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Abstract

A matrix A ∈Mn(R) is said to be eventually positive if there is a power k such
that Ak is entrywise positive, and all subsequent powers are also entrywise
positive. Here we provide an expression for the smallest such exponent of a
2-by-2 eventually positive matrix in terms of its entries; we also show that if
the graph of an eventually positive matrix is a tree, then the positive part of
that matrix must be primitive.



Chapter 1

Introduction

A matrix A ∈ Mn(R) (that is, an n-by-n matrix whose entries are real
numbers) is said to be positive if all of its entries are positive, and nonnegative
if all of its entries are nonnegative. These concepts are also denoted symbolically
by A > 0 and A ≥ 0, respectively. We let σ(A) denote the spectrum of A,
or the set of eigenvalues of A, and ρ(A) denote the spectral radius of A,
or the maximum modulus of an eigenvalue of A.

Perron’s theorem establishes properties of positive matrices that have
important applications to the modeling of dynamic systems in fields such as
economics, demography, and queueing theory, among many others.

Theorem 1.1 (Perron (1907) [3]). Let A ∈Mn be positive. Then

1. ρ(A) > 0; i.e. A has at least one nonzero eigenvalue.

2. ρ(A) is an algebraically simple eigenvalue of A (i.e. ρ(A) is a root of
the characteristic polynomial of A with multiplicity 1).

3. There is a unique real vector x = [xi] with positive entries such that
Ax = ρ(A)x and

∑n
i=1 xi = 1.

4. There is a unique real vector y = [yi] with positive entries such that
yTA = ρ(A)yT and x · y = 1.

5. |λ| < ρ(A) for every eigenvalue λ of A such that λ 6= ρ(A).

6. (ρ(A)−1A)m → xyT as m→∞.
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This theorem guarantees, for instance, that a Markov chain represented
by a positive transition matrix A is ergodic and has a well-defined steady-
state probability distribution.

The Perron-Frobenius theorem generalizes these results to a class of nonnegative
matrices which are known as irreducible matrices.

Definition. A matrix A is said to be reducible if there exists a permutation
matrix P such that

P TAP =

[
B C
0 D

]
in which B and D are square blocks; A is irreducible if no such permutation
exists.

Theorem 1.2 (Perron-Frobenius (1912) [3]). Let A ∈Mn be nonnegative
and irreducible. Then

1. ρ(A) > 0

2. ρ(A) is an algebraically simple eigenvalue of A

3. There is a unique real vector x = [xi] with nonnegative entries such
that Ax = ρ(A)x and

∑n
i=1 xi = 1

4. There is a unique real vector y = [yi] with nonnegative entries such that
yTA = ρ(A)yT and x · y = 1

This is somewhat weaker than Perron’s theorem. For instance, an irreducible
nonnegative matrix A may have two eigenvalues λ1 and λ2 such that |λ1| =
|λ2| = ρ(A), as in the case of the matrix

A =

[
0 1
1 0

]
;

A has two eigenvalues, 1 and −1, both of which have absolute value equal to
ρ(A).

It is natural to ask whether there are any nonnegative irreducible matrices
that have all of the properties guaranteed by Perron’s theorem (usually called
the strong Perron-Frobenius property) despite not being positive, and,
if so, how to characterize such matrices.
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Definition. A nonnegative irreducible matrix A is said to be primitive if
it has a dominant eigenvalue, i.e. if it has only one nonzero eigenvalue of
maximum modulus. [3]

If A is an n-by-n primitive matrix, then

1. There is an exponent k ∈ N such that Ak > 0; the minimum such
exponent is called the index of primitivity of A.

2. If Am > 0, then Am+1 > 0.

3. The magnitudes of the entries of A do not affect its primitivity; any
individual positive entry can be changed arbitrarily in magnitude (provided
it remains positive), and the resulting perturbed matrix will also be
primitive.

4. The index of primitivity of A does not depend on the magnitudes of
the entries of A.

5. The index of primitivity of A is bounded above by (n − 1)2 + 1, and
there is an n-by-n primitive matrix for which this bound is attained.

Example. This matrix is called the Wielandt matrix. Its index of primitivity
is (n− 1)2 + 1. 

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
1 1 0 0 · · · 0


Just as the theory of primitive matrices answers the question of how the

strong Perron-Frobenius properties generalize to nonnegative matrices, the
theory of eventually positive (EP) matrices aims to answer how these
properties generalize to real matrices with some negative entries, including
laying out how eventually positive matrices differ from and are similar to
nonnegative primitive matrices.

The study of eventually positive matrices became established with a series
of papers in the early to mid-2000’s ([4], [5]) attempting to characterize such
matrices, and has expanded greatly in the last ten years. One of the aims
of this paper is to help provide a general overview of what is already known
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about eventually positive matrices, with the additional goal of providing
new contributions to the existing body of work. In particular, we provide
a quantitative analysis of 2-by-2 eventually positive matrices, as well as a
characterization of potentially eventually positive sign patterns whose graphs
are trees.
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Chapter 2

General background

A critical fact is that simple eigenvalues of a matrix are continuous with
respect to perturbations of the matrix entries. The Perron-Frobenius theorem,
stated in the preceding section, is also crucial; note that in the case of a
matrix A with the Perron-Frobenius property, ρ(A) is often referred to as
the Perron root of A, and a corresponding eigenvector of A a left, or right,
Perron vector of A.

For a matrix A = (aij) ∈ Mn, not necessarily symmetric, the directed
graph of A, denoted by G(A), is the graph with vertices 1, . . . , n, and an
arc from i to j if and only if aij 6= 0. Note that this includes the possibility
of G(A) containing self-loops, i.e. edges beginning and ending at the same
vertex, but does not allow for multiple arcs beginning and ending at the same
vertices. If A is symmetric, then we may consider G(A) to be an undirected
graph with an edge between vertices i and j if and only if aij = aji 6= 0. We
use the word “edge” to indicate an edge in an undirected graph, and “arc”
to indicate an edge in a directed graph.

It will sometimes, but not always, be useful to considerG(A) as a weighted
graph, where the weight of the arc from i to j is aij; weights need not be
positive, and indeed we will mostly be concerned here with graphs that have
some negative weights.

A path in a graph is an ordered list of edges or arcs

(i0, i1), (i1, i2), . . . , (ik−1, ik).

This path is termed a k-cycle if it begins and ends at the same vertex (i.e.
i0 = ik), and a simple k-cycle if no other vertices are visited more than
once.
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A tree is an undirected graph with no simple cycles of length greater
than 2. In a tree, every edge is a cut edge: an edge whose removal splits the
graph into multiple connected components. A directed graph is strongly
connected if, for any pair of vertices i and j, there exists a path from i to
j.

This enables us to give alternate characterizations of irreducibility and
primitivity, as follows:

Proposition 2.1. A matrix A is irreducible if and only if G(A) is strongly
connected.

Proposition 2.2. Let A be a nonnegative irreducible matrix. A is primitive
if and only if the greatest common divisor of the cycle lengths of G(A) is 1.

Example. The graph of the n-by-n Wielandt matrix consists of an n-cycle
and an (n− 1)-cycle. Since n and n− 1 are coprime for n ≥ 2, the Wielandt
matrix is primitive.

Definition. A sign pattern matrix, or simply a sign pattern, is a matrix
whose entries are elements of the set {+,−, 0}.

Sign patterns will be indicated by script letters (e.g. A, B).

Definition. Let A = (αij) be a sign pattern. Â = (α̂ij) is a superpattern
of A if αij = 0 whenever α̂ij = 0, and α̂ij = αij whenever αij 6= 0. That is to

say, Â may be obtained from A by replacing some zero entries with + or −.
It is also said conversely that A is a subpattern of Â.

Example.

A =

[
+ 0
0 +

]
Â =

[
+ −
− +

]
Â is a superpattern of A. A is a subpattern of Â.

Example.

A =

[
+ 0
0 +

]
B =

[
− −
− −

]
Neither A nor B is a sub– or superpattern of the other.
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The qualitative class of a sign pattern A, denoted Q(A), is the set of
matrices A ∈ Mn(R) such that sgn(Aij) = Aij; a matrix in Q(A) is said to
be a realizing matrix of A.

Example.

A =

[
1 0
0 2

]
is a realizing matrix of the sign pattern A from the previous examples.

A sign pattern A is said to require a property if all matrices in Q(A)
have that property, and to allow a property if there exists a matrix in Q(A)
that has that property.

Example. It was stated in the previous section that the magnitudes of the
positive entries of a primitive matrix do not affect the primitivity of that
matrix (meaning that primitivity can be thought of as a property of sign
patterns as well as real–valued matrices). That is to say that the sign pattern
of a primitive matrix, for example0 + 0

0 0 +
+ + 0


requires primitivity.

Every real-valued matrix A can be expressed as the difference of two
matrices P −N , where Pij = Aij if Aij ≥ 0, and Nij = −Aij if Aij ≤ 0; P is
the positive part of A, and N is the negative part. The same holds true
for sign patterns; we denote the positive part of the sign pattern A by A+,
and the negative part by A−.

Example.

A =

[
1 −1
−1 1

]
The positive part of A is

[
1 0
0 1

]
. The negative part is

[
0 1
1 0

]
.
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Chapter 3

Theory of eventually positive
matrices

Definition. An eventually positive (EP) matrix is a matrix A ∈ Mn(R)
such that there is some k0 ∈ N (termed the power index of A) where
Ak0 > 0 and Ak > 0 for all k ≥ k0, and k0 is the minimal such power.

Definition. A potentially eventually positive (PEP) sign pattern is a
sign pattern that allows eventual positivity.

Note that, unlike primitive matrices, an EP matrix with some negative
entries may have Ak > 0 but Ak+1 non-positive.

Example.

A =

[
1 1
1 −0.5

]
A2 =

[
2 0.5

0.5 1.25

]
A3 =

[
2.5 1.75
1.75 −0.125

]
Another important difference between EP matrices and primitive matrices

is that two matrices with the same sign pattern but different magnitudes of
entries may not both be EP.

Example.

A =

[
1 1
1 −0.5

]
8



B =

[
1 1
1 −1

]
A and B have the same sign pattern, and A is EP, but B is not (see §4).

The class of EP matrices is closed under positive scalar multiplication and
the addition of positive multiples of the identity matrix. It is also closed under
positive diagonal similarity and permutation similarity. When you take the
strong Perron-Frobenius property, as we do here, to include the existence of
both left and right positive eigenvectors associated with the Perron root, the
class of EP matrices is closed under transposition (contrast with [5], which
does not require a positive left eigenvector).

Theorem 3.1 ([4]). Let A ∈Mn(R). The following are equivalent:

1. A has the strong Perron-Frobenius property

2. Ak > 0 and Ak+1 > 0 for some k ∈ N

3. A is EP

It follows from the eigenvalue-eigenvector equation that, if A is EP, then
A must have a positive entry in every row and column: if x is a right Perron
vector of A and ρ the Perron root of A, then for every i such that 1 ≤ i ≤ n,∑n

j=1 aijxj = ρ
∑n

j=1 xj, and since the right hand side of the equation is
positive, the ith row of A must have some positive entry. Repeating the
same argument with a left eigenvector of ρ shows the necessity of a positive
entry in every column of A.

Proposition 3.1 ([2]). If A is a sign pattern with A+ primitive, then A is
PEP.

This follows from continuity of the Perron root and Perron vectors with
respect to perturbations of the matrix entries; a realizing matrix need only
have negative entries sufficiently small. It was conjectured in [4] that the
condition of positive part primitivity was necessary as well as sufficient for a
sign pattern to be PEP. That conjecture was disproven in [2], which presents
the following matrix:

B =

 1.3 −0.3 0
1.3 0 −0.3
−0.31 0.3 1.01
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B is EP with power index 10, but B+ is not even irreducible, let alone
primitive.

Though the positive part of a sign pattern A need not be irreducible for
A to be PEP, A must be irreducible. If A is reducible, then all powers of A
must also be reducible, and so must have some zero entries.

Many more important lemmas about PEP sign patterns are found in [2]

Lemma 3.1. If A is a PEP sign pattern, then so is any superpattern of A.
If A is not PEP, then no subpattern of A is PEP.

Lemma 3.2. If A is PEP, then so is the sign pattern obtained from A by
replacing all nonpositive diagonal entries with +.

Lemma 3.3. An n-by-n PEP sign pattern must have at least n+ 1 positive
entries.

A Z sign pattern is a sign pattern A = (αij) where αij 6= + if i 6= j;
that is, no off-diagonal entries are +.

Lemma 3.4. An n-by-n Z sign pattern with n ≥ 2 is not PEP.

Lemma 3.5. The block sign pattern

[
A11 A12

A21 A22

]
with A12 nonpositive, A21

nonnegative, and square diagonal blocks is not PEP.

Let [+] and [−] denote blocks of all + entries and all −, respectively.

Lemma 3.6. The block sign pattern

A0 =


[+] [−] [+] . . .
[−] [+] [−] . . .
[+] [−] [+] . . .

...
...

...
. . .


with square diagonal blocks is not PEP if A0 has a negative entry. −A0 is
not PEP.

The sign pattern A0 is called a (block) checkerboard pattern.

Lemma 3.7. Let A be a square sign pattern with square diagonal blocks,
and D a diagonal sign pattern that, when partitioned conformally with A,
has diagonal blocks Dii either nonpositive or nonnegative. If DAD ≤ 0, or
DAD ≥ 0 with D having at least one −, A is not PEP.
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Lemma 3.7 can be worded alternately as saying that if a sign pattern
A can be made nonnegative by a non-trivial signature similarity, that is,
a similarity by a diagonal sign pattern containing at least one −, then A
is not PEP. The proof in [2] of Lemma 3.7 makes it a corollary of Lemma
3.6, but it is often simpler to show that a sign pattern is signature-similar
to a nonnegative sign pattern than it is to show that a sign pattern is a
checkerboard pattern.

Example.

A =


+ − + + 0
− 0 0 0 0
+ 0 0 0 0
+ 0 0 0 −
0 0 0 − 0



S =


− 0 0 0 0
0 + 0 0 0
0 0 − 0 0
0 0 0 − 0
0 0 0 0 +


A is partitioned such that it has square diagonal blocks; S has been

partitioned conformally withA, and its diagonal blocks have either all negative
or all positive diagonal entries, with some blocks being nonpositive.

SAS =


+ + + + 0
+ 0 0 0 0
+ 0 0 0 0
+ 0 0 0 +
0 0 0 + 0

 ≥ 0

By Lemma 3.7, A is not PEP.

Lemma 3.8. Let A = (αij) be an n-by-n sign pattern with n ≥ 2. If for all
k ∈ 1, . . . , n, we have:

1. αkk = +, and

2. no off-diagonal entry in row k is + or no off-diagonal entry in column
k is +,

then A is not PEP.
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For sign patterns of dimension less than or equal to 3, all PEP sign
patterns have been enumerated.

Proposition 3.2 ([2]). If A is an n-by-n PEP sign pattern with n ≤ 3,
then either A+ is primitive, or A is equivalent by permutation similarity to
a pattern of the form

B =

+ − 0
+ 0 −
− + +

 ,
or to a superpattern of B.

Note that three is the smallest number of vertices a graph that is not a
tree may have, and that the smallest PEP sign pattern with positive part
not primitive is 3-by-3. If we look at the graph of the sign pattern B, we can
see that it has a simple 3-cycle:

+

-

+

--

+

+

This suggests that Conjecture 8.1 in [4], which is false in general, may be
revived by restricting the sign patterns under consideration to those whose
graphs are trees. The work of Yu et. al. ([6], [7], [8], among others) has
established that for sign patterns A whose graphs are various particular
subtypes of trees (stars, paths, certain types of generalized stars), it is
necessary as well as sufficient that A+ be primitive; however, nowhere in
the literature reviewed here has this been established for arbitrary trees.

The n-by-n generalization of the sign pattern B is found in [1]
+ − − · · · − 0
+ 0 0 · · · 0 −
...

...
...

. . .
...

...
+ 0 0 · · · 0 −
− + + · · · + +
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and provides another way to construct PEP sign patterns with reducible
positive part.

Definition. Let A = (aij) ∈Mn, B ∈Mm. The Kronecker product A⊗B
is an mn-by-mn matrix defined as follows:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB


Proposition 3.3 ([1]). If A and B are EP matrices, then A ⊗ B is EP. If
A and B are PEP sign patterns, then A⊗ B is PEP.
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Chapter 4

The 2-by-2 case

It is already known what sign patterns allow eventual positivity for 2-by-2
matrices [2]. However, beyond general statements that the power index of
an EP matrix with some negative entries may be arbitrarily large, there has
been little numerical study of EP matrices and their precise power indices.
The goal in this section is to provide an expression for the power index of a
2-by-2 EP matrix in terms of its entries.

For A a 2-by-2 matrix, we know that, in order for A to be EP, it must
have the form

A =

[
w x
y −z

]
with w, x, y > 0 and z ≥ 0, up to a permutation similarity. By a positive
diagonal similarity and positive scalar multiplication, we can makeA symmetric
with off-diagonal entries equal to 1:

1
√
xy

([√
y 0

0
√
x

] [
w x
y −z

][ 1√
y

0

0 1√
x

])
=

[
a 1
1 −b

]
= A′

For A′ to be EP, it is necessary that a > b; otherwise tr(A′) ≤ 0, in which
case every odd power of A′ would also have non-positive trace, and so have
at least one non-positive entry on the main diagonal. We aim to show here
that it is also sufficient that a > b, as well as to find the power index of A′.

Proposition 4.1. A′ as defined above is EP.

Proof. It suffices to show that A′ satisfies the Perron-Frobenius properties:
ρ(A′) ∈ σ(A′), ρ(A′) has algebraic multiplicity 1, and there exist positive
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vectors x, y such that
A′x = ρ(A′)x

and
yTA′ = ρ(A′)yT .

The eigenvalues of A′ are

a− b±
√

(a+ b)2 + 4

2

We can see that A′ has a positive eigenvalue

λ1 =
a− b+

√
(a+ b)2 + 4

2

and a negative eigenvalue

λ2 =
a− b−

√
(a+ b)2 + 4

2

and that |λ1| > |λ2|.
The right eigenvector associated with λ1 can be found by row-reduction

of A′ − λ1I, and we have x = [λ1 − a, 1]T > 0. Since A′ is symmetric, this
vector is also a positive left eigenvector associated with λ1.

Because A′ is EP, A must also be EP if w > z.
The next goal is to provide an expression for the power index of A′, which

will also be the power index of A.
Define the recurrence relations an, bn, cn such that

(A′)n =

[
an cn
cn bn

]
=

[
a 1
1 −b

] [
an−1 cn−1

cn−1 bn−1

]
Therefore the recurrences are

an = a · an−1 + cn−1

bn = cn−1 − b · bn−1

cn = a · cn−1 + bn−1

= an−1 − b · cn−1
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By algebraic manipulation, we can express cn in terms of an and bn:

a · cn + bn = an − b · cn
(a+ b) · cn = an − bn

cn =
an − bn
a+ b

Now we have that

an = a · an−1 +
an−1 − bn−1

a+ b
=

(
a+

1

a+ b

)
an−1 −

1

a+ b
· bn−1

bn =
an−1 − bn−1

a+ b
− b · bn−1 =

1

a+ b
· an−1 −

(
b+

1

a+ b

)
bn−1

and we may now express an in terms of bn and bn−1, and bn in terms of an and
an−1. Then substitute each equation into the other to obtain pure recurrence
relations for an and bn.

an = (a2 + ab+ 1)bn −
1− (a2 + ab+ 1)(b2 + ab+ 1)

a+ b
bn−1

...

an = (a− b)an−1 + (ab+ 1)an−2

bn = (b2 + ab+ 1)an −
(a2 + ab+ 1)(b2 + ab+ 1)− 1

a+ b
an−1

...

bn = (a− b)bn−1 + (ab+ 1)bn−2

The next step in finding a closed-form equation is to form the characteristic
polynomial of the recurrence relation:

p(t) = t2 − (a− b)t− (ab+ 1)

Since the characteristic polynomial of the recurrence relation is the characteristic
polynomial of the matrix itself, we already know that its roots are λ1 and
λ2. Therefore the equations for an and bn will be:

an = α1λ
n
1 + α2λ

n
2

16



bn = β1λ
n
1 + β2λ

n
2

and we can use the initial conditions a0 = b0 = 1, a1 = a, b1 = −b to solve
for the αi and βi.[

1 1
λ1 λ2

] [
α1

α2

]
=

[
1
a

]
=⇒

[
α1

α2

]
=

1

λ2 − λ1

[
λ2 − a
a− λ1

]
[

1 1
λ1 λ2

] [
β1

β2

]
=

[
1
−b

]
=⇒

[
β1

β2

]
=

1

λ2 − λ1

[
λ2 − (−b)
−b− λ1

]
Recalling that λ1 + λ2 = a− b, we may rewrite β1 and β2:

1

λ2 − λ1

[
λ2 − (−b)
−b− λ1

]
=

1

λ2 − λ1

[
λ2 − (λ1 + λ2 − a)
(λ1 + λ2 − a)− λ1)

]
=

1

λ2 − λ1

[
a− λ1

λ2 − a

]
=

[
α2

α1

]
Finally, we have the closed-form formulas for an and bn:

an =
a− λ2

λ1 − λ2

λn1 +
λ1 − a
λ1 − λ2

λn2

bn =
λ1 − a
λ1 − λ2

λn1 +
a− λ2

λ1 − λ2

λn2

Let ∆ = (a+ b)2 + 4, and expand α1 and α2:

α1 =
2a−a+b+

√
∆

2

2
√

∆
2

=
a+ b+

√
∆

2
√

∆

α2 =
a−b−2a+

√
∆

2√
∆

=

√
∆− (a+ b)

2
√

∆

Since
√

∆ > a+b, it is now easier to see that both α1 and α2 are positive,
and that α2 < α1. Combined with the facts that λ2 < 0 < λ1 and |λ2| < |λ1|,
we are in a position to show the following:

Theorem 4.1. For all n ≥ 1, an > 0 and cn > 0. Moreover, there exists a
least integer N such that, for all n ≥ N , bn > 0. This N is the power index
of A′.
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Proof. By the facts above, |α1λ
n
1 | > |α2λ

n
2 |, and so an > 0 for all n.

We show by induction that |an| > |bn| for all n ≥ 1.

|b1| = b < a = |a1|

|b2| = b2 + 1 < a2 + 1 = |a2|

If, for some k ∈ N, |ak−1| > |bk−1| and |ak| > |bk|, then

|bk+1| = |(a− b)bk + (ab+ 1)bk−1|
≤ (a− b)|bk|+ (ab+ 1)|bk−1|
< (a− b)ak + (ab+ 1)ak−1

= |ak+1|

Therefore, for all n ≥ 1,

cn =
an − bn
a+ b

> 0

Now we turn our attention to bn. Consider the inequality

bn =

√
∆− (a+ b)

2
√

∆
λn1 +

a+ b+
√

∆

2
√

∆
λn2 > 0

If n is even, then both terms are positive, and the statement is trivial.
Suppose, therefore, that n is odd.

√
∆− (a+ b)

2
√

∆
λn1 +

a+ b+
√

∆

2
√

∆
λn2 > 0(√

∆− (a+ b)
)
λn1 +

(
a+ b+

√
∆
)
λn2 > 0(√

∆− (a+ b)
)
|λ1|n >

(
a+ b+

√
∆
)
|λ2|n(

|λ1|
|λ2|

)n

>

√
∆ + a+ b√

∆− (a+ b)

n >
ln(
√

∆ + a+ b)− ln(
√

∆− (a+ b))

ln(λ1)− ln(−λ2)

n >
ln(
√

∆ + a+ b)− ln(
√

∆− (a+ b))

ln(
√

∆ + a− b)− ln(
√

∆− (a− b))
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Call the right-hand side of the inequality L. Then the least positive odd
n such that n > L would be

n = 1 + bLc+
1

2

(
1 + (−1)1+bLc)

The power index for A′ would then be n− 1:

N = bLc+
1

2

(
1 + (−1)1+bLc)

Stepping back slightly, remember that A′ was obtained from A by positive
diagonal similarity and positive scalar multiplication, both of which preserve
the positivity of a matrix. That is, if (A′)k > 0, then Ak > 0, and so the N
obtained in Theorem 4.1 is the power index of the original matrix A.
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Chapter 5

Tree sign patterns

We call a sign pattern A whose directed graph has no cycles of length greater
than 2 a tree sign pattern (TSP); the graph obtained from G(A) by
replacing directed arcs with undirected edges will be a tree. In this section,
we are concerned with what necessary conditions there are for a TSP to be
PEP.

Throughout, assume that A is a TSP.

Lemma 5.1. For any off-diagonal entry αij in A, there exists a permutation
similarity P such that

PTAP =



0

A11
... 0
0
αij 0 · · · 0

0 · · · 0 αji

0

0
... A22

0


where A11 and A22 are both square.

Because all edges in a tree are cut edges, the removal of the i, j edge of
the graph gives two connected components G1 and G2. Relabel the vertices
of G(A) so that the vertices in G1 come first, ending with vertex i, and then,
beginning with vertex j, list the vertices in G2.

Proposition 5.1. If A is not combinatorially symmetric, then A is not PEP.
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If A is not combinatorially symmetric, then A is reducible by Lemma 5.1
(either αij or αji is 0), and so is not PEP.

Proposition 5.2. If A is PEP, then all nonzero off-diagonal entries are +.

Proof. We will classify the 2-cycles in G(A) based on the weights of their
component arcs: the possibilities are +/+, +/−, and −/−.

Case 1: αij = −, αji = +.
In this case, 3.5 applies, and so A cannot be PEP.
Case 2: αij = αji = −.
Suppose without loss of generality (by Lemma 3.2) that αii = + for all

i ∈ 1, . . . , n. Let Pi be the permutation matrix from Lemma 5.1, and suppose
αij is moved into position i, i+ 1. Then

Di =

[
−I 0
0 I

]
with the −I block of size i-by-i is a signature matrix such that

DiPT
i APiDi

has the i, j and j, i entries positive, with the rest of the entries unchanged
in sign. Let D′i = PiDi, and E =

∏
D′i for all −/− 2-cycles in G(A). E is

a new signature matrix, and it must have at least one − entry, or else the
cumulative effect of all the signature similarities by Di would be nothing.
Since similarity by E makes each −/− 2-cycle into a +/+ 2-cycle, we have
that

EAE ≥ 0,

and so, by Lemma 3.7, A cannot be PEP.

Proposition 5.3. If A is PEP, then at least one diagonal entry is +.

Proof. Suppose A has all diagonal entries either − or 0, and consider the
diagonal entries ofA2k+1, k ∈ N. Based on the mechanics of matrix multiplication,
the i, i entry of A2k+1 is the sum, over all paths of length 2k+ 1 from vertex
i to itself, of the products of the edge weights in each path. Consider an
arbitrary path P of length 2k + 1 from i to i. It has odd length, and so it
must have an odd number of edges corresponding to self-loops in G(A): all
paths not containing self-loops in G(A) necessarily have even length. This
means that the product of edge weights in P is −, and so the i, i entry in
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A2k+1 must be unambiguously − if any paths of length 2k + 1 from i to i
exist, and 0 otherwise. This means that any odd power of A cannot have
positive diagonal entries, and so A is not PEP.

We are now in a position to show that positive part primitivity is both
necessary and sufficient for a TSP to be PEP.

Theorem 5.1. If A is a TSP, then A is PEP if and only if A+ is primitive.

Proof. Let A be a TSP. If A+ is primitive, then A is PEP by Proposition
3.1.

Conversely, suppose that A is PEP. Then A must be irreducible; since
all off-diagonal entries of A must be either + or 0, this means that A+ must
be irreducible as well. G(A+) then has cycles of even length, which consist
of arcs corresponding to the off-diagonal + entries in A+, as well as at least
one 1-cycle by Proposition 5.3. Therefore the greatest common divisor of the
cycle lengths of G(A+) must be 1, and so A+ is primitive.
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Chapter 6

Conclusion

This report has reviewed some useful facts about EP matrices and PEP
sign patterns, as well as answering some outstanding questions about such
matrices.

For 2-by-2 EP matrices, essentially everything is known: both what sign
patterns are possible, and, for a particular matrix, how long it will be until
it becomes positive. We now know as well that for any TSP A, regardless
of the type of tree, it is necessary as well as sufficient that A+ be primitive.
This raises a natural question:

Question. Are there any other classes of graph for which, if G(A) is part of
that class, A is PEP if and only if A+ is primitive?

This seems unlikely, since the matrix B from §3 has only one simple cycle
longer than 2, and it already does not have primitive positive part.

The quantitative study of larger sign patterns in the vein of §4 is also an
area of potential future research, in particular the study of the sign pattern B
from §3. Since its positive part is reducible, there must be a minimum “size”
of its negative part to make a realizing matrix of B EP, and also a maximum
“size”. This makes the power index of such a matrix not monotone in the
magnitudes of its negative entries, unlike the behavior we have seen for a
2-by-2 EP matrix.

Another question relates to the combination of two EP matrices, in a
similar way to the observation about the Kronecker product in §3.

Question. Given two EP matrices A and B and two matrices X and Y , where
X and Y each have one positive entry and all other entries zero, is the matrix
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given by [
A X
Y B

]
eventually positive?

This construction may be considered “almost” a direct sum of A and
B, minimally perturbed in such a way as to give an irreducible matrix. It
seems plausible that the answer to this question is yes, but it appears to be
a complex issue worthy of study on its own.
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