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ABSTRACT

An Open Locating-Dominating Set (OLD set) is a subset of vertices in a graph
such that every vertex in the graph has a neighbor in the OLD set and every
vertex has a unique set of neighbors in the OLD set. This can also represent
where “sensors,” capable of detecting an event occurrence at an adjacent
vertex, could be placed such that one could always identify the location of an
event by the specific vertices that indicated an event occurred in their
neighborhood. By the open neighborhood construct, which differentiates OLD
sets from identifying codes, a vertex is not able to report if it is the location of the
event. This construct provides a robustness over identifying codes and opens
new applications such as disease carrier and dark actor identification in
networks. This work explores various aspects of OLD sets, beginning with an
Integer Linear Program for quickly identifying the optimal OLD set on a graph.
As many graphs do not admit OLD sets, or there may be times when the total
size of the set is limited by an external factor, a concept called maximum
covering OLD sets is developed and explored. The coverage radius of the
sensors is then expanded in a presentation of Mixed-Weight OLD sets where
sensors can cover more than just adjacent vertices. Finally, an application is
presented to optimally monitor criminal and terrorist networks using OLD sets
and related concepts to identify the optimal set of surveillance targets.
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Chapter 1

Introduction
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Open locating-dominating sets (OLD sets) fall into a family of problems within

network location theory that deals with event detection and location identification.

The fundamental question addressed is that of sensor placement. Assuming each

sensor can detect events at some specified radius, the goal is to ensure every

network location is covered by at least one sensor and every location is covered

by a unique set of sensors. Based on this unique set of sensors, the location of the

event will be immediately known. Other closely related concepts are identifying

codes[22], locating-dominating sets[34], metric bases[16], and strongly identifying

codes[19]. Each of these topics incorporate the fundamental concepts of location

and domination, and aim to identify optimal locations in a graph for 2-state or 3-

state sensors that fulfill these two requirements. Optimal is usually taken to mean

placement of a minimum number of sensors that satisfy the requirements. The

sensors have certain detection limitations, usually in terms of coverage radius[4].

The specific detection properties are the primary difference between the concepts

within this family of problems, e.g. the difference between Identifying Codes and

Open locating-dominating Sets is the ability of the sensor to “self-detect.”[33].

1.1 Background Concepts and Definitions

• Graph Notation: Using standard graph theory notation, a graph G = (V,E)

consists of a vertex set V = {v1, v2, . . . , vn} and an edge setE = {e1, e2, . . . , em}.

For ease of notation, vertices (vi, vj, . . .) may also be referenced by their sub-

script (i, j, . . .). For example, ∀vi, vj ∈ V is listed as ∀i, j ∈ V .

• Shortest Path Distance: The shortest path distance between two vertices,

vi and vj is the minimum number of edges between them, and is denoted
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d(vi, vj). This may also be denoted d(i, j).

• Coverage Radius r: The distance at which a sensor can detect an event,

where distance is in terms of shortest path distance. A coverage radius of 1

indicates a sensor can detect an event at, or “cover,” adjacent vertices. The

coverage radius of a vertex vi, at which a sensor is located, will be denoted

rvi or ri.

• Coverage: A vertex vi is said to be covered when there is at least one sensor

that can detect an event at vi. That is, there exists at least one sensor,

located at vj such that d(vi, vj) ≤ rvi.

• Homogeneous System: A homogeneous system is one in which every sen-

sor coverage radius is equal. rvi = r ∀i ∈ V .

• Heterogeneous System: A heterogeneous, or Mixed Weight, system allows

different sensors to have different coverage radii. A maximum allowable

coverage radius, R, will be defined where rvi ≤ R ∀i ∈ V .

• Ball Bvi: A ball of radius r, centered on vertex vi is the set of vertices that

are at most distance r from vi[22]. For heterogeneous systems, one must

also examine incoming and outgoing balls.

• Incoming BallB+
vi
: The incoming ball of a vertex vi is the set of vertices which

can cover vi, i.e. every vertex vj where d(vi, vj) ≤ rvj .

• Outgoing BallB−
vi
: The outgoing ball of a vertex vi is the set of vertices which

can be covered by vi, i.e. every vertex vk where d(vi, vk) ≤ rvi.
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• Code: A code is the subset of vertices at which sensors are placed. An iden-

tifying code (IC), locating-dominating set (or locating-dominating code) (LDS

or LDC), and an open locating-dominating set (OLD set) are all “codes”.

• Codeword: A codeword is a vertex in a code. Imagine a small graph V =

{1, ..., 5} with an identifying code, C = {3, 4, 5}. {3},{4}, and {5} are code-

words.

• Neighborhood N(v): The neighborhood of a vertex v is the set of vertices

that can cover or be covered by v. In a homogeneous system, N(v) = Bv =

B+
v = B−

v . In a heterogeneous or Mixed Weight system, N(v) = B+
v ∪ B−

v .

Neighborhoods can be either open or closed and are depicted as N(v) and

N [v] respectively. In a closed neighborhood, a vertex is included in its own

neighborhood. In an open neighborhood, it is not: N [v] = N(v) ∪ v.

• Separation: Two vertices are said to be separated if they have distinct in-

tersections with the code. i.e. For a given vertex pair, there is some vertex

in the code that is a neighbor of one of members of the vertex pair, but not

the other. Separated vertices are also called distinguished.

• Twin Vertices: Twin vertices are two vertices that have the same neighbor-

hood. Because they have the same neighborhood, they can not be sepa-

rated. Twins are dependent on the neighborhood construct (open or closed),

and two vertices that may be twins in a closed construct might be separable

in an open construct.

• Self-Report: A sensor is said to self-report if it can provide a positive re-

sponse if an event occurs at the vertex where it is located. Equivalently, it
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can detect at coverage radius 0 and its diagonal entry in an adjacency matrix

is 1. This is a characteristic of a closed neighborhood.

• Self-Identify: A sensor is said to be self-identifying if it can unilaterally report

the location of an event that occurs at the vertex where it is located. i.e. if

an event occurs at its vertex, it can say “the event happened here, you can

stop looking.” This is a characteristic of locating-dominating sets, and is the

defining characteristic of a 3-state sensor.

• Linear Program (LP): A problem formulation for constrained optimization

problems involving decision variables, a linear objective function, and linear

constraints. The goal is to minimimize or maximize the objective fuction.[40].

• Integer Program (IP): Similar to an LP, but where some or all of the variables

are constrained to be integers. IPs include Integer Linear Programs, where

the objective function and constraints are linear. These are usually much

harder to solve than LPs[40].

1.2 Location and Domination in Graphs

1.2.1 Domination

Domination in graphs is well presented by Haynes et. al in [17]. A set S ⊂ V

of vertices in a graph G=(V,E) is called a dominating set if every vertex v ∈ V is

either an element of S or is adjacent1 to an element of S. Indeed, [17], presents

five equivalent definitions:
1[17] uses the standard coverage radius of 1, which implies adjacency. This need not be the

case, and the term “adjacent to” in this section may be substituted by “covered by”. Similarly,
where 1 appears in the inequalities, this could also be rv
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• for every vertex v ∈ V − S, there exists a vertex u ∈ S that is adjacent to v;

• for every vertex v ∈ V − S, d(v, S) ≤ 1;

• N [S] = V ;

• for every vertex v ∈ V − S, |N(v) ∩ S| ≥ 1;

• V − S is enclaveless, where for T ⊂ V , a vertex v ∈ T is called an enclave

of T if N [v] ⊂ T .

To this, the following may be added: A set D is a dominating set if

B+
vi
∩ D ̸= ∅ ∀i ∈ V

It is natural to consider a minimum dominating set problem, where one seeks

the smallest cardinality of the set S ⊂ V such that S is a dominating set of V .

The decision problem for finding a domination number is formally stated: Given a

graph G = (V,E) and a positive integer k, does G have a dominating set of size

≤ k? The problem was shown to be NP-Complete by David Johnson in [14], by

reduction from the 3SAT2 problem and is an extension of the set cover problem.

The four graphs shown in figure 1.1 are all dominating sets. The graph on the top

left is the minimum cardinality dominating set.

1.2.2 Location

Location problems examine the ability to pinpoint the origin of an event. Both 2-

state and 3-state sensors are considered: 2-state sensors are able to provide a

binary response only: They indicate yes if an event occurs within their coverage
2The 3SAT problem is discussed in detail in section 2.1
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radius, and no if no such event is detected. 3-state sensors can provide the same

two responses as 2-state sensors, but can also sense and indicate when the event

occurs at their location (i.e. can self-identify)[33, 36]. 2-state sensors are used in

identifying code problems, while 3-state sensors are used in locating-dominating

problems. As 2-state sensors can only provide a binary response as to whether

they detect an event or not, the location is achieved by having a unique subset

of sensors that can detect an event at a given vertex. While 3-state sensors can

self-identify, all vertices without sensors must be covered by a similar unique set

of sensors to satisfy the locating property (see section 1.3.2 Locating-Dominating

sets). A set L is a locating set 3 if: N(vi) ∩ L ̸= N(vj) ∩ L ∀i, j ∈ V : i ̸= j. The

sets indicated in the four graphs shown in figure 1.1 are all locating sets, but of

different types.

1.3 Location-Domination Concepts

Locating-Dominating Set Identifying Code OLD set Strongly Identifying Code
Vertex {1,3} {1,4,5} {1,2,3} {2,3,4,5}
1 self identifying {1,5} {2,3} {2,3,5}
2 {1,3} {1} {1,3} {2,3}
3 self identifying {1,4} {1,2} {2,3,4}
4 {3} {4,5} {3} {3,4,5}
5 {1} {1,4,5} {1} {4,5}

Table 1.1: Enumeration of results for each location-domination structure in figure 1.1.
Codewords shown in bold for each instance.

3A locating-dominating set operates on the same construct but with the following change:
N(vi) ∩ L ̸= N(vj) ∩ L ∀i, j ∈ V \ S : i ̸= j. Those vertices in S can self report and need
not be specifically separated.
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Figure 1.1: Comparison of Locating-Dominating Set Types

1.3.1 Identifying Codes

Identifying codeswere introduced in 1998 by Karpovsky, Chakrabarty, and Levitin[22],

with the original motivation of processor fault detection. An identifying code, I is

a subset of vertices in a graph such that every vertex in the graph has a neighbor

in I and no two vertices have the same set of neighbors in I. Equivalently, each

vertex is uniquely identified by its set of neighbors in I. For a given code to be

an identifying code, it must be both a locating set and a dominating set, as pre-

sented in section 1.1. The top right graph in figure 1.1 shows an identifying code.

The domination may be verified be observing that each vertex has an adjacent

vertex in the identifying code. One may verify the locating constraint by compar-

ing each vertex’s neighbors (closed) in the set, as enumerated in table 1.1. The

formal definition of identifying codes is almost exactly that of OLD sets, which is

presented in section 1.4, the difference being that OLD sets operate on the open

neighborhood of the vertices, while identifying codes operate on the closed neigh-
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borhoods. Beginning with [22], most work on identifying codes focused on lower

cardinality bounds in arbitrary graphs, infinite graphs of specific structures, and

specific finite graph structures such as trees and bipartite graphs[6, 12, 26].

1.3.2 Locating-Dominating Sets

Locating-dominating sets, LDS, were introduced in 1987 by Peter Slater in [34].

In a locating-dominating set construct, if an event occurs at a vertex with a sensor,

that vertex can self-identify, independently reporting its own location as the event

location. Otherwise, all vertices in the set can only report yes/no if an event occurs

within their neighborhood.4 A LDS is denoted L. This represents a change in the

locating requirements, which is formally stated:

N [vi] ∩ L ̸= N [vj] ∩ L ∀i, j ∈ V \ L|i ̸= j

The top left graph in figure 1.1 shows a locating-dominating set. Again, the dom-

ination is easy to verify. The location property is verified by comparing the in-set

neighbors of vertices 2, 4, and 5 ({1,3},{3}, and {1} respectively), Vertices 1 and 3

are in the set and can self-identify. Locating-dominating sets represent a slightly

smarter version of identifying codes, but are otherwise fundamentally similar. Im-

portantly, all graphs admit an LDS (trivially L = V ), while this is not the case for

other locating-dominating concepts.
4Locating-dominating sets employ 3-state sensors.
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1.3.3 Strongly Identifying Codes

A further connection between OLD sets and identifying codes is found in [19],

where “strongly identifying codes” are introduced. A strongly identifying codemust

meet both the locating and dominating constraints on the open and closed neigh-

borhoods simultaneously. In this way it is a fault-tolerant version of an identifying

code. The bottom right graph in figure 1.1 shows a strongly identifying code. The

domination is easy to verify. Verifying the locating property, however, is somewhat

involved because the graph must be checked for open-neighborhood location and

closed-neighborhood location. The rightmost column in table 1.1 lists the unique

intersections and shows vertices that change between open and closed constructs

in italics. By examination, one can see each of these are unique regardless of

whether the italicized vertex is included or not. Because the strongly identifying

code incorporates the OLD set in addition to the identifying code, most of the

formulations presented in this paper can be easily adapted for use in strongly

identifying codes.

1.4 Open Locating-Dominating Sets

OLD sets, are a fault tolerant5 version of identifying codes and locating-dominating

sets[38]. In an OLD set, if an event occurs at a vertex that is a member of the OLD

set, (i.e. a vertex with a sensor) that vertex (sensor) is unable to report anything.

One may assume the sensing mechanism has been rendered inoperable by the

event or a saboteur, though both conceptualizations overlook more passive po-

tential instances, such as a disease carrier who might be asymptomatic and un-
5OLD sets are arguably “fault dependent” as they will not function if a sensor self reports
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detectable. Other conceptual applications include a time-release contamination

in a water supply system that cannot be detected until it has spread, or a dark

actor in an adversary network who takes pains to hide his/her activity[38]. The

OLD set operates on the open neighborhood of every vertex in the graph, where

N(vi) = Br(vi) \ vi.

OLD sets were first introduced by Slater in [33], with the motivation of an intru-

sion detection sensor network in a group of buildings under the assumption that

the intruder would render the sensor at the target building inoperable. Generally,

this prevents any report from a sensor at the event location. If sensors were able

to detect intrusions at adjacent buildings, then the OLD set represents the loca-

tions at which the sensors should be placed such that one can always immediately

determine the location of the intrusion by the unique subset of sensors in the set

that indicate an event in their neighborhood, allowing for the sabotage. As with

locating-dominating sets and identifying codes, an OLD set is a subset of vertices

that provides that the incoming ball of every vertex in the graph has a unique in-

tersection with the OLD set. Fundamentally, an OLD set must meet a locating

criteria and a dominating criteria, as described in section 1.2, but operating on the

open neighborhoods. An OLD set is denoted D. Formally:

Consider a graph G, with vertex set V , an edge set E, and the open neighbor-

hoods N(v),∀v ∈ V . A set D ⊆ V is an open locating-dominating set if:

∀v ∈ V,N(v) ∩ D ̸= ∅ (1.1)

∀vi, vj ∈ V,where vi ̸= vj, N(vi) ∩ D ̸= N(vj) ∩ D (1.2)

Equation 1.1 is the dominating criteria, and equation 1.2 is the locating crite-
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Figure 1.2: OLD set on 5 Vertex Graph

Vertex vi ∩ D
1 2, 3
2 1, 3
3 1, 2
4 3
5 1

Table 1.2: Enumeration of OLD set Results for 5 Vertex Graph (figure 1.2)

ria. Typically, in the literature, a detection radius of 1 is used, which provides that

the neighborhood consists of adjacent vertices, though other radii are considered

below.

Figure 1.2 [33] depicts an OLD set for a simple graph. A cursory examination

shows that the dominating constraint is satisfied. For the locating constraint, table

1.2 iterates the unique subset of sensors in each vertex’s neighborhood.

1.4.1 Relationship between Open Locating-Dominating Sets,

Locating-Dominating Sets, and Identifying Codes

In investigating the proofs upon which similar work has been conducted, specifi-

cally proofs showing that identifying codes and locating-dominating sets are NP-

Complete, a distinction arises which is irrelevant practically, but important philo-

sophically. Both locating-dominating sets (or locating-dominating codes, as pre-

sented frequently in the early texts) and identifying codes rely on a dominating

12



constraint (|N [v] ∩ D| ≥ 1 ∀v ∈ V ) and a locating constraint, but differ in that a

sensor in a locating-dominating set can self-identify as the source of the event,

where as in an identifying code it can only report that it detects an event. Consid-

ering an OLD set, where a vertex cannot self-report at all, the distinction between

a locating-dominating set and an identifying code is lost. Specifically, an identi-

fying code on the open neighborhood and a locating-dominating set on an open

neighborhood are identical.

1.4.2 OLD set Literature Review

While the literature on OLD sets is not extensive, Lobstein maintains a bibliogra-

phy of over 300 entries of works relating to watching systems, identifying, locating-

dominating, and discriminating codes[27]. Relevant to the concepts of identifying

OLD sets for applications, there are four main themes in the literature: complexity,

admissibility, cardinality and density bounds, and solution approaches.

The problem of finding a dominating set is an extension of a set-cover problem

[17, 14, 42]. The complexity of finding an identifying code was shown to be NP-

Complete by Charon et al. in [5] using a reduction to the 3SAT problem6. The

complexity of finding an OLD set with r=1 is established by Slater in [33], again

using a reduction to the 3SAT problem. In [15], Givens offers a proof of NP-

completeness for Mixed Weight problems, r ≥ 1.

All graphs admit locating-dominating sets [33, 7], which can be verified by the

trivial case L = V . However, not all graphs admit identifying codes [33, 7], as

seen in any graph with twin vertices or hub-and-spoke patterns. Similarly, not all

graphs admit open locating-dominating sets [33, 7, 38]. This is explored later in
6The 3SAT problem is discussed in section 2.1
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Chapter 2, and motivates Chapter 3.

In the inaugural paper onOLD sets, [33], Slater claims and proves the following

relationship between the cardinality of a graph and its OLD set, D, if it admits

one: For a graph G with a minimum OLD set cardinality |D| = k, |V (G)| ≤ 2k −

1. In terms of the OLD set, |D| ≥ log(|V (G)| + 1). The proof follows from the

requirement that for each vertex v there must be a distinct subset N(v)∩S, which

amounts to requiring n distinct subsets. In other words, the objective is to seek the

minimum size of S ⊂ V (G) such that there are k distinct subsets within S, where

a set of size k is known to have 2k subsets. In [7], Chellali et al. offer insight to the

upper bound by showing that for a graph with |V | = n and |D| = k ≥ 2, there exists

a graph of order n, such that k + 1 ≤ n ≤ 2k − 1. They go on to show that there

exists a small, specialized class of graphs of order n ≤ 6, where OLD(G) = n.

For general graphs, however, we have that log(|V (G)| + 1) ≤ |D| ≤ |V (G)| − 1.

Chellali et al. [7] also explore the relation between the size and degree of a graph

and its OLD set: For a graph G of order n and maximum degree δ, if G has an

OLD set, then |D| ≥ 2n
1+δ

. There has also been a flurry of work examining minimum

OLD set density, denoted OLD%(G), on infinite graphs of various constructions

[33, 24, 9]. In [33], Slater provides a general density bound: if a countably infinite

graph G is regular of degree r, then OLD%(G) ≥ 2
(1+r)

.

Researchers have begun to examine approaches for solving identifying codes,

locating-dominating sets, and open locating-dominating sets. This work falls into

three categories. Many papers examine specific algorithms for special graph

structures such as trees, de Brujn graphs, circular and circulant graphs, and

bounded degree graphs [33, 32, 30, 20, 29]. In [36], Suomela examines approxi-

matability for location-domination problems, providing that a minimum cardinality

identifying or locating-dominating code can be approximated within a logarithmic
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factor, but sublogarithmic factors are intractable. In [20], Horan, Adachi, and Bak

examine the use of quantum D-wave computing to identify solutions to certain

locating-dominating and identifying code problems, specifically using a reduction

to a satisfiability problem of a de Brujn graph. While the structure of an arbitrary

identifying or locating-dominating set is still too complex to be easily approximated

using this technique, quantum approaches will be exciting to watch in the future.

In [42, 43], Xu and Xiao examine programming formulations to solve identifying

code problems. These results, along with Suomela [36] touch on the concept of a

pre-computed distinguishing matrix, much like the independently derived β matrix

presented in Chapter 2. Xu and Xiao go on to explore solving the identifying code

problem via a genetic algorithm in [43], but with approximate results for graph

sizes that are solved exactly far more quickly via methods presented in Chap-

ter 2. There has also been recent work in examining more complex instances of

locating-dominating problems such as multi-stage optimization problems, as ex-

plored in [35] by Sonyç. These seem to add an artificial level of complexity to justify

the multi-stage construct. Examples include examining an attacker-defender con-

struct for identifying codes and incorporating Stackleberg concepts from game-

theory.

1.4.3 Thesis Outline

To be useful in applications, methods are needed to quickly identify OLD sets in

real-world, finite graphs. Off the shelf branch and bound codes for binary ILPs

offer a method by which OLD sets can be identified, given any underlying graph

as an input. Chapter 2 addresses traditional OLD sets and presents an integer lin-

ear program (ILP) formulation for identification of OLD sets, as well as examples
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and results on graphs from the literature and random graphs of various construc-

tions. This chapter further explores the complexity of this problem class, offering

a more concise proof of NP-Completeness for identifying an OLD set. Within this

chapter, it is noted that many real world graphs do not admit OLD sets because

of a specific, and common, construction involving a hub-and-spoke pattern. This

construct is akin to a “strong support vertex,” as covered in [32, 18]. To address

this problem, Chapter 3 presents a new concept called a “Maximum Covering

OLD set,” which employs a maximum set covering concept to the OLD set prob-

lem. This chapter also presents an Integer Program to identify MaximumCovering

OLD sets, explores the complexity of these sets, and presents results on various

graphs. Chapter 4 expands upon the traditional OLD sets discussed in literature,

where r = 1, and explores cases when r ≥ 1. This chapter covers formula-

tions and results for two general cases. The first case is homogeneous, where

all strengths are the same: 1 ≤ ri = r̂ ∀i ∈ V . The second case is for hetero-

geneous radii, also called Mixed Weight open locating-dominating sets (MWOLD

sets), where ri ≥ 1 ∀i ∈ V , but each vertex may have a sensor of any allow-

able strength. These sets were recently introduced by Givens in [15]. Finally,

Chapter 5 explores the use of OLD sets, Identifying Codes, Strongly Identifying

Codes, and Locating-Dominating sets to monitor criminal and terrorist networks

to learn of pending attacks and identify those planning to carry them out. Chapter

5 presents a combined integer program that simultaneously solves for identifying

codes and locating-dominating sets as a comprehensive decision support tool for

government authorities to optimally monitor such networks given a variety of tools

that can be used in conjunction with each other.
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Chapter 2

OLD set Formulation and

Complexity
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While much of the OLD set literature to date explores the theoretical side of

this concept, applications require methods to quickly identify an OLD set on a

given graph. Integer programming offers a potential method by which to identify

these sets. Such methods have been briefly, and conceptually explored by Xu

and Xiao in [42, 43] and Suomela in [36], but remained focused on theoretical

formulations, rather than exploring results on specific graphs. Finding identifying

codes and OLD sets of minimum cardinality were shown to be NP-Hard by Charon

in[5] and Slater in [33], respectively, though a more straight-forward proof for OLD

set complexity is offered in section 2.1. This complexity suggests larger problem

instances will experience run-time issues when using optimization solvers, which

is consistent with results presented later in this chapter. For this chapter, the

sensor coverage radius is assumed to be equal to one, and the neighborhood of

a vertex is represented by its open adjacency matrix, A, with elements αi,j, where

αi,j = 1 if d(i, j) = 1 and is 0 otherwise. Graphs are assumed to be undirected.

2.1 OLD set Complexity: Coverage Radius 1

Finding an OLD set of a given size, k, for a coverage radius r = 1was shown to be

NP Complete in [33] using a reduction from the satisfiability problem (3SAT). The

3SAT problem consists of a set of variables, or literals, X = {xi, i = 1, 2, ..., n},

which can be TRUE or FALSE, and a set of clauses Θ = {cj, j = 1, 2, ...,m}. As

each variable may be negated, let ui ∈ U = {x1, x2, ..., xn, x̄1, x̄2, ..., x̄n}. Each

clause in the 3SAT problem contains exactly 3 disjunctively combined variables,

any of which may be negated, for example c1 = {x1 ∨ x̄2 ∨ x3}. The clause eval-

uates to TRUE if any of the three conditions evaluate as TRUE. For the example

clause c1, x1 must be TRUE or x2 must be FALSE or x3 must be TRUE. The clause
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will evaluate as FALSE only if x1 is FALSE and x2 is TRUE and x3 is FALSE. Each

clause is conjunctively combined into an expression Υ = c1∧ c2∧ ...∧ cm. For Υ to

evaluate to TRUE, each clause must evaluate to TRUE. To satisfy this problem,

there must exist some assignment of TRUE/FALSE to each variable such that Υ

evaluates to TRUE. 3SAT is known to be NP Complete, as presented in Garey

and Johnson’s seminal text on Computational Complexity[14]. The construction

presented by Slater [33] used graphs that are polynomial in the size of the 3SAT,

21N + 7M , and needed an OLD set of size 10N + 3M . Offered below is an alter-

nate construction using an 8N+3M construction from the 3SAT problem, needing

an OLD set of size 5N + 2M . This proof is a modification of the identifying code

construction and proof offered by Charon in [5].

In the spirit of many of the papers in the identifying code and locating-dominating

set literature, let OS(v) = N(v) ∩ D, i.e. the set of neighbors of vertex v in the

OLD set.

Before proceeding with the proof, consider the phrase “an OLD set of size at

most k.”

Lemma 2.1 There exists an Open Locating-Dominating Set of size “at most k” if

and only if there exists an OLD set of exactly size k.

Proof: If there exists an OLD set of size k, there exists one of size at most k. This

is equivalent to saying if there exists an OLD set of size k, there exists a set of

size k′ ≤ k, which trivially holds at equality. Conversely, if there exists an OLD set

of size at most k, there exists one of size k. This rests on the fact that one can

always add vertices to an OLD set, and it will remain an OLD set.

Consider a feasible OLD set D, on any graph, G = (V,E), where |D| < |V |,
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|V | ≥ 3.1 Consider any two vertices, v1, v2. Since D is a feasible OLD set, each

vertex is covered, and the two vertices are separated. A vertex v3 is then added

as a codeword to the OLD set: D′ = D ∪ v3. The action falls into one of three

exhaustive categories: v3 is not in the neighborhood of either vertex; v3 is in the

neighborhoods of both vertices; or v3 is in the neighborhood of one vertex, but

not the other. In the first case, no change occurs in the domination or separation

of either vertex: N(vi) ∩ D = N(vi) ∩ D′, i = {1, 2}. In the second case v3 ∈

N(vi), i = {1, 2}: both vertices meet the dominating constraint under D′ as they

did underD. Since they were separated underD, they remain separated underD′

because there is already some other codeword vs ∈ D : vs ∈ OS(v1), vs /∈ OS(v2).

Adding v3 to D does not alter this separation; D′ is feasible. In the third case,

let v3 ∈ N(v1), v3 /∈ N(v2). Since D is feasible, both vertices are still covered and

there still must exist some codeword vs which separates v1 and v2. This separation

is unchanged by adding v3. Since D is feasible, D′ is also feasible in all cases,

and it is clear adding codewords to a feasible OLD set will yield another feasible

OLD set. Therefore, if there exists a feasible OLD set of size k′ ≤ k, there also

exists a feasible OLD set of size k. �

Let r = 1. The following decision problem is NP-complete:

Name: Open Locating-Dominating Set (OLD set)

Question: Is there an OLD set D ⊂ V of size at most k?

Instance: A connected graph G = (V,E) and an integer k ≤ |V |.

Proof: First, OLD set is ∈ NP. Given a solution, its accuracy may be verified

in polynomial time. To check that every vertex is covered, one must examine

each vertex’s neighborhood to verify at least one neighbor is a codeword. This

is polynomial in |V |, and could approach |V 2| in the worst case, for a complete
1No graph with |V | < 3 has a feasible OLD set that satisfies |D| < |V |.
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graph. To check that no two vertex neighborhoods have the same intersection

with D, each vertex must be examined pairwise with all other vertices, requiring∑|V |
i=1(i − 1) = |V 2|−|V |

2
comparisons, each comparison involving a maximum of

D ≤ |V | individual pair checks. The overall time to verify is 1
2
(|V 3| − |V 2|) + |V 2|,

which is polynomial in |V |.

Next, the 3SAT problem is reduced to the OLD set problem, by means of a

construction that is polynomial in the size of the 3SAT. For every variable xi ∈ X

in the 3SAT, construct a graph Gxi
= (Vxi

, Exi
) as follows:

Vxi
= {ai, bi, ci, di, ei, fi, xi, x̄i}

Exi
= {(ai, bi), (bi, ci), (ci, xi), (ci, x̄i), (xi, x̄i), (xi, di), (x̄i, di), (di, ei), (ei, fi)}

|Vxi
| = 8, |Exi

| = 9

For each clause cj ∈ Θ, construct a graph Gcj = (Vcj , Ecj) as follows:

Vcj = {θj, βj, γj}

Ecj = {(θj, βj), (βj, γj)}

To this, add edges from θj to each variable uj1, uj2, uj3 as they appear in the clause

cj.

Figure 2.1: Construction of the Gxi and Gcj Graphs
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G = (V,E) : V =

(
n∪

i=1

Vxi

)
∪

(
m∪
j=1

Vcj

)
(2.1)

E =

(
n∪

i=1

Exi

)
∪

(
m∪
j=1

Vcj

)
∪

 m∪
j=1

k={1,2,3}

(θj, ujk)

 (2.2)

The OLD set on G will be as follows: bi, ci, di, ei,∈ D, ∀i = 1, ..., n, and θj, βj ∈

D, ∀j = 1, ...,m. If xi = TRUE, xi ∈ D, otherwise x̄i ∈ D. This construction is

polynomial in n +m, the size of 3SAT, since |V | = 8n + 3m, and |E| = 9n + 5m.

k = |D| = 5n+ 2m.

Theorem 2.1 The 3SAT problem evaluates to true if and only if there exists a

feasible OLD set, D, of size at most k on G.

Proof: D must be a feasible OLD set of size at most k = 5n + 2m, and it is a

minimum cardinality OLD set on G.

Examination of Gxi
,∀xi ∈ X, i = 1, ..., n, shows the following: to cover ai, vertex

bi must be included in D. Similarly, ei ∈ D to cover fi. To cover bi, either ai, or ci

must be inD. Similarly, to cover ei, either di, or fi must be inD. To separate ci and

di from ai and fi, respectively, either xi or x̄i must be in D. This will also separate

xi and x̄i. Note that including ai or ci is arbitrary, as is di or fi, but |Vxi
| ∩ D ≥ 5 to

ensure a feasible OLD set. Choose ci and di, noting that one is needed to ensure

coverage for xi and x̄i.

Examination of Gcj ,∀cj ∈ Θ, j = 1, ...,m shows that βj ∈ D to cover θj and γj.

Either θj or γj must be inD to cover βj. Inclusion of θj as a codeword is necessary

to separate x and x̄. We will choose θj. Note that |Vcj ∩ D| ≥ 2.

This construction yields an OLD set on G of size |D| = 5n + 2m, consisting of
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θj, βj,∀j = 1, ...,m and bi, ci, di, ei and xi or x̄i, whichever evaluates to TRUE,

∀i = 1, ..., n.

Examine the claim that if there exists a feasible OLD set, D of size at most

k = 5n + 2m, as shown above, then Υ can be satisfied. The inclusion of xi xor

x̄i ensures a valid truth assignment for the 3SAT problem, as each variable or its

negation will evaluate to TRUE. If neither evaluate to TRUE, then ci and di are not

separated from ai and fi respectively. If both evaluate to TRUE, then |Vxi
∩D| = 6

and |D| > 5n+2m. A brief examination shows that all vertices are covered, and all

vertices in Vxi
are separated. Since N(γj) = {βj}, to separate θj and γj, θj must

be covered by a vertex other than βj. Therefore, one of the literals connected

to θj must be included in D. Because of the inclusion condition for xi and x̄1,

this is equivalent to at least one literal evaluating to TRUE for each clause. This

constitutes a satisfying solution to Υ.

Conversely, if Υ can be satisfied, then there exists a feasible OLD set, D, on G

of size at most k. Consider the construction of D presented above, of size k. If Υ

can be satisfied, at least one literal in each clause must evaluate to TRUE. Since

each literal xi or x̄i that evaluates to true is in D, each θj vertex, j = 1, ...,m will

be connected to at least one vertex in D other than βj. This ensures separation

for θj and γj, ∀j = 1, ...,m. We have previously shown that an OLD set of size k

guarantees coverage of all vertices and ensures separation of all vertices except

θj and γj. Thus, if Υ can be satisfied, then there exists a feasible OLD set D on

G of size at most k = 5n+ 2m.

The contrapositive of this second claim also yields insight: If there does not exist a

feasible OLD setD onG of size at most k, thenΥ cannot be satisfied. As shown, a

D of size k covers all vertices and ensures separation of all vertices except for the

pairs θj and γj, ∀j = 1, ...,m. If there does not exist a feasible OLD set, then for
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at least one j ∈ J , θj and γj cannot be separated. (i.e. no vertex in D separates

OS(θj) and OS(γj)). Since θj is connected to the three literals in clause cj, and

any literal that evaluates to TRUE is in D, uj1, uj2, uj3 /∈ D. Therefore, clause cj

will evaluate to FALSE, and Υ cannot be satisfied.

Thus, the OLD set problem is in NP, and the problem and solution can be

reduced in polynomial time to/from the 3SAT problem, known to be NP-complete.

Therefore, the OLD set problem is NP-complete. �

2.2 OLD set ILP Formulation

In the spirit of the massive corpus using integer linear programming (ILP) for net-

work location problems, including a significant contribution from Daskin’s text on

Network Location Theory [10], integer programs are a promising method by which

to identify open locating-dominating sets. Some programming formulations have

been explored [43, 36], but are mainly conceptual in nature without specific, us-

able formulations. Use of integer programming to directly identify OLD sets of

minimum cardinality on arbitrary graphs was first explored in 2014 [38].

2.2.1 Pre-constructed ILP Formulation

The initial ILP formulation,2 referred to as the “pre-constructed formulation” takes

as input an undirected graph G = (V,E), represented by the graph’s adjacency

matrix, A, with elements αi,j. Generally, αi,j = 1 represents coverage, i.e. two

vertices being within the specified coverage radius, r. For this chapter, r = 1 and

the A is equivalent to the adjacency matrix, though this will not be the case in later
2Work in this section was originally presented in [38]
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chapters.

αi,j =


1 if d(i, j) ≤ r ≡ (i, j) ∈ E

0 otherwise

The formulation uses a pre-constructed vertex-pair matrix, β, in the locating

constraint. The β matrix relies on a pre-processing step to compare the shared

neighborhoods of each vertex pair in the graph, similar to the concepts in [43, 36].

Vertex pairs with shared neighbors are included in the set χ = (i, j) ∀(i, j) ∈ V :

d(i, j) ≤ 2. Note that if the shortest path distance is greater than 2, the vertices

share no neighbors and need not be considered. |χ| ≤ n2−n
2

though the worst

case rarely arises in practice. The β matrix is |χ| × n, indexed by l = (i, j) ∈ χ

and k ∈ V .

βl,k =


1 if k ∈ N(i) or N(j) but not both

0 otherwise

The pre-constructed formulation is as follows:

min
∑
j∈V

xj (2.3)

s.t.
∑
j∈V

αi,jxj ≥ 1 ∀ i ∈ V (2.4)

∑
j

βlxj ≥ 1 ∀ l ∈ χ (2.5)

where xj =


1 if j ∈ D

0 otherwise
(2.6)

The correctness of this formulation is easily established. The objective function
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seeks to minimize the number of vertices included in the set. The dominating

constraint, 2.4, ensures that each vertex i ∈ V has at least one neighbor in the

OLD set. The locating constraint, 2.5, ensures that, for every vertex pair with

shared neighbors, at least one vertex that separates i and j is included in the

OLD set. Thus, every vertex is covered and separated from every other, and the

formulation produces a minimum cardinality OLD set.

2.2.2 Dynamic ILP Formulation

The primary drawback to the formulation presented in equations 2.3-2.6 is the

reliance on specific preprocessing in generating the β matrix. The step is quite

cumbersome and increases the storage size of the problem. The preprocessing

also limits the overall flexibility of the model. As further explored in chapter 3,

extending the formulation to cover dynamic situations requires a method that does

not rely on such a heavy preprocessing step. A better formulation,3 referred to as

the “dynamic formulation”, eliminates the preconstructed β matrix altogether and

uses an n× n matrix, Ω.

Ωi,j =


1 if 0 < d(i, j) ≤ 2

0 otherwise

The associated locating constraint uses the A matrix, also n× n, already needed

for the dominating constraint. Use of the Ωmatrix decreases the worst case prob-

lem storage size by a factor of n. Generation of the Ω matrix from the graph’s ad-

jacency matrix is via a small computer program, whose pseudo code is included

in appendix B. The code utilizes the Floyd-Warshall [1] algorithm to generate the
3Work in this section was originally presented in [37]
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shortest path distances between each vertex pair, then assigns the appropriate

value to Ωi,j based on the distance between i and j. The dynamic formulation is

as follows:

min
∑
j∈V

xj (2.7)

s.t.
∑
j∈V

αi,jxj ≥ 1 ∀ i ∈ V (2.8)

∑
k

(αi,k − αj,k)
2xk ≥ Ωi,j ∀ i, j ∈ V (2.9)

where xj =


1 if j ∈ D

0 otherwise
(2.10)

The objective function is the same as before and seeks to minimize the number

of vertices included in the OLD set. This formulation again uses the A matrix to

satisfy the dominating constraint, 2.8: for every vertex v, at least one neighbor

must be a codeword. To satisfy the locating constraint, 2.9, it uses the previously

introduced Ω matrix. If Ωi,j = 0 (the vertices share no neighbors, or i = j) then

no constraint is posed regarding selection of vertices in the OLD set since all xj

values can equal 0. If Ωi,j = 1, meaning i and j share at least one neighbor, then

the constraint will function in a similar manner to 2.5: The left hand side (LHS) of

2.9 seeks a vertex that appears in the neighborhood of one vertex i or j, but not

both, as in the β matrix. The constraint demands at least one distinguishing vertex

be included in D for each pair of vertices with shared neighbors. (αi,k − αj,k)
2 will

equal 1 where the vertex vk is in N(vi) xor N(vj). The LHS is the sum of binary

components, so the range is discrete and ≥ 0. Thus, the formulation will produce
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the minimum cardinality feasible OLD set, if one exists.

The objective function could be easily supplemented with costs, cj, to reward

or penalize inclusion of specific vertices in the OLD set. Consider
∑

j cjxj. Con-

ceptually this could represent varied costs for placing sensors at certain locations.

2.3 OLD set Results and Examples

Implementation of the ILP in equations 2.7-2.10 was completed using AMPL (A

Mathematical Programming Language). AMPL is a commercial modeling lan-

guage designed for optimization problems [13]. The application supports numer-

ous open-source and commercially available solvers. The primary solver used for

this work is Gurobi. “Gurobi’s outstanding performance has been demonstrated

through leadership in public benchmark tests and dramatic improvement in solve

times year after year”[21]. Gurobi supports linear and convex quadratic optimiza-

tion in continuous and integer variables, and uses primal and dual simplex and

interior-point (barrier) for continuous problems; and advanced branch-and-bound

with presolve, feasibility heuristics and cut generators for integer problems [21].

Examples of AMPL model and data files used throughout this work are included

in Appendix A.

2.3.1 OLD sets on Randomly Generated Graphs

To gain a feel for the ILP’s performance on “real world” graphs, it was tested it

on eight randomly generated, 100 vertex, graphs. Three basic constructs were

explored: Geometric, Erdős-Reyni, and Scale Free.
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Random geometric graphs place each vertex at a random location on a unit

square, and connect (establish an edge between) two vertices if they are within a

specified distance of each other [25]. Erdős-Reyni graphs establish edges based

on a specified probability, p, i.e. each vertex pair vi, vj ∈ V (G) has a probabil-

ity, p, of having an edge (vi, vj) ∈ E(G) [25]. Scale-free graphs, also known as

power-law and preferential attachment, are assigned connections based on pref-

erential attachment. Vertices are added one at a time, and connected to a single

existing vertex with a probability proportional to the existing number of edges of

that vertex[2]. These graphs follow power-law distributions, with a small num-

ber of high degree vertices, and a large number of small degree vertices. Graph

generation was further controlled by two factors: eigenvalues (λ), and the Randic

Index.

The eigenvalue used is the first non-zero eigenvalue, λ2, of the Laplacian ma-

trix4 of the graph, assuming the eigenvalues are labeled {λ1, λ2, . . .}. Spectral

theory shows the smallest eigenvalue, λ1, is equal to zero for graph applications

[8]. λ2, then, offers insight into the connectedness of the graph. A graph with

a small λ2 value contains weakly connected components. A high λ2 value rep-

resents a graph with strongly connected components, and generally a smaller

graph diameter[8]. (Graph diameter is the max distance between any two ver-

tices in the graph: max d(i, j) ∀(i, j) ∈ V .) If one considers a process traversing

the graph, the λ2 value similarly gives insight into the graph’s likelihood to syn-

chronize. A high λ2 value represents a graph that is likely to synchronize (many

paths between components), while a low value represents a graph that is unlikely
4The Laplacian matrix, L, for a graph is defined as L=D-A, where D is a diagonal matrix with

the degree of each vertex on the diagonal and zeros elsewhere, and A is the graph’s adjacency
matrix. The resulting matrix has the vertex’s degree on the diagonal, and -1 for each (i, j) entry if
i and j are adjacent.
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to synchronize (few connections between components). Varying this parameter

allowed examination of differences between highly connected graphs and graphs

with less connected components.

The Randic Index, S, is defined as S =
∑

u,v∈E(V ) degu · degv, where degv de-

notes the degree of vertex v [25]. It represents the extent to which high degree

vertices are connected to other high degree vertices (high S values) or to which

high degree vertices are connected to low degree vertices (low S values).

To generate six of the graphs, a random graph generator was tweaked to max-

imize or minimize the eigenvalue of the graph’s Laplacian matrix. For the geomet-

ric graphs, the generator was also used to generate two graphs that maximized

or minimized the Randic-index.

The eight graphs studied are as follows:

1. Geometric, Maximizing λ2

2. Geometric, Minimizing λ2*

3. Geometric, Maximizing S

4. Geometric, Minimizing S*

5. Erdős-Reyni, Maximizing λ2

6. Erdős-Renyi, Minimizing λ2

7. Scale-Free, Maximizing λ2*

8. Scale-Free, Minimizing λ2*

(Entries marked with an asterisk had no feasible solution)
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The main results are summarized in Table 2.1, comparing the pre-constructed

formulation (using the the pre-constructed β matrix, with row elements, χ, to cap-

ture vertex pairs with shared neighborhoods) and the dynamic formulation (using

the Ωmatrix to identify vertex pairs with shared neighbors). All computations were

completed using AMPL with a Gurobi 8.1 solver running on a Scientific Linux OS

with AMD FX-8350 eight-core 4.0GHz processor. The total number of constraints

for any program under the pre-constructed formulation was 100+ |χ|. Constraints

under the dynamic formulation were 100 + 10,000. The solve time and the number

of simplex and branch and cut iterations required to identify the optimal set D are

also reported for each formulation. The instances denoted by * had no feasible

solutions, for reasons discussed in section 2.3.4.

2.3.2 Comparison and Observations

For graphs on which there were feasible OLD sets, |D| ≈ V
3
. This approximate

relationship held for graphs of various generation rules, average vertex degrees,

and max vertex degrees. Table 2.1 lists run-times and other solution data points

for each of the graphs with feasible solutions, and offers a comparison between

the pre-constructed and dynamic formulations. As illustrated in figure 2.2, the run

times for the two constructs was nearly identical and there was no consistency to

which construct ran faster for a particular graph. Figures 2.3 and 2.4 show the

OLD sets on select Geometric and Erdős-Rényi graphs.

2.3.3 Computational Size Limitations of the ILP

To explore the upper limit of a direct approach, additional larger graphs were gen-

erated and tested. A Geometric construction with 1,000 vertices with a 0.07 con-
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Geo. Geo. E-R E-R
Max E Max S Max E Min E

Optimal Set Size |D| 38 26 31 35
Pr
e-
C
on
st
ru
ct
ed Constraints 1618 2812 1479 837

Constraints (post pre-solve) 1081 92 289 797
|χ| 1565 2712 1379 737
Simplex 478 34 216,454 2,689
Br. & Cut 1 1 7,930 271
Solve Time (s) 0.053 0.37 53.8 0.843

D
yn
am

ic

Constraints 10,100 10,100 10,100 10,100
Constraints (post pre-solve) 2,095 173 2,858 1,499
Simplex 457 37 154,721 3,635
Br. & Cut 1 1 5,743 354
Solve Time (s) 0.058 0.37 45.7 0.871

Table 2.1: ILP Results on Randomly Generated Graphs

Figure 2.2: Plot of Pre-Constructed vs. Dynamic Run Times
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Figure 2.3: OLD set on 100 Vertex Geometric Graph (Max λ2)
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Figure 2.4: OLD set on 100 Vertex Erdős-Rényi Graph (Min λ2)
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nection radius was terminated after 269,417s (almost 75 hours), having explored

6,519,613 nodes of the branch and bound. This process involved 1,490,325,779

simplex iterations, and produced a best feasible solution of 260 and a best bound

of 258, gap 0.7692%. The graph and best feasible solution are shown in figure

2.5. The solver identified a solution of 260 sensors within the first 10 minutes, and

closed the gap to under 2% in less than 2 hours. It took the remaining three days to

try to close the remaining 2%, demonstrating a typical property of an NP-complete

integer programming problem. Additional techniques, such as a relaxation tech-

nique like Lagrangian Relaxation, or a heuristic method such as Tabu Search or

Simulated Annealing would be necessary to effectively generate good solutions.

These solutions could be used on their own if they did not pose excess cost to

the decision maker, or could be used as warm-starts for a solver to hone in on the

optimal solution.

2.3.4 Admissibility and Inadmissibility

Four of these graphs contained no feasible OLD sets. The reason for this is

straightforward. Observe that if vi, vj ∈ V and N(vi) = N(vj) then N(vi) ∩ D =

N(vj) ∩ D. A graph with such a construction will never admit an OLD set, as it is

impossible to satisfy equation 1.2, the separation constraint. Most of the vertex

pairs that prohibit construction of a feasible OLD set stem from a single structure,

that of a vertex with multiple leaves. This gives rise to a second observation:

For a graph, G, if vi ∈ V (G) has more than one neighbor of degree 1,

then no OLD set exists in G.

The reason for the infeasibility is clear if one examines a star graph, shown in

figure 2.6. The star graph has a central hub connected to multiple leaves, which
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Figure 2.5: Best Feasible OLD set on a 1,000 Vertex Geometric Graph
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Figure 2.6: Star Graph

are vertices of degree 1. Consider a hub, vertex p, of degree deg(p) ≥ 3, with r

leaves, 2 ≤ r < deg(p). These leaves are all of degree 1, with p being their only

neighbor by definition. Since N(vi) = p ∀i ∈ r, then N(vi) = N(vj) ∀i, j ∈ r.

Consider the following lemma and theorem:

Lemma 2.2 In a feasible OLD set, for every pair of vertices v1, v2 ∈ V, v1 ̸= v2,∃

some v3 ∈ V : v3 ∈ D, v3 ∈ N(v1), v3 ̸∈ N(v2).

Proof: Suppose there does not exist a vertex v3 ∈ D : v3 ∈ N(v1), v3 ̸∈ N(v2).

Then, N(v1)∩D = N(v2)∩D. But this contradicts (1.2) in the definition of an OLD

set. �

Theorem 2.2 If a graph has two or more vertices with the same neighborhoods

(N(v1) = N(v2), v1 ̸= v2), it has no feasible OLD sets.

Proof: Assume there is a feasible OLD set, D ⊆ G and there exist some vertices

v1, v2 ∈ V : N(v1) = N(v2), v1 ̸= v2. Since D is feasible, lemma 2.2 provides:

∃ v3 : v3 ∈ N(v1), v3 ̸∈ N(v2). But then N(v1) ̸= N(v2), which contradicts the initial

assumption. �

By Theorem 2.2, the star graph admits no feasible OLD sets. Other graphs

that do not have feasible OLD sets by theorem 2.2 include P3, a path with three

vertices, as seen in figure 3.2, and C4, a cycle on four vertices, arranged and
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connected in a square pattern. The geometric graph which minimized the Randic-

index, where vertices of high degree are conected to vertices of low degree gener-

ates a pattern with nodes of high degree connected to many leaves. This pattern

violates Theorem 2.2, and does not admit an OLD set. Scale-Free, or power-law,

graphs also tend to include this leaf structure and as such are poor candidates

for OLD sets. The omission of these graphs from consideration limits applications

for OLD sets since many graphs, such as those representing social networks, fall

under this category [2]. This pattern is also called a “hub-and-spoke”: figure 2.7

depicts such a pattern, where v1 is the hub, and v2, v3 and v4 are the leaves. The

prevalence of such patterns in real world graphs gives rise to the question of how

to identify a set that most closely meets the requirements of an OLD set on graphs

that do not fully admit feasible OLD sets.

Figure 2.7: Hub-and-Spoke Pattern
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Chapter 3

Maximum Covering OLD set
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As discussed in previous chapters, not all graphs admit identifying codes [4,

12] or OLD sets [33, 38]. However, there may still be times when an OLD set

construct is desired to inform sensor placement or other efforts. The question then

arises if it is possible to identify a subgraph that does admit an OLD set. That is,

can one find a set of vertices that is twin-free and where all vertices can be covered

and separated? This chapter explores and answers this question, drawing heavily

from standard network location theory and the concept of maximum covering sets.

The resulting construct is a Maximum Covering OLD set.1 The ILP presented in

Chapter 2 is modified to identify maximum covering OLD sets, and preliminary

results are explored.

3.1 IP Formulation

If the locating condition of the OLD set is relaxed, infeasibility can be avoided.

Consider a construct where any vertex that is included, or “covered,” satisfies

both the dominating and locating constraints, but any vertex that is excluded, “not

covered,” bears no effect on the selection of codewords. This behavior could

come from a preprocessing step to analyze twin-free areas of the graph, or selec-

tion of a twin-free area could be a function of the model and the optimal solution.

This sort of functionality is found in maximum covering sets, discussed below, and

allows for easy inclusion of trade off parameters and other modeling features, and

is the desirable approach.

Let the set of vertices that are covered be called C. The natural objective

is to maximize |C|, while adhering to the requirements of the OLD set for any
1Work in this chapter was presented in 2016 at the Operations Research Conference in Ham-

burg, Germany, and appears in the conference proceedings [37].
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covered vertex. The result is a “maximum covering” OLD set. This is similar to

the problem that frequently arises in network location theory literature of a similar

name. Daskin’s text on network location provides an excellent examination of the

topic [10]. There are three primary cases where this construct is useful. The first

is on a graph that does not admit an OLD set (for reasons previously discussed).

The second is a scenario in which the number of sensors that may be placed is

limited, either to some fixed, apriori number, or by resource limitations such as

cost. The third case explores the tradeoff between coverage and the number of

sensors required to attain the coverage; onemay consider weighted parameters to

help shape a tradeoff curve for a given application. Note that this is a fundamental

change in the concept of domination: it is no longer necessary that every vertex

have a neighbor that is a codeword.

A considerable challenge of this construction, however, is the need for the

vertices to be considered dynamically within an IP. If a vertex is uncovered, it

poses no separation requirement with its pairwise neighbors and such constraints

may be ignored. With the pre-constructed ILP (equations 2.3-2.6) presented in

chapter 2.2 that used the β matrix, such dynamic consideration is impossible. As

shown below, the dynamic formulation, using the Ω matrix, can be extended to

provide this behavior in a single-stage IP.

The key difference in the maximum covering OLD set is that vertices that are

not covered have no bearing on selection of codewords. As such, any dominating

or locating constraint that involves such a vertex should be ignored, by having the

right hand side of the constraint set to zero. This must be dynamic to allow the

“selection” of the covered set, C, within the optimization formulation itself. This is
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accomplished by the introduction of a new variable yi where

yi =


1 if vertex i ∈ C

0 otherwise

For flexibility, the IP below includes weighting parameter, γ, in the objective

function to facilitate future tradeoff explorations. The addition of the yi decision

variable leads to a quadratically constrained IP with a linear objective function and

binary decision variables.

min γ
∑
j∈V

cjxj − (1− γ)
∑
i∈V

biyi (3.1)

s.t.
∑
j∈V

αi,jxj ≥ yi ∀ i ∈ V (3.2)

∑
k

(αi,k − αj,k)
2xk ≥ Ωi,jyiyj ∀ i, j ∈ V (3.3)

∑
j∈V

xj ≤ P optional (3.4)

xj ∈ 0, 1 (3.5)

yi ∈ 0, 1 (3.6)

To ensure correctness, the objective and constraints must again be examined to

ensure the desired behavior. To maximize the coverage, (max |C|), the objective

is set to max
∑

i yi. As is frequently seen in optimization approaches, maximizing

a variable is equivalent to minimizing the negative of that variable2. max
∑

i yi ≡
2Consider maximizing the variable x and minimizing −x, where x ∈ (1, 100). In both cases,

the optimal value is x = 100: For the maximization, the objective is 100. For the minimization, the
objective is -100
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min(−
∑

i yi). This minimization formulation may be directly combined with the

minimal |D| objective to introduce a multiobjective optimization. To allow greater

flexibility, the weighting parameter γ is included to control the tradeoff between

the cardinality objectives. Weighting/cost parameters cj and bi are also included

to reflect potential costs of establishing a sensor at a particular location, or the

importance of covering a specific vertex.

The new dominating constraint, equation (3.2), demonstrates the desired dy-

namic nature:
∑

j αi,jxj ≥ yi ∀i. When yi = 0, the constraint right hand side

(RHS) is zero and functionally removes any constraint on the selection of code-

words, xj, stemming from that vertex vi. When yi = 1, the RHS acts as before,

requiring selection of at least one codeword adjacent to yi to satisfy the dominating

constraint.

The locating constraint, equation (3.3) is more difficult and introduces a non-

linear term, but follows directly from the previous section with the introduction of

the Ω matrix. The locating constraint must be enforced when all of the following

conditions are met:

1. vertices vi and vj share at least one neighbor (Ωi,j = 1)

2. vertex vi is included ∈ C (yi = 1)

3. vertex vj is included ∈ C (yj = 1)

If these three are met, then, by lemma 2.2, at least one facility location must

distinguish OS(vi) and OS(vj). To ensure this, the RHS should equal 1, which will

force the LHS to take on a value ≥ 1, thus ensuring some vertex vk that separates

vi and vj is included in the OLD set. This will satisfy the locating constraint. If

any of the three are NOT met, then RHS → 0 and will impose no constraint on
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codeword selection. The RHS Ωi,jyiyj yields this desired behavior. The last two

variables introduce the non-linear term, though the RHS is still binary.

An optional constraint could be added to govern the maximum number of fa-

cilities to be placed,
∑

j xj ≤ P , as is traditionally found in the network location

theory “fixed-P” problem.

3.2 Results and Examples

Below are preliminary results and visualizations to further demonstrate this con-

struct.

Maximal Covering OLD set on a 5 Vertex Graph

Figure 3.1: Maximum Covering OLD set, P = 2

The fixed-P covering set on the original 5 vertex graph demonstrates the set C.

By limiting the number of facilities to 2, not all 5 vertices can be covered. The
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N(vi) ∩ D
i D = {1, 3} D = {1, 2} D = {1, 4} D = {1, 5} D = {4, 5}
1 v3 v2 - v5 v5
2 v1, v3 v1 v1 v1 -
3 v1 v1, v3 v1, v4 v1* v4
4 v3* - - v5* v5*
5 v1* v1* v1* v1* v4

Table 3.1: Enumeration of Maximum Covering OLD set on a 5 Vertex Graph

IP solution identifies 3 vertices that can be covered by an OLD set with |D| = 2.

The correctness can be verified by examining N(vi) ∩ D. Note that due to the

symmetry of the graph, several alternate solutions are not explicitly listed. For

instance {1, 2} is the same as {2, 3}, and {1, 4} is functionally the same as {3, 5}.

Three Vertex Graph with No OLD set

Figure 3.2: Maximal Covering Set on a 3 Vertex Path, P3
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This formulation is a small scale example of a case where a traditional OLD set

would be infeasible as there would be no possible distinction between the two

end vertices (they have the same neighborhood). Themaximum coveringOLD set

permits a feasible solution by excluding one vertex from coverage. It is interesting

to note that the solver chose a vertex /∈ C as a codeword. There is an alternate

optimal solution where both codewords are in ∈ C. If it is desirable that only

vertices that are covered be codewords, one may add a simple constraint to the

IP: xi ≤ yi ∀i ∈ V . If vertex i is not covered (yi = 0), then xi → 0.

15 Vertex Graph with Fixed-P

Figure 3.3: Maximum Covering OLD set on a 15 Vertex Graph, P=6
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This graph is a small expansion of the initial 5 vertex graph, using a fixed-P=6

maximum covering OLD set construct, which yields |C| = 11. The results highlight

an interesting tradeoff between min |D| and max |C|. Of note, there are numerous

alternate optimal solutions. v1 and v3, both codewords, have been included in C

instead of v4 and v5, by using the constraint detailed in Section 3.2. The original

listed optimal solution included v4 and v5 instead. Further, if the fixed-P constraint

were relaxed to allow a slightly larger OLD set, the graph could be completely

covered. |D| = 8 provides full coverage, |C| = 15.

Maximum Covering OLD set on a Scale-Free Graph

Figure 3.4: Maximum Covering Set on a 100 Vertex Scale-Free Graph

Scale-Free graphs by their nature rarely have feasible OLD sets, and were a pri-

mary motivation for development of the Maximum Covering formulation. Figure

3.4 shows the results of a Maximum Covering OLD set on a 100 vertex Scale-

Free graph. Near the top center of figure 3.4 is a blue vertex (codeword) with four
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neighbors above, all white, one circle and three squares. These neighbors all

have a degree of one, and are of the traditional star, or hub-and-spoke, construct

found in Scale-Free graphs. Since these four have identical neighborhoods, there

is no way to define D in a way that separates these vertices. However, the maxi-

mum covering OLD set formulation selects one of these four vertices for inclusion

in C and excludes the other three.

3.3 Linearization

As discussed in section 3.1, the Maximum Covering formulation introduces a non-

linear constraint, specifically in the right hand side (RHS) of the locating constraint.

Note the RHS is still ∈ {0, 1}, as it is the product of three binary terms. However,

this constraint can be “linearized” by introducing a new variable zi,j and three new

constraints, resulting in an ILP.
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min γ
∑
j∈V

cjxj − (1− γ)
∑
i∈V

biyi (3.7)

s.t.
∑
j∈V

αi,jxj ≥ yi ∀ i ∈ V (3.8)

∑
k

(αi,k − αj,k)
2xk ≥ Ωi,jzi,j ∀ i, j ∈ V (3.9)

zi,j ≤ yi ∀ i, j ∈ V (3.10)

zi,j ≤ yj ∀ i, j ∈ V (3.11)

zi,j ≥ yi + yj ∀ i, j ∈ V (3.12)∑
j∈V

xj ≤ P optional (3.13)

xj ∈ 0, 1 (3.14)

yi ∈ 0, 1 (3.15)

zi,j ∈ 0, 1 (3.16)

However, as illustrated in table 3.2, run times for the linearized models are sig-

nificantly slower than the original formulation. (Both models were run with AMPL

and a Gurboi 8.1 solver.) Cursory results suggest the lower number of variables

and constraints help the original formulation run faster. During these instances,

the AMPL Gurobi the solver was able to explore more nodes and use more tech-

niques such as branch-and-cut to hone its search for the optimal solution. Due to

the power and sophistication of modern solvers such as Gurobi and others that

can handle similar non-linear constraints, there is little advantage in converting

formulations to linear programs or integer linear programs, at least not when still

dealing with binary constraints.
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Linear Model Quadratic Model
Vertices Run Time(sec) Simplex Run Time(sec) Simplex2

Sc
al
e-
Fr
ee 10 0.0545 95 0.0362 8

50 3.722 5,954 0.284 125
100 9.231 18,271 0.509 178
250 6,039 331,730 4.191 3,428

G
eo
m
et
ric 10 0.0661 59 0.0434 16

50 1.203 7,393 0.323 219
100 12.89 29,070 1.752 641
250 838.7 435,253 36.46 13,945

Table 3.2: Run Times for Linearized Model vs. Quadratic Model

2This is a non-LP Simplex method, commonly used in commercial solvers. These methods
date back the late 1950’s and 1960’s and include work by Wolfe [41] and Van de Panne [39].
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Chapter 4

Mixed Weight OLD sets: Coverage

Radius > 1
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Many scenarios arise that are best modeled with sensors that have a stronger

coverage radius than r = 1, e.g. computer systems may be able to detect second

order anomalies, reflected by a coverage radius r = 2, and radio signal sensors

may be placed at higher elevation or underwater, amounting to an increased cov-

erage radius. The underlying problems fall into two categories: homogeneous

systems, in which the coverage radii of every vertex is the same, and hetero-

geneous systems, in which a range of coverage radii may be used at any given

vertex. The goal in both of these is still to find a minimum cardinality or cost set

that satisfies both the locating and dominating constraints. The former is quite

similar to OLD sets where r = 1. The latter is quite different, and is called a Mixed

Weight OLD set (MWOLD set).1

4.1 Homogeneous OLD sets

Homogeneous OLD sets with r > 1 are very similar in construct and behavior to

OLD sets with r = 1. The construct of theAmatrix remains the same as that found

in Section 2.2.1, but now r can take on values greater than 1. The “adjacency”

values are relative to the coverage radius. The Ω matrix is similarly relative to r.

αi,j =


1 if 1 ≤ d(i, j) ≤ r

0 otherwise

Ωi,j =


1 if 1 ≤ d(i, j) ≤ 2r

0 otherwise

1Work in this chapter was first presented in 2017 at the International Symposium on Locational
Decisions (ISOLDE) XIV, in Toronto, Canada, by the author

52



The problem formulation is the same as found in section 2.2.1 and is solved

in the same manner.

4.1.1 R-Complete Graphs

Homogeneous graphs with higher r values and Mixed Weight graphs bring the

concept of complete graphs into consideration. While complete graphs exist, they

are not common in large, everyday applications. When considering a coverage

radius greater than 1, it is much easier to create functionally complete graphs

where, due to a high coverage radius, all vertices could cover all others. Formally:

Given a graph G, let d̂ = max
i,j∈V

d(i, j). If r ≥ d̂, then G is an r-complete graph.

Figure 4.1: R-Complete 5 Vertex Graph, r ≤ 2

To examine this further, recall the 5 vertex problem presented in Chapter 1.

Figure 4.1 shows this construct with a coverage radius r = 2. The original edges
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are show in solid black lines. Onemay consider notional “edges” existing between

vertices that are distance two away from each other. (d(i, j) = 2). These notional

edges covered with the larger coverage radius are shown in dashed purple. For

example, edges exist between vertices 5 and 1, as well as 1 and 2. Therefore,

considering a coverage radius r = 2, there exists a notional edge between vertices

5 and 2. Under this increased coverage radius, all vertices are connected to

each other, forming what is known as a complete graph. Since this required an

increased coverage radius, it is presented here under the name “r-complete”.

Importantly, all complete and r-complete graphs admit feasible OLD sets.

Theorem 4.1 If a graph (n ≥ 2) is complete (or r-complete), then it admits an

OLD set.

Proof: By definition, the open neighborhood adjacency matrix of a complete (or

r-complete) graph is as follows:

0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
... ... ... . . . ...
1 1 1 · · · 0

If a graph satisfies both the dominating and locating conditions, it will admit anOLD

set. There are two necessary and sufficient conditions for a graph to admit an OLD

set: each vertex must have at least one neighbor, and no two vertices may have

the same neighborhood. If a vertex does not have at least one neighbor, it cannot

have a neighbor in the set. If two vertices have the same set of neighbors, there

is no way to distinguish the two. If a graph meets both of these requirements, it is

possible to construct an OLD set. Complete graphs graphsmeet these conditions:

• In a complete graph, each vertex has n− 1 ≥ 1 neighbors.
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Figure 4.2: OLD set on a 10 Vertex Complete Graph

• For any vertex i in a complete graph, its neighbors are V \ i. For any two

vertices i and j, where i ̸= j, the neighborhoods are V \ i and V \ j, which

are distinct since i ̸= j. Therefore, a complete graph satisfies both of the

required conditions for a feasible OLD set to exist.

Since complete graphs will always meet these two conditions, complete (or r-

complete) graphs admit OLD sets. �

To better illustrate this, consider the set D = V as the OLD set, where each

vertex, vi, is covered by D \ vi. The optimal OLD set solution in a complete graph

is any set of |V | − 1 vertices, where exactly one vertex vj does not have a sensor.

Figure 4.2 shows an OLD set on a 10 vertex complete graph. All vertices vi ̸= vj

are covered by D \ vi, while vj is covered by D. Dropping any additional sensor

would leave two vertices indistinguishably covered by all sensors and would be

infeasible.

It should be noted complete graphs, or R-complete graphs, do not admit iden-

tifying codes. This can be seen in a complete graph’s closed neighborhood adja-

cency matrix, where all entries are 1. Every row of the matrix is the same, and it
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is impossible to distinguish any two vertices.

4.2 Heterogeneous OLD sets

Heterogeneous, or MWOLD sets, are constructs in which sensors placed at ver-

tices may have varying coverage ranges. These were first introduced by Kin-

caid, Yu, and Givens in 2016 [15]. The locating and dominating constraints of

an MWOLD set remain constant in concept: each vertex must have one neigh-

bor in the set and no two vertices may have the same neighbors in the set. The

varying coverage radius, however, requires a closer examination of the outgoing

and incoming balls, relying more heavily on the incoming ball as every possible

neighbor may have a different outgoing ball, and the ball may change during the

computation if a different radius is selected for the neighboring vertex. Because

of this, the incoming ball is fluid during the computations, and must be the focus

of the IP.

4.2.1 MWOLD set ILP Formulation

The ILP formulation is similar to the formulations presented previously, but is in-

dexed over both the vertices in the graph, V , and the range of potential coverage

strengths, R. The maximum coverage strength considered should never exceed

n-1 where |V | = n. It can be reduced, practically, to the maximum shortest path

distance between any two vertices in the graph. This value is not inherently obvi-

ous from an adjacency matrix, but can be calculated during the construction of the

coverage matrices. As a rule, 1 ≤ r ≤ R ≤ max d(i, j) ∈ G. Since each vertex

may have a sensor of any strength r ≤ R, it is necessary to compute “adjacency”
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matrices for each possible strength r ∈ R, for use in the domination constraints.

Because they extend beyond adjacent vertices, these matrices are called “cover-

age matrices” and are represented by Ar, for a given coverage radius r ∈ R. The

construction results in a three dimensional matrix, with elements αr,i,j of dimension

R× n× n. Each of the r, n× n matrices contains a 1 in position i, j if a sensor of

strength r, placed at vertex i would cover vertex j and a 0 otherwise.

αr,i,j =


1 if d(i, j) ≤ r

0 otherwise

The large number of coverage matrices, each with n2 entries, leads to the large

problem sizes and subsequent memory issues described in section 4.3.1.

By contrast, a single Ω matrix is required for the MWOLD formulation. The

Ω matrix can either follow an R-Complete construct (zeros on the diagonal, ones

everywhere else) or can be based on a value of twice the maximum coverage

radius, which can be calculated during the initial processing. The Ω matrix was

introduced as a computational convenience primarily to avoid the heavy prepro-

cessing step of identifying row pairs that have shared neighbors and tailoring the

formulation and constraints to that list. In a MWOLD setting, the Ω matrix is set

conservatively to include every pair of vertices that could be covered under max-

imum coverage strengths r = R. There is no harm in including extra vertex pairs

in the constraints, as the very act of their domination will satisfy the locating con-

straint. An Ω matrix of all ones (zeros on the diagonal) will accurately solve any

OLD set problem, but with slightly less efficiency. The loss of efficiency rises from

the extra locating constraints whose right hand sides are non-zero, and therefore

cannot be easily discounted during a presolve. A constraint with a right hand side
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equal to zero can easily be discounted as the left hand side is the sum of binary

terms which by definition are greater than or equal to zero. Such constraints pose

no impact to the selection of vertices to be included in the OLD set.

A parameter Wr is included to represent the cost of a sensor with a given

strength. This could reflect a stronger antenna, or a more involved procedure to

obtain a higher coverage level. The parameter cj represents a cost for placing

a sensor at a given location. One might consider an easily accessible site in

contrast to a remote location, or a sensor site that is privately vs. publicly owned.

The binary variable xr,j equals 1 if a sensor of strength r is placed at location

j, and 0 otherwise. Naturally a constraint is added to ensure no more than one

sensor is placed at any given location (Equation 4.4). The locating and dominating

constraints are of the typical OLD set formulation, except now summed over r

as well to account for the potential sensor strengths that could be placed at any

location.

The Integer Linear Programming Formulation of the heterogeneous MWOLD

set is as follows, with i, j, k ∈ V, r ∈ R:

min
∑
r,j

(Wr + cj)xr,j (4.1)

s.t.
∑
r,j

αr,i,jxr,j ≥ 1 ∀ i ∈ V (4.2)

∑
r,k

(αr,k,i − αr,k,j)
2xr,k ≥ Ωi,j ∀ i, j ∈ V (4.3)

∑
r

xr,j ≤ 1 ∀j ∈ V (4.4)

xr,j ∈ {0, 1} (4.5)
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4.2.2 MWOLD Correctness

The objective function for a MWOLD set, equation 4.1, is a natural extension of

the one for homogeneous OLD set formulations, and accounts for the cost of a

certain strength sensor,Wr, the cost of placing a sensor at a certain vertex, cj, and

whether a sensor of strength r is placed at vertex j, represented by the binary xr,j.

The goal is to minimize this objective, summed across r and j which is desired.

The dominating constraint, equation 4.2, ensures that the incoming ball of ev-

ery vertex i is covered by at least one sensor of strength r at vertex j. That

d(i, j) ≤ r is guaranteed by the construct of αr,i,j.

The locating constraint, equation 4.3 uses the Ωi,j matrix to govern which ver-

tex pairs need to be separated. For pairs that are too far apart or where i = j,

Ω = 0 and imposes no constraint. The left hand side of the equation ensures that

the incoming balls of i and j differ by at least one neighbor.

4.2.3 MWOLD set Examples

α1,i,j α2,i,j

Vertex 1 2 3 1 2 3
1 0 1 0 0 1 1
2 1 0 1 1 0 1
3 0 1 0 1 1 0

Table 4.1: Coverage Matrices for 3 Vertex Path, P3

To further illustrate the functionality of the MWOLD set, two results are shown

and explained: A three vertex path, and a 10 vertex tree.

Consider the 3 vertex path, P3, shown in figure 4.3. For this model, all sen-

sor strength and location costs were equal, and the ILP sought to minimize the
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Figure 4.3: MWOLD results on a 3 Vertex Path, P3

total numbers of sensors needed. Recall from Chapter 3 this graph does not ad-

mit a OLD set across all three vertices, but adding a range of sensor strengths

overcomes this limitation. Considering domination for P3, it is clear at least two

sensors are needed to satisfy the dominating constraint. A sensor at vertex 2

provides coverage for vertices 1 and 3, while at least one of these vertices must

also have a sensor to cover vertex 2.
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For P3, the enumeration of the constraint for vertex pair (1, 3) is as follows:

(α1,1,1 − α1,1,3)
2x1,1 + strength-1 sensor at vertex 1

(α1,2,1 − α1,2,3)
2x1,2 + strength-1 sensor at vertex 2

(α1,3,1 − α1,3,3)
2x1,3 + strength-1 sensor at vertex 3

(α2,1,1 − α2,1,3)
2x2,1 + strength-2 sensor at vertex 1

(α2,2,1 − α2,2,3)
2x2,2 + strength-2 sensor at vertex 2

(α2,3,1 − α2,3,3)
2x2,3 ≥Ω1,3 strength-2 sensor at vertex 3

Because both vertices 1 and 3 are at a distance of one from vertex 2, a sensor at

vertex 2 offers no separation. This can also be seen by examining the first and

third rows of α1,i,j in table 4.1, which are the same. Therefore, a strength-2 sensor

is required at either vertex 1 or vertex 3 to offer separation.

To illustrate the concept on a larger graph, figure 4.4 shows the ILP solution on

a randomly generated tree with 10 vertices. The optimal solution has five sensors,

three of strength 2 and two of strength 3. Table 4.2 lists the shortest path distance

matrix (the header denotes if a vertex has a sensor, and its strength). It is then

clear from an examination of the incoming ball of each vertex listed in table 4.3 that

each vertex has at least one neighbor in the set and no two vertices are covered by

the same set of neighbors. Proving that this solution is the minimum cardinality

MWOLD set is far more complicated, and would require full enumeration of all

possible sets with |D| = 4, at each possible strength. Noting that the greatest

distance between two vertices in this graph is 5, and therefore strengths 6-10 need

not be considered, there are 3,150,000 possible solutions of size |D|=4 which

would need to be checked for feasibility to determine if a better solution existed.
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Figure 4.4: MWOLD set Results on a 10 Vertex Tree

vxr
1 22 32 4 5 6 7 83 92 103

1 0 1 1 1 2 2 2 2 3 1
2 1 0 2 2 3 3 1 3 4 2
3 1 2 0 2 3 1 3 3 4 2
4 1 2 2 0 1 3 3 1 2 2
5 0 3 3 1 0 4 4 2 1 3
6 0 3 1 3 4 0 4 4 5 3
7 0 1 3 3 4 4 0 4 5 3
8 0 3 3 1 2 4 4 0 3 3
9 0 4 4 2 1 5 5 3 0 4
10 1 2 2 2 3 3 3 3 4 0

Table 4.2: Shortest Path Distance Matrix for the 10 Vertex Tree

Note, if a solution with |D| < 4 exists, then a solution where |D| = 4 exists, as

shown in lemma 2.1, so it would be enough to show that any solution smaller than

the ILP result was feasible.
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v B+

1 {2, 3, 8, 10}
2 {3, 8, 10}
3 {2, 8, 10}
4 {2, 3, 9, 10}
5 {8, 9, 10}
6 {3, 10}
7 {2, 10}
8 {10}
9 {8}
10 {2, 3, 8}

Table 4.3: Incoming Ball B+(v) for 10 Vertex Tree

4.3 Complexity

Complexity of OLD set with fixed r > 1

In [5], Charon et al. offer a NP-Completeness proof for identifying codes when the

sensor coverage radius is greater than 1. NP-Completeness for the homogeneous

OLD set construct, where rvi = r̂ ∀i ∈ V follows simply from the r = 1 construct

presented in Chapter 2. The adjacency matrix is reconstructed to reflect an edge

wherever the distance d(i, j) < r. This takes n2

2
steps, checking for each (i, j)

pair where i < j, and making the symmetric change for both αi,j and αj,i. Once

the new adjacency matrix and graph are constructed, the instance may be treated

like an r = 1 graph. In [15], Givens offers a proof for the MWOLD set problem

being NP-Complete.

4.3.1 Run Time Analysis

Run times for 10 random graphs are shown in table 4.4. The homogeneous prob-

lems stayed relatively compact across the various sizes tested. This is consistent

with a homogeneousOLD set construct with r > 1 being easily reduced to an r = 1

instance, and follows similar run times as seen in Chapter 2. Results on graphs
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Homogeneous
Graph Size 10 50 100 250 500
Max Distance d(G) 5 11 13 17 18
Max Coverage Radius 10 10 10 10 10
Variables 10 50 100 250 500
Constraints 110 2,550 10,100 62,750 250,500
OLD set Size D 9 48 93 227 454
Run Time (s) 0.00426 0.0503 0.0534 1.41 17.2

Heterogeneous
Graph Size 10 50 100 250 500
Max Distance d(G) 5 11 13 17 18
Max Coverage Radius 9 11 13 17 18
Variables 90 550 1,300 4,250 9,000
Constraints 120 2,600 10,200 63,000 250,500
OLD set Size D 5 20 40 107 -
Max Sensor Strength 3 10 13 12 -
Run Time (s) 0.257 10.4 229.24 6,308 -

Table 4.4: Run Time Analysis for Homogeneous and Mixed Weight OLD set

with a homogeneous set of sensors, r = 10, are shown in table 4.4. Run times,

and more importantly memory constraints, for Heterogeneous Mixed Weight OLD

set problems grew substantially with problem size. Constructs with various maxi-

mum strengths were tested, including r ≤ 10, r ≤ max
i,j∈V

d(i, j) For brevity, only the

results where r = max
i,j∈V

d(i, j) are listed in table 4.4, as these are most applicable.

(Note, the table uses the notation max d(G) to mean max
i,j∈V

d(i, j), or the maximum

distance between any two vertices inG). Results are not shown for the 500 vertex

Mixed Weight problem, as it was too large to load into a system with 64GB RAM,

either through AMPL or through a solver running outside of AMPL.
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Figure 4.5: MWOLD set Results on a 100 Vertex Scale-Free Graph

4.4 Results and Examples

A MWOLD set of minimum cardinality may be identified using the formulation

presented above with modern solver packages such as Gurobi. Most advanced

solvers are equipped with algorithms for branch and bound techniques, branch

and cut, cutting planes, and other powerful methods of attacking integer pro-

gramming problems.2 Figure 4.5, as an example, shows the minimum cardinality

MWOLD set result on a 100 vertex random Scale-Free graph, with a maximum

sensor strength of 10 and all sensor costs equal. This was solved using Gurobi

6.5 with a run time of 45 seconds. The minimum cardinality MWOLD set uses

30 sensors: 19 of coverage radius r = 2; seven of r = 3, one of r = 4, one of
2As noted by Professor Michael Trick of Carnegie Mellon University in a recent INFORMS

podcast, solvers have advanced to the point where intricate presolving techniques and advanced
approaches, external to the solver, are no longer necessary as they were five to eight years ago.
It is now just as efficient for most problems to formulate the program and the solver work the
solution[23].
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r = 5, and two of r = 10. This formulation can be carried out on any graph for any

application, computational resources permitting. This formulation also works for

identifying codes, but needs significant modification to work on closed neighbor-

hood locating-dominating sets, as discussed below in Chapter 5. For identifying

codes, one simply uses an A matrix with ones on the diagonal instead of zeros.
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Chapter 5

Terrorist Network Analysis
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Terrorism has long plagued societies, and its study, in efforts to learn about it

and combat it, is a continued area of great interest. There are many groups and

institutions dedicated specifically to researching terrorism, including the National

Consortium for the Study of Terrorism and Responses to Terrorism (START) at the

University of Maryland. One area of interest is how to most efficiently monitor ter-

rorist networks, and key players in them, to ensure authorities learn of attacks prior

to their being carried out. The use of surveillance, undercover agents, and confi-

dential informants can be crucial to alert authorities of a planned attack. However,

this is not without cost. Surveillance takes man-hours and expensive equipment,

and sometimes includes court orders, wire taps, and cyber methods by trained

agents. Similarly, developing confidential informants takes time and significant

investment and often yields less than reliable results. Nevertheless, authorities

continue to use these methods as the best way to identify and thwart attacks. Any

method that could help limit or hone the expense by identifying an optimal set of

targets would be a great benefit.

It is reasonable to consider that activity by someone being monitored could

also indicate that an associate has become active in planning an attack. If author-

ities had a graph of the terrorist network, these associations would be indicated

by edges between operatives. Further, one might consider that a more robust

surveillance package or a more loyal, and well established, confidential informant

might indicate activity several times removed. This could be through “friends-of-

friends” communication, or second hand chatter that an informant might relay.

This gives rise to a mixed weight notion for surveillance and informants.

If the only goal of authorities was to ensure knowledge of a pending attack

without needing to know the potential perpetrators, authorities might implement a

dominating set. A dominating set would ensure all members of the network are
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within the coverage radius of a network member under surveillance. Based on

the assumption that signs of the planning would be visible directly or indirectly

through members under surveillance, a dominating set would ensure authorities

would learn of pending attacks. However, if authorities were also interested in

immediately identifying the potential perpetrator of an attack, then a identifying

code, locating-dominating set, or an OLD set would be appropriate and provide

the desired information.

The notion of using identifying codes, locating-dominating sets, and specifi-

cally OLD sets, to identify activity in criminal or terrorist networks was first pro-

posed in [38], in 2014. Recently, Sen et al. published two works [31, 3] that

explored the use of identifying codes to analyze terrorists networks. These two

works describe an ILP concept and implement a graph coloring method that cor-

rectly verifies satisfaction of the locating constraint. Howeverm they do not present

a method to directly identify surveillance targets.

This chapter explores the use of identifying codes, locating-dominating sets,

and OLD sets on terrorist networks. It examines ideal strategies for the authori-

ties, or an “intelligence agent” (used interchangeably), as they look to monitor a

network to learn of attacks and identify the potential perpetrator of an attack. It

identifies the “targets,” or members of the network that should be placed under

surveillance or turned into confidential informants, depending on the construct be-

ing discussed. It presents modified formulations where necessary, demonstrates

the use of weights and costs to shape the output1, and provides results on two
1After speaking with several colleagues in Homeland Security Investigations, The Coast Guard

Investigative Service, the FBI, and the Royal Canadian Mounted Police, it became apparent that
using real weights, costs, and associated information would be too sensitive for this work, and
could reveal too much about counter-network practices currently in use throughout law enforce-
ment. While not classified, the material would cross the thresholds of Sensitive But Unclassified
(SBU), Law Enforcement Sensitive (LES), and For Official Use Only (FOUO). To avoid such com-
plications, the work presented here is hypothetical in nature, and meant to illustrate how weighting

69



real world terrorist networks: the network behind the September 11th attacks on

the U.S. and the network behind the Paris bombing in 2015.

This chapter includes five sections, each exploring a different aspect of mon-

itoring criminal or terrorist networks, and using different assumptions. These

aspects and assumptions lend themselves to different locating-dominating ap-

proaches. First, an identifying code construct is used to explore placing net-

work members under surveillance. Next, an open locating-dominating set con-

struct is used to account for potential efforts on the part of network members to

hide their involvement in an attack. Combining these two, a strongly identifying

code formulation is presented to make the model more robust and less depen-

dent on assumed member behavior. Next, a locating-dominating set construct

is developed to model the use of confidential informants, who can act as three-

state sensors and explicitly tell their handlers if they’ve been tasked to carry out

an attack. Finally, a model is presented which combines identifying codes and

locating-dominating sets in a novel fashion as a decision support tool for investi-

gators and intelligence personnel.

5.1 Terrorist Networks

This chapter explores two networks: the Al Qaida network behind the Septem-

ber 11, 2001 attacks, and the Islamic State of Iraq and the Levant (ISIL) network

behind the attacks in Paris on November 13, 2015. Each of these attacks were

catastrophic events that required significant planning and coordination. Similar to

the assertions in [31, 3], it is assumed if authorities had been monitoring these

networks or the actors in them, signs of the pending attacks might have been

and cost systems could work, if developed accurately for a real world criminal network.
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detected, allowing authorities to learn of the pending activity and identify the per-

petrators. The following sections explore various monitoring constructs pertaining

to different assumptions about the behavior of the actors in these networks, and

different tools available to the authorities. The two networks of individuals who

carried out these attacks were extrapolated from [31] and [3] to ensure consis-

tency with the results in that article and to provide a sound basis of comparison.

In each, an actor is shown as connected to his/her known first order associates.

The major assumption of this section, the same that underlies the two papers

by Basu and Sen, et al in [31, 3], is that the network is known before hand. There

are cases in practice where this assumption holds: Certain organized or estab-

lished criminal networks or gangs for instance, are often known in detail to authori-

ties. This assumption does not always hold, and considerable effort is often spent

trying to determine the underlying structure of a network. To best examine these

locating-dominating tools, the assumption is made in this chapter that the network

structures and associations were known to authorities prior to the attacks.

5.1.1 Paris Attacks

The eight coordinated attacks in Paris on November 13, 2015, were carried out

by ISIL and claimed the lives of at least 19 people, injuring 140. The attacks were

reportedly a retaliation for France’s support of the U.S. military efforts in Iraq and

Syria [11]. The component of ISIL in Europe that planned and carried out these

attacks contains 10 individuals and is shown in figure 5.1.
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Figure 5.1: ISIL Europe Network - Paris Attacks

Figure 5.2: Al Qaida Network - 9-11 Attacks
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5.1.2 9-11 Attacks

The four coordinated attacks on the east coast of the U.S. on September 11, 2001

were carried out by members of Al-Qaida. The attacks used hijacked aircraft flown

into their targets, and claimed the lives of more than 2,767 people, injuring more

than 16,000 others [11]. The network of Al Qaida operatives involved in these

attacks contains 37 people, and is shown in figure 5.2.

5.2 Surveillance: Identifying Codes

For initial examination, an identifying code (IC) construct and ILP was used. Let

the set of vertices in the identifying code be denoted as I. An identifying code on

a criminal or terrorist network can be thought of as set of surveillance targets. It

is assumed that when a terrorist within the coverage range of a member under

surveillance becomes active in planning an attack, the member under surveil-

lance will show certain activities and behaviors that will tip off authorities who are

watching. Each vertex that is in I will be placed under surveillance so that when

an attack is being planned by a member of the network, authorities will learn of

the attack, and they will be able to identify the potential perpetrator immediately

based on the unique set of surveillance targets that show signs of activity. Ini-

tially, a coverage radius of 1 is used, representing attack preparations by a target

or their first order associates. This also indicates if the person under surveillance

were the one planning to carry out the attack, the authorities would be able to

note the activity in a similar manner as if the target’s associates were planning

the attack - i.e. the target is assumed not to be intentionally hiding their activity

due to being under surveillance, but also does not give direct indication that they
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themselves are the attacker. It is worth reiterating the depth of this assumption

- the behavior of one planning an attack is assumed to be indistinguishable from

the behavior of a member under surveillance whose first order associate is plan-

ning an attack. If this assumption does not hold, e.g. if authorities believe they

could immediately identify a perpetrator if that person were under direct surveil-

lance, then a locating-dominating set would be appropriate. Identify codes are

used here to reflect general planning activity: site surveillance, gathering mate-

rials, etc. These could easily be carried out by the attack planner or associates,

yielding credence to the notion that the activities of perpetrator and associates

would be indistinguishable which supports the use of identifying codes. The ILP

for an identifying code is the same as that for an OLD set presented in Chapter

2, except that the adjacency matrix is based on the closed neighborhood (1’s on

the diagonals), rather than the open.

αi,j =


1 if d(i, j) ≤ r

0 otherwise

Ωi,j =


1 if 1 ≤ d(i, j) ≤ 2

0 otherwise
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Figure 5.3: Minimum Identifying Code for Paris Attack Network

min
∑
j∈V

xj (5.1)

s.t.
∑
j∈V

αi,jxj ≥ 1 ∀ i ∈ V (5.2)

∑
k

(αi,k − αj,k)
2xk ≥ Ωi,j ∀ i, j ∈ V (5.3)

where xj =


1 if j ∈ I

0 otherwise
(5.4)

5.2.1 Identifying Code: Paris Network

The minimum IC for the Paris network is five targets, I = {2, 4, 6, 7, 8}. This is

depicted in figure 5.3. This result is consistent with the result in [3], though that

article does not easily identify which persons should be placed under surveillance.
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5.2.2 Identifying Code: 9-11 Network

The September 11th Al Qaida network is more challenging because two vertices

are twins. While not leaves (degree one vertices, examined in Chapter 2), these

two vertices (25 and 33) are both connected to each other and the same two other

vertices (19 and 32), though the latter two have other connections. In essence,

these four vertices form a complete subgraph. As discussed in Chapter 4, com-

plete graphs admit OLD sets and locating-dominating sets, but do not admit iden-

tifying codes. To overcome this challenge, a modified maximum covering formu-

lation is used as presented in Chapter 3. The maximum covering then would

indicate which potential perpetrators would tip off authorities and whose activity

would be missed. An appropriate weighting scheme would be critical in this con-

text. First, the γ value balances the “cost” of resource expenditure vs the risk of

an event going undetected2. Second, the bi values in 5.5 should weight those in-

dividuals considered highest risk to ensure likely activity is not missed. This could

result in lower weights on confirmed lower risk targets, reflected in smaller bi val-

ues, but with the constant caution that high risk targets could hide their activity

to appear benign at first observation.3 The quadratically constrained IP for iden-

tifying codes below is unchanged from Chapter 3, but as in the previous section

operates on the closed neighborhood adjacency matrix rather than the open.
2While not employed in this exploratory analysis, the “fixed-P” constraint could also be benefi-

cial if an agency had fixed resources and could only monitor a certain number of individuals.
3While by no means an actual law enforcement case, the pop culture reference of Keyser Soze

from “The Usual Suspects” illustrates this point. While police question the seemingly benign,
crippled con man Kint, they are being played by the actual mastermind disguising his role and
leading them astray.
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Figure 5.4: Minimum Identifying Code for 9-11 Attack Network

min γ
∑
j∈V

cjxj − (1− γ)
∑
i∈V

biyi (5.5)

s.t.
∑
j∈V

αi,jxj ≥ yi ∀ i ∈ V (5.6)

∑
k

(αi,k − αj,k)
2xk ≥ Ωi,jyiyj ∀ i, j ∈ V (5.7)

xi ≤ yi ∀ i ∈ V (5.8)∑
j∈V

xj ≤ P optional (5.9)

xj ∈ 0, 1 (5.10)

yi ∈ 0, 1 (5.11)

The minimum identifying code, required for the Al Qaida 9-11 network was I =

{2, 4, 6, 9, 12, 19, 20, 21, 22, 23, 24, 26, 31, 36, 37}. |I| = 15, which is again consistent

with the results in [31]. Similarly, those authors identified that both vertices 25
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and 33 could not be separated, and their solution was to ignore 33. Initially, the

IP solution presented here monitored, but did not cover, vertex 33. However, this

makes little sense in context, and equation 5.8 was added to require that subjects

being monitored also be covered.

5.3 Hiding Activity: OLD sets

It may be the case that a target under surveillance will suspect or know that they

are being watched, and may take measures to hide their own involvement in a

forthcoming attack to prevent monitoring. This is known as counter-surveillance.

However, attacks still require planning and it is likely the case that a member of

the network who is not directly planning the attack might still carry out detectable

planning activities. Through surveillance of these inactive members, authorities

might still see the indications of a pending attack by an inactive member’s asso-

ciates. Under these assumptions, an OLD set is appropriate to identify the targets

that should be watched. In an OLD set, if a target were actively planning, they

would not give indications if being directly monitored, but actions could be de-

tected through a member’s associates, within a specified coverage range. OLD

sets of both r = 1 and r ≤ max d(G), the maximum inter-vertex distance, are

considered below. To ensure the model is robust against twins, the non-linear

max-covering OLD set formulation from section 3.1 is used. The adjacency ma-

trix is based on the open neighborhood:

αi,j =


1 if 1 ≤ d(i, j) ≤ r

0 otherwise
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Figure 5.5: OLD set for Paris Attack Network

min γ
∑
j∈V

cjxj − (1− γ)
∑
i∈V

biyi (5.12)

s.t.
∑
j∈V

αi,jxj ≥ yi ∀ i ∈ V (5.13)

∑
k

(αi,k − αj,k)
2xk ≥ Ωi,jyiyj ∀ i, j ∈ V (5.14)

xi ≤ yi ∀ i ∈ V (5.15)∑
j∈V

xj ≤ P optional (5.16)

xj ∈ 0, 1 (5.17)

yi ∈ 0, 1 (5.18)

79



Figure 5.6: MWOLD set for Paris Attack Network

5.3.1 OLD and MWOLD sets: Paris Network

The OLD set for the Paris Network, shown in figure 5.5, indicates six targets for

monitoring: D = {2, 3, 4, 6, 7, 8}. It includes the five targets found in the identifying

code solution from section 5.2.1, and adds vertex 3 to separate vertices 7 and

8, which otherwise would share neighbors 2 and 6 in the open construct. This

network has no twins, and all network members are covered. This IP used no

weights for surveillance costs or coverage costs. It must be acknowledged, the

identified target set represents a significant portion of the network, and placing

such a large portion under surveillance could be prohibitive in practice.

The MWOLD solution for the Paris network, shown in figure 5.6, uses five

targets, one at strength 3, two at strength 2, and two at strength 1. This IP used

no weights to model surveillance costs, coverage costs, or surveillance strength.
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If costs of deeper surveillance are negligible, this solution offers a savings over

the traditional OLD construct. When this model was rerun with any reasonable

surveillance strength costs (strength 1 = 1, strength 2 ≥ 1.25, strength 3 ≥ 1.5),

then the homogeneous solution with r = 1, above, is an alternative optimal, or

outright optimal, solution.

5.3.2 OLD and MWOLD sets: 9-11 Attack Network

Figure 5.7: Max-Covering OLD set for 9-11 Attack Network

The OLD set for the 9-11 network, shown in figure 5.9, requires 17 surveillance

targets, an increase of two from the identifying code solution above. The OLD set

for the 9-11 attack network required a max covering construct due to the twin rela-

tionships between vertices 36 and 37. While these two vertices are not leaves, as

discussed in section 2.3.4, each vertex is connected to 31 and 35, offering no sep-
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Figure 5.8: MWOLD set for 9-11 Attack Network

aration in an open construct. This differs from the closed construct and identifying

code result presented, in section 5.2.2 where this vertex pair posed no difficulty.

In a closed construct, each vertex could cover itself, which offered a separation

because the two vertices were not connected to each other. In constrast, recall

from section 5.2.2, vertices 25 and 33 were twins in a closed construct, as part of

a complete subgraph. Again referencing results in section 4.1.1, complete graphs

always admit OLD sets, but they do not admit identifying codes. In the open con-

struct, these vertices pose no difficulty. Due to the assumed counter-surveillance,

if vertex 25 is active, the targets at 19 and 32 will indicate activity. If vertex 33 is

active, targets at 19, 25, and 32 will be active, providing the required separation

between those vertices.

Figure 5.8 shows a MWOLD set for the 9-11 network, where surveillance costs

are equal for all strengths. This represents, for illustrative purposes, the result
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Figure 5.9: Weighted MWOLD set for 9-11 Attack Network

when there is no extra cost from watching a target closely enough to pick up on

second, third, or higher order connection activity. The IP was formulated to include

up to strength 5 surveillance, but the solution used nothing above strength 3. The

solution contains three strength 3 targets, four strength 2 targets, and six strength

1 targets, for a total of 13 targets. The added strength of surveillance offers a

savings of four targets. While not explicitly explored in this work, having fewer

overall targets might be beneficial in terms of counter-detection, or the authorities’

desire to keep their monitoring covert. In this sense, the added cost of fewer

targets might outweigh the associated cost of monitoring a target more closely. It

could also be the case that watching a target more closely offers greater counter-

detection risk, and watching more targets superficially could be more beneficial.

Figure 5.9 adds extra costs for deeper surveillance on targets. Strength:cost

values are: 1:1, 2:2, 3:2.5, 4:3, 5:3.5. The solution uses one strength 3 target,
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and only two strength 2 targets, but 11 strength 1 targets, for a total of 14 targets.

It requires one additional target from the unweighted MWOLD solution shown in

figure 5.8, but is optimal given the provided weights.

5.4 Robustness: Strongly Identifying Codes

In the previous sections, strong assumptions were made regarding the detectabil-

ity of activity if the perpetrator were directly under surveillance. If the perpetrator’s

activity were detectable with confidence, then an identifying code is appropriate.

If authorities could be certain the perpetrator would hide his or her activity, then

an open locating-dominating set is appropriate. However, it is likely the case that

authorities cannot be certain about the potential detectability, as such certainty is

extremely rare in law enforcement and intelligence operations. This suggests that

a strongly identifying code, presented briefly in Chapter 1 might be most appro-

priate. Recall a strongly identifying code must satisfy the locating constraint for

the open and closed neighborhood constructs simultaneously. As demonstrated

in section 5.3.2, a feasible locating set on an open network is not necessarily fea-

sible on the closed network, or vice versa. The dominating constraint however,

need only be solved over the open construct, as a feasible dominating set on the

open construct remains feasible when examining the closed construct.

Lemma 5.1 A feasible dominating set on an open construct of a graph is also

feasible on the closed construct of the same graph.

Proof: Let D be a feasible dominating set for the open neighborhood construct

of a graph G. Let A, elements αi,j represent the adjacency matrix for G, where

αi,j = 1 if i, j are within the specified coverage radius. The diagonals of A = 0
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due to the open neighborhood construct. Let xj = 1 if vertex j is a member of

D, xj = 0 otherwise. Since D is a feasible dominating set, the following equation

is true: ∑
j∈V

αi,jxj ≥ 1 ∀i ∈ V

This can also be stated: for any vertex vi ∈ V there exists at least one vertex

vj ∈ D within the coverage radius of vi. When examining the closed neighbor-

hood construct of G, the diagonals of A = 1, but the remainder of the matrix is

unchanged. For any vertex vi ∈ V , the vertex vj is still within the coverage ra-

dius and satisfies the dominating requirement. Therefore, D remains a feasible

dominating set on the closed construct of G. �

To model the strongly identifying code, two adjacency matrices are needed: A

for the open neighborhood, elements αi,j, and Â for the closed, elements α̂i,j.

αi,j =


1 if 1 ≤ d(i, j) ≤ r

0 otherwise

α̂i,j =


1 if d(i, j) ≤ r

0 otherwise
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The IP is as follows:

min γ
∑
j∈V

cjxj − (1− γ)
∑
i∈V

biyi (5.19)

s.t.
∑
j∈V

αi,jxj ≥ yi ∀ i ∈ V (5.20)

∑
k

(αi,k − αj,k)
2xk ≥ Ωi,jyiyj ∀ i, j ∈ V (5.21)

∑
k

(α̂i,k − α̂j,k)
2xk ≥ Ωi,jyiyj ∀ i, j ∈ V (5.22)

xi ≤ yi ∀ i ∈ V (5.23)∑
j∈V

xj ≤ P optional (5.24)

xj ∈ 0, 1 (5.25)

yi ∈ 0, 1 (5.26)

5.4.1 Strongly Identifying Code: Paris Network

The strongly identifying code for the Paris network, shown in figure 5.10, contains

six surveillance targets. Interestingly, the strongly identifying set is the same set

of targets as the OLD set on this network. This is not always the case and is

merely a coincidence for this particular network structure.

5.4.2 Strongly Identifying Code: 9-11 Network

The strongly identifying code solution for the 9-11 network, shown in figure 5.11,

contains 18 targets, more than either the OLD set solution (17) or the identifying

code solution (15). This is expected, as additional sensors are needed to satisfy

the simultaneous locating constraints. Each of these previous solutions identified
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Figure 5.10: Strongly Identifying Code for Paris Attack Network

Figure 5.11: Strongly Identifying Code for 9-11 Attack Network
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twin-vertices, which precluded full coverage of the network. The strongly identify-

ing code, subject to the constraints of both OLD sets and identifying codes, must

leave two vertices uncovered: vertex 33, as discussed in the identifying code so-

lution, and vertex 36, as discussed in the OLD set solution.

5.5 Confidential Informants: Locating-Dominating

Sets

Confidential informants (CI) play a key role in investigations and counter terrorism

efforts [28]. According to the FBI’s 2005 special report, a confidential informant is

“any individual who provides useful and credible information to a Justice Law En-

forcement Agency (JLEA) regarding felonious criminal activities and from whom

the JLEA expects or intends to obtain additional useful and credible information

regarding such activities in the future.” An advantage to a confidential informant is

the relationship developed between the case agent and the informant is such that

the case agent will know immediately if their informant is to be the perpetrator of

the attack. In this sense, when placing confidential informants, one is interested

in a locating-dominating set (LDS) construct. This holds because the informants

represent 3-state sensors that can independently identify when they are to be the

source of the event, but otherwise give a typical yes-no response if they sense

an event but are not the source. To use this concept, the ILP formulations pre-

sented earlier must be adapted, including the addition of a non-linear constraint.

Recall the locating and dominating constraints of an open locating-dominating set

or identifying code must hold for every vertex in the graph, except those in the

LDS. Let the locating-dominating set be denoted by L.
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Locating: N [v] ∩ L ̸= ∅ ∀ v ∈ V \ L.

Dominating: N [vi] ∩ L ̸= N [vj] ∩ L ∀ vi, vj ∈ V \ L.

The IP for a LDS is as follows:

min
∑
j∈V

cjxj (5.27)

s.t.
∑
j∈V

αi,jxj ≥ 1− xi ∀ i ∈ V (5.28)

∑
k

(αi,k − αj,k)
2xk ≥ Ωi,j(1− xi)(1− xj) ∀ i, j ∈ V (5.29)

xj ∈ 0, 1 (5.30)

5.5.1 Locating Dominating IP: Correctness

The objective function is similar to previously presented formulations, and seeks

to minimize the cardinality of the locating-dominating set, subject to weighting

parameters. The left hand sides of the equations 5.27-5.29 are the same as pre-

sented previously for OLD sets and identifying codes and function in the same

manner. It is necessary that this IP only applies constraints to vertices that are

not included in the LDS, denoted L, since the constraints apply to each vertex in

G \ L. In a similar fashion to the IP presented in chapter 3, where the variable yi

was used to effectively turn a particular constraint off dynamically during the opti-

mization, the right hand sides of 5.28 and 5.29 do the same. For the dominating

constraint, if a vertex i is included in the LDS, the right hand side will go to zero,

and impose no restriction. If the vertex is not included in the LDS, xi will be zero,

the right hand side will be one, and the constraint will be imposed. For the locating

constraint, equation 5.29, if either of the vertices i or j are included in the LDS,

the right hand side will go to zero and impose no constraint for that vertex pair. As
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Figure 5.12: Locating-Dominating Set for Paris Attack Network

established in [4], all graphs admit locating-dominating sets (trivially, L = G), so

a maximum covering construct is not mathematically necessary. However, sec-

tion 5.6 sets forth reasons why one might want to limit the number of confidential

informants in a network, and demonstrates an appropriate formulation to ensure

this behavior.

5.5.2 Locating-Dominating Set: Paris Network

The LDS for the Paris attack network is shown in figure 5.12. L = {4, 5, 7, 8}, and

|L| = 4, one less than the identifying code construct. Vertices 4, 7, and 8 were

also surveillance targets under the identifying code construct, but interestingly the

LDS includes vertex 5, which is a lone vertex with a degree of one. This sort of

outsider, or less connected member of the group, might be easier to turn into a

confidential informant.

90



Figure 5.13: Locating-Dominating Set for 9-11 Attack Network

5.5.3 Locating Dominating Set: 9-11 Network

The LDS for the 9-11 Attack network is shown in figure 5.13. L = {2, 5, 9, 12, 19, 21,

22, 23, 27, 31, 33, 35, 37}, and |L| = 13, two fewer than required under the identifying

code construct. However, attempting to establish 13 confidential informants in a

network of 38 individuals is problematic, likely exposes authorities to significant

counter-detection risk, and is potentially infeasible from a practical standpoint.

5.6 Combined Decision Support Tool for Terrorist

Network Monitoring

Due in large part to the theoretical nature of previous identifying code, locating-

dominating, and OLD set work, each situation has been examined independently

and assumed to be correct for the discussed application. There do not appear to
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be any results in the literature that explore various constructs on a single applica-

tion, attempt to identifying the most appropriate construct for a given application,

or combine multiple constructs into a single analysis or tool. However, in the con-

text of monitoring terrorist networks, a combined tool is most appropriate for the

decision maker. An IP that could identify both targets for surveillance as well as

the ideal persons to turn into confidential informants would best assist the intelli-

gence officer(s) by providing an optimized strategy to monitor a particular network.

Let αr,i,j represent the coverage matrix elements for coverage radius r, as de-

fined in previous chapters. Let xr,j = 1 represent vertex j being placed under

surveillance of strength r in a mixed weight construct as defined in section 5.3.

Let yr,j = 1 represent a confidential informant with strength r at vertex j. Let

P represent the maximum number of confidential informants allowed for the net-

work. W surv
r is a cost parameter for the strength of surveillance (larger r values

represent deeper penetration and are more costly to establish); W ci
r is a similar

cost parameter for how deeply a CI can provide information (a more deeply con-

nected CI will presumably take additional resources to turn and maintain). Csurv
j

is the cost of putting a specific vertex/member under surveillance, and Cci
j is the

cost of turning a specific member to be a CI.
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min
∑
j∈V

∑
r∈R

(W surv
r + Csurv

j )xr,j + (W ci
r + Cci

j )yr,j (5.31)

s.t.
∑
j∈V

∑
r∈R

αr,i,j(xr,j + yr,j) ≥ 1−
∑
r∈R

yr,i ∀ i ∈ V (5.32)

∑
r∈R

∑
k∈V

(αi,k − αj,k)
2(xr,k + yr,k)

≥ Ωi,j(1−
∑
r∈R

yr,i)(1−
∑
r∈R

yr,j) ∀ i, j ∈ V (5.33)

∑
r∈R

(xr,j + yr,j) ≤ 1 ∀ j ∈ V (5.34)

∑
r∈R

yr,j ≤ P ∀ j ∈ V (5.35)

x, y ∈ {0, 1}n (5.36)

5.6.1 Combined IP: Correctness

The objective function 5.31 seeks to minimize the total cost, which is desired.

If all weights/costs are equal, then the model will seek a feasible solution with

the fewest number of targets (surveillance and confidential informant combined),

which follows logically. The dominating constraint 5.32, is similar to previous dom-

inating constraints, however one must consider a vertex’s proximity to either a

vertex under surveillance or to a confidential informant. For each vertex in V , the

proximity is considered against every other vertex at all possible weights. This

is done through examination of the incoming ball of each vertex. The right hand

side ensures that each vertex, i, has a least one neighbor in the set, unless vertex

i is a confidential informant. If i is a confidential informant of any strength, then∑
r∈R yr,i = 1, and the right hand side will go to zero, imposing no constraint for
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vertex i. The locating constraint is a similar adaptation to previous locating con-

straint equations. Each vertex pair i, j ∈ V \L must have at least one neighbor in

the set, either a surveillance target or a confidential informant, that separates the

pair and ensures a unique intersection with the set. Again, this constraint is not

required if either i or j is a confidential informant, but is still required if one or both

is simply under surveillance. The right hand side of the equation will go to zero if

either i or j is an informant and pose no restriction on the model. If neither i nor

j are informants, and i and j have shared neighbors, then the right hand side will

equal 1, and function as normal. Equation 5.34 ensures no more than a single

method (surveillance, confidential informant) and a single weight is selected for

each vertex. Equation 5.35 offers a “fixed-P” construct as presented in Chapter

3, and optionally provides that no more than a specified number P of confidential

informants are in a set for a single terrorist network, as too many informants could

raise suspicion or end up reporting on each other unknowingly.

5.6.2 Combined Monitoring Plan: Paris Network

The Paris Attack Network monitoring solution, shown in figure 5.14, is based on

even weights and costs and amaximum of one confidential informant. Using more

than one informant in such a small network seems to pose too great a risk for

counter-detection. The solution identifies 5 targets. One confidential informant,

of strength 1, three surveillance targets of strength 1, and one surveillance target

of strength 2. This is the same number of targets as the identifying code and the

MWOLD set. It appears that the network is too small for the single confidential

informant to significantly reduce the total number of surveillance targets.
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Figure 5.14: Combined Monitoring Solution for Paris Attack Network

5.6.3 Combined Monitoring Plan: 9-11 Network

For the 9-11 Attack network, the model was limited to a maximum of two confiden-

tial informants, to prevent counter detection and compromise of the informants.

The strength weights are all set to 1, for both surveillance and confidential infor-

mants. The optimal result, shown in figure 5.15, uses two confidential informants:

one of strength 1 and one of strength 2. It places 11 people under surveillance:

six at strength 1, and 5 at strength 2. This is the same overall number of targets

as the MWOLD set solution and the locating-dominating set solution.
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Figure 5.15: Combined Monitoring Solution for 9-11 Attack Network

Construct Monitoring Notes
Identifying Code Surveillance All activity detectable
OLD/MWOLD set Surveillance Perpetrator activity hidden

against direct surveillance
Strongly Identifying Code Surveillance Robust against hidden activity

assumptions
Locating-Dominating Set CI CI can self report, indicate

knowledge of associate activity
Combined Both

Table 5.1: Terrorist Network Monitoring - Formulation Types
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IC OLD MWOLD SIC LDS Combined
Paris: # Targets 5 6 5 6 4 5
9-11: # Targets 15 17 13 18 13 13

Table 5.2: Terrorist Network Monitoring - Comparison

5.7 Conclusions

While this work does not offer a typical hypothesis and conclusion, it offers sig-

nificant observations about the behavior and applications of location-domination

concepts. For each of the networks, the number of required targets ranged from

about one-third to about one-half of the total number of actors in the network. This

number seems extremely high given typical government agency and law enforce-

ment resourcing. It is more likely that a construct needs to be developed to identify

a cascading subgraph approach, where 4-5 members (in a 40-50 person network)

could be monitored, and activity would trigger authorities to identify an active sub-

group of the network, and reidentify 4-5 new targets in the subgroup to monitor for

additional activity, continuing this process until the perpetrator is identified. The

long planning lead times for coordinated attacks or criminal activity seem to make

this potential approach feasible, and worth of consideration in future work.

Table 5.2 shows the number of targets required for each solution as a mea-

sure of performance. Strongly identifying codes seem to have the worst perfor-

mance, which is logical given their dual constraint requirement. The mixed weight

systems, both MWOLD and the mixed-weight combined approach had the best

performance, though weight was not significantly considered due to the difficulties

establishing reasonable weighting structures without disclosing sensitive informa-

tion. The locating-dominating set constructs had equally good performance, but

relied on an extremely high number of informants for a given network. These
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results are interesting theoretically, but highly impractical.

In both of the terrorist networks examined in this chapter, a single vertex was

identified for monitoring in every construct. For the Paris network, this was vertex

7; for the 9-11 network, vertex 21. Neither of these vertices were the highest

degree vertex in their respective graphs, nor did they offer the greatest number of

separations (instances where that vertex was in the ball of one vertex of a vertex

pair, but not the other). This suggests that development of greedy algorithms for

identifying near-optimal sets may be difficult, as there is no clear link between the

major quantitative characteristics of a vertex and its likelihood of being included

in a set.

Nevertheless, this chapter does demonstrate the feasibility of identifying codes,

open locating-dominating sets, mixedweight open locating-dominating sets, locating-

dominating sets, and the new combined construct for real world applications, such

as monitoring a terrorist or criminal network. Each solution presented in this chap-

ter was identified in less than 60 seconds using AMPL and a Gurobi solver on a

standard Linux desktop, indicating that real world applications are computation-

ally reasonable. With further development, these tools could prove valuable in the

nation’s ongoing struggle against these subversive groups.
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Appendix A

AMPL Code: Models and Example

Data Files

AMPL was used exclusively for modeling and solving the OLD sets in this paper.

Listed below for reference are the various models used and example data files for

each model. The models included are:

• Pre-constructed OLD set, with β matrix. Data file for a 5-vertex house (figure

1.2).

• Dynamic OLD set with Ω matrix. Data file for a 5-vertex house.

• Maximum Covering OLD set. Data file for three vertex path. (figure 4.3).

• Mixed Weight OLD set. Data file for 10-vertex tree (figure 4.4).

• Combined Monitoring Tool. Data set for Paris Network (figure 5.14).
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Model for pre-constructed OLD set:

set NODES;

set ROWPAIRS;

param Adj {NODES, NODES} >= 0; # adjacency matrix

param Beta {ROWPAIRS, NODES} >= 0;

# abs value of difference of Adj rows, 2 edges apart

var x {NODES} binary;

minimize Objective: sum {j in NODES} x[j];

subject to Covering {i in NODES}:

# every adjacent node must be covered

sum {j in NODES} Adj[i,j] * x[j] >= 1;

subject to Separating {k in ROWPAIRS}:

# every node 2 edges away must be covered

sum {j in NODES} Beta [k,j] * x[j] >= 1;
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Data File for 5-vertex House. fig 1.2

data; ### DATA STARTS HERE ###

set NODES := 1 2 3 4 5;

set ROWPAIRS := 14 24 25 35;

param Adj : 1 2 3 4 5 :=

1 0 1 1 0 1

2 1 0 1 0 0

3 1 1 0 1 0

4 0 0 1 0 1

5 1 0 0 1 0;

param Beta : 1 2 3 4 5 :=

14 0 1 0 0 0

24 1 0 0 0 1

25 0 0 1 1 0

35 0 1 0 0 0;
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Model for Dynamic OLD set.

set NODES;

param Adj {NODES, NODES} >= 0; # adjacency matrix

param Omega {NODES, NODES} >= 0;

# matrix indicating shared neighborhoods

var x {NODES} binary; # x=1 if vertex is in the OLD set

minimize Objective: sum {j in NODES} x[j];

subject to Dominating {i in NODES}:

# every node must be covered

sum {j in NODES} Adj[i,j] * x[j] >= 1;

subject to Locating {i in NODES, j in NODES}:

# Omega(i,j)=1 if d(i,j)<2*r, 0 otherwise. Indicates

# shared neighbors. Every pair with shared neighbors

# must have at least one distinguishing neighbor in the set.

sum {k in NODES} (Adj[i,k]-Adj[j,k])^2 * x[k] >= Omega[i,j];
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Data File for 5-vertex House with Omega

data; ############ DATA STARTS HERE ############

set NODES := 1 2 3 4 5;

param Adj: 1 2 3 4 5 :=

1 0 1 1 0 1

2 1 0 1 0 0

3 1 1 0 1 0

4 0 0 1 0 1

5 1 0 0 1 0;

param Omega: 1 2 3 4 5 :=

1 0 1 1 1 1

2 1 0 1 1 1

3 1 1 0 1 1

4 1 1 1 0 1

5 1 1 1 1 0;
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Model for Maximum Covering OLD set

set NODES;

param Adj {NODES, NODES} binary; # adjacency matrix

param Omega {NODES, NODES} >= 0; # shared neighborhoods

param Gamma = 1; #Weighting parameter for set size

param Zi = 10; #Weighting parameter for uncovered vertices

var x {NODES} binary;

var y {NODES} binary;

minimize Objective:Gamma*sum{j in NODES}x[j] - Zi*sum{k in NODES}y[k];

subject to Dominating {i in NODES}:

# every included vertex must be covered

sum {j in NODES} Adj[i,j] * x[j] >= y[i];

subject to Locating {i in NODES, j in NODES}:

# every pair of covered vertices must be separated

sum {k in NODES} (Adj[i,k]-Adj[j,k])^2*x[k]>= Omega[i,j]*y[i]*y[j];
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Data File for 3 vertex Triad, figure 3.2

data; #### DATA STARTS HERE ####

set NODES := 1 2 3;

param Adj : 1 2 3:=

1 0 1 1

2 1 0 0

3 1 0 0;

param Omega: 1 2 3:=

1 0 1 1

2 1 0 1

3 1 1 0;
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Model for Mixed Weight OLD set

set NODES;

set Radii;

param Adj {Radii, NODES, NODES} >= 0; # adjacency matrix

param Omega {NODES, NODES} >= 0; # shared neighborhood

param Weight {Radii}; # weighting function for sensor strengths

var x {Radii, NODES} binary;

minimize Objective:sum {r in Radii, j in NODES}x[r,j]*Weight[r];

subject to Dominating {i in NODES}:

# every adjacent node must be covered

sum {r in Radii, j in NODES} Adj[r,i,j] * x[r,j] >= 1;

subject to Locating {i in NODES, j in NODES}:

# every pair of nodes must have at least one sensor

# in one neighborhood but not the other

sum{r in Radii,k in NODES}(Adj[r,k,i]-Adj[r,k,j])^2*x[r,k]

>=Omega[i,j];

subject to OnlyOneSensor {j in NODES}:

#No more than one sensor may be placed at a given vertex

sum {r in Radii} x[r,j] <= 1;
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Data File for 10-vertex Scale Free, Mixed-Weight R = 9

data; ############ DATA STARTS HERE ############

set NODES := 1 2 3 4 5 6 7 8 9 10;

set Radii := 1 2 3 4 5;

param Weight:=

1 2

2 2

3 2

4 2

5 2;

param Adj:=

[1,*,*]: 1 2 3 4 5 6 7 8 9 10:=

1 0 1 1 1 0 0 0 0 0 1

2 1 0 0 0 0 0 1 0 0 0

3 1 0 0 0 0 1 0 0 0 0

4 1 0 0 0 1 0 0 1 0 0

5 0 0 0 1 0 0 0 0 1 0

6 0 0 1 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0

9 0 0 0 0 1 0 0 0 0 0

10 1 0 0 0 0 0 0 0 0 0

[2,*,*]: 1 2 3 4 5 6 7 8 9 10:=
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1 0 1 1 1 1 1 1 1 0 1

2 1 0 1 1 0 0 1 0 0 1

3 1 1 0 1 0 1 0 0 0 1

4 1 1 1 0 1 0 0 1 1 1

5 1 0 0 1 0 0 0 1 1 0

6 1 0 1 0 0 0 0 0 0 0

7 1 1 0 0 0 0 0 0 0 0

8 1 0 0 1 1 0 0 0 0 0

9 0 0 0 1 1 0 0 0 0 0

10 1 1 1 1 0 0 0 0 0 0

[3,*,*]: 1 2 3 4 5 6 7 8 9 10:=

1 0 1 1 1 1 1 1 1 1 1

2 1 0 1 1 1 1 1 1 0 1

3 1 1 0 1 1 1 1 1 0 1

4 1 1 1 0 1 1 1 1 1 1

5 1 1 1 1 0 0 0 1 1 1

6 1 1 1 1 0 0 0 0 0 1

7 1 1 1 1 0 0 0 0 0 1

8 1 1 1 1 1 0 0 0 1 1

9 1 0 0 1 1 0 0 1 0 0

10 1 1 1 1 1 1 1 1 0 0

[4,*,*]: 1 2 3 4 5 6 7 8 9 10:=

1 0 1 1 1 1 1 1 1 1 1

2 1 0 1 1 1 1 1 1 1 1
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3 1 1 0 1 1 1 1 1 1 1

4 1 1 1 0 1 1 1 1 1 1

5 1 1 1 1 0 1 1 1 1 1

6 1 1 1 1 1 0 1 1 0 1

7 1 1 1 1 1 1 0 1 0 1

8 1 1 1 1 1 1 1 0 1 1

9 1 1 1 1 1 0 0 1 0 1

10 1 1 1 1 1 1 1 1 1 0

[5,*,*]: 1 2 3 4 5 6 7 8 9 10:=

1 0 1 1 1 1 1 1 1 1 1

2 1 0 1 1 1 1 1 1 1 1

3 1 1 0 1 1 1 1 1 1 1

4 1 1 1 0 1 1 1 1 1 1

5 1 1 1 1 0 1 1 1 1 1

6 1 1 1 1 1 0 1 1 1 1

7 1 1 1 1 1 1 0 1 1 1

8 1 1 1 1 1 1 1 0 1 1

9 1 1 1 1 1 1 1 1 0 1

10 1 1 1 1 1 1 1 1 1 0

param Omega: 1 2 3 4 5 6 7 8 9 10:=

1 0 1 1 1 1 1 1 1 1 1

2 1 0 1 1 1 1 1 1 1 1

3 1 1 0 1 1 1 1 1 1 1

4 1 1 1 0 1 1 1 1 1 1
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5 1 1 1 1 0 1 1 1 1 1

6 1 1 1 1 1 0 1 1 1 1

7 1 1 1 1 1 1 0 1 1 1

8 1 1 1 1 1 1 1 0 1 1

9 1 1 1 1 1 1 1 1 0 1

10 1 1 1 1 1 1 1 1 1 0 ;
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Model for Combined Monitoring Tool

set NODES;

set Radii;

#adjacency matrix

param Adj {Radii, NODES, NODES} >= 0;

# matrix indicating shared neighborhoods

param Omega {NODES, NODES} >= 0;

# weighting function for depth/range/strengths (WEIGHT)

param Surv_Depth_Cost {Radii};

# weighting function for CI depth/range/strength

param CI_Depth_Cost {Radii};

# cost of placing a specific vertex under surveillance

param Surv_Node_Cost {NODES};

# cost of turning specific vertex to confidential informant

param CI_Node_Cost {NODES};

param MaxCI;

## note: Omega reflects either r-complete or is generated using

##2R+1 if a maximum r value is known.

var x {Radii, NODES} binary;

var y {Radii, NODES} binary;

minimize Objective: sum {r in Radii, j in NODES} (x[r,j] *

(Surv_Depth_Cost [r] + Surv_Node_Cost [j]) + y[r,j] *

(CI_Depth_Cost [r] + CI_Node_Cost [j]));

111



# every node that is not a CI must be covered #

subject to Dominating {i in NODES}:

sum {j in NODES} sum {r in Radii} (Adj[r,i,j] *

(x[r,j]+ y[r,j])) >= 1 - sum {r in Radii} y[r,i];

#every pair of nodes must have at least one sensor in one neighborhood but not the other#

subject to Locating {i in NODES, j in NODES}:

sum {k in NODES} sum {r in Radii} ((Adj[r,k,i]-

Adj[r,k,j])^2 * (x[r,k]+ y[r,k])) >= Omega[i,j]*

(1-sum {r in Radii} y[r,i])*

(1-sum {r in Radii} y[r,j]);

subject to OnlyOneSensor {j in NODES}:

sum {r in Radii} (x[r,j] + y[r,j]) <= 1;

subject to MaxCIAllowed:

sum {r in Radii} sum {j in NODES} y[r,j] <= MaxCI;
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Data for Paris Network Combined

data;

############ DATA STARTS HERE ############

set NODES := 1 2 3 4 5 6 7 8 9 10;

set Radii := 1 2 3;

param MaxCI:= 1;

param Surv_Depth_Cost:=

1 1

2 1

3 1;

param Surv_Node_Cost:=

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1;
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param CI_Depth_Cost:=

1 1

2 1

3 1;

param CI_Node_Cost:=

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1;

param Adj:=

[1,*,*]: 1 2 3 4 5 6 7 8 9 10:=

1 1 0 0 1 0 0 0 0 0 0

2 0 1 0 0 0 1 1 1 0 0

3 0 0 1 1 0 0 0 1 0 0

4 1 0 1 1 0 1 0 0 0 0

5 0 0 0 0 1 1 0 0 0 0

6 0 1 0 1 1 1 1 1 1 1

7 0 1 0 0 0 1 1 0 0 1
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8 0 1 1 0 0 1 0 1 1 0

9 0 0 0 0 0 1 0 1 1 0

10 0 0 0 0 0 1 1 0 0 1

[2,*,*]: 1 2 3 4 5 6 7 8 9 10:=

1 1 0 1 1 0 1 0 0 0 0

2 0 1 1 1 1 1 1 1 1 1

3 1 1 1 1 0 1 0 1 1 0

4 1 1 1 1 1 1 1 1 1 1

5 0 1 0 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1

7 0 1 0 1 1 1 1 1 1 1

8 0 1 1 1 1 1 1 1 1 1

9 0 1 1 1 1 1 1 1 1 1

10 0 1 0 1 1 1 1 1 1 1

[3,*,*]: 1 2 3 4 5 6 7 8 9 10:=

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1
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10 1 1 1 1 1 1 1 1 1 1;

param Omega: 1 2 3 4 5 6 7 8 9 10:=

1 0 1 1 1 1 1 1 1 1 1

2 1 0 1 1 1 1 1 1 1 1

3 1 1 0 1 1 1 1 1 1 1

4 1 1 1 0 1 1 1 1 1 1

5 1 1 1 1 0 1 1 1 1 1

6 1 1 1 1 1 0 1 1 1 1

7 1 1 1 1 1 1 0 1 1 1

8 1 1 1 1 1 1 1 0 1 1

9 1 1 1 1 1 1 1 1 0 1

10 1 1 1 1 1 1 1 1 1 0;
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Appendix B

Pseudo Code for Matrix Generation
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Data: Graph Size (V), Max Coverage Radius (R), Adj. Matrix (A)

Result: Coverage (C) and Omega (Ω) Matrices, AMPL data file

Generate shortest path distance matrix using Floyd-Warshall Algorithm

(algorithm 2, below). Let d← shortest path matrix;

for r = 1 to V do

for i = 1 to V do

for j = 1 to V do

if d(i, j) < r then Cr(i, j) = 1;

else Cr(i, j) = 0;

end

end

Write Cr to .dat file;

end

%Write Omega Matrix;

for i = 0 to V do

for j = 0 to V do

if d(i, j) < R + 1∥i ̸= j then Ω(i, j) = 1;

else Ω(i, j) = 0;

end

end

% Write Omega to .dat file;
Algorithm 1: Matrix Generation Pseudocode

Floyd-Warshall Algorithm[1]
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Data: Adjacency Matrix(a)

Result: Shortest Path Distance Matrix (d)

;

% initialize;

if a(i,j)=0 then

A(i,j) = M % big M ∼ ∞;

else

A(i,j) = a(i,j);

end

for k=0 to V do

for i=0 to V do

for j=0 to V do

if A(i, k) + A(k, j) < A(i, j) then

A(i, j) = A(i, k) + A(k, j);

% if path from i to k to j is shorter than i to j, update with

shorter path distance;

end

end

end

end
Algorithm 2: Floyd-Warshall Algorithm
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