'Frame '+str(j+1) 
    windowName2 = 'testFrame'+str(j+1)+'.jpg' 
# The next line shows frame 
    if displayFrame: 
        if (j%frameDivider == 0): 
            cv2.imshow(windowName, im_with_keypoints) 
            cv2.waitKey(2) 
# This next step is necessary to force a draw. 
##    if (j == 34): 
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##        displayFrame = True 
##        frameDivider = 1 
##        windowName = 'Frame '+str(j+1) 
##        cv2.imshow(windowName, im_with_keypoints) 
##        cv2.waitKey(2) 
##    elif (j == 44): 
##        displayFrame = False 
##        cv2.waitKey(2) 
##    if (j == 39): 
##        displayFrame = True 
##        frameDivider = 1 
##        windowName = 'Frame '+str(j+1) 
##        cv2.imshow(windowName, im_with_keypoints) 
##        cv2.waitKey(2) 
##    elif (j == 49): 
##        displayFrame = False 
##        cv2.waitKey(2) 
    #print('Frame',j+1,currentNames) 
             
# Background Drawings for Trajectories 
topblock_x = [129,124,101] 
topblock_y = [675,651,651] 
 
sideblock_x = [129,106,106,129,129] 
sideblock_y = [675,675,723,723,675] 
 
faceblock_x = [106,101,101] 
faceblock_y = [723,699,651] 
 
mat_x = [0,  101,101,106,129,129,175,175,-5, -5, 0] 
mat_y = [680,680,699,723,723,680,680,725,725,680,680] 
 
kickplate_x = [-5,175,175,-5,-5] 
kickplate_y = [650,650,640,640,650] 
 
wall_x = [-5,175,175,-5,-5] 
wall_y = [640,640,490,490,640] 
 
hardwood_x = [-5,101,101,124,129,129,175,175,-5,-5] 
hardwood_y = [680,680,651,651,675,680,680,650,650,680] 
 
floor2_x = [175,-5, -5, 175, 175] 
floor2_y = [1060, 1060, 725, 725, 1060] 
 
# LEFT HEEL 
BlobPxLH = []; 
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BlobPyLH = []; 
BlobPfLH = []; 
StableBlobxfLH=[]; 
StableBlobyfLH=[]; 
 
for freqBlob in [7, 79]: 
    for j in range(1,endFrame): 
        if (freqBlob in frameBlobs[j]): 
            keypoints = kpList[j] 
        # Print info on the frame number and blob coordinates to be 
graphed. 
        # print(str(j+1)+', '+str(round(keypoints[k].pt[0]))+', 
'+str(round(keypoints[k].pt[1]))) 
 
        # Take the standard deviation of the data between Frames 60 
and 90 for Blob 7, 
        # and determine if it is small enough to detect the flat 
regions of both 
        # the X and Y trajectories. 
 
        # Find the average of x-coordinates across the points between 
frames 60 and 90. 
        # Then do the same for y-coordinates 
        # Compute the standard deviations and create logic for if 
        # the result is less than 1 across 30 frames, for example, 
        # the computer can detect that the shoe is on the ground. 
            k = frameBlobs[j].index(freqBlob) 
            BlobPfLH.append(j+1); 
            BlobPxLH.append(round(keypoints[k].pt[0])); 
            BlobPyLH.append(round(keypoints[k].pt[1])); 
 
# At this point, BlobP? has information for left heel 
# for i in range(0, len(BlobPf)): 
fig, ax1 = plt.subplots() 
ax1.set_title('Left Heel (X)') 
ax1.set_xlabel('Frame Number') 
ax1.set_ylabel('x-coordinate') 
for i in range(0, len(BlobPfLH)): 
    ax1.plot(BlobPfLH[i],BlobPxLH[i],'ro') 
ax1.set_xlim(endFrame, 0) 
 
fig, ax2 = plt.subplots()     
ax2.set_title('Left Heel (Y)') 
ax2.set_xlabel('Frame Number') 
ax2.set_ylabel('y-coordinate') 
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#ax2.axvspan(125, 115, ymin=0.045, ymax=0.215, alpha=1, color='teal') 
ax2.plot(topblock_x, topblock_y, linewidth=2, color='teal') 
ax2.plot(sideblock_x, sideblock_y, linewidth=2, color='teal') 
ax2.plot(faceblock_x, faceblock_y, linewidth=2, color='teal') 
 
ax2.fill_between(hardwood_x, 
hardwood_y,0,facecolor='sandybrown',color='sandybrown',alpha=0.2) 
ax2.fill_between(mat_x, 
mat_y,0,facecolor='lightcoral',color='lightcoral',alpha=0.2) 
ax2.fill_between(kickplate_x, 
kickplate_y,0,facecolor='white',color='gainsboro',alpha=0.2) 
ax2.fill_between(wall_x, 
wall_y,0,facecolor='white',color='gainsboro',alpha=0.2) 
for i in range(0, len(BlobPfLH)): 
    ax2.plot(BlobPfLH[i],BlobPyLH[i],'bo') 
ax2.set_xlim(endFrame, 0) 
ax2.set_ylim(725, 575) 
 
for k2 in range(0, len(BlobPfLH)-10): 
##        print(k2, np.std(Blob7x[k2:(k2+10)])) 
    BPstdX = np.std(BlobPxLH[k2:(k2+10)]) 
    BPstdY = np.std(BlobPyLH[k2:(k2+10)]) 
    if (BPstdY < 0.1) and (BPstdX < 0.1): 
        #print("Desired SD at Y found at frame", BlobPf[k2]) 
        StableBlobyfLH.append(BlobPfLH[k2]); 
        StableBlobxfLH.append(BlobPfLH[k2]); 
        #print(StableBlobxf) 
        #print("Desired SD at X found at frame", BlobPf[k2]) 
    # [SOLVED] goodEnd turns out to be a float number, which is not 
iterable. 
    # Since the common end frame is supposed to be 81, we will have to 
take 
    # out the + 10 
goodEndLH = min(max(StableBlobxfLH),max(StableBlobyfLH)) 
goodStartLH = max(min(StableBlobxfLH),min(StableBlobyfLH)) 
print("***FOR LEFT HEEL***") 
print("ENTER stable region! Start frame:",goodStartLH) 
print("LEAVE stable region! End frame:",goodEndLH) 
##print("\n***STANDARD DEVIATIONS FOR Y TRAJECTORY***") 
     
# If put into a for loop, the mean coordinate point at SD will repeat 
multiple times. 
for i in range(0, len(BlobPfLH)-10): 
    k3 = i 
print("Mean coordinate point at desired SD = (", BlobPxLH[k2],",", 
BlobPyLH[k3],")") 
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total_listX = [BlobPfLH, BlobPxLH] 
total_listY = [BlobPfLH, BlobPyLH] 
export_dataX = zip_longest(*total_listX, fillvalue = '') 
export_dataY = zip_longest(*total_listY, fillvalue = '') 
try:  
    with open('leftheel_trajectoryX.csv', 'w', newline='') as f1: 
        wrX = csv.writer(f1) 
        # column labels: "Frame, X" 
        wrX.writerows(export_dataX) 
    f1.close() 
except PermissionError as e: 
    print("File already open!") 
try:  
    with open('leftheel_trajectoryY.csv', 'w', newline='') as f2: 
        wrY = csv.writer(f2) 
        # column labels: "Frame, Y" 
        wrY.writerows(export_dataY) 
    f2.close() 
except PermissionError as e: 
    print("File already open!") 
 
# END OF LEFT HEEL # 
 
# BEGIN LEFT TOE # 
BlobPxLT = [] 
BlobPyLT = []; 
BlobPfLT = []; 
StableBlobxfLT = [] 
StableBlobyfLT = [] 
 
for freqBlob in [17, 5, 87]: 
    for j in range(1,endFrame): 
        if (freqBlob in frameBlobs[j]): 
            keypoints = kpList[j] 
            k = frameBlobs[j].index(freqBlob) 
            BlobPxLT.append(round(keypoints[k].pt[0])); 
            BlobPfLT.append(j+1); 
            BlobPyLT.append(round(keypoints[k].pt[1])); 
 
fig, axx = plt.subplots() 
axx.set_title('Left Toe (X)') 
axx.set_xlabel('Frame Number') 
axx.set_ylabel('x-coordinate') 
for i in range(0, len(BlobPfLT)): 
    axx.plot(BlobPfLT[i],BlobPxLT[i],'ro') 
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axx.set_xlim(endFrame, 0) 
 
fig, axy = plt.subplots()     
axy.set_title('Left Toe (Y)') 
axy.set_xlabel('Frame Number') 
axy.set_ylabel('y-coordinate') 
#axy.axvspan(125, 115, ymin=0.0667, ymax=0.3125, alpha=1, 
color='teal') 
axy.plot(topblock_x, topblock_y, linewidth=2, color='teal') 
axy.plot(sideblock_x, sideblock_y, linewidth=2, color='teal') 
axy.plot(faceblock_x, faceblock_y, linewidth=2, color='teal') 
axy.fill_between(hardwood_x, 
hardwood_y,0,facecolor='sandybrown',color='sandybrown',alpha=0.2) 
axy.fill_between(mat_x, 
mat_y,0,facecolor='lightcoral',color='lightcoral',alpha=0.2) 
axy.fill_between(kickplate_x, 
kickplate_y,0,facecolor='white',color='gainsboro',alpha=0.2) 
axy.fill_between(wall_x, 
wall_y,0,facecolor='white',color='gainsboro',alpha=0.2) 
for i in range(0, len(BlobPfLT)): 
    axy.plot(BlobPfLT[i],BlobPyLT[i],'bo') 
axy.set_xlim(endFrame, 0) 
axy.set_ylim(725, 565) 
 
for k2 in range(0, len(BlobPfLT)-10): 
##        print(k2, np.std(Blob7x[k2:(k2+10)])) 
    BPstdX = np.std(BlobPxLT[k2:(k2+10)]) 
    BPstdY = np.std(BlobPyLT[k2:(k2+10)]) 
    if (BPstdY < 0.1) and (BPstdX < 0.1): 
        #print("Desired SD at Y found at frame", BlobPf[k2]) 
        StableBlobyfLT.append(BlobPfLT[k2]); 
        StableBlobxfLT.append(BlobPfLT[k2]); 
goodEndLT = min(max(StableBlobxfLT),max(StableBlobyfLT)) 
goodStartLT = max(min(StableBlobxfLT),min(StableBlobyfLT)) 
print("***FOR LEFT TOE***") 
print("ENTER stable region! Start frame:",goodStartLT) 
print("LEAVE stable region! End frame:",goodEndLT) 
##print("\n***STANDARD DEVIATIONS FOR Y TRAJECTORY***") 
     
# If put into a for loop, the mean coordinate point at SD will repeat 
multiple times. 
for i in range(0, len(BlobPfLT)-10): 
    k3 = i 
print("Mean coordinate point at desired SD = (", BlobPxLT[k2],",", 
BlobPyLT[k3],")") 
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total_listX = [BlobPfLT, BlobPxLT] 
total_listY = [BlobPfLT, BlobPyLT] 
export_dataX = zip_longest(*total_listX, fillvalue = '') 
export_dataY = zip_longest(*total_listY, fillvalue = '') 
try:  
    with open('lefttoe_trajectoryX.csv', 'w', newline='') as f1: 
        wrX = csv.writer(f1) 
        # column labels: "Frame, X" 
        wrX.writerows(export_dataX) 
    f1.close() 
except PermissionError as e: 
    print("File already open!") 
try:  
    with open('lefttoe_trajectoryY.csv', 'w', newline='') as f2: 
        wrY = csv.writer(f2) 
        # column labels: "Frame, Y" 
        wrY.writerows(export_dataY) 
    f2.close() 
except PermissionError as e: 
    print("File already open!") 
# END OF LEFT TOE # 
 
if (debug4 == True): 
    debug4 = Blob_Frequency() 
    debug4.counter(i, endFrame, frameBlobs) 
        # print("No Blob #"+str(v)+" coordinates exist for 
Frame",j+1,"\n") 
 
plt.show(block=False)  
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