

W&M ScholarWorks

Reports

2020

Expanding the use of natural and nature-based infrastructure to enhance coastal resiliency: Forecast and hind-cast load reductions from Living shoreline BMPs: Project Report (Year 2 of 3)

Marcia Berman Virginia Institute of Marine Science

Pamela Mason Virginia Institute of Marine Science

Tamia Rudnicky Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/reports

Part of the Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons

Recommended Citation

Berman, M., Mason, P., & Rudnicky, T. (2020) Expanding the use of natural and nature-based infrastructure to enhance coastal resiliency: Forecast and hind-cast load reductions from Living shoreline BMPs: Project Report (Year 2 of 3). Virginia Institute of Marine Science, William & Mary. 10.25773/378t-k497

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Expanding the use of natural and nature-based infrastructure to enhance coastal resiliency

A report to the Virginia Coastal Zone Management Program, Department of Environmental Quality and NOAA

Prepared by: Center for Coastal Resources Management

November 2019

Expanding the use of natural and nature-based infrastructure to enhance coastal resiliency: Forecast and hind-cast load reductions from Living Shoreline BMPs

Project Report (Year 2 of 3)

Submitted to the Virginia Coastal Zone Management Program,

Department of Environmental Quality

Marcia Berman, Pamela Mason, Tamia Rudnicky
Center for Coastal Resources Management
Virginia Institute of Marine Science
William and Mary
Gloucester Point, Virginia 23061

Submitted November, 2019

This project, Task #81 was funded, in part, by the Virginia Coastal Zone Management Program at the Department of Environmental Quality through Grant FY18 NA18NOS4190152 of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, under the Coastal Zone Management Act of 1972, as amended.

Berman, M., Mason, P., & Rudnicky, T. (2019) Expanding the use of natural and nature-based infrastructure to enhance coastal resiliency. Virginia Institute of Marine Science, William & Mary. 10.25773/378t-k497

Introduction

The vulnerability of coastal communities and the growing risks to coastal infrastructure continue largely due to past and ongoing patterns of development in high risk areas. This project is focused on increasing the use of natural and nature-based features (NNBFs) to increase resilience of coastal communities to flooding caused by extreme weather events. This project has proposed two efforts to increase understanding of NNBFS; 1) describe the current status, and 2) quantify role of NNBF creation/ restoration for water quality benefits in support of coastal resilience. The products of the 3-year project are intended to support informed coastal management decision-making regarding two concerns associated with NNBFs:

- The natural capital of coastal communities is generally declining, and is projected to decline at an accelerating rate due to sea level rise and current land use practices.
- The use of NNBFs to sustain or increase resilience in coastal communities is restricted by the many competing needs for limited local resources.

In year one, the project addressed the potential loss of natural capital by identifying site suitability for natural capital as coastal protection. Specifically, year one enhanced the capabilities of the Shoreline Management Model (SMM) developed by the Center for Coastal Resources Management (CCRM) at the Virginia Institute of Marine Science (VIMS). These improvements incorporated shorelines which were hardened into the predictive model and streamlined the output to a more user friendly classification. The more robust model (v5.0) was applied to the entire coastal zone of Virginia and used to identify 1) where creation of new natural capital can offer protection to vulnerable shorelines and 2) where existing natural capital currently provides sufficient protection, and may be lost if traditional shoreline protection structures are put in place. The model results were posted to the CCRM Comprehensive Coastal Resource Management Portals (https://www.vims.edu/ccrm/ccrmp/index.php) and to ADAPTVA (http://www.adaptva.org/index.html.

The focus of this year has been to address the value of nature based features from the perspective of the co-benefits they provide. Specifically, the project is focused on how the creation of nature-based features such as living shorelines garner nutrient reduction credits that can be applied to assist local governments in meeting their TMDL nutrient reduction requirements. The analysis applies the Chesapeake Bay Program (CBP) approved process for crediting nature based solutions to areas where such treatment options could be incorporated into efforts focused on coastal resilience and shoreline protection. The Shoreline Management Model was modified again to enable and support the analysis proposed for the second year of this project. The latest version (v.5.1) was used to assess where living shorelines are appropriate along natural/unmanaged shoreline or previously hardened shorelines and where, if implemented according to the model output, would meet the CBP criteria for TMDL credits.

While communities continue to gain insight into the general understanding of actions that can lower risks and increase resilience, financial and people resources required to undertake those

actions are limited. In the face of competing interests, one solution to accelerating the pace of building resilience is to find ways to address multiple needs with each action. Therefore, the co-benefits of building resilience through nature-based features offer an opportunity for communities to acquire nutrient reduction benefits from carefully planned projects.

Approach

The SMM (V5.1) delineates where living shoreline treatments are suitable erosion control methods based on current shoreline conditions, as well as where more traditional erosion control structures would work best (i.e. navigationally limited areas where living shorelines are not feasible). The SMM uses decision tree logic for arriving at a recommended shoreline management approach. These decision trees depict logic pathways that reflect the scientific literature and best professional judgement with regards to shoreline management options, and have been heavily vetted over many years of on the ground site reviews in the field. More information on the development of the model is available (Berman et al., 2018) and diagrams are included in Appendix 1.

This model has been run for nearly all of the coastal zone of Virginia. The model identifies different classes of living shoreline, or traditional alternatives that should provide protection along both natural (no erosion control adaptations in place) and modified shorelines (e.g. those existing structures such as bulkheads or revetments). A glossary and description of these classes is found in Appendix 2.

This project focused on the potential for the past and future implementation of nature and natural-based features, and specifically on the use of tidal vegetated marsh for erosion protection and the co-benefit of water quality improvement. Using vegetated marsh alone, or in combination with a channelward protective structure, are approaches that meet Commonwealth's definition of living shorelines which are codified as the preferred practice for erosion control. In the SMM output, marsh creation is included in two of the shoreline best management practices; "non-structural living shorelines" or "plant marsh with sill" (Table 1).

Table 1 List of classes for on the ground best practices in SMM v5.1. * denotes classes that meet criteria for load reduction credits

Shoreline Best Management Practices (V5.1)
Non-structural living shoreline*
Plant marsh with sill*
Maintain beach or offshore breakwater with beach nourishment
Groin field with beach nourishment
Revetment
Revetment/Bulkhead Toe Revetment

The Chesapeake Bay Program (CBP) uses loading estimates to quantify expected amounts of nutrients (nitrogen and phosphorus) or sediment loads to water from specific land uses or point sources and makes adjustments based on an estimate of the effectiveness of a best management practice (BMP). BMP Expert Panels are convened to develop the BMP effectiveness estimates and the Water Quality Goal Implementation Team (WQGIT) is responsible for approving the loading rate reductions, and percentage adjustments to these rates, used in the Chesapeake Bay Watershed Model (CBWM). The CBP empaneled a group of shoreline science and management experts to provide a recommendation on nutrient and sediment load reduction efficiencies provided by shoreline management practices. The expert panel process has been codified by the CBP to include generation of a recommendation report and subsequent review, and approval, by the pertinent workgroups and Teams. The panel provided a recommendation based on a scientific literature review and best professional judgement.

Four different protocols are defined for shoreline BMPS:

Protocol 1, "Prevented Sediment" provides an annual mass sediment reduction credit for qualifying shoreline management practices that prevent tidal shoreline erosion that would otherwise be delivered to nearshore/downstream waters. The pollutant loads are reduced for sand content and bank instability (based on the state's assessment).

Protocol 2, "Credit for Denitrification" provides an annual mass nitrogen reduction credit for qualifying shoreline management practices that include vegetation.

Protocol 3, "Credit for Sedimentation" protocol provides an annual mass sediment and phosphorus reduction credit for qualifying shoreline management practices that include vegetation.

Protocol 4 "Credit for Marsh Redfield Ratio" provides one-time nutrient reduction credit for qualifying shoreline management practices that include vegetation.

A "Default Rate" provides an annual mass sediment and nutrient reduction credit for qualifying shoreline management practices.

Accounting for load reductions for Protocol 1 based on a GIS model is problematic as it would require detailed and precise bank elevation data and mean value for annual shoreline retreat. This data is not currently available. As such, protocol 1 load reductions are identified as site specific and are currently determined on a project by project basis. However, for calculating load reductions for existing and non-conforming practices, the approved BMP assigns values to nitrogen, phosphorus and sediment reductions based on linear feet. (CBP, 2017). Pollution load reductions under protocols 2 and 3 are credited annually. Recommendations call for a review to verify the BMP is still functioning as intended. Pollution load reductions under protocol 4 are a one-time nutrient reduction credit for practices that include vegetation.

Table 2 shows the approved CBP protocols for nitrogen, phosphorous and sediment reductions of shoreline management BMPs. Nutrient load reduction benefits were attributed to those potential living shoreline sites that included vegetative practices - the creation of marsh.

Table 2. Summary of CBP protocols for nitrogen, phosphorus and sediment reductions of shoreline management BMPs

Protocol	Submitted Unit	Total Nitrogen (lbs per unit)	Total Phosphorus (lbs per unit)	Total Suspended Sediment (lbs per unit)
Dravantad				
Prevented Sediment	Linear Feet	Project-Specific*	Project-Specific*	Project-Specific
Sediment	Acres of re-	1 Toject Specific	1 Toject Specific	1 Toject Specific
Denitrification	vegetation	85	NA	NA
	Acres of re-			
Sedimentation	vegetation	NA	5.289	6,959
	Acres of re-			
Redfield Ratio	vegetation	6.83	0.3	NA
Non-conforming/		MD= 0.04756	MD= 0.03362	MD= 164
Existing Practices*	Linear Feet	VA = 0.01218	VA = 0.00861	VA = 42

The geospatial analysis uses the ESRI® software ArcMAP for computation and output. The model's output of location and extent of shoreline management recommendations is geospatially represented as a line along the shoreline. We selected the recommendations for non-structural living shoreline and plant marsh with sill only and converted that shoreline to a polygon by multiplying the alongshore dimension by a constant marsh width of eight (8) feet. With a greater than 50% reduction in wave energy and height (Knutsen et. al., 1982), this width is consistent with the minimal recommended width for marsh creation for erosion abatement. It is also specified as the minimum vegetated marsh area to qualify for the Virginia Living Shoreline Group 2 General Permit for "Certain Living Shoreline Treatments Involving Submerged Lands, Tidal Wetlands Or Coastal Primary Sand Dunes And Beaches". The modeled marsh width is considered to be a minimum recommended width for erosion control, but creation of marshes with greater areal extent would qualify for great load reductions accordingly. The newly computed areas (or polygons in ArcMap) represent the location and minimal amount of vegetation which may be created along that shoreline to reduce erosion.

The analysis was run on shoreline currently unmanaged (i.e. no shoreline armoring present) and shorelines currently defended with structures such as bulkheads and revetments. The analysis excluded shorelines where marsh grass was already present as the criteria considers credit only for new marsh creation. However, it is possible to create additional marsh, which can qualify for load reduction credits if the qualifying criteria are met.

The approach applied in this project is to calculate the CBP approved nutrient load reductions

for nitrogen, phosphorous and sediment (Table 2) for potential created marsh areas generated through the spatial analysis. The analysis is for two time frames:

- forecasting looking forward to all possible shoreline where the SMM assigns living shoreline suitability;
- back-casting for all shoreline hardened between 2009 and 2018 where the CCRM permit database identified the suitability for a living shoreline.

Each potential living shoreline treatment option that includes vegetation is assessed to quantify its added value potential as a TMDL credit to satisfy pollution reduction requirements that must be met by the CBP signatories. The potential credits were calculated for each Tidewater locality and for 8-digit HUC units.

Results

Computing Future Nutrient Reduction Credits from Potential NNBF BMPs

We computed the location and amount of qualifying living shoreline BMPs appropriate for erosion control along the shoreline for each locality. The potential load reduction credits to be achieved if all these BMPs are to be implemented and credited was also calculated. For shorelines currently unmanaged, more than 760 acres of tidal marsh could potentially be created for erosion abatement across all tidewater localities analyzed (Note: King and Queen and King William counties had no data available for the analysis). Combining all potential nutrient reduction credits analyzed across all localities, Virginia's Tidewater communities could reduce the nitrogen load reduction requirement by 69,907 pounds of nitrogen. An additional 278 acres of marsh could be created along shorelines that have already been defended. This would add an additional 25,499 pounds of nitrogen as credit for a total of 95,406. Across Tidewater the credits applied for phosphorous reductions would equal 4,255 pounds with an additional 1,552 pounds (total = 5,8070 for hardened shorelines that convert to NNBF).

The total reduction goals for Virginia for nitrogen and phosphorus (2009 loads – 2025 targets) are about 15.5 and 2.3 million pounds, respectively. Implementation of living shorelines would provide a contribution to the total goals of approximately 0.65 and 0.26 percent respectively. However, it would be most relevant to consider the potential percentage of load reduction relative to the Agriculture and Urban sectors, considering that Wastewater, Forest and Nontidal water and Reserve sectors are not targets for living shorelines as a BMP practice. The load reductions for those sectors are 8.6 and 2 million pounds with percent reduction from LS of 1.1 and 0.29, respectively.

The load reduction calculations for living shoreline implementation are conservative. Not all of the Virginia localities have been mapped with a SMM recommendation (specifically King and Queen, King William) and certain shoreline settings do not have a shoreline management approach recommendation. Some highly developed, high physical risk or special resource

landscapes such as: marinas and canals, infrastructure within 50 feet of the shoreline, along small spit features and in the vicinity of SAV, are excluded from provision of a specific recommendation even though a living shoreline may be feasible in some of these areas. The modeled living shorelines have the minimum 8-foot width called for in the Group 2 general permit, but for best performance and in practice, most are much wider. Finally, we did not include breakwaters which commonly include some vegetated area within the project.

The values computed for each locality represent the potential nutrient reduction credits available if vegetative alternatives are put in place everywhere possible. The actual credits will need to be evaluated on a project by project basis. Appendix 3 reports the rates for each locality (A = Currently Unmanaged Shoreline; B = Currently Defended Shoreline). Considering the benefit of vegetated BMP practices to TMDL credits per hydrologic unit, Appendix 3C and 3D also report data for the fifteen (15) different 8-digit hydrologic units within the coastal zone of Virginia.

A cautionary note comes from the CBP expert panel report regarding the forecasting of load reduction credits attributable to all shoreline identified as suitable for vegetated practices. The load reduction values may provide a perverse incentive for shoreline management along shorelines where erosion protection is not warranted. A perverse incentive is an incentive that has an unintended and undesirable result which is contrary to the intentions of its designers. Perverse incentives are a type of negative unintended consequence. From an ecosystem perspective, shoreline management even in the form of preferred natural and nature-based practices, still result in environmental consequences, most notably the prevention of sediment inputs into the waterways. While sediment prevention is an intended consequence from a water quality perspective, the loss of available material necessary for wetland and beach resilience can adversely impact the provision of erosion abatement, flood risk reduction and habitat services. The panel addressed this concern by including a set of qualifying conditions. The qualifying conditions establish living shoreline (nonstructural, hybrid marsh with sill, hybrid beach/dune with breakwater) as the first option when the site is experiencing erosion. The second option is for a revetment or breakwater where a living shoreline is not feasible, and finally bulkhead or seawall where certain land use limitations necessitate the approach (CBP 2017). Nevertheless, given the concern for erosion and the current rate at which erosion control practices are applied for (660/year), the projection of water quality benefits from vegetated practices provides rationale for their implementation as a preferred practice.

Computing Potential Nutrient Reduction Credits Lost Due to Past Shoreline BMP Decisions

This study also analyzed credits which may have been available to local governments had NNBFs been installed instead of traditional erosion abatement structures. In order to backcast the potential load reductions for existing and non-conforming shoreline practices, permits applications for the years 2009-2018 were reviewed for all the coastal localities in Virginia (CCRM 2019). As the CBP model has already accounted for landuse and BMPs activities up through 2008, we selected those actions that could have received load reduction credits

starting in 2009 to presently available data. The analysis called for an extraction of all sites where a traditional bulkhead or revetment was permitted but a non-structural living shoreline or a hybrid marsh planting with sill was recommended through the SMM. The total linear footage of shoreline along which marsh creation was possible was estimated by the project lengths reported in the permit application (n=306,234 linear feet of shoreline). Table 3 reports the values by locality.

Using the same method above to estimate the amount of marsh that could have been created at each site, the project length was multiplied by a minimal marsh width of 8 feet to calculate the area of possible marsh creation along the shoreline (n=56.24 acres of marsh).

Since the Chesapeake Bay Program's guidance does allow for credits for existing and nonconforming practices such as bulkheads and revetments, the load reduction values for these conventional shoreline practices were calculated using the approved removal rates for these practices. We also calculated the potential load reductions if the projects had been living shorelines. For the Protocol 1 calculation for the living shorelines backcasting, we used the same sediment removal rate as for the non-conforming/ existing and the approved removal rates of 0.00029 pounds of total nitrogen per pound of total suspended solids and 0.000205 pounds of total phosphorus per pound of total suspended solids. Table 4 shows the totals for all conventional hardening approaches with both the "approved" rates for non-conforming/ existing practices and the possible rates if those practices had been living shorelines as identified in the SMM. This is the load reduction the locality lost because NNBFs were not used where appropriate for erosion control abatement, and the number of sites where this occurred. Using the load reduction numbers from Table 1, we projected the potential amount of nutrient reduction credits available to the locality had the preferred NNBF management practice been installed. The importance of this figure is to re-emphasize the co-benefits and value of encouraging the use of NNBFs for erosion control.

Furthermore, while much of tidal shore permitting decisions are made at the local level, the implications for water quality benefits are not necessarily well communicated to decision making boards. Year three of this project plan includes communication to these local units to help build awareness of the co-benefits of NNBFs.

Table 3. Linear feet of conventional structures permitted along shoreline suitable for vegetated practices (Non-structural living shoreline and Plant marsh with sill)

Locality	LF Approved
Accomack	12533
Charles City	897
Chesapeake	6483
Chesterfield	500
Colonial Heights	26
Essex	3225
Fairfax	357
Gloucester	15244
Hampton	6607
Henrico	168
Hopewell	165
Isle of Wight	1906
James City	2617
King George	1490
Lancaster	31212
Mathews	13525
Middlesex	23093
New Kent	2540
Newport News	1082
Norfolk	19885
Northampton	2537
Northumberland	64893
Poquoson	2813
Portsmouth	4101
Prince George	251
Richmond County	1524
Spotsylvania	325
Stafford	729
Suffolk	4159
Virginia Beach	55124
Westmoreland	16332
York	9891
Total	306234

		Total N	Total P	Total SS	
Protocol	Unit of measure	Removal (lbs)	Removal (lbs)	Removal (lbs)	
1. Prevented					
Sediment	306,234 linear feet	373	2637	12,861,828	
2. Denitrification	56.24 acres	4,780	NA	NA	
3. Sedimentation	56.24 acres	NA	297	391,374	
4. Marsh Redfield					
Ratio	56.24 acres	384	17	NA	
TOTAL Nutrient					
Credits		5,537	2,951	391,374	
Non-conforming					
/Existing Practices	306,234 linear feet	3,729	2637	12,861,828	
Difference		1,808	314	391,374	

Table 4. Potential nutrient reduction credit lost from permitted activities 2009-2018

Summary

The implementation of shoreline BMPs can result in significant nutrient and sediment load reduction and in support of Virginia's efforts to achieve the pollutant reductions required by the Bay Total Maximum Daily Load (TMDL). Where property owners are seeking to manage their shoreline to reduce or prevent erosion, they have a range of management options including living shorelines and conventional hardening. Virginia has established public policy to identify living shoreline as the preferred practice and the CBP has approved a pollution load reduction rate for shoreline management practices. While all shoreline management practices may be eligible for load reduction credits, the CBP BMP requires that an eligible site be experiencing current erosions, and use a natural or nature-based vegetative practice unless demonstrated to be infeasible. The BMP load reduction rates for conventional practices are smaller than living shoreline practices because they lack the additional load reduction attributed to the creation of marsh. As such, the co-benefit of water quality improvement, and opportunity for credits, provides additional rational for the preference of NNBF shoreline management approaches over conventional hardening techniques.

Our analysis shows that future implementation of living shorelines at all suitable locations would result in 1,070 miles of living shoreline and the creation of 1,038 acres of tidal marsh. This area of marsh creation could, at least for some time into the future, improve the sustainability of tidal vegetated wetlands in the face of loss to rising seas. The load reductions anticipated from future marsh creation would be about 100,000 pounds nitrogen, 5800 pounds phosphorus annually, plus additional nutrient and sediment load reductions to be calculated on a project-specific basis. Additionally, back-casting the application of living shorelines to suitable locations where conventional hardening was used during the years

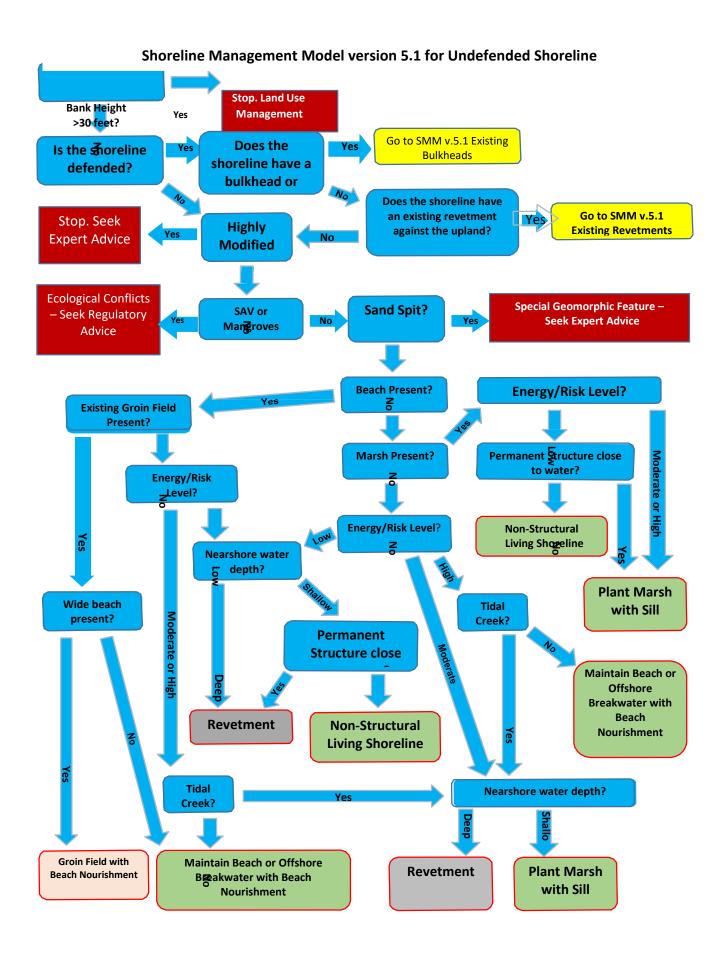
2009-2018 found 58 miles of eligible shoreline that would have minimally created 56.3 acres of tidal marsh. This would have also resulted in potential annual reduction of almost 2000 pounds of nitrogen, about 300 pounds of phosphorus and almost 400,000 pounds of sediment.

References

Berman, Marcia; Mason, Pamela; and Rudnicky, Tamia. 2018. Expanding the use of natural and nature-based infrastructure to enhance coastal resiliency – Interim Report (Year 1 of 3), Center for Coastal Resources Management, Virginia Institute of Marine Science, William & Mary, pp17.

Center for Coastal Resources Management (CCRM), 2019. Center for Coastal Resources Management (CCRM). Shoreline Permit Database. Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia (2019).

Center for Coastal Resources Management, 2010. Decision tree for undefended shorelines and those with failed structures, Center for Coastal Resources Management, Virginia Institute of Marine Science, Gloucester Point, Virginia, pp. 33.


Chesapeake Bay Program (CBP). 2017. (Nathan Forand, Kevin DuBois, Jeff Halka, Scott Hardaway, George Janek, Lee Karrh, Eva Koch, Lewis Linker, Pam Mason, Ed Morgereth, Daniel Proctor, Kevin Smith, Bill Stack, Steve Stewart, and Bill Wolinski). Recommendations of the Expert Panel to Define Removal Rates for Shoreline Management Projects. Prepared by S. Drescher and B. Stack, Center for Watershed Protection. Approved by the WQGIT July 13, 2015, with revised credits approved June 26,2017.

https://www.chesapeakebay.net/documents/LONG SHORELINE MGMT EPR 05152018.pdf

Knutsen, P. et al. 1982. Wave damping in Spartina alterniflora marshes. Wetlands vol. 2:87-104.

APPENDIX 1. Shoreline Management Model (v5.1) Flow Diagrams

SMM Flow Diagram for Undefended Shoreline SMM Flow Diagram for Shoreline with existing Bulkheads SMM Flow Diagram for Shoreline with existing Revetments

Shoreline Management Model version 5.1 for Shoreline with Existing Bulkheads

Appendix 2. Shoreline Management Model (V5.1)

Treatment Classes and Glossary

Shoreline Management Model version 5.1 - Preferred Shoreline Best Management Practices Glossary

Groin Field with Beach Nourishment: Maintain existing wide beach between groins. Remove unnecessary structures at the backshore (e.g. bulkheads) and stabilize the bank with grading and riparian plants. Repair/replace existing groins, add beach nourishment and plant beach vegetation.

Maintain Beach or Offshore Breakwater with Beach Nourishment: If shoreline exceeds 200 feet in length, remove existing shoreline structure, add beach nourishment sand, consider offshore breakwaters or another type of wave attenuation device with beach nourishment; consider adding plantings to the nourished areas. When the shoreline length is less than 200 feet an offshore breakwater may not be practical. In this case, remove failed shoreline structures and repair or construct a revetment as far landward as possible. Consider shoreline enhancement such as creation of vegetated wetlands and/or riparian buffer and/or sandy beach/dune above and immediately channelward of the structure.

Non-Structural Living Shoreline: Remove existing shoreline structure if present; grade bank if necessary and install a non-structural living shoreline which may include riparian buffer planting along the bank, and/or marsh plants, coir logs, or oyster reefs along the shoreline. Best choice for low energy environments.

Plant Marsh with Sill: In moderate energy environments a sill may be required to establish a living shoreline. Remove any existing shoreline structure if present and grade the bank if possible. Stabilize bank with riparian vegetation and plant a marsh with a sill. If the bank cannot be graded, repair existing shoreline structure with a minimal footprint and consider incorporating a marsh with a sill or some other shoreline enhancement (e.g. oyster castles).

Revetment: Remove existing failing or failed shoreline structure, if present. Construct new revetment as far landward as possible; grade the bank and plant vegetation buffers where possible. If grading is not possible, construct or repair existing revetment in the same alignment. A bulkhead should be considered only if previously present and the site is limited by navigation. Consider shoreline enhancement such as creation of vegetated wetlands and/or riparian buffer and/or sandy beach/dune above and immediately channelward of the structure. In high energy settings where shoreline extends more than 200 feet see option for **Offshore Breakwater with Beach Nourishment.**

Revetment/Bulkhead Toe Revetment: If grading is possible, remove the failed bulkhead and replace with a revetment landward of the current bulkhead. When grading not possible, (re)construct bulkhead in the same alignment and/or add a toe revetment. Consider a shoreline enhancement project such as creation of vegetated wetlands and/or riparian buffer and/or sandy beach/dune above and immediately channelward of the structure.

Special Considerations

Ecological Conflicts: Management options for this shoreline may be limited by the presence of Submerged Aquatic Vegetation (SAV) or Mangroves (Florida and Gulf coast shorelines). For Virginia shorelines, seek advice from the Virginia Marine Resources Commission Habitat Management Division http://www.mrc.virginia.gov/. If you live in another state, seek advice from your local marine regulatory agency.

Highly Modified Area: Management options for this shoreline may be limited due to the presence of highly developed upland (e.g. commercial wharfs) or infrastructure directly adjacent to the shoreline (e.g. road) and will depend on the need for and limitations posed by navigation access and erosion control. Seek expert advice on the design of your project.

Land Use Management: Shorelines with tall banks greater than 30 feet limit possible solutions to address bank erosion. Forces other than tidal erosion, such as over-land runoff, upland development, and vegetation management are likely also having effect on bank conditions. Assessment of all factors and modifications to address causes for bank erosion are recommended. This may include changes to vegetation management, implementation of projects to address storm water, relocating buildings, utilities, and other infrastructure. All new construction should be located 100 feet or more from the top of bank. Actions may also include requesting zoning variances for relief from setback and other land use requirements or restrictions that may increase erosion risk. Seek expert advice to inform management options.

No Action Needed: No specific management actions are suitable for shoreline protection, e.g. boat ramps, undeveloped marsh, and barrier islands.

Special Geomorphic Feature: Maintain the natural condition of this shoreline to allow for unimpeded sediment movement and the corresponding response of wetlands, beach and/or dune. If primary structures are present and threatened, seek expert advice on the design of your project.

Appendix 3. Potential Nutrient Reduction Loads from Living Shorelines Along Unmanaged and Defended Shorelines

A. Estimated load reduction credits for created marsh along unmanaged shoreline by county

Unmanaged Shoreline with Potential Living Shoreline BMP (SMM v.5.1)* - Estimated Nutrient Load Reduction: County Analysis

Unmanaged Shoreline with Potential Living Shoreline BMP (SMM v.5.1)* - Estimated Nutrient Load Reduction: County Analysis											
		Protocol 2: Denitrification	Protocol 3: S	edimentation	Protocol 4: Marsh Redfield Ratio						
County/City	Estimated Acres	Total Nitrogen (lbs)	Total Phosphorus (lbs)	Total Suspended Sediment (lbs)	Total Nitrogen (lbs)	Total Phosphorus (lbs)	Sum of Total Nitrogen (lbs) ¹	Sum of Total Phosphorus (lbs) ²			
Accomack	31.049	2639.131	164.216	6 216067.167 212.062 9.315 2851.		2851.192	173.531				
Alexandria	0.156	13.291	0.827	1088.158	1.068	0.047	14.359	0.874			
Arlington	0.525	44.604	2.775	3651.785	3.584	0.157	48.188	2.933			
Caroline	5.881	499.909	31.106	40927.812	40.169	1.764	540.078	32.870			
Charles City	9.837	836.116	52.026	68453.297	67.184	2.951	903.300	54.977			
Chesapeake	17.984	1528.630	95.117	125149.826	122.830	5.395	1651.460	100.512			
Chesterfield	13.718	1165.993	72.552	95460.573	93.691	4.115	1259.685	76.668			
City of Hopewell	3.087	262.366	16.325	21480.044	21.082	0.926	283.448	17.251			
Colonial Heights	2.786	236.787	14.734	19385.875	19.027	0.836	255.813	15.569			
Essex	16.017	1361.452	84.714	111462.863	109.397	4.805	1470.849	89.519			
Fairfax	3.756	319.221	19.863	26134.805	25.650	1.127	344.871	20.990			
Fredericksburg	2.485	211.231	13.144	17293.597	16.973	0.746	228.204	13.889			
Gloucester	27.077	2301.580	143.212	188431.715	184.939	8.123	2486.519	151.336			
Hampton	9.038	768.242	47.803	62896.435	61.731	2.711	829.973	50.514			
Hanover	0.821	69.822	4.345	5716.343	5.610	0.246	75.432	4.591			
Henrico	5.758	489.393	30.452	40066.867	39.324	1.727	528.717	32.179			
Isle of Wight	14.253	1211.532	75.386	99188.865	97.350	4.276	1308.883	79.662			
James City	16.176	1374.920	85.552	112565.545	110.479	4.853	1485.399	90.405			
King George	21.878	1859.645	115.714	152250.218	149.428	6.563	2009.073	122.277			
Lancaster	83.078	7061.643	439.400	578140.883	567.424	24.923	7629.067	464.324			
Mathews	30.904	2626.840	163.451	215060.931	211.074	9.271	2837.914	172.722			
Middlesex	44.508	3783.180	235.403	309731.166	303.990	13.352	4087.170	248.755			
New Kent	5.701	484.598	30.153	39674.287	38.939	1.710	523.536	31.864			
Newport News	7.799	662.884	41.247	54270.737	53.265	2.340	716.149	43.587			
Norfolk	9.223	783.943	48.780	64181.842	62.992	2.767	846.935	51.547			
Northampton	28.132	2391.222	148.790	195770.774	192.142	8.440	2583.364	157.230			
Northumberland	155.057	13179.822	820.095	1079039.795	1059.037	46.517	14238.860	866.612			
Petersburg	0.237	20.139	1.253	1648.812	1.618		21.758				
Poquoson	3.798	322.819	20.087	26429.348	25.939	1.139	348.758				
Portsmouth	2.702	229.641	14.289	18800.883	18.452	0.810	248.094	15.100			
Prince George	8.657	735.842	45.787	60243.824	59.127	2.597	794.969	48.384			
Prince William	0.830	70.522	4.388	5773.647	5.667	0.249	76.188				
Richmond	14.632	1243.756	77.391	101827.059	99.939	4.390	1343.696				
Richmond (city)	3.062	260.309	16.197	21311.656	20.917	0.919	281.226				
Spotsylvania	3.137	266.639	16.591	21829.922	21.425	0.941	288.065	17.532			
Stafford	7.025	597.133	37.156	48887.646	47.981	2.108	645.115	39.263			
Suffolk	13.687	1163.379	72.390	95246.555	93.481	4.106	1256.860	76.496			
Surry	5.844	496.737	30.909	40668.157	39.914		536.651	32.662			
Virginia Beach	51.712	4395.538	273.506	359865.311	353.194	15.514	4748.733	289.020			
Westmoreland	54.730	4652.043	289.467	380865.460	373.805	16.419	5025.848	305.885			
Williamsburg	0.476	40.428	2.516	3309.855	3.248	0.143	43.676	2.658			
York	24.050	2044.213	127.198	167360.950	164.259	7.215	2208.472	134.413			
TOTALS	761.260	64707.136	4026.306	5297611.290	5199.409	228.378	69906.545	4254.685			

^{*} Shoreline Management Model (SMM) verion 5.1 living shoreline BMPs used for this project are Plant Marsh with Sill and Non-Structural Living Shoreline. Shoreline with these BMPs where excluded from analysis if tidal marsh is present or if the shoreline is adjacent to NWI Palustrine Forest (PFO) or Palustrine Scrub/shrub (PSS) polygons.

1 Sum of Total Nitrogen = Protocol 2 Total Nitrogen + Protocol 4 Total Nitrogen

² Sum of Total Phosphorus = Protocol 3 Total Phosphorus + Protocol 4 Total Phosphorus

B. Estimated load reduction credits for created marsh along currently defended shorelines by county

Defended Shoreline with Potential 278Living Shoreline BMP (SMM v.5.1)* - Estimated Nutrient Load Reduction: County Analysis Protocol 2: **Protocol 3: Sedimentation** Protocol 4: Marsh Redfield Ratio Denitrification Total Nitrogen Estimated Sum of Total Sum of Total Total Phosphorus Total Suspended **Total Nitrogen** Total Phosphorus County/City Sediment (lbs) (lbs) (lbs) (lbs) Nitrogen (lbs)1 Phosphorus (lbs) Acres (lbs) 492.342 30.635 40308.326 39.561 531.903 32.373 Accomack 5.792 1.738 0.045 Alexandria 3.783 0.235 309 698 0.304 0.013 4 087 0.249 Arlington 0.262 22.286 1.387 1824.561 1.791 0.079 24.077 1.465 Caroline 0.352 29.914 1.861 2449.094 2.404 0.106 32.318 1.967 Charles City 1.849 157,129 9.777 12864.243 12.626 0.55 169.755 10.332 9.398 798.794 49.704 65397.696 64.185 2.819 862.979 Chesapeake 52.523 86.879 5.406 0.307 93.860 1.022 7112.815 6.981 5.713 Chesterfield City of Hopewell 0.25221.443 1.334 1755.547 1.723 0.07623,166 1.410 Colonial Heights 0.046 3.95 0.246 323.539 0.318 0.014 4.269 0.260 366.174 4.308 22.785 29978.871 29.423 1.292 395.597 24.077 ssex 0.862 airfax 73.25 4.558 5997.446 5.886 0.259 79.141 4.817 8.011 680.919 42.369 55747.278 54.714 2.403 735.633 44.772 Gloucester Hampton 12,403 1054.260 65,600 86312.920 84.713 3.721 1138.973 69.321 0.662 56.287 4608.243 4.523 0.199 60.810 3.701 Henrico 3.502 Isle of Wight 1 246 105 876 6.588 8668 104 8 507 0.374 114 383 6 962 James City 1.496 127.183 7.914 10412.550 10.220 0.449 137.403 8.363 1.121 95.249 5.927 7798.076 0.336 102.902 King George 7.654 6.263 Lancaster 35.105 2983.886 185.668 244292.478 239.764 10.531 3223.650 196.199 Mathews 9.447 803.002 49.966 65742.212 64.524 2.834 867.525 52.800 14.156 74.869 4.247 1299.914 1203.231 98509.233 96.683 79.116 Middlesex 0.839 4.437 5837.946 0.252 77.037 New Kent 71.307 5.730 4.689 Newport News 2.061 175.203 10.902 14343.984 14.078 0.618 189.281 11.520 Norfolk 22.223 1888.942 117.537 154648.779 151.782 6.667 2040.724 124.203 0.933 79.297 4.934 6492.132 0.280 85.669 Northampton 6.372 5.214 334.179 Northumberland 48.928 4158.894 258.781 340491.096 14.678 4493.073 273.460 4.796 407.625 25.364 33372.510 32.754 1.439 440.379 26.803 Poquoson 39737.961 1.713 Portsmouth 5.710 485.375 30.202 39.001 524.377 31.915 Prince George 1.605 136.423 8.489 11169.035 10.962 0.481 147.385 8.970 Prince William 0.139 11.838 0.737 969.221 0.951 0.042 12.790 0.778 1.173 99.666 6.202 8159.699 8.008 0.352 107.674 6.553 Richmond 0.387 32.892 0.116 35.535 Richmond (city) 2.047 2692.90° 2.643 2.163 Spotsylvania 0.054 4.618 0.287 378.053 0.371 0.016 4.989 0.304 Stafford 0.263 22.378 1.392 1832.072 1.798 0.079 24.176 1.471 7.660 Suffolk 1.121 95.325 5.931 7804.298 0.336 102.984 6.268 Surry 1.001 85,109 5.296 6967.944 6.839 0.300 91.948 5.596 Virginia Beach 55.380 4707.299 292.905 385389.33 378.245 16.614 5085.544 309.519 Westmoreland 14.363 1220.85 75.966 99952.106 98.099 4.309 1318.954 80.275 8.863 753.328 46.875 61675.396 60.532 2.659 813.860 49.534 ork/ TOTALS 277.673 1468.613 23602.217 1932327.395 1896,508 25498.725 1551.915 83.302

^{*} Shoreline Management Model (SMM) verion 5.1 living shoreline BMPs used for this project are Plant Marsh with Sill and Non-Structural Living Shoreline. Shoreline with these BMPs where excluded from analysis if tidal marsh is present or if the shoreline is adjacent to NWI Palustrine Forest (PFO) or Palustrine Scrub/shrub (PSS) polygons.

¹ Sum of Total Nitrogen = Protocol 2 Total Nitrogen + Protocol 4 Total Nitrogen

² Sum of Total Phosphorus = Protocol 3 Total Phosphorus + Protocol 4 Total Phosphorus

C. Estimated load reduction credits for created marsh within unmanaged shoreline by 8-digit HUC

	Unmanaged Shoreline with Living Shoreline BMP (SMM v.5.1)* - Estimated Nutrient Load Reduction: HUC 8 Analysis									
				Protocol 2: Denitrification	Protocol 3: S	edimentation	Protocol 4: Marsh Redfield Ratio			
Hydrologic Unit Code - 8 Digit	HUC 8 Name	Number of Shoreline Segments	Estimated Acres	Total Nitrogen (lbs per acre)	Total Phosphorus (lbs per acre)	Total Suspended Sediment (lbs per acre)	Total Nitrogen (lbs per acre)	Total Phosphorus (lbs per acre)	Sum of Total Nitrogen (lbs per acre) ¹	Sum of Total Phosphorus (lbs per acre) ²
02040303	Chincoteague	83	3.353	285.005	17.734	23333.509	22.901	1.006	307.906	18.740
02040304	Eastern Lower Delmarva	94	6.626	563.196	35.044	46109.150	45.254	1.988	608.450	37.032
02070010	Middle Potomac-Anacostia-Occoquan	65	4.879	414.673	25.802	33949.522	33.320	1.464	447.993	27.266
02070011	Lower Potomac	2666	124.990	10624.186	661.074	869808.354	853.685	37.497	11477.871	698.571
02080102	Great Wicomico-Piankatank	5091	172.218	14638.543	910.862	1198466.128	1176.250	51.665	15814.793	962.527
02080104	Lower Rappahannock	3030	160.996	13684.687	851.510	1120373.391	1099.605	48.299	14784.292	899.808
02080106	Pamunkey	71	5.156	438.291	27.272	35883.152	35.218	1.547	473.509	28.819
02080107	York	462	21.026	1787.214	111.207	146320.222	143.608	6.308	1930.821	117.515
02080108	Lynnhaven-Poquoson	1708	57.983	4928.586	306.674	403506.236	396.026	17.395	5324.612	324.069
02080110	Tangier	13	0.583	49.591	3.086	4060.066	3.985	0.175	53.576	3.261
02080111	Pokomoke-Western Lower Delmarva	1339	49.281	4188.875	260.647	342945.660	336.588	14.784	4525.463	275.431
02080206	Lower James	1412	80.956	6881.288	428.178	563375.117	552.932	24.287	7434.220	452.465
02080207	Appomattox	105	10.975	932.881	58.047	76375.489	74.960	3.293	1007.840	61.340
02080208	Hampton Roads	1346	47.811	4063.974	252.875	332719.978	326.552	14.343	4390.527	267.218
03010205	Albemarle	263	14.425	1226.146	76.295	100385.316	98.524	4.328	1324.671	80.623

D. Estimated load reduction credits for created marsh along defended shoreline by 8-digit HUC

	Defended Shoreline with Living Shoreline BMP (SMM v.5.1)* - Estimated Nutrient Load Reduction: HUC 8 Analysis										
				Protocol 2: Denitrification	Protocol 3: S	edimentation	Protocol 4: Mars	h Redfield Ratio			
Hydrologic Unit Code - 8 Digit	HUC 8 Name	Number of Shoreline Segments	Estimated Acres	Total Nitrogen (lbs per acre)	Total Phosphorus (lbs per acre)	Total Suspended Sediment (lbs per acre)	Total Nitrogen (lbs per acre)	Total Phosphorus (lbs per acre)	Sum of Total Nitrogen (lbs per acre) ¹	Sum of Total Phosphorus (lbs per acre) ²	
02040303	Chincoteague	90	1.924	163.564	10.178	13391.051	13.143	0.577	176.706	10.755	
02040304	Eastern Lower Delmarva	71	1.417	120.414	7.493	9858.336	9.676	0.425	130.089	7.918	
02070010	Middle Potomac-Anacostia-Occoquan	38	1.280	108.780	6.769	8905.919	8.741	0.384	117.521	7.153	
02070011	Lower Potomac	1192	31.883	2710.029	168.628	221871.634	217.759	9.565	2927.787	178.192	
02080102	Great Wicomico-Piankatank	2287	61.902	5261.696	327.401	430778.156	422.793	18.571	5684.489	345.972	
02080104	Lower Rappahannock	1270	40.039	3403.289	211.765	278629.270	273.464	12.012	3676.753	223.776	
02080106	Pamunkey	12	0.117	9.903	0.616	810.797	0.796	0.035	10.699	0.651	
02080107	York	172	4.409	374.744	23.318	30680.501	30.112	1.323	404.856	24.641	
02080108	Lynnhaven-Poquoson	1964	65.581	5574.343	346.855	456374.703	447.915	19.674	6022.257	366.529	
02080110	Tangier	6	0.147	12.464	0.776	1020.437	1.002	0.044	13.466	0.820	
02080111	Pokomoke-Western Lower Delmarva	178	4.058	344.946	21.464	28240.912	27.717	1.217	372.663	22.681	
02080206	Lower James	341	11.850	1007.267	62.676	82465.578	80.937	3.555	1088.204	66.231	
02080207	Appomattox	19	0.469	39.898	2.483	3266.450	3.206	0.141	43.104	2.623	
02080208	Hampton Roads	1581	48.011	4080.903	253.928	334105.964	327.913	14.403	4408.816	268.331	
03010205	Albemarle	128	4.588	389.977	24.266	31927.687	31.336	1.376	421.313	25.642	