
W&M ScholarWorks W&M ScholarWorks

Undergraduate Honors Theses Theses, Dissertations, & Master Projects

5-2020

Gait Characterization Using Computer Vision Video Analysis Gait Characterization Using Computer Vision Video Analysis

Martha T. Gizaw
College of William and Mary

Follow this and additional works at: https://scholarworks.wm.edu/honorstheses

 Part of the Analysis Commons, Artificial Intelligence and Robotics Commons, Biomechanics and

Biotransport Commons, Computational Engineering Commons, Engineering Physics Commons,

Longitudinal Data Analysis and Time Series Commons, Numerical Analysis and Scientific Computing

Commons, Other Computer Sciences Commons, Other Engineering Commons, Other Physical Sciences

and Mathematics Commons, Other Physics Commons, Other Statistics and Probability Commons, Theory

and Algorithms Commons, and the Vision Science Commons

Recommended Citation Recommended Citation
Gizaw, Martha T., "Gait Characterization Using Computer Vision Video Analysis" (2020). Undergraduate
Honors Theses. Paper 1510.
https://scholarworks.wm.edu/honorstheses/1510

This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/honorstheses
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/honorstheses?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/234?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/234?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/822?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/216?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/216?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/238?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/honorstheses/1510?utm_source=scholarworks.wm.edu%2Fhonorstheses%2F1510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Gait Characterization Using Computer
Vision Video Analysis

A thesis submitted in partial fulfillment of the requirement
for the degree of Bachelor of Science with Honors in

Interdisciplinary Studies from The College of William and Mary in Virginia,

by

Martha Gizaw

Accepted for _____________________________

__
Dr. William Cooke, Director

__
Dr. Keith Griffioen, Physics

__
Dr. Evie Burnet, Kinesiology & Health Sciences

__
Dr. Dennis Manos, Physics

Williamsburg, Virginia
Tuesday, May 5, 2020

Honors

Gait Characterization Using Computer Vision

Video Analysis

i

Table of Contents

Acknowledgments iii

Dedications vi

List of Figures vii

List of Tables ix

Abstract x

Chapter 1: Project Background and Objectives 1

Section 1.1: Falls in Human Health 1

Section 1.2: Current Studies in Greater Williamsburg 1

Section 1.3: Video Frame Illustration 2

Section 1.4: Description of Computer Vision 3

Section 1.5: Project Roadmap 4

Chapter 2: Standard Computer Vision Feature Detectors 5

Section 2.1: FAST 5

Section 2.2: ORB 7

Section 2.3: Canny Edges 7

Section 2.4: Hough Lines 8

Chapter 3: Properties & Behaviors of a Blob Detector 10

Section 3.1: Definition and Characterization of Blobs 10

Section 3.2: Choice of Parameters 11

Chapter 4: Correlation of Blobs Between Frames 17

 Section 4.1: Blob Classification 17

 Section 4.2: Descriptor Matching 19

ii

 Section 4.2.1: Blobs Already Identified 19

 Section 4.2.2: Blobs Still Unidentified 20

 Section 4.2.3: The Blob Renumbering Process 20

Section 4.3: Plotting Blob Trajectories 21

 Section 4.3.1: Missing Trajectory Regions 23

 Section 4.3.2: Blob Misidentification 24

Chapter 5: Association of Blobs with Human Features 26

 Section 5.1: Combining Multiple Trajectories 26

 Section 5.1.1: Blobs Appearing Twice in One Frame 29

 Section 5.2: Stability of Trajectory Regions 30

 Section 5.3: Left-Side Versus Right-Side Markers 31

Chapter 6: Project Conclusions 34

Section 6.1: Overall Review 34

Section 6.2: Future Directions 34

Appendix A: Blob Detection & Identification Flowchart 36

Appendix B: List of OpenCV-Python Programs 45

Appendix C: Full-Length Source Codes (Electronic Copy Exclusive) 49

Bibliography 84

Vita 87

iii

Acknowledgments

First and foremost, I want to express my extreme gratitude to Dr. William Cooke for his

patience, guidance, and constructive criticism throughout this highly significant investigation. I

am also indebted to Dr. Jeffery Nelson for his never-ending assistance with finding my project

advisor last year. I sincerely thank Dr. Keith Griffioen for his exceptional insights in each step of

the thesis composition and presentation process. My thankfulness extends to Dr. Evie Burnet of

Kinesiology & Health Sciences and Dr. Dennis Manos of Physics, both of whom agreed to join

my Examining Committee along with Dr. Cooke and Dr. Griffioen to see my work go above and

beyond the expectations of this endeavor. I give credit to the Center for Balance & Aging Studies

for providing one of the videos to experiment with throughout the project.

The rest of the Department of Physics, including the Society of Physics Students, deserves

my gratitude as well because it offers a welcoming and supportive environment for me to achieve

my own goals and finish my bachelor’s degree once and for all. Without its new Engineering

Physics & Applied Design initiative, I would not be able to create a biomedical engineering

concentration that draws courses from my previous programs of study: neuroscience, computer

science, and mathematical biology. This full thesis created for the Department of Physics should

stand as the final opportunity for me to demonstrate my appreciation toward fellow students,

alumni, and friends near and far who eagerly donated to my video proposal during the William &

Mary Honors Fellowship Campaign in March 2019.

 Next, thank you to all the counselors, instructors, and friends who instill in me a sense of

belonging beyond the classroom. Over the years, the Charles Center has become the academic

advisor beyond my imagination, and I cannot appreciate it enough for guiding me through

iv

independent scholarship. From the honors project to the engineering capstone to the journalism

seminar, its opportunities make me realize that I learn best with interdisciplinary thought.

As a student with autism, anxiety, and attention deficit disorders, I sought the

Neurodiversity Initiative as the best reason for coming to William & Mary. Besides receiving

accommodations from Student Accessibility Services, I have been networking with John Elder

Robison, who brings thoughtful insights toward how the disabled should shape our world. I want

to take the time to offer my gratitude to him since his words have enabled me to speak up at Student

Assembly on the common issues among people with disabilities who succeed in college and their

careers.

Attaining a well-rounded education as a person from a single-mother household is not

possible without the power of scholarships. When I received news from Northern Virginia

Community College that the Honors Program and Pathway to the Baccalaureate will fully fund

my tuition for my service and academic achievement, I took the risk of attending there as an

ambitious high school graduate. Most of the time at my home campus, I felt like an outlier among

the students who do not meet their goals the same way I did. However, I found a wonderful support

group called Women in Search of Excellence, and it empowered me to sharpen my professional

skills the right way. Never would I prove to my family that I can independently manage my career

options without a Jack Kent Cooke Foundation scholarship lowering my stress of moving on to a

new academic life. I thank the following people who invested in my success: Stacy Rice, Dr. Paul

Fitzgerald, LeeAnn Thomas, Theana Kastens, Camisha Parker, Dr. John Sound, Dr. Rebecca

Hayes, Alex Coppelman, Shannon Bobb, Kerry Coleman-Proksch, Tykesha Myrick, Dr. Scott

Ralls, Jennifer Krasilovsky, and all of the current and former Cooke scholars.

v

Finally, I am more than excited to acknowledge the teachers and staff—past and present—

at Freedom High School in Woodbridge, VA. They all are hard at work to inspire a diverse body

of students and alumni to overcome their obstacles. My other alma mater schools in Virginia—

Featherstone, Leesylvania, and Rippon—also deserve my gratitude since they lifted me toward the

future I wanted.

This document cannot be complete without stating how much I love my mother Sophia,

my brother Daniel, and my sister Hannah. I also love my father Tibebe, who currently lives in San

Francisco, and my half-brother Brooke, who lives with his mother in Dallas. Other close relatives

who comforted me and invested in my success include my aunt Nunu, my cousins Nigus and

Sedenia, and my family friends Selam, Lili, Senti, Abraham, Rebecca, Grace, Etafi, Ojay, and

Atoki.

vi

Dedications

To my grandfathers Demissew (c. 1929-2014) and Mekuria (c. 1936-2017), who kept in touch

with their families and supported their children and grandchildren’s academic and personal

endeavors.

To Drs. Harold O. Levy (1952-2018) and Stuart A. Haney (1957-2020), who last served as the

executive director and charter board member, respectively, of the Jack Kent Cooke Foundation.

Both gentlemen had a passion for helping disadvantaged students attain a world-class education.

vii

List of Figures

Chapter 1

Figure 1.1: Original Video Frame 2

Chapter 2

Figure 2.1: How FAST Works 5

Figure 2.2: FAST Implementation 6

Figure 2.3: ORB Implementation 7

Figure 2.4: Canny Edge Implementation 8

Figure 2.5: Hough Line Implementation 9

Chapter 3

Figure 3.1: Visual Definitions of Blob Parameters 11

Figure 3.2: Poor Blob Detection 12

Figure 3.3: Blob Detection with Default Parameter Values 12

Figure 3.4: Sensitivity Chart for Minimum Area 13

Figure 3.5: Sensitivity Chart for Circularity 13

Figure 3.6: Keypoint Analysis with Threshold Step 14

Figure 3.7: Keypoint Analysis with Lack of Circularity 15

Figure 3.8: Blob Detection with Current Parameter Values 16

Chapter 4

Figure 4.1: Initial Versus New Blob Labeling 19

Figure 4.2: Tracking an Unidentified Blob 20

Figure 4.3: Video Axis Measurements 22

viii

Figure 4.4: First Trajectory Example 23

Figure 4.5: How to Fill in Trajectory Gaps 24

Figure 4.6: Spotting Trajectory Discontinuities 25

Figure 4.7: Video Proof for Discontinuities 25

Chapter 5

Figure 5.1: Two Names for One Marker 26

Figure 5.2: Trajectories for Two Names 27

Figure 5.3: Combined Left Heel Trajectory 28

Figure 5.4: Left Knee Trajectory 29

Figure 5.5: Twice-Appearing Blobs at the Left Toe 30

Figure 5.6: Right Heel Trajectory 32

Figure 5.7: First Hiding Event 33

Figure 5.8: Second Hiding Event 33

ix

List of Tables

Chapter 4

Table 4.1: Marker Name Placement 21

x

Abstract

The World Health Organization reports that falls are the second-leading cause of accidental

death among senior adults around the world. Currently, a research team at William & Mary’s

Department of Kinesiology & Health Sciences attempts to recognize and correct aging-related

factors that can result in falling. To meet this goal, the members of that team videotape walking

tests to examine individual gait parameters of older subjects. However, they undergo a slow,

laborious process of analyzing video frame by video frame to obtain such parameters. This project

uses computer vision software to reconstruct walking models from residents of an independent

living retirement community. Those subjects have agreed to be tested bi-annually and to report

their fall history. Videos previously recorded demonstrate a variety of walks. Our

procedures use several OpenCV-Python functions to detect, label, and follow markers that have

been placed on the subjects’ shoes and knees. The trajectories followed by these markers allow us

to generate walking models with gait parameters, such as the step height and the ankle

dorsiflexion angle. This computer vision video analysis runs unsupervised to reduce processing

time dramatically while enhancing the accuracy of a variety of measurements. Therefore, our

data processing techniques will enable our kinesiology investigators to quickly generate a more

extensive data set to learn how falling problems develop. This outcome will allow them to develop

and to test exercises that can reduce those problems and prevent future falls for older subjects.

Keywords: computer vision, falls, gait, seniors

1

Chapter 1: Project Background and Objectives

Section 1.1: Falls in Human Health

Kellog International defines a fall as an event that involves intentional or unintentional

resting on the ground or floor [1]. The World Health Organization (WHO) states that falls are the

second leading cause of accidental death worldwide [2]. In a 2017 issue of IEEE Pulse, falls are

also the sixth leading cause of death among the elderly in the United States [3]. About 28-35

percent of adults over the age of 65 are falling each year [4]. These statistics are growing with age,

frailty level, and gait variability. By 2050, over 1 in 5 individuals will be seniors, which results in

higher rates of fall-related injuries at 20-30 percent and emergency visits at 10-15 percent [4][5].

With gait as a manner of walking and a measurable fall risk factor, developing fall

prevention systems becomes possible. A research team under Dr. Kabalan Chaccour of Antonine

University in Lebanon describes those systems as devices that can sense, process, and

communicate essential data in the event of a fall [1]. To this day, falls prevention is one of the

most pressing issues that require collaboration between a scientist and an engineer. In health

science, measuring the gait of the senior-aged subject is crucial to establishing thresholds for when

he or she is likely to fall.

Section 1.2: Current Studies in Greater Williamsburg

In 2018, the Department of Kinesiology and Health Sciences at the College of William &

Mary established the Center for Balance and Aging Studies (CBAS) [6]. Since then, principal

investigators Dr. Evie Burnet and Dr. Michael Deschenes, and student research assistants search

for and evaluate factors that can increase fall risk among local senior citizens. Williamsburg

Landing and the James City County Recreation Center have proposed to collaborate with CBAS

on intervening with and evaluating participating senior adults to collect gait measurements [7]. So

2

far at Williamsburg Landing, CBAS utilizes the GAITRite walkway and high-speed camera

systems to detect different motions that can lead to a fall [8]. GAITRite is a computer-connected,

pressure-sensitive pathway system that records each footstep along a subject’s walking path. A

video camera films the passage through the GAITRite mat to track the subject’s step height and

ankle dorsiflexion angle [8].

The data from gait analysis tests at Williamsburg Landing suggest that future data should

be automated. Currently, the kinesiology team observes and interprets videos frame by frame to

manually measure step heights and angles. These tasks do not provide necessarily accurate

information because the camera may not be viewing the limbs from a correct angle [9]. The

development of new technologies is thus necessary to retest the subjects to gather measurements

that are more accurate and readable. In fact, this project intends to use image processing methods,

such as computer vision—which is defined in Section 1.4—to quickly collect and interpret gait

data from desired video or photo elements.

Section 1.3: Video Frame Illustration

Figure 1.1: Original Video Frame. An original video labeled “S10.B1” is displayed to the user before any computer

vision techniques can be applied [10].

3

Figure 1.1 is an original video frame from an AVI file titled “S10.B1,” which shows a

principal investigator and a test subject walking down the GAITRite mat, as well as that subject

stepping over a foam block barrier [10]. The black dots described as hand-drawn gait markers were

attached to the subject’s legs because the kinesiology researchers elected to undergo the time-

consuming procedure of measuring those markers in each frame. A possible argument for why

videotaping a walking subject is necessary is that it not only syncs with the footprint path that

GAITRite creates, but it also provides an opportunity for estimating step height and foot flex angle

before considering any new technologies. Without image processing automating the video frame

analysis, the researchers will spend more time producing complex data by frequently pausing

videos, measuring objects with pixels, and observing how the feet extend.

Section 1.4: Description of Computer Vision

Computer vision is an interdisciplinary field of science that enables computers to see and

process digital images and videos. At the forefront of such high-tech disciplines as electrical

engineering and computer science, the significance of computer vision rests with the recognition,

reconstruction, generation, and processing of images to solve vision problems. Likewise,

developing algorithms and building models of the human visual system have sparked interest

among computer scientists, neuroscientists, and physicists [11].

The most popular and well-documented open-source library for programmers who are new

to image processing is OpenCV, which is short for Open Source Computer Vision. Started by Gary

Bradsky in 1999 [12], OpenCV is expanding to support a variety of algorithms related to computer

vision and machine learning. Also, it endorses several programming languages such as C++,

Python, and Java, and it is available to download on Windows, Linux, Android, and Mac OS [13].

Several tutorials in the OpenCV documentation navigate this project to down-selection to specific

4

methods for video processing and feature detection deemed appropriate for gait characterization

[14].

Section 1.5: Project Roadmap

The next few chapters lay out a computer vision procedure that CBAS can use in the future.

First, Chapter 2 describes four standard feature detectors—FAST, ORB, Canny Edge, and Hough

Line—that attempted to locate the subject’s spots but expected unnecessary details from them and

other video elements. Those methods were tried out before a blob detector was chosen to pinpoint

the markers precisely. Next, Chapter 3 defines blobs and explains how one would prioritize the

selection of blob detector video parameters and adjust their values to detect most of the subject’s

markers with similar size, shape, and color. Afterward, Chapter 4 delineates the process of

matching and renumbering markers between frames based on changes in physical location so that

one can establish useful trajectories during walking activity. In Chapter 5, if a blob is on the same

location within the leg but its label changes, a few algorithms plot multiple trajectories at once and

detect any stable regions indicating that the blob belongs to a shoe. Chapter 5 also notes the missing

trajectory regions for the right-legged markers, which can impact the ability to carefully

correspond the blobs to human features, such as the knee, ankle, toe, or heel. Lastly, Chapter 6

describes the outcomes of the project and the remaining tasks to include extracting step height and

foot flexure from the blob positions and using the blob detector on other videos.

5

Chapter 2: Standard Computer Vision Feature Detectors

 This chapter outlines some of OpenCV’s image processing and feature detection methods

aimed at analyzing the physical details of an image or video. Algorithms that quickly detect corners

and other points of interest include FAST and ORB. Others, including the Canny edge detector

and Hough line transform, would instead draw along the boundaries of some video elements. The

FAST, ORB, Canny, and Hough methods meant to find but did not pay any more considerable

attention to all the subject’s markers. Instead, they look for objects with too many details and

corners in the objects they are programmed to find.

Section 2.1: FAST

In 2006, Edward Rosten and Tom Drummond, who are researchers of engineering at

Cambridge University, created the Features from Accelerated Segment Test (FAST) [15]. FAST

is a corner detection algorithm that considers pixels along the keypoints for threshold analysis [16].

Figure 2.1: How FAST Works. The FAST algorithm is detecting a corner of a window and evaluates pixel p as

either a corner or non-corner based on the brightness of 16 pixels around p [15].

In Figure 2.1, the algorithm considers a circle composed of 16 pixels (marked by white,

highlighted squares) around corner candidate p. Let Ip be the intensity of pixel p, and t be the

threshold value. Pixel p can be a corner if there are n continuous pixels in the circle that are brighter

than Ip + t or darker than Ip – t, as indicated by the white dashed lines in the figure. Let n = 12

6

because it allows for a high-speed test to discard a high number of non-corners to solely examine

the following compass direction pixels: 1, 5, 9, and 13. For p to be a corner, at least three of the

compass direction pixels must be brighter than Ip + t or darker than Ip – t. FAST will then evaluate

all pixels in the circle to apply to other corner candidates [15].

The FAST algorithm is essential for targeting and analyzing corners of features, which are

small image patches that are independent of image scaling, rotation, and illumination changes.

FAST is also successful at determining the status of corner candidate p so it can establish a

keypoint, that is, the coordinate position where the feature has been detected.

Upon execution, FAST typically found over a hundred keypoints, or objects of interest,

while only very few of them were the desired shoe markers. Even then, not all the markers were

designated as keypoints (see Figure 2.2). In a Python program called TKinter_FAST.py, FAST

interacts with TKinter, which is a standard Python interface to a GUI toolkit that opens a

computer’s file directory and enables the display of file types given in the source (e.g., jpeg and

avi). TKinter also makes the program interactive by allowing the user to magnify regions of

interest. The FAST algorithm will then apply to that region to calculate keypoint locations.

Although it was one of the first steps toward detecting the desired video features, it returned an

excessive number of keypoints. This situation can hinder the user’s ability to know what the exact

coordinates are for each desired shoe marker.

Figure 2.2: FAST Implementation. The FAST algorithm applies to a region of interest surrounding the shoes. A few

out of the many keypoints detected the black shoe markers to be further analyzed.

7

Section 2.2: ORB

Along with the FAST detector, OpenCV offers BRIEF (Binary Robust Independent

Elementary Features), which is a feature descriptor that is crucial for classifying and matching

keypoints between frames to be discussed in Chapter 4. Another feature detector, ORB (Oriented

FAST and Rotated BRIEF), combines the best aspects of FAST and BRIEF and adjusts them to

enhance video analysis and improve keypoint detection performance [17]. First presented by Ethan

Rublee et al. of the Willow Garage robotics company in 2011, ORB is rotation-invariant and noise-

resistant while being more efficient and faster than other feature detectors [18].

This project’s implementation of ORB can recognize a smaller number of video features

and thus utilize fewer keypoints. In Figure 2.3, two ORB keypoints have successfully landed on

the shoe markers. Selecting a region of interest via TKinter still helps with narrowing the number

of keypoints down to the ones that are of interest to the user. Expanded that region would have

helped target all the markers, yet the user may need to find ways to use the same number of

keypoints as that of those spots.

Figure 2.3: ORB Implementation. ORB improves video analysis with less image noise and rotation, thus reducing

the keypoints, especially to such desired features as the black shoe markers.

Section 2.3: Canny Edges

In addition to the feature detectors, OpenCV provides the Canny edge detection algorithm

for detecting a wide range of edges in an image. The algorithm goes through multiple stages to

include reducing noise in the image, finding the intensity gradient of the image, removing pixels

8

that do not constitute an edge, and setting threshold values to classify edges [19]. Edges were

considerable in attempting to detect shoe markers (see Figure 2.4). Moreover, they can shed light

on the threshold and other factors that can impact the ability to draw keypoints along the

boundaries of each spot.

Figure 2.4: Canny Edge Implementation. Canny edge detection helps to visualize the edges of each feature so the

user can easily find the shoe markers.

Section 2.4: Hough Lines

Hough lines are comparable to Canny edges because they are detectable with any shape,

even if it becomes distorted [20]. Figure 2.5 uses the probabilistic Hough transform, which is the

optimization of a normal Hough transform that takes a randomized set of points suitable for line

detection [20]. Although it is not a feature detector, the Hough line drawing method could be useful

for asking questions about how far per second each subject could proceed on a walkway. The

program, FindHoughLinesProb.py, holds the line-drawing algorithms that could be a beneficial

source for generating and animating walking models to automate step height and angle

measurements.

9

Figure 2.5: Hough Line Implementation. The probabilistic Hough transform paints straight lines on the subjects and

the background to mark the edges of any object that it sees as essential.

10

Chapter 3: Properties & Behaviors of a Blob Detector

The objectives of this chapter include understanding what a blob is and how it can help

with the detection of desired video features. One should also know how to choose among the five

parameters—area, circularity, threshold, inertia, and convexity—that can impact the way a blob

detector works to pinpoint desired features. Setting those parameters at appropriate values for the

gait video can assist with increasing awareness of the subject’s markers to be followed, as well as

making the blobs located elsewhere less critical.

Section 3.1: Definition and Characterization of Blobs

The FAST, ORB, Canny Edge, and Hough Line detector algorithms did not adequately

show the quantitative detection of all the black markers on a subject’s shoes and knees. However,

they served as important precursors to a method that precisely targets those spots based on their

color, shape, and size. Blob detection is the method that achieves this task. A blob is a region of

similar color or light that is localized within an image or video. Characterizing a blob requires an

algorithm under a class called SimpleBlobDetector to extract the blob from an image [21]. First,

the program, FindBlobs_OriginalParams.py, sets up the default parameters for

SimpleBlobDetector described by

params = cv2.SimpleBlobDetector_Params()

Next, it reads five parameters associated with blob detection (see Figure 3.1): (1) threshold,

which is the color intensity value of the pixel that can apply to grayscale images and can range

between 0 and 255; (2) area, which is the number of pixels that constitute an element; (3)

circularity, which is a measurement of how close to a perfect circle an element is; (4) convexity,

which is a measurement of whether the element is convex or concave; and (5) inertia, which is a

measurement of how elongated or elliptic an element is [22].

11

Figure 3.1: Visual Definitions of Blob Parameters. [22] uses visuals to define the blob detector parameters above.

Note that inertia and convexity were neglected for this project.

Both threshold and area have minimum and maximum values that consider the number of

pixels of different thresholds to determine the presence of a blob. Circularity, convexity, and inertia

all carry only one value describing the variations of a typical shape, such as a circle. Since the

spots on a subject’s shoes and knees are all circular, the user can select and evaluate the values of

circularity along with the area and threshold ranges. Inertia and convexity were turned off in all

Python programs concerning blob detection because they do not support the identification of blobs

whose roundness matters in collecting accurate gait data.

Section 3.2: Choice of Parameters

To consider desired image features as blobs, the user needs to choose detector parameters

along with their values appropriate for those features with similar colors and shapes. Changing

only one parameter while leaving others with default values will cause the image to display a

doorknob, electrical outlets, a head of hair, and other objects as if they are blobs (see Figure 3.2).

Setting any parameter closer to zero can lead to randomized blobs—large and small—that detect

any shape with a stable or unstable structure.

12

Figure 3.2: Poor Blob Detection. A poor selection of parameters and their values can ruin the blob detector’s

performance and produce keypoints other than those on the subject’s knees and shoes.

Figure 3.3: Blob Detection with Default Parameter Values. If the blob detector performs with default parameters,

this could help the user with selecting the parameters that are important for targeting the subject’s markers.

Selecting blob detector parameters begins with understanding the default values for three

out of the five variables. The threshold was 50-220, the area was 25-5000, and the circularity was

about 0.8 (see Figure 3.3). From there, the changes in area and circularity follow a similar trend as

increasing their values results in fewer blobs in the image; decreasing them results in more blobs.

Figures 3.4 and 3.5 display sensitivity graphs stressing the impact of minimum area and circularity

on blob presence. The graph in Figure 3.4 suggests that a small value of the minimum area is

13

essential for detecting even the smallest markers on the subject that otherwise go unnoticed. To

explain Figure 3.5, a high value for circularity is appropriate for targeting the subject’s markers,

which resemble hand-drawn, non-perfect circles.

Figure 3.4: Sensitivity Chart for Minimum Area. Increasing the value for the minimum area creates a sensitivity

graph for the total number of desired blobs. The maximum number for detecting all those blobs, in this case, was 12,
and it was subject to change.

Figure 3.5: Sensitivity Chart for Circularity. Increasing the value for circularity creates a sensitivity graph for the

total number of desired blobs. The maximum number for detecting all those blobs, in this case, was 0.83, and it was
subject to change.

 The user has the option to label detected keypoints with coordinate information. After

drawing them as red circles, the Python algorithm below stores rounded values for the x- and y-

coordinates of each blob before giving it a number label. Those labels are necessary for

14

distinguishing parameter information among multiple blobs and for determining the human

features that each blob is associated with.

im_with_keypoints = cv2.drawKeypoints(frame, keypoints, np.array([]),
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

for k in range(0,len(keypoints)):
cx = round(keypoints[k].pt[0])
cy = round(keypoints[k].pt[1])
cv2.putText(im_with_keypoints, str(k), (cx, cy),

cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255))

Additionally, the blob detector can assist with multiple thresholds of keypoints that change

the area of the spots, which can also impact how circular the spots are. Therefore, two experiments

were performed to discover the behavior of the detector when the user sets the threshold step to 10

and turns off the circularity.

A program called MultipleThresholds_Step10.py produces expanded two keypoints

(namely Keypoints 1 and 4) in a specific frame with the application of threshold ranges with a

threshold step of 10. It allows the user to observe how much the area of the blob is changing as the

threshold increases. The pixel threshold matrices next to the keypoints help conclude that the

threshold range can dictate the ability to locate blobs based on the number of black pixels that

make up the area (see Figure 3.6).

Figure 3.6: Keypoint Analysis with Threshold Step. MultipleThresholds_Step10.py presents the analysis of zoomed-
in, pixelated blobs with binary threshold steps of 10. This procedure demonstrates how smaller threshold increases

can reveal the best blob area and circularity to detect.

15

In another program called MultipleThresholds_CircOff.py, the user turns off the circularity

of the blobs by setting it to False. That program expands and applies thresholds for two keypoints

in a specific frame. It also allows for comparisons between a non-circular blob (namely Keypoint

1) and a circular blob (namely Keypoint 16) (see Figure 3.7). In a later experiment, Keypoint 16

was not detected despite being circular and having a smaller area. A noticeable difference between

the two blobs is that Keypoint 1 has a darker center in the middle, which allows for more robust

detection performance. Given this, the user should set the circularity back to True to detect blobs

within a specific range of thresholds.

Figure 3.7: Keypoint Analysis with Lack of Circularity. MultipleThresholds_CircOff.py presents the analysis of

zoomed-in, pixelated blobs with a lack of circularity. This procedure demonstrates how the detection of circular and
non-circular blobs should be supported with threshold ranges to be used later in the project.

Today, the project uses the following parameters to assist with identifying and following

the desired blobs on the subject: (1) the threshold ranges from 40-200 with a threshold step of 20,

(2) the area ranges from 8-40, and (3) the circularity is equal to 0.85 (see Figure 3.8). With these

values, the average number of detected markers per frame is 6.33, while the average number of

blobs located away from the subject’s legs is 1.72 per frame. With an average of 8.05 total blobs

per frame, the blob detector can find, on average, 78.63 percent of the desired blobs per frame. In

16

this case, the current blob parameters allow for the flexibility of detecting the best blobs and the

greater importance of following them frame by frame based on changes in coordinate positions.

Figure 3.8: Blob Detection with Current Parameter Values. The current parameter values precisely pinpoint the

subject’s blobs that the user would like to identify and follow to establish trajectories.

17

Chapter 4: Correlation of Blobs Between Frames

 This chapter provides the definitions of descriptors and descriptor matchers to help

understand how the computer vision software works to classify and match blobs between frames.

This project performs different matching procedures for two groups of blobs: those that were

readily identified and those that remain unidentified. The usage of new keypoint labels allows for

the creation of trajectories that measure (x, y)-coordinate position changes throughout the video.

Section 4.1: Blob Classification

 After this project initializes the blob detector as a subroutine and sets up other video-related

variables for displaying the images, it proceeds to classify and match keypoints with similar

coordinates between two frames. OpenCV contains a framework for two-dimensional features

called xfeatures2d and a class reference for creating BRIEF descriptor generators described by:

descriptor = cv2.xfeatures2d.BriefDescriptorExtractor_create()

 Descriptors, in general, are characteristics of the keypoints that are numerical and point to

the area of the image that the keypoint references. They usually describe the shape of a detected

object, but they are insensitive to rotations and scale changes. BRIEF, which was previously

mentioned in Chapter 2, is a feature descriptor that provides a shortcut to finding binary strings. It

reads an image to carefully select a set of n (x, y) location pairs, compare those coordinates for

pixel intensity and obtain an n-dimensional bitstring. Once a match has been made, BRIEF will

use the Hamming distance to show that the location pairs are at least close to each other [23].

Hamming distance is defined as the number of different bits in corresponding positions in two

bitstrings. For example, the distance between 01110 and 01100 is 1, and the distance between

10100 and 10001 is 2 [24].

18

 Another object along with the BRIEF descriptor is the Brute-Force descriptor matcher, or

BFMatcher, which finds one of the closest secondary descriptors by trying each one to create a

match for each primary descriptor.

bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

 The parameter cv2.NORM_HAMMING is the Hamming distance because the Python

program is using the BRIEF descriptor in addition to the blob detector, and crossCheck is set to

true if the BFMatcher will return the coordinate pairs that are consistent between multiple frames

[25].

A program named VideoBlobsIdentifiedFinal.py first initializes the blob detector, BRIEF

descriptor, brute-force matcher, and empty keypoint and descriptor lists. Afterward, it can start

reading the frames to extract the keypoints for previous frame j and current frame j + 1 from a list

of keypoints. Also, the program will use the BFMatcher to compute the descriptors for each blob

found in the frame. Essentially, it proceeds to create a blob name list and a list of lists for keeping

track of the blob identification numbers per frame. The next blob name to use depends on the

current length of an array of keypoints. Based on the list of blobs per frame, the program intends

to list the frames where a blob at the current frame j + 1 was last found. Suppose frame j + 1 = 86,

where all desired blobs have been detected and are newly numbered after the program tries to

match them to those found in frame j = 85 (see Figure 4.1b). This new way of numbering is

different from the original, where those same blobs were not carrying the same labels then (see

Figure 4.1a). Keeping evidence of the blobs’ names and locations thus plays a significant role in

giving the BFMatcher the ability to match most keypoints if they are slightly moving from one

coordinate position to another.

19

Figure 4.1: Initial Versus New Blob Labeling. (a) The initial labeling of blobs deals with numbers ranging up to the
last keypoint index value in Frame 86. (b) A new way of numbering the blobs involves matching blobs to those

found in the previous Frame 85.

Section 4.2: Descriptor Matching

Section 4.2.1: Blobs Already Identified

 VideoBlobsIdentifiedFinal.py starts with retrieving keypoints for previous frame j from a

list of keypoints and comparing them to those found in current frame j + 1 under the BFMatcher.

It then builds a list of unmatched blobs and that of blob names in the current frame. An example

of an unmatched blob to be included in the current blob list is Blob #10, which may appear in

frame 86 if it was not last found in frame 85 but rather in frame 83 (see Figure 4.2). A matching

test exists to compare the distance of keypoint descriptors to a user-specified distance threshold.

The program will pass the matching test if the descriptor distances in coordinates are less than the

pixel threshold values. Following that result, it can generate raw and corrected matches of blob

descriptors between two frames while keeping track of the unmatched blobs and current blob lists.

This procedure is increasingly useful for identifying blobs that were left unnoticed so the user can

observe that a specific blob manages to move with the same label for most of the video.

20

Figure 4.2: Tracking an Unidentified Blob. This visual representation of tracking Blob #10 shows that it went

unnoticed two frames before it reappeared in Frame 86. Blob #10 can be included in the list of blobs in frame 86 if
the program can match it with Frame 83.

Section 4.2.2: Blobs Still Unidentified

 For any blob still not identified, the program gathers the frames where it is located and

discards the current and previous ones. While the unmatched blobs and the most recently checked

frames are available for further investigation, the program will carry the evidence of blobs to

identify and frames to test with the most recent frame being used first. From there, it can match

the descriptors between a current frame and a frame to check before it passes another match test.

The BFMatcher will compute new matches with blobs still unidentified so the program can update

for every current frame a list of blob identification numbers and a list of each blob’s frame history.

A blob without any matches will be discarded. If there are no more unmatched blobs to identify

and no more frames to check, then the program can append the unmatched blobs to the current

frame and renumber them.

Section 4.2.3: The Blob Renumbering Process

Suppose all the blobs have been renumbered within the first 170 frames. In this case, the

list of blob names will hold 131 distinct numbers. Some of those names are not independent of

each other because at least two of them belong to one of the subject’s eight markers. For example,

the video shows that Blob #7 and Blob #79 both represent the same blob within the left shoe. In

an ideal scenario, if the program exactly matches all eight markers between frames, then the blob

21

naming list would not have more than eight numbers. Currently, 116 of the names in this project

represent the least essential blobs, and 15 are placed onto the legs. About 87 percent of those

desired names cooperate as two or more labels for the same marker (see Table 4.1). Although

multiple names can help continue with following a blob throughout the walk, they can lead to such

issues as misidentified blobs and multiple placements of a single blob label, which are discussed

further in the next section.

Marker Location Blob Name(s) Quantity of Names on Marker
Left Heel 7, 79 2
Left Toe 5, 17, 87 3
Left Ankle 6, 83 2
Left Knee 1 1
Right Heel 20 1
Right Toe 45, 61 2
Right Ankle 19, 41 2
Right Knee 10, 76 2

Table 4.1: Marker Name Placement. Fifteen desired blob names are assigned physical marker locations on the
subject.

Section 4.3: Plotting Blob Trajectories

 A trajectory is usually defined as a path an object follows as it moves through space. An

example of a trajectory can be a path an airplane takes as it flies into the open sky. In the context

of this project, VideoBlobsIdentifiedFinal.py has each of the subject’s eight blobs relocate to

different coordinate positions throughout the video to create paths of walking motion. The

resulting paths come as two separate plots: (1) one plot involving a blob’s locations along the x-

axis per frame, and (2) another involving that same blob’s locations along the y-axis per frame.

Both plots are imperative to analyze in that the user reviews the video to see whether the blob

displayed in the frames is the same as the blob that leaves behind coordinate-based trajectories.

Note that the y-axis of the video is measured from top to bottom, and the x-axis is measured from

left to right (see Figure 4.3).

22

Figure 4.3: Video Axis Measurements. The way the video axes are measured will affect how the blobs’ trajectories

will appear along the axes.

 VideoBlobsIdentifiedFinal.py contains an algorithm that records information about the

blobs’ (x, y)-coordinates with corresponding frames. Suppose one of those blobs is labeled #7, and

the video is 240 frames long. If Blob #7 is present in any of the first 170 frames this project

analyzes, the algorithm will extract a keypoint for that frame and match it with the location of Blob

#7 within each list of blobs per frame. The frame numbers and (x, y)-coordinates for Blob #7 can

then be stored into arrays that help plot trajectories over time. The plots with flat regions between

frames 60 and 90 and steep regions between frames 30 and 50 indicate that Blob #7 belongs to the

left shoe, particularly at the heel, which is stationary in between the swing stages of walking

activity (see Figure 4.4).

23

Figure 4.4: First Trajectory Example. The x- and y-coordinate trajectories for Blob #7 represent a shoe that is
stationary between frames 60 and 90, as indicated by a flat trajectory region. Note that the points in Frames 10
through 19 are missing (circled) because the blob detector was unable to find the left heel blob even after some

success at the beginning of the video.

Section 4.3.1: Missing Trajectory Points

Trajectories, including the one in Figure 4.4, may have points that are missing because a

blob did not appear in one or more frames. If the missing trajectory region is small, the user can

write an algorithm that draws a line determined by the mathematical distance between two points

(see Figure 4.5). In contrast, if a trajectory is missing several points, it may not provide sufficient

information for whether a blob is worth following during walking activity. In that regard, blobs

that are not detected imply the need for unsupervised video analysis, which can help fix data-

related flaws in the marker tracking process.

24

Figure 4.5: How to Fill in Trajectory Gaps. A new algorithm should be able to compute the mathematical distance
between the last point before the missing region (orange) and the first point after it (magenta). That distance should

be used to determine the length of the straight line (black and dashed), resolving the error of blob non-detection.

Section 4.3.2: Blob Misidentification

 The discontinuities in any trajectory stress that a blob is misidentified. Figure 4.6, for

instance, holds many misidentified points from the beginning of the video to Frame 45, where the

x-coordinate for Blob #17 makes a sudden jump from a flat trajectory region. A numerical label

that changed from 5 to 17 when Blob #17 switches marker positions at Frame 45 is the primary

evidence supporting that error (see Figure 4.7). In searching for discontinuities, an algorithm could

find the slope of the trajectories that could be impacted by the renumbering of blobs.

25

Figure 4.6: Spotting Trajectory Discontinuities. The discontinuities in the x- and y-coordinate trajectories for Blob

#17 (circled) resulted from the renumbering and misidentification of blobs between frames.

Figure 4.7: Video Proof for Discontinuities. To prove that discontinuities in the trajectory occurred in Figure 4.5,
Frames 35 and 45 demonstrate a label change for the left toe marker. That spot started as Blob #5 (blue circle); by
Frame 45, Blob #17 (yellow circle) suddenly leaped from the right toe to the left toe to renumber the marker. This

event means that Blob #17 was misidentified on the right shoe in the earlier frames.

26

Chapter 5: Association of Blobs with Human Features

 In this chapter, an algorithm attempts to plot the blob with different names to make

extended trajectories of the toe, heel, ankle, or knee. The best trajectories of this project are

associated with the shoe, which creates stable regions in between steps. Relabeling the blobs with

human features can be useful if a program can mathematically detect the stable regions and

acknowledge the differences between the left- and right-legged markers.

Section 5.1: Combining Multiple Trajectories

 To review, the trajectory-drawing algorithm in VideoBlobsIdentifiedFinal.py checks for

blobs with user-specified labels in each frame so it can plot their migrations between coordinate

positions throughout the video. The user can also specify two blobs with labels differing from each

other, and the algorithm can simultaneously follow each blob to plot separate trajectories in one

graph. This situation allows for the combination of more than one blob to display a complete

trajectory of a blob located on the subject’s toe, heel, knee, or ankle.

 As discussed in Chapter 4, Blob #7 is associated with the left heel, but the user wants to

analyze another blob to produce a full trajectory of that human feature. Suppose that the second

blob is labeled #79, which appeared at the heel after Blob #7 last appeared at frame 109 (see Figure

5.1).

Figure 5.1: Two Names for One Marker. Blob #7 becomes Blob #79, which leads to the end of its trajectory in one

plot and lets a different label take over the rest of the trajectory in another plot.

27

Comparing y-coordinate trajectories for Blobs #7 and #79 urges an algorithm to recognize

that the peak of the walking path was split in half while the subject steps over the foam block (see

Figure 5.2).

Figure 5.2: Trajectories for Two Names. The changes in blob labels have split the left heel trajectory near the peak

of the walking motion. An algorithm is needed to handle the plotting of both blobs to piece the trajectories together.

The algorithm sees that Blob #7 was reaching toward the peak of the highest step before it

disappeared, and Blob #79 appeared late to finish the rest of that step. Those scenarios help that

algorithm ensure that none of the frames have both blobs, which in turn can be suitable for

combining their trajectories. Also, the ending point of Blob #7 and the starting point of Blob #79

happened to share similar coordinates given that no other blob interferes with the last few frames

for Blob #7 and the first few frames for Blob #79. If the algorithm sees this type of blob correlation

between frames, it can proceed with merging the two trajectories to establish a complete path of

the left heel marker (see Figure 5.3).

While x-coordinate trajectories move downward as the physical blob moves toward the

left, y-coordinate trajectories provide an accurate measure of the distance each blob makes from

the ground so long as it is near the bottom of the shoe. The changes in y-coordinate positions are

also useful for differentiating shoes from the knees as the knee trajectories, such as those in Figure

5.4, represent the markers that are located between the thigh and the calf and are slightly moving

during stationary leg activity. This situation suggests that, although they produce well-defined

28

trajectories, the knee markers do not establish as many stable regions as the shoe markers, which

are much closer to the ground according to the video’s y-coordinate scale (see Figure 4.2). A final

implication for combining blobs is that, after the detection of any stable regions, the relative

coordinates say where the blobs are located within the subject.

Figure 5.3: Combined Left Heel Trajectory. A y-coordinate trajectory shows the left heel rising and falling during

the steps and staying put between them. The rise of the heel is highest when the subject steps over the block.

29

Figure 5.4: Left Knee Trajectory. The knee trajectories are different from the shoe trajectories because the knee is

nowhere near the ground but is slightly flexing while the leg is standing upright between frames 0 and 25 and
between frames 60 and 95.

Section 5.1.1: Blobs Appearing Twice in One Frame

 In trajectories such as those in Figure 5.5, a blob can be found in at least two different

places within a single frame. The name of that blob is also misidentified as if it appeared twice

simultaneously. To resolve this error, the user would create an algorithm that keeps track of the

frequency of a blob’s appearance per frame. That program would then need to make sure that no

frame has a blob appearing more than once. This proposed solution helps improve blob

30

identification further by avoiding the combination of trajectories that causes twice-appearing blobs

per frame.

Figure 5.5: Twice-Appearing Blobs at the Left Toe. The left toe blob is a good example for illustrating twice-

appearing blobs in many single frames (boxed). Three blobs were used to produce the above plots, which resulted in
discontinuity and misidentification problems among blob names.

Section 5.2: Stability of Trajectory Regions

The best way to associate a blob with the subject’s shoes is to find a region of its trajectory

that is stable in between steps. Returning to the heel trajectory at Figure 5.3, the user can determine

the start and end frames that constitute a region indicating that the shoe was planted firmly on the

ground. In VideoBlobsIdentifiedFinal.py, another algorithm exists to calculate the standard

31

deviation of the (x, y)-coordinates for every ten frames within the entire trajectory. It then

establishes a condition for which a frame belongs to the stable region should the standard deviation

be less than or equal to 0.1. For instance, the heel trajectory enters the stable region at frame 62

when the subject finishes the first step. It will leave that region at frame 81 as the subject is about

to start another step.

The significance of automating the detection of stable trajectory regions with standard

deviations is that the blob should not make significant shifts between coordinates if it is considered

a toe, heel, or ankle. Furthermore, its association with some human feature depends on its

movement over time; no movement usually means the blob associates well with the shoe. This

notion is also true when the heel and toe blobs create a stable trajectory region within the same

frame interval because both are right next to the floor. A horizontal distance between them based

on their coordinate locations is beneficial for which the user can argue that the shoes are best for

determining whether a blob makes little to no movement against the floor.

Section 5.3: Left-Side Versus Right-Side Markers

The video is showing the left side of the subject, causing the blobs on the right leg to hide

often as opposed to those on the left leg. This situation can lead to missing regions among the

trajectories created for the right-sided blobs, regardless of their association with human features.

Blob #20 is one of those blobs that is located on the right heel and stays in its current position even

when the left leg covers it (see Figures 5.6-5.8). The ability for it to remain in its physical location

requires that the blob detector adequately knows the size, shape, and color properties unique to

Blob #20. This concept also applies to Blob #1, which is a left knee blob that is not difficult for

the user to follow (see Figure 5.4). In the case of right-sided blobs, the detector should recognize

that they are hiding often but reappear as if their characteristics are not significantly affected by

32

the coverage. If not, it will renumber the blobs, and the user will have to spend time piecing

together multiple trajectories to claim that those blobs belong to any right-legged human feature.

Figure 5.6: Right Heel Trajectory. There are two missing regions that have been labeled to track how many times the

right heel was hiding while creating an effective trajectory.

33

Figure 5.7: First Hiding Event. Frame 40 shows Blob #20 (circled) before the left shoe hid it during Frame 45,
making this the first occurrence of blob hiding within the right heel trajectory. Frame 50 then shows Blob #20 in the

same position.

Figure 5.8: Second Hiding Event. Frame 73 shows Blob #20 (circled) before the left shoe hid it during Frame 78,
making this the second occurrence of blob hiding within the right heel trajectory. Frame 83 then shows Blob #20 in

the same position.

34

Chapter 6: Project Conclusions

Section 6.1: Overall Review

 The project was supposed to utilize computer vision functions to find, identify, and follow

the markers on the walking subject so that their trajectories can become useful for reconstructing

walking models with automated step height and angle measurements. With appropriate user-

selected values for area, circularity, and threshold; the blob detector can find up to 78.63 percent

of the blobs located on the subject’s shoes and knees. This outcome leads to the effective matching

of most blob descriptors between frames while the blobs found within the room are being

discarded. In constructing and comparing complete trajectories of the left heel and left toe, the user

can observe and find ways to correct the plots misidentifying the blobs that were physically located

elsewhere in the video. Trajectories with flat regions indicate that the left foot is stable on the

ground so long as the standard deviation of (x, y)-coordinate pairs among ten frames is rarely

changing, making the shoe blobs more identifiable. Lastly, the blob positions where the left shoe

is on the ground are being reidentified as either the toe, heel, or ankle. The relabeling of markers

depends on how a Python program compares them in terms of y-coordinate positions, extends the

comparison of blobs to the right leg, and maps out pixels on the ground.

Section 6.2: Future Directions

 If this project continues, it will involve piecing together all the individual blob trajectories

that associate with each toe, ankle, heel, and knee. Afterward, the user will be able to take

advantage of the complete trajectories to extract the step height from the blob positions. Mapping

the ankle dorsiflexion angles between the blobs is another task to be completed when the user

reconstructs walking models. Once the step height and angle are both found from one video, the

software can apply to other videos where they involve subjects wearing differently colored clothes

35

and differently drawn markers. Minor modifications to the software can include adjusting the

thresholds and other blob detector parameters. The kinesiology investigators will be able to benefit

from this project’s data processing techniques because they need to generate a more

comprehensive database to know what factors cause an older adult to fall. The software should be

able to quickly process and return more accurate measurements that tell about the subjects at risk.

The kinesiology team could also try out a more useful set of exercises to see whether the falls

among the elderly become less frequent and are eventually preventable in the future.

36

Appendix A: Blob Detection & Identification Flowchart

37

38

39

40

41

42

43

44

45

Appendix B: List of OpenCV-Python Programs

Program Name
Last
Modified Steps to Execution

Page Number for
Source Code

VideoReadKinesiologyTesting.py 6/1/2019 Upon execution, the
program outputs the
video file in grayscale.

49

CannyEdge.py 6/1/2019 Upon execution, the
program produces an
image under the canny
edge detection method.

50

FindHoughLinesProb.py 6/2/2019 Upon execution, the
program creates an
image with
probabilistic Hough
lines.

51

TKinter_FAST.py 6/5/2019 1. User chooses an
image.

2. User selects a
region of interest
(ROI) by dragging
the box over the
desired area with a
mouse.

3. Program crops the
image to match the
ROI.

4. Program initiates
the FAST method
with default values.

5. Program finds and
draws the
keypoints.

6. Console shows all
default parameters.

52

TKinter_ORB.py 6/10/2019 1. User chooses an
image.

2. User selects a
region of interest
(ROI) by dragging
the box over the
desired area with a
mouse.

53

46

3. Program crops the
image to match the
ROI.

4. Program initiates
the ORB method.

5. Program finds and
draws the
keypoints.

6. Console shows the
number of
keypoints and ROI
coordinates.

MultipleThresholds_Step10.py 7/10/2019 1. User selects a
frame

2. Program produces a
blob detector frame
with labeled
keypoints.

3. Program magnifies
and crops the image
for every keypoint
detected.

4. Program provides
each keypoint with
a range of
thresholds specified
by the user within
the source code.

54

MultipleThresholds_CircOff.py 7/19/2019 1. User selects a
frame

2. Program produces a
blob detector frame
with labeled
keypoints.

3. Program magnifies
and crops the image
for every keypoint
detected.

4. Program provides
each keypoint with
a range of
thresholds specified
by the user within
the source code.

58

FindBlobs_OriginalParams.py 7/25/2019 1. User chooses a jpeg
image.

62

47

2. Console prints the
default and custom
blob detector
parameters.

3. Program locates
and draws
keypoints
Console prints the
(x, y) coordinates
and size/area for
each keypoint.

FindVideoBlobs.py 10/25/2019 1. User chooses an
AVI video file.

2. Program activates
the blob detector,
draws keypoints,
and displays Frame
1.

3. User presses any
key to move to the
next frames. He or
she will do so 240
times.

4. After 240 frames,
the program
terminates.

64

FindBlobs_NewParams.py 10/29/2019 1. User chooses a
JPEG image.

2. Program locates
and draws
keypoints.

3. Program outputs
the resulting image.

4. Console prints the
(x, y) coordinates
and size/area for
each keypoint.

67

VideoBlobsIdentifiedFeb24.py 4/18/2020 Not applicable. 69
VideoBlobsIdentifiedFinal.py 5/8/2020 1. User selects an AVI

video file.
2. User inputs the

final frame to
analyze.

3. Console prints the
start and end frames
for stable trajectory

72

48

regions of the left
heel and left toe.

4. If displayFrame =
True, the program
displays every nth
frame, where n is
the number of
frames between
displays.

5. If debug1 = True,
the console prints
generated matches
from the first frame
cycle for known
blobs

6. If debug2 = True,
the console prints
frames to check,
missing blobs to
identify, and the
current frame being
checked.

7. If debug3 = True,
the console prints
generated matches
from the second
frame cycle for
blobs still
unidentified.

8. If debug4 = True,
the console prints
the tallies of all the
distinct blob names.

9. With the Matplotlib
library, the program
displays x- and y-
coordinate
trajectories per
human feature.

49

Appendix C: Full-Length Source Codes (Electronic Copy Exclusive)

VideoReadKinesiologyTesting.py

import numpy as np
import cv2 as cv2
cap = cv2.VideoCapture('S10.B1.avi')
while cap.isOpened():
 ret, frame = cap.read()
 # if frame is read correctly ret is True
 if not ret:
 print("Can't receive frame (stream end?). Exiting ...")
 break
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 cv2.imshow('frame', gray)
 if cv2.waitKey(1) == ord('q'):
 break
cap.release()
cv2.destroyAllWindows()

50

CannyEdge.py

import numpy as np
import cv2 as cv2
#from matplotlib import pyplot as plt

img = cv2.imread('testframe50.jpg',0)
edges = cv2.Canny(img,100,200)
cv2.imshow('',edges)

51

FindHoughLinesProb.py

import cv2 as cv
import numpy as np
img = cv.imread('testframe50.jpg')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray,50,150,apertureSize = 3)
lines =
cv.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10)
for line in lines:
 x1,y1,x2,y2 = line[0]
 cv.line(img,(x1,y1),(x2,y2),(0,255,0),2)
#cv.imwrite('houghlines5.jpg',img)
cv.imshow('houghlines',img)

52

TKinter_FAST.py

import numpy as np
import cv2 as cv2
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
from tkinter import simpledialog

root = tk.Tk()
root.withdraw()
application_window = tk.Tk()
application_window.withdraw()
file_path = filedialog.askopenfilename(initialdir = ".",title =
"Select file",filetypes = (("jpeg files","*.jpg"),("all
files","*.*")))

img = cv2.imread(file_path)
img = img[50:770,:]
print(file_path)

cv2.imshow("Original",img)
Select ROI
fromCenter = False
r = cv2.selectROI("Original",img,fromCenter)
Crop image
img = img[int(r[1]):int(r[1]+r[3]), int(r[0]):int(r[0]+r[2])]
Initiate FAST object with default values
fast = cv2.FastFeatureDetector_create()
find and draw the keypoints
kp = fast.detect(img,None)
img2 = cv2.drawKeypoints(img, kp, None, color=(255,0,0))
#fast.setThreshold(1)
Print all default params
print("Threshold: {}".format(fast.getThreshold()))
print("nonmaxSuppression:{}".format(fast.getNonmaxSuppression()))
print("neighborhood: {}".format(fast.getType()))
print("Total Keypoints with nonmaxSuppression: {}".format(len(kp)))
Disable nonmaxSuppression
fast.setNonmaxSuppression(0)
kp = fast.detect(img,None)
print("Total Keypoints without nonmaxSuppression: {}".format(len(kp))
)
img3 = cv2.drawKeypoints(img, kp, None, color=(255,0,0))
cv2.imshow('', img3)

53

TKinter_ORB.py

import numpy as np
import cv2 as cv
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
from tkinter import simpledialog

root = tk.Tk()
root.withdraw()
application_window = tk.Tk()
application_window.withdraw()
file_path = filedialog.askopenfilename(initialdir = ".",title =
"Select file",filetypes = (("jpeg files","*.jpg"),("all
files","*.*")))

img = cv.imread(file_path)
#img =img[640:740,780:960]
print(file_path)

cv.imshow("Original",img)
Select ROI
fromCenter = False
print("Select Region of Interest")
r = cv.selectROI("Original",img,fromCenter)
print(r)
Crop image
img = img[int(r[1]):int(r[1]+r[3]), int(r[0]):int(r[0]+r[2])]
Initiate ORB detector
orb = cv.ORB_create()
find the keypoints with ORB
kp = orb.detect(img,None)
print(len(kp))
compute the descriptors with ORB
kp, des = orb.compute(img, kp)
draw only keypoints location,not size and orientation
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
cv.imshow("Final",img2)

cv.waitKey(0)
cv.destroyAllWindows()

54

MultipleThresholds_Step10.py

import numpy as np
import cv2
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
from tkinter import simpledialog

root = tk.Tk()
root.withdraw()
application_window = tk.Tk()
application_window.withdraw()
file_path = filedialog.askopenfilename(initialdir = ".",title =
"Select file",filetypes = (("jpeg files","*.jpg"),("all
files","*.*")))

Reading the image
img = cv2.imread(file_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = img[50:770,:]

Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
print(params)
Change thresholds
params.minThreshold = 20
params.maxThreshold = 220
params.thresholdStep = 20

Filter by Area.
params.filterByArea = True
params.minArea = 5
params.maxArea = 50

Filter by Circularity
params.filterByCircularity = True
params.minCircularity = 0.84

Filter by Convexity
params.filterByConvexity = False
#params.minConvexity = 0.7

Filter by Inertia
params.filterByInertia = False

55

#params.minInertiaRatio = 0.01

Create a detector with the parameters
detector = cv2.SimpleBlobDetector_create(params)

Detect blobs.
keypoints1 = detector.detect(img)

print(len(keypoints1))

Draw detected blobs as red circles.
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
the size of the circle corresponds to the size of blob

im_with_keypoints1 = cv2.drawKeypoints(img, keypoints1, np.array([]),
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

for k in range(0,9):
 cx1 = round(keypoints1[k].pt[0])
 cy1 = round(keypoints1[k].pt[1])
 cv2.putText(im_with_keypoints1, str(k), (cx1, cy1),
cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255))

Show blobs
cv2.imshow("Keypoints", im_with_keypoints1)
cv2.imshow("Keypoints 2", im_with_keypoints2)
cv2.imshow("Keypoints 3", im_with_keypoints3)

img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Create thresholded images
rret,thresh1 = cv2.threshold(img1,130,255,cv2.THRESH_BINARY)
rret,thresh2 = cv2.threshold(img1,140,255,cv2.THRESH_BINARY)
rret,thresh3 = cv2.threshold(img1,150,255,cv2.THRESH_BINARY)
rret,thresh4 = cv2.threshold(img1,160,255,cv2.THRESH_BINARY)

threshImages = [thresh1,thresh2,thresh3,thresh4]
threshValues = [130,140,150,160]

Cropping to Keypoint something

for k in range(0,9):
 # Cropped region is 2*halfWidth
 halfWidth = 5
 xVal1 = round(keypoints1[k].pt[0]-halfWidth)
 xVal2 = round(keypoints1[k].pt[0]+halfWidth)
 yVal1 = round(keypoints1[k].pt[1]-halfWidth)

56

 yVal2 = round(keypoints1[k].pt[1]+halfWidth)
 print(k,keypoints1[k].pt,keypoints1[k].size)
 #print(xVal1,':',xVal2)
 #columns: Top to bottom, then rows: Left to Right
 # This crops the orignal picture
 crop1 = img1[yVal1:yVal2,xVal1:xVal2]
 # Continue with this sequence!
 # Aim for a window size of 250 X 250 to show the title
 # scalePixel1 = round(250/(xVal2_1-xVal1_1))
 scalePixel = 10;
 #print(scalePixel)
 pxFill = np.ones([scalePixel,scalePixel])
 #print(xVal2-xVal1)
 scaleUp1 = cv2.resize(crop1,(scalePixel*2*halfWidth,
scalePixel*2*halfWidth),cv2.INTER_NEAREST)
 scaleUp2 = cv2.resize(crop1,(scalePixel*2*halfWidth,
scalePixel*2*halfWidth),cv2.INTER_NEAREST)
 # Now add pixelization back to eliminate the interpolation
 # Remember that indices start at 0
 # Use this if you want to see the smoothed image from opencv
resize
 #cv2.imshow('Smoothed Image',scaleUp)

 # This repixelates the image to show the true data
 # Original
 for kRow in range(0,2*halfWidth-1):
 for kCol in range(0, 2*halfWidth-1):
 # Gray version

scaleUp1[kRow*scalePixel:(kRow*scalePixel+scalePixel),kCol*scalePixel:
(kCol*scalePixel+scalePixel)] = crop1[kRow,kCol]*pxFill

 windowName = 'Orig KeyPt '+str(k)
 cv2.imshow(windowName, scaleUp1)
 cv2.moveWindow(windowName, 200,200)

 for kThresh in range(0,4):
 currentThresh = threshImages[kThresh]
 # This is the thresholded version
 # This crops the first thresholded picture
 threshCrop1 = currentThresh[yVal1:yVal2,xVal1:xVal2]
 for kRow in range(0,2*halfWidth):
 for kCol in range(0, 2*halfWidth):
 # Gray version

57

scaleUp2[kRow*scalePixel:(kRow*scalePixel+scalePixel),kCol*scalePixel:
(kCol*scalePixel+scalePixel)] = threshCrop1[kRow,kCol]*pxFill

 windowName = 'Thresh '+str(threshValues[kThresh])+' KeyPt
'+str(k)
 cv2.imshow(windowName, scaleUp2)
 cv2.moveWindow(windowName, 200,200)

cv2.waitKey(0)
cv2.destroyAllWindows()

58

MultipleThresholds_CircOff.py

import numpy as np
import cv2 as cv2
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
from tkinter import simpledialog

root = tk.Tk()
root.withdraw()
application_window = tk.Tk()
application_window.withdraw()
file_path = filedialog.askopenfilename(initialdir = ".",title =
"Select file",filetypes = (("jpeg files","*.jpg"),("all
files","*.*")))

Reading the image
img = cv2.imread(file_path)
img = img[50:770,:]

Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
print(params)
Change thresholds
params.minThreshold = 80
params.maxThreshold = 140

params.thresholdStep = 20

Filter by Area.
params.filterByArea = True
params.minArea = 5
params.maxArea = 50

Filter by Circularity
params.filterByCircularity = False
params.minCircularity = 0.84

params.minRepeatability = 1

Filter by Convexity
params.filterByConvexity = False
#params.minConvexity = 0.7

59

Filter by Inertia
params.filterByInertia = False
#params.minInertiaRatio = 0.01

Create a detector with the parameters
detector = cv2.SimpleBlobDetector_create(params)

Detect blobs.
keypoints1 = detector.detect(img)

print(len(keypoints1))

Draw detected blobs as red circles.
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
the size of the circle corresponds to the size of blob

im_with_keypoints1 = cv2.drawKeypoints(img, keypoints1, np.array([]),
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

for k in range(0,len(keypoints1)):
 cx1 = round(keypoints1[k].pt[0])
 cy1 = round(keypoints1[k].pt[1])
 cv2.putText(im_with_keypoints1, str(k), (cx1, cy1),
cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255))

Show blobs
cv2.imshow("Keypoints", im_with_keypoints1)
cv2.imshow("Keypoints 2", im_with_keypoints2)
cv2.imshow("Keypoints 3", im_with_keypoints3)

img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Create thresholded images
rret,thresh1 = cv2.threshold(img1,80,255,cv2.THRESH_BINARY)
rret,thresh2 = cv2.threshold(img1,140,255,cv2.THRESH_BINARY)

threshImages = [thresh1,thresh2]
threshValues = [80,140]

Cropping to Keypoint something

for k in range(0,len(keypoints1)):
 # Cropped region is 2*halfWidth
 halfWidth = 5
 xVal1 = round(keypoints1[k].pt[0]-halfWidth)
 xVal2 = round(keypoints1[k].pt[0]+halfWidth)
 yVal1 = round(keypoints1[k].pt[1]-halfWidth)

60

 yVal2 = round(keypoints1[k].pt[1]+halfWidth)
 print(k,keypoints1[k].pt,keypoints1[k].size)
 #print(xVal1,':',xVal2)
 #columns: Top to bottom, then rows: Left to Right
 # This crops the orignal picture
 crop1 = img1[yVal1:yVal2,xVal1:xVal2]
 # Continue with this sequence!
 # Aim for a window size of 250 X 250 to show the title
 # scalePixel1 = round(250/(xVal2_1-xVal1_1))
 scalePixel = 10;
 #print(scalePixel)
 pxFill = np.ones([scalePixel,scalePixel])
 #print(xVal2-xVal1)
 scaleUp1 = cv2.resize(crop1,(scalePixel*2*halfWidth,
scalePixel*2*halfWidth),cv2.INTER_NEAREST)
 scaleUp2 = cv2.resize(crop1,(scalePixel*2*halfWidth,
scalePixel*2*halfWidth),cv2.INTER_NEAREST)
 # Now add pixelization back to eliminate the interpolation
 # Remember that indices start at 0
 # Use this if you want to see the smoothed image from opencv
resize
 #cv2.imshow('Smoothed Image',scaleUp)

 # This repixelates the image to show the true data
 # Original
 for kRow in range(0,2*halfWidth-1):
 for kCol in range(0, 2*halfWidth-1):
 # Gray version

scaleUp1[kRow*scalePixel:(kRow*scalePixel+scalePixel),kCol*scalePixel:
(kCol*scalePixel+scalePixel)] = crop1[kRow,kCol]*pxFill

 windowName = 'Orig KeyPt '+str(k)
 cv2.imshow(windowName, scaleUp1)
 cv2.moveWindow(windowName, 200,200)

 for kThresh in range(0,2):
 currentThresh = threshImages[kThresh]
 # This is the thresholded version
 # This crops the first thresholded picture
 threshCrop1 = currentThresh[yVal1:yVal2,xVal1:xVal2]
 for kRow in range(0,2*halfWidth):
 for kCol in range(0, 2*halfWidth):
 # Gray version

61

scaleUp2[kRow*scalePixel:(kRow*scalePixel+scalePixel),kCol*scalePixel:
(kCol*scalePixel+scalePixel)] = threshCrop1[kRow,kCol]*pxFill

 windowName = 'Thresh '+str(threshValues[kThresh])+' KeyPt
'+str(k)
 cv2.imshow(windowName, scaleUp2)
 cv2.moveWindow(windowName, 200,200)

cv2.waitKey(0)
cv2.destroyAllWindows()

62

FindBlobs_OriginalParams.py

import numpy as np
import cv2
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
from tkinter import simpledialog
#from matplotlib import pyplot as plt

root = tk.Tk()
root.withdraw()
application_window = tk.Tk()
application_window.withdraw()
file_path = filedialog.askopenfilename(initialdir = ".",title =
"Select file",filetypes = (("jpeg files","*.jpg"),("all
files","*.*")))

img = cv2.imread(file_path)
img =img[50:770,:]
#print(file_path)

Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()

Define the default values of the blob parameters.
print("Default Minimum Threshold: " + str(params.minThreshold))
print("Default Maximum Threshold: " + str(params.maxThreshold) + "\n")

print("Default Minimum Area: " + str(params.minArea))
print("Default Maximum Area: " + str(params.maxArea) + "\n")

print("Default Circularity: " + str(params.minCircularity) + "\n")

print("Default Convexity: " + str(params.minConvexity) + "\n")

print("Default Inertia Ratio: " + str(params.minInertiaRatio) + "\n")

Change thresholds
params.minThreshold = 10 # Initial 10, Change to 1, then 180
params.maxThreshold = 200 # Initial 200, Change to 20, then 300
print("Custom Minimum Threshold: " + str(params.minThreshold))
print("Custom Maximum Threshold: " + str(params.maxThreshold) + "\n")

Filter by Area.

63

params.filterByArea = True
params.minArea = 12 # Initial 12, Change to 1, then 17
params.maxArea = 18 # Initial 18, Change to 14, then 30
print("Custom Minimum Area: " + str(params.minArea))
print("Custom Maximum Area: " + str(params.maxArea) + "\n")

Filter by Circularity
params.filterByCircularity = True
params.minCircularity = 0.83 # Intial 0.83, Change to 0, then 0.5,
then 1
print("Custom Circularity: " + str(params.minCircularity) + "\n")

Filter by Convexity
params.filterByConvexity = False
params.minConvexity = 0.9 # Initial 0.9, change to 0.3, then 1
print("Custom Convexity: " + str(params.minConvexity) + "\n")

Filter by Inertia
params.filterByInertia = False
params.minInertiaRatio = 0.6
print("Custom Inertia Ratio: " + str(params.minInertiaRatio) + "\n")

Create a detector with the parameters
detector = cv2.SimpleBlobDetector_create(params)

Detect blobs.
keypoints = detector.detect(img)

Draw detected blobs as red circles.
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
the size of the circle corresponds to the size of blob

im_with_keypoints = cv2.drawKeypoints(img, keypoints, np.array([]),
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

Show blobs
cv2.imshow("Keypoints", im_with_keypoints)

Print blob coordinates
for k in range(0,len(keypoints)):

print(round(keypoints[k].pt[0]),round(keypoints[k].pt[1]),round(keypoi
nts[k].size))

cv2.waitKey(0)
cv2.destroyAllWindows()

64

FindVideoBlobs.py

import numpy as np
import cv2 as cv2
import time
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
from tkinter import simpledialog

root = tk.Tk()
root.withdraw()
application_window = tk.Tk()
application_window.withdraw()
Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()

Change thresholds
params.minThreshold = 40
params.maxThreshold = 200
params.thresholdStep = 20

Filter by Area.
params.filterByArea = True
params.minArea = 8
params.maxArea = 40

Filter by Circularity
params.filterByCircularity = True
params.minCircularity = 0.85

Filter by Convexity
params.filterByConvexity = False
params.minConvexity = 0.9

Filter by Inertia
params.filterByInertia = False
params.minInertiaRatio = 0.01

Create a detector with the parameters
detector = cv2.SimpleBlobDetector_create(params)

65

file_path = filedialog.askopenfilename(initialdir = ".",title =
"Select file",filetypes = (("jpeg files","*.avi"),("all
files","*.*")))

cap = cv2.VideoCapture(file_path)
outP = open("testOutNoRound.txt","w+")
frameNo = 0;
kpList = [];
while cap.isOpened():
 ret, frame = cap.read()
 #frame = cv2.bitwise_not(frame)
 if ret:
 # Detect Blobs
 #keypoints = detector.detect(frame)
 alpha = 1.1
 beta = -50
 frame = frame[50:770,:]
 imgNew = frame.copy()
 imgNew = cv2.convertScaleAbs(frame,imgNew, alpha,beta)

 kpList.append(detector.detect(frame));
 keypoints = kpList[frameNo]
 frameNo = frameNo + 1
Draw detected blobs as red circles.
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
the size of the circle corresponds to the size of blob
 im_with_keypoints = cv2.drawKeypoints(frame, keypoints,
np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
Show blobs
 #cv2.destroyAllWindows()
 if 'outText' in locals():
 cv2.destroyWindow(outText)
 outText = "Frame: "+str(frameNo)
 cv2.imshow(outText, im_with_keypoints)
 cv2.moveWindow(outText,0,0)

cv2.imshow('', im_with_keypoints)
cv2.moveWindow('',0,0)

 # This next step is necessary to force a draw.
 cv2.waitKey(2)
Print blob coordinates
 outP.write(str(frameNo)+" ")
 for k in range(1,len(keypoints)):

66

 outP.write(str(keypoints[k].pt[0])+"
"+str(keypoints[k].pt[1])+" ")
 outP.write('\n')
Delay for 1/4 second
Only use this when writing to the same window
Otherwise there is a lot of flashing
time.sleep(.25)
Delay until key is pressed
 cv2.waitKey(0)
 else:
 outP.close()
 cap.release()
cv2.destroyAllWindows()
Now, kpList is the set of all keypoints
For frame N, retrieve the keypoints by
keypoints = kpList[N-1]
To extract data from the third keypoint in frame 240, use
[x ,y] = kpList[239][2].pt
Or as
x = kpList[239][2].pt[0]
y = kpList[239][2].pt[1]

Here's a method to sort the keypoints
This assumes that the set of keypoints is a list called kpList
Define a method for the key
#def sortSecond(val):
return val[1]
Now, I am creating a list of the keypoint number and the coordinates
I will use this on the first keypoint, kpList[N-1], and cycle
through all
of the keypoints contained in it
#for k in range(0,range(kpList[N-1])):
test.append([k,kpList[N-1][k].pt])
Finally, I can sort it
#test.sort(key = sortSecond)
The first element is the old keypoint listing
So test[0][0] is the index of the keypoint with the lowest x value

67

FindBlobs_NewParams.py

import numpy as np
import cv2 as cv2
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
from tkinter import simpledialog
#from matplotlib import pyplot as plt

root = tk.Tk()
root.withdraw()
application_window = tk.Tk()
application_window.withdraw()
file_path = filedialog.askopenfilename(initialdir = ".",title =
"Select file",filetypes = (("jpeg files","*.jpg"),("all
files","*.*")))

img = cv2.imread(file_path)
img = img[50:770,:]
#print(file_path)

Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()

Change thresholds
params.minThreshold = 40
params.maxThreshold = 200
params.thresholdStep = 20

Filter by Area.
params.filterByArea = True
params.minArea = 8
params.maxArea = 40

Filter by Circularity
params.filterByCircularity = True
params.minCircularity = 0.85

Filter by Convexity
params.filterByConvexity = False
params.minConvexity = 0.9

Filter by Inertia

68

params.filterByInertia = False
params.minInertiaRatio = 0.01

Create a detector with the parameters
detector = cv2.SimpleBlobDetector_create(params)

Detect blobs.
keypoints = detector.detect(img)

Draw detected blobs as red circles.
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
the size of the circle corresponds to the size of blob

im_with_keypoints = cv2.drawKeypoints(img, keypoints, np.array([]),
(0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

Show blobs
cv2.imshow("Keypoints", im_with_keypoints)

Print blob coordinates
for k in range(0,len(keypoints)):

print(round(keypoints[k].pt[0]),round(keypoints[k].pt[1]),round(keypoi
nts[k].size))

cv2.waitKey(0)
cv2.destroyAllWindows()

69

VideoBlobsIdentifiedFeb24.py

import numpy as np
import matplotlib.pyplot as plt
import cv2
import time
from collections import Counter

class Blob_Detector:

 def __init__(self, params = 0):
 self.params = params

 def initialize_defaults(self, params):
 # Define the default values of the blob parameters.
 print("Default Minimum Threshold: " +
str(params.minThreshold))
 print("Default Maximum Threshold: " + str(params.maxThreshold)
+ "\n")

 print("Default Minimum Area: " + str(params.minArea))
 print("Default Maximum Area: " + str(params.maxArea) + "\n")

 print("Default Circularity: " + str(params.minCircularity) +
"\n")

 print("Default Convexity: " + str(params.minConvexity) + "\n")

 print("Default Inertia Ratio: " + str(params.minInertiaRatio)
+ "\n")

 def adjust_parameters(self, params):
 # Change thresholds
 params.minThreshold = 40
 params.maxThreshold = 200
 params.thresholdStep = 20
 # Filter by Area.
 params.filterByArea = True
 params.minArea = 8
 params.maxArea = 40
 # Filter by Circularity
 params.filterByCircularity = True
 params.minCircularity = 0.85
 params.filterByConvexity = False
 # Filter by Inertia

70

 params.filterByInertia = False

class Blob_Id_Debug:

 # Initialize the variables for the main class
 def __init__(self, j = 1, k = 0, m = 0, n = 0, matches = [], desc
= [], currentNames = [],
 framesToCheck = [], unmatchedBlobs = [], kpList = [],
frameBlobs = []):
 self.j = j
 self.k = k
 self.m = m
 self.n = n
 self.matches = matches
 self.desc = desc
 self.currentNames = currentNames
 self.framesToCheck = framesToCheck
 self.unmatchedBlobs = unmatchedBlobs
 self.kpList = kpList
 self.frameBlobs = frameBlobs

 # Define three fucntions: first frame cycle, frame check for
unmatched
 # blobs, and second frame cycle.
 def frame_cycle(self, j, k, m, n, matches, desc, currentNames):
 for j in range(1, m):
 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
 matches = bf.match(desc[j],desc[j-1]);
 print("\nFRAME #"+str(j+1)+":")
 for k in range(0, n):
 print('Raw match frame',j+1,' to
frame',j,matches[k].queryIdx,matches[k].trainIdx,' Distance
',matches[k].distance)
 print('\n--> Current Frame',j+1,'Compare
Frame',j,'Names',currentNames)

 def frame_to_check(self, framesToCheck, unmatchedBlobs):
 print('Frames to test: ',framesToCheck)
 print('Blobs to identify: ',unmatchedBlobs)
 print('Using Frame: ',framesToCheck[0])

 def frame_cycle_two(self, j, k, m, n, matches, desc,
framesToCheck, kpList, frameBlobs):
 for j in range(1, m):
 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
 matches = bf.match(desc[j],desc[framesToCheck[0]-1])

71

 for k in range(0, n):
 print('Raw match frame',j+1,' to
frame',framesToCheck[0],matches[k].queryIdx,matches[k].trainIdx,'
Distance ',matches[k].distance)
 print('Found missing blob',matches[k].queryIdx,' as
match',k)
 print('Frame', j+1,' has',len(kpList[j]),' keypoints,
labeled:',frameBlobs[j])

 # Indicate whether or not any function can be executed in the main
source code.
 def __str__(self):
 if (self.frame_cycle() == True):
 return str(self.j, self.k, self.m, self.n, self.matches,
self.desc, self.currentNames)
 if (self.frame_to_check() == True):
 return str(self.framesToCheck, self.unmatchedBlobs)
 if (self.frame_cycle_two() == True):
 return str(self.j, self.k, self.m, self.n, self.matches,
self.desc, self.framesToCheck, self.kpList, self.frameBlobs)
 else:
 return False

class Blob_Frequency:

 def __init__(self, i = 0, j = 1, frameBlobs = []):
 self.i = i
 self.j = j
 self.frameBlobs = frameBlobs

 def counter(self, i, j, frameBlobs):
 blobFreq = frameBlobs[0]
 for i in range(0,j):
 blobFreq.extend(frameBlobs[i])
 print(Counter(blobFreq))

 def __str__(self):
 return str(self.i, self.j, self.frameBlobs)

72

VideoBlobsIdentifiedFinal.py

from VideoBlobsIdentifiedFeb24 import Blob_Detector, Blob_Id_Debug,
Blob_Frequency
import numpy as np
import matplotlib.pyplot as plt
import cv2
import csv
import math
from math import sqrt
from itertools import zip_longest
import time
from collections import Counter
import tkinter as tk
from tkinter import filedialog
from tkinter import messagebox
from tkinter import simpledialog

displayFrame = False
displayCorrect = True;
displayOriginal = not displayCorrect;
frameDivider = 10 #109; # Number of frames between display
classifierThreshold = 50
debug1 = False
debug2 = False
debug3 = False
debug4 = False

Can we change these thresholds that are tailored to each blob?
xPixelThreshold = 20 #185 # 25
yPixelThreshold = 25 #10000 # 10
root = tk.Tk()
root.withdraw()
application_window = tk.Tk()
application_window.withdraw()

BLOB DETECTOR SUB-ROUTINE ##
Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
blobSubRoutine = Blob_Detector()
blobSubRoutine.adjust_parameters(params)

Create a detector with the parameters
detector = cv2.SimpleBlobDetector_create(params)

73

Create a descriptor generator
descriptor = cv2.xfeatures2d.BriefDescriptorExtractor_create()
create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

Get file from dialog
file_path = filedialog.askopenfilename(initialdir = ".",title =
"Select file",filetypes = (("jpeg files","*.avi"),("all
files","*.*")))
cap = cv2.VideoCapture(file_path)
#outP = open("testOutNoRound.txt","w+")
initialFrame = 0
#initialFrame = int(input('Starting Video Frame: '))-1;
#initialFrame = 1
endFrame = int(input('Final Video Frame: '));
#endFrame = 120;
frameNo = 0;
ret = cap.set(cv2.CAP_PROP_POS_FRAMES,initialFrame)
#print(ret)
kpList = [];
desc = [];
images = [];
while cap.isOpened():
 if (frameNo >= endFrame): break
 ret, frame = cap.read()
 if ret:
 frameNo = frameNo + 1
 if (frameNo > initialFrame):
 # Detect Blobs
 kpList.append(detector.detect(frame));
 keypoints = kpList[frameNo-1]
 keypoints, desc1 = descriptor.compute(frame,keypoints)
 desc.append(desc1);
 # Draw detected blobs as red circles.
 # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
 # the size of the circle corresponds to the size of blob
 images.append(frame)
 else:
 cap.release()

create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
Classify blobs.
Start the name list
blobNames = [];
Make a list of lists to keep track of the blobs in each frame

74

frameBlobs = [];
Keep track of next blob name to use
keypoints = kpList[0]
nextBlob = len(keypoints);
print('Frame 1 has',len(keypoints),' total keypoints'); # Note that
frame counter starts at zero
#print('No matches possible')
#print('The next keypoint will be ',nextBlob)
blobNames = [i for i in range(0,nextBlob)];
Note the [:] to get the current values, rather than the list
blobNames
because the list itself will continue to change
frameBlobs.append(blobNames[:]); # This will only work for first frame
blobLastSeen = [1 for i in range(0,nextBlob)];
print('All blobs in Frame',1,' are:',frameBlobs[0])

im_with_keypoints = cv2.drawKeypoints(images[0], keypoints,
np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
for k in range(0,len(keypoints)):
 cx = round(keypoints[k].pt[0])
 cy = round(keypoints[k].pt[1])
 cv2.putText(im_with_keypoints, str(k), (cx, cy),
cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255))
windowName = 'Frame 1'
if displayFrame:
 cv2.imshow(windowName, im_with_keypoints)
This next step is necessary to force a draw.
cv2.waitKey(2)
if (debug1 == True):
debug1 = Blob_Id_Debug()
debug1.fc = Blob_Id_Debug().Frame_Count()
Start cycling through the frames
for j in range(1,endFrame): # j is current frame index, so frameNo =
j+1
 kp1 = kpList[j-1]; # starts at kpList[0], frame 1
 kp2 = kpList[j]; # starts at kpList[1], frame 2
Match descriptors.
 matches = bf.match(desc[j],desc[j-1]);
 # Check out https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher
/py_matcher.html
 unmatchedBlobs = [i for i in range(0,len(kp2))];
Create old and new Name lists
 # currentBlobs = [i for i in range(0,len(kp2))]
 currentNames = [-1 for i in range(0,len(kp2))];
Now we add the matched blobs

75

 for k in range(0,len(matches)):
 matchxDist = (abs(kp1[matches[k].trainIdx].pt[0] -
kp2[matches[k].queryIdx].pt[0]) < xPixelThreshold)
 matchyDist = (abs(kp1[matches[k].trainIdx].pt[1] -
kp2[matches[k].queryIdx].pt[1]) < yPixelThreshold)
 # matchxDist = True
 # matchyDist = True
 matchTest = (matches[k].distance < classifierThreshold) and
matchxDist and matchyDist
 # matchTest = matchTest and not (frameBlobs[j-
1][matches[k].trainIdx] in currentNames)
 if (matchTest):
 # print('Raw match frame',j+1,' to
frame',j,matches[k].queryIdx,matches[k].trainIdx,' Distance
',matches[k].distance)
 # print('Corrected
Match',k,currentNames[matches[k].queryIdx],frameBlobs[j-
1][matches[k].trainIdx])
 currentNames[matches[k].queryIdx] = frameBlobs[j-
1][matches[k].trainIdx];
 blobLastSeen[frameBlobs[j-1][matches[k].trainIdx]] = j+1;
 unmatchedBlobs.remove(matches[k].queryIdx)
 if (debug1 == True):
 debug1 = Blob_Id_Debug()
 print(debug1.frame_cycle(j, k, endFrame, (len(matches)-1),
matches, desc, currentNames[matches[k].queryIdx]))

Next, we add matches to the other frames
Collect all frames with unmatched blobs
set gives no duplicates
 framesToCheck = set(blobLastSeen)
Remove the current frame and the previous one
 framesToCheck.discard(j+1)
 framesToCheck.discard(j)
reverse order to check the most recent frames first
Also make it a list so you can use subscripts
 framesToCheck = list(sorted(framesToCheck, reverse = True))
Now, do the checks when there are frames and unmatched blobs
 while ((len(framesToCheck) > 0) and(len(unmatchedBlobs) > 0)):
 kp1 = kpList[framesToCheck[0]-1];
 if (debug2 == True):
 print('Frames to test: ',framesToCheck)
 print('Blobs to identify: ',unmatchedBlobs)
 print('Using Frame: ',framesToCheck[0])
Match descriptors.
 matches = bf.match(desc[j],desc[framesToCheck[0]-1])

76

Finally, go through the matches looking to match blobs still
unidentified
 for k in range(0,len(matches)):
 #matchxDist = (abs(kp1[matches[k].trainIdx].pt[0] -
kp2[matches[k].queryIdx].pt[0]) < xPixelThreshold)
 matchxDist = (kp1[matches[k].trainIdx].pt[0] -
kp2[matches[k].queryIdx].pt[0] < xPixelThreshold)
 matchyDist = (abs(kp1[matches[k].trainIdx].pt[1] -
kp2[matches[k].queryIdx].pt[1]) < yPixelThreshold)
 matchxDist = True
 # matchyDist = True
 matchTest = (matches[k].distance < classifierThreshold)
and matchxDist and matchyDist
 matchTest = matchTest and not
(frameBlobs[framesToCheck[0]-1][matches[k].trainIdx] in currentNames)
 if (matchTest):
 # print('Raw match frame',j+1,' to
frame',framesToCheck[0],matches[k].queryIdx,matches[k].trainIdx,'
Distance ',matches[k].distance)
 if (unmatchedBlobs.count(matches[k].queryIdx) > 0):
 currentNames[matches[k].queryIdx] =
frameBlobs[framesToCheck[0]-1][matches[k].trainIdx];
 blobLastSeen[currentNames[matches[k].queryIdx]] =
j+1;
print('Found missing
blob',matches[k].queryIdx,' as match',k)
 unmatchedBlobs.remove(matches[k].queryIdx)
 if (debug3 == True):
 debug3 = Blob_Id_Debug()
 print(debug3.frame_cycle_two(j, k, endFrame,
(len(matches)-1), matches, desc, framesToCheck, kpList, frameBlobs))

Now finished this frame
 del(framesToCheck[0])
Finally, create new names for the unmatched blobs
###########
Problem is here
If an early identification is wrong
We are not checking to see if a later match is better
For example, frame 7 kp 6 gets matched to frame 6 kp 0 (called 0)
But also frame 7 kp 6 gets matched to frame 5 kp 6 (called 5)
The second match is better
#########
#########
Possible solution:
Keep a vector of distances along with names

77

If a later match has a smaller distance, use it

#########
 for k in range(0,len(unmatchedBlobs)):
 positionToFill = unmatchedBlobs[k];
 currentNames[positionToFill] = nextBlob;
 nextBlob +=1
 blobNames.append(unmatchedBlobs[k]);
 blobLastSeen.append(j+1); # Frame number, not index

Next we add the whole list to the frame enumerator
 frameBlobs.append(currentNames);

 keypoints = kp2
This shows the original keypoint labels
 im_with_keypoints = cv2.drawKeypoints(images[j], keypoints,
np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
 for k in range(0,len(keypoints)):
 cx = round(keypoints[k].pt[0])
 cy = round(keypoints[k].pt[1])

 # Frame number, blob number, x-coord, y-coord
 # print(j+1, currentNames[k], cx, cy)

for k in range(0, len(matches)):
print("Frame:",j+1, j, currentNames[k], cx, cy,
matches[k].distance)
print()
 # cv2.putText(im_with_keypoints, str(frameBlobs[j][k]), (cx,
cy), cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255))
This shows the original keypoint labels
 if displayOriginal: cv2.putText(im_with_keypoints, str(k),
(cx, cy), cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0, 255))
This shows the corrected keypoint labels
 if displayCorrect: cv2.putText(im_with_keypoints,
str(frameBlobs[j][k]), (cx, cy), cv2.FONT_HERSHEY_SIMPLEX, .6,(0, 0,
255))
 windowName = 'Frame '+str(j+1)
 windowName2 = 'testFrame'+str(j+1)+'.jpg'
The next line shows frame
 if displayFrame:
 if (j%frameDivider == 0):
 cv2.imshow(windowName, im_with_keypoints)
 cv2.waitKey(2)
This next step is necessary to force a draw.
if (j == 34):

78

displayFrame = True
frameDivider = 1
windowName = 'Frame '+str(j+1)
cv2.imshow(windowName, im_with_keypoints)
cv2.waitKey(2)
elif (j == 44):
displayFrame = False
cv2.waitKey(2)
if (j == 39):
displayFrame = True
frameDivider = 1
windowName = 'Frame '+str(j+1)
cv2.imshow(windowName, im_with_keypoints)
cv2.waitKey(2)
elif (j == 49):
displayFrame = False
cv2.waitKey(2)
 #print('Frame',j+1,currentNames)

Background Drawings for Trajectories
topblock_x = [129,124,101]
topblock_y = [675,651,651]

sideblock_x = [129,106,106,129,129]
sideblock_y = [675,675,723,723,675]

faceblock_x = [106,101,101]
faceblock_y = [723,699,651]

mat_x = [0, 101,101,106,129,129,175,175,-5, -5, 0]
mat_y = [680,680,699,723,723,680,680,725,725,680,680]

kickplate_x = [-5,175,175,-5,-5]
kickplate_y = [650,650,640,640,650]

wall_x = [-5,175,175,-5,-5]
wall_y = [640,640,490,490,640]

hardwood_x = [-5,101,101,124,129,129,175,175,-5,-5]
hardwood_y = [680,680,651,651,675,680,680,650,650,680]

floor2_x = [175,-5, -5, 175, 175]
floor2_y = [1060, 1060, 725, 725, 1060]

LEFT HEEL
BlobPxLH = [];

79

BlobPyLH = [];
BlobPfLH = [];
StableBlobxfLH=[];
StableBlobyfLH=[];

for freqBlob in [7, 79]:
 for j in range(1,endFrame):
 if (freqBlob in frameBlobs[j]):
 keypoints = kpList[j]
 # Print info on the frame number and blob coordinates to be
graphed.
 # print(str(j+1)+', '+str(round(keypoints[k].pt[0]))+',
'+str(round(keypoints[k].pt[1])))

 # Take the standard deviation of the data between Frames 60
and 90 for Blob 7,
 # and determine if it is small enough to detect the flat
regions of both
 # the X and Y trajectories.

 # Find the average of x-coordinates across the points between
frames 60 and 90.
 # Then do the same for y-coordinates
 # Compute the standard deviations and create logic for if
 # the result is less than 1 across 30 frames, for example,
 # the computer can detect that the shoe is on the ground.
 k = frameBlobs[j].index(freqBlob)
 BlobPfLH.append(j+1);
 BlobPxLH.append(round(keypoints[k].pt[0]));
 BlobPyLH.append(round(keypoints[k].pt[1]));

At this point, BlobP? has information for left heel
for i in range(0, len(BlobPf)):
fig, ax1 = plt.subplots()
ax1.set_title('Left Heel (X)')
ax1.set_xlabel('Frame Number')
ax1.set_ylabel('x-coordinate')
for i in range(0, len(BlobPfLH)):
 ax1.plot(BlobPfLH[i],BlobPxLH[i],'ro')
ax1.set_xlim(endFrame, 0)

fig, ax2 = plt.subplots()
ax2.set_title('Left Heel (Y)')
ax2.set_xlabel('Frame Number')
ax2.set_ylabel('y-coordinate')

80

#ax2.axvspan(125, 115, ymin=0.045, ymax=0.215, alpha=1, color='teal')
ax2.plot(topblock_x, topblock_y, linewidth=2, color='teal')
ax2.plot(sideblock_x, sideblock_y, linewidth=2, color='teal')
ax2.plot(faceblock_x, faceblock_y, linewidth=2, color='teal')

ax2.fill_between(hardwood_x,
hardwood_y,0,facecolor='sandybrown',color='sandybrown',alpha=0.2)
ax2.fill_between(mat_x,
mat_y,0,facecolor='lightcoral',color='lightcoral',alpha=0.2)
ax2.fill_between(kickplate_x,
kickplate_y,0,facecolor='white',color='gainsboro',alpha=0.2)
ax2.fill_between(wall_x,
wall_y,0,facecolor='white',color='gainsboro',alpha=0.2)
for i in range(0, len(BlobPfLH)):
 ax2.plot(BlobPfLH[i],BlobPyLH[i],'bo')
ax2.set_xlim(endFrame, 0)
ax2.set_ylim(725, 575)

for k2 in range(0, len(BlobPfLH)-10):
print(k2, np.std(Blob7x[k2:(k2+10)]))
 BPstdX = np.std(BlobPxLH[k2:(k2+10)])
 BPstdY = np.std(BlobPyLH[k2:(k2+10)])
 if (BPstdY < 0.1) and (BPstdX < 0.1):
 #print("Desired SD at Y found at frame", BlobPf[k2])
 StableBlobyfLH.append(BlobPfLH[k2]);
 StableBlobxfLH.append(BlobPfLH[k2]);
 #print(StableBlobxf)
 #print("Desired SD at X found at frame", BlobPf[k2])
 # [SOLVED] goodEnd turns out to be a float number, which is not
iterable.
 # Since the common end frame is supposed to be 81, we will have to
take
 # out the + 10
goodEndLH = min(max(StableBlobxfLH),max(StableBlobyfLH))
goodStartLH = max(min(StableBlobxfLH),min(StableBlobyfLH))
print("***FOR LEFT HEEL***")
print("ENTER stable region! Start frame:",goodStartLH)
print("LEAVE stable region! End frame:",goodEndLH)
##print("\n***STANDARD DEVIATIONS FOR Y TRAJECTORY***")

If put into a for loop, the mean coordinate point at SD will repeat
multiple times.
for i in range(0, len(BlobPfLH)-10):
 k3 = i
print("Mean coordinate point at desired SD = (", BlobPxLH[k2],",",
BlobPyLH[k3],")")

81

total_listX = [BlobPfLH, BlobPxLH]
total_listY = [BlobPfLH, BlobPyLH]
export_dataX = zip_longest(*total_listX, fillvalue = '')
export_dataY = zip_longest(*total_listY, fillvalue = '')
try:
 with open('leftheel_trajectoryX.csv', 'w', newline='') as f1:
 wrX = csv.writer(f1)
 # column labels: "Frame, X"
 wrX.writerows(export_dataX)
 f1.close()
except PermissionError as e:
 print("File already open!")
try:
 with open('leftheel_trajectoryY.csv', 'w', newline='') as f2:
 wrY = csv.writer(f2)
 # column labels: "Frame, Y"
 wrY.writerows(export_dataY)
 f2.close()
except PermissionError as e:
 print("File already open!")

END OF LEFT HEEL #

BEGIN LEFT TOE #
BlobPxLT = []
BlobPyLT = [];
BlobPfLT = [];
StableBlobxfLT = []
StableBlobyfLT = []

for freqBlob in [17, 5, 87]:
 for j in range(1,endFrame):
 if (freqBlob in frameBlobs[j]):
 keypoints = kpList[j]
 k = frameBlobs[j].index(freqBlob)
 BlobPxLT.append(round(keypoints[k].pt[0]));
 BlobPfLT.append(j+1);
 BlobPyLT.append(round(keypoints[k].pt[1]));

fig, axx = plt.subplots()
axx.set_title('Left Toe (X)')
axx.set_xlabel('Frame Number')
axx.set_ylabel('x-coordinate')
for i in range(0, len(BlobPfLT)):
 axx.plot(BlobPfLT[i],BlobPxLT[i],'ro')

82

axx.set_xlim(endFrame, 0)

fig, axy = plt.subplots()
axy.set_title('Left Toe (Y)')
axy.set_xlabel('Frame Number')
axy.set_ylabel('y-coordinate')
#axy.axvspan(125, 115, ymin=0.0667, ymax=0.3125, alpha=1,
color='teal')
axy.plot(topblock_x, topblock_y, linewidth=2, color='teal')
axy.plot(sideblock_x, sideblock_y, linewidth=2, color='teal')
axy.plot(faceblock_x, faceblock_y, linewidth=2, color='teal')
axy.fill_between(hardwood_x,
hardwood_y,0,facecolor='sandybrown',color='sandybrown',alpha=0.2)
axy.fill_between(mat_x,
mat_y,0,facecolor='lightcoral',color='lightcoral',alpha=0.2)
axy.fill_between(kickplate_x,
kickplate_y,0,facecolor='white',color='gainsboro',alpha=0.2)
axy.fill_between(wall_x,
wall_y,0,facecolor='white',color='gainsboro',alpha=0.2)
for i in range(0, len(BlobPfLT)):
 axy.plot(BlobPfLT[i],BlobPyLT[i],'bo')
axy.set_xlim(endFrame, 0)
axy.set_ylim(725, 565)

for k2 in range(0, len(BlobPfLT)-10):
print(k2, np.std(Blob7x[k2:(k2+10)]))
 BPstdX = np.std(BlobPxLT[k2:(k2+10)])
 BPstdY = np.std(BlobPyLT[k2:(k2+10)])
 if (BPstdY < 0.1) and (BPstdX < 0.1):
 #print("Desired SD at Y found at frame", BlobPf[k2])
 StableBlobyfLT.append(BlobPfLT[k2]);
 StableBlobxfLT.append(BlobPfLT[k2]);
goodEndLT = min(max(StableBlobxfLT),max(StableBlobyfLT))
goodStartLT = max(min(StableBlobxfLT),min(StableBlobyfLT))
print("***FOR LEFT TOE***")
print("ENTER stable region! Start frame:",goodStartLT)
print("LEAVE stable region! End frame:",goodEndLT)
##print("\n***STANDARD DEVIATIONS FOR Y TRAJECTORY***")

If put into a for loop, the mean coordinate point at SD will repeat
multiple times.
for i in range(0, len(BlobPfLT)-10):
 k3 = i
print("Mean coordinate point at desired SD = (", BlobPxLT[k2],",",
BlobPyLT[k3],")")

83

total_listX = [BlobPfLT, BlobPxLT]
total_listY = [BlobPfLT, BlobPyLT]
export_dataX = zip_longest(*total_listX, fillvalue = '')
export_dataY = zip_longest(*total_listY, fillvalue = '')
try:
 with open('lefttoe_trajectoryX.csv', 'w', newline='') as f1:
 wrX = csv.writer(f1)
 # column labels: "Frame, X"
 wrX.writerows(export_dataX)
 f1.close()
except PermissionError as e:
 print("File already open!")
try:
 with open('lefttoe_trajectoryY.csv', 'w', newline='') as f2:
 wrY = csv.writer(f2)
 # column labels: "Frame, Y"
 wrY.writerows(export_dataY)
 f2.close()
except PermissionError as e:
 print("File already open!")
END OF LEFT TOE #

if (debug4 == True):
 debug4 = Blob_Frequency()
 debug4.counter(i, endFrame, frameBlobs)
 # print("No Blob #"+str(v)+" coordinates exist for
Frame",j+1,"\n")

plt.show(block=False)

84

Bibliography

[1] K. Chaccour, R. Darazi, A. H. El Hassani, and E. Andrès, “From Fall Detection to Fall

Prevention: A Generic Classification of Fall-Related Systems,” IEEE Sensors Journal,

vol. 17, no. 3, pp. 812–822, Feb. 2017.

[2] “WHO Global Report on Falls Prevention in Older Age.” World Health Organization,

World Health Organization, 7-Mar-2008. [PDF report]. Available:

https://www.who.int/ageing/publications/Falls_prevention7March.pdf

[3] J. Berglund, “A Balancing Act: Scientists Seek to Reduce the Risk of Falls in the

Elderly,” in IEEE Pulse, vol. 8, no. 2, pp. 21-24, March-April 2017.

[4] “Falls.” World Health Organization, World Health Organization, 16-Jan-2018. [Online].

Available: www.who.int/news-room/fact-sheets/detail/falls.

[5] N. El-Bendary, Q. Tan, F. C. Pivot, A. Lam, “Fall detection and prevention for the

elderly: A review of trends and challenges”, Int. J. Smart Sens. Intell. Syst., vol. 6, no. 3,

pp. 1230-1266, Jun. 2013.

[6] M. Deschenes, “New Falls Prevention Program,” William & Mary, 03-Sep-2018.

[Online]. Available: https://www.wm.edu/as/kinesiology/news/new-falls-prevention-

program.php.

[7] E.N. Burnet, M. Deschenes, “The Center for Balance and Aging Studies (CBAS),”

William & Mary, 2018. [Online]. Available:

https://www.wm.edu/as/kinesiology/research/lab-pages/cbas/index.php.

[8] J. McClain, “W&M Center for Balance & Aging Studies aims to reduce falls & injuries

among the elderly,” William & Mary, 08-Apr-2019. [Online]. Available:

85

https://www.wm.edu/news/stories/2019/wm-center-for-balance-aging-studies-aims-to-

reduce-falls-injuries-among-the-elderly.php.

[9] M.W. Whittle, Gait Analysis: An Introduction, 2nd ed. Woburn, MA: Butterworth-

Heinemann, 1996, pp. 106.

[10] E. Burnet, M. Deschenes, R. McCoy, S10.B1. Williamsburg Landing, Williamsburg,

Virginia.

[11] K.W. Bowyer, J. Phillips, Empirical Evaluation Techniques in Computer Vision. Los

Alamitos, CA: IEEE, 1998, pp. 1.

[12] “Introduction to OpenCV-Python Tutorials,” OpenCV. [Online]. Available:

https://docs.opencv.org/master/d0/de3/tutorial_py_intro.html

[13] “About,” OpenCV. [Online]. Available: https://opencv.org/about/.

[14] “OpenCV-Python Tutorials,” OpenCV. [Online]. Available:

https://docs.opencv.org/master/d6/d00/tutorial_py_root.html.

[15] E. Rosten, T. Drummond, “Machine learning for high-speed corner detection,” In

Proceedings of the 9th European conference on Computer Vision - Volume Part I

(ECCV’06), Berlin, 2006, pp. 430-443, doi: 10.1007/11744023_34.

[16] “OpenCV: FAST Algorithm for Corner Detection.” OpenCV. [Online]. Available:

https://docs.opencv.org/3.4/df/d0c/tutorial_py_fast.html.

[17] “OpenCV: ORB (Oriented FAST and Rotated BRIEF).” OpenCV. [Online]. Available:

https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html.

[18] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: An efficient alternative to

SIFT or SURF,” 2011 International Conference on Computer Vision, Barcelona, 2011,

pp. 2564-2571, doi: 10.1109/ICCV.2011.6126544.

86

[19] “OpenCV: Canny Edge Detection.” OpenCV. [Online]. Available:

https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html.

[20] “OpenCV: Hough Line Transform.” OpenCV. [Online]. Available:

https://docs.opencv.org/3.4/d6/d10/tutorial_py_houghlines.html.

[21] “cv::SimpleBlobDetector Class Reference,” OpenCV. [Online]. Available:

https://docs.opencv.org/3.4/d0/d7a/classcv_1_1SimpleBlobDetector.html

[22] S. Mallick, “Blob Detection Using OpenCV (Python, C++),” Learn OpenCV, 17-Feb-

2015. [Online]. Available: https://www.learnopencv.com/blob-detection-using-opencv-

python-c/.

[23] “cv::xfeatures2d::BriefDescriptorExtractor Class Reference,” OpenCV. [Online].

Available:

https://docs.opencv.org/3.4/d1/d93/classcv_1_1xfeatures2d_1_1BriefDescriptorExtractor.

html.

[24] R.B. Fisher, K. Dawson-Howe, A. Fitzgibbon, C. Robertson, E. Trucco, Dictionary of

Computer Vision and Image Processing. Hoboken, NJ: Wiley, 2005, pp. 117.

[25] “cv::BFMatcher Class Reference,” OpenCV. [Online]. Available:

https://docs.opencv.org/3.4/d3/da1/classcv_1_1BFMatcher.html.

87

Vita

Martha Gizaw was born in Abilene, Texas, in 1996 after her parents immigrated from

Addis Ababa, Ethiopia. After her high school graduation in 2015, she began her post-secondary

studies at Northern Virginia Community College as an honors student. She then transferred to the

College of William & Mary in 2017 with an associate degree in science.

In May 2020, Gizaw graduated with a self-designed bachelor’s degree in biomedical

engineering and a minor in computer science. Her plans after college included, but were not limited

to, taking a gap year to sit for the Graduate Record Examinations and apply for graduate programs

in engineering and applied science. At the time of publication, she lived with her mother and two

younger siblings in Woodbridge, Virginia.

88

© 2020 Martha T. Gizaw. All rights reserved.

	Gait Characterization Using Computer Vision Video Analysis
	Recommended Citation

	tmp.1588978440.pdf.u9lD3

