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ABSTRACT 

Feyessa, Teshome. NETWORK SURVIVABILITY ANALYSIS: COARSE-

GRAINING AND GRAPH-THEORETIC STRATEGIES. (Major Advisor: Marwan 

Bikdash), North Carolina Agricultural and Technical State University  

 

Survivability is the ability of a system to continuously deliver essential services despite 

attacks, failures, or accidents that damage a significant portion of the system. Most of 

existing survivability measures evaluate global impact of faults on a network by 

averaging the loss in performance over the whole network. These approaches undermine 

the fact that a fault is not expected to impact all parts of the network equally. Impacts of 

some faults are contained in local neighborhoods while others have a global reach. In 

addition, graph algorithms are often computationally intensive, and even polynomial time 

algorithms get impractical for a fair sized network.  

In this dissertation, the interplay between geographic information about the network and 

the principal properties and structure of the underlying graph are used to quantify the 

structural and functional survivability of the network. This work focuses on the local 

aspect of survivability by studying the propagation of loss in the network as a function of 

the distance of the fault from a given origin-destination node pair. 

Geographic-based partitioning and graph-based representations of the interactions of the 

partitions are used to build a coarsened network. The partitions are designed to behave as 

a subnetwork. A complexity reduction in network computation is achieved by performing 

the desired computation on the subnetworks and the coarsened network. The overall 

network parameters are determined by merging the probability distributions in the 

subnetworks with the parameters of the coarsened network. 
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CHAPTER 1

INTRODUCTION

Large-scale highly-distributed and unbounded network environments, like the inter-

net and transportation networks present opportunities for massive propagation of failures

as well as the opportunity to recover from failures due to high connectivity. This raises

the need to incorporate survivability capabilities to the system organization. Survivability

is the ability of a system to continuously deliver essential services and maintain essential

properties such as integrity, confidentiality and performance despite attacks, failures or ac-

cidents that damage or compromise a significant portion of the system [1]. Attacks can

be physical, such as the destruction of nodes and/or links, but can also include intrusions,

probes and denial of service. Failures, which are mostly internally generated, include sys-

tem deficiencies, software design errors, hardware degradation, human error and corrupted

data. Accidents are usually random and external, such as natural disasters [1,2].

A network can be defined as an object composed of elements and interactions or

connections between those elements. Network theory is used to model objects (nodes) and

maps their relationship (links). It enables better understanding of behavior of the network

that would have otherwise been impossible to predict from looking at individual parts. Net-

works are found everywhere, such as telecommunication networks, social networks, neural

networks, transportation networks, power networks, distribution networks and financial

network. A node can represent an intersection of roads, a telecommunication switch, a

computer or a person. Similarly, a link can represent a road, a fiber optic cable, an Ethernet

cable and friendship
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Network theory has its root in graph theory and linear algebra. A graph, G(V,E),

made up of a node set V , and a link set E, is a natural means to model networks mathemat-

ically. Linear algebra is used in the matrix representation and manipulation of networks.

The main characteristics of a survivable network include resistance to attacks, robustness

under attacks, attribute balancing and redundancy. There is also an emergent behavior re-

quirement on survivable networks.

A key issue in survivability analysis is the quantification and measurement of sur-

vivability. In an early work [3] on the survivability of command, control and communica-

tion (C3) networks, survivability was described in terms of the existence of communication

paths, the number of nodes in the largest connected section, the shortest surviving paths,

the fraction of nodes that can still communicate, and the maximum time required to trans-

mit messages after attack. In Markovian models, network survivability is quantified by

combining various performance models of the different failure propagation and recovery

phases [4].

Most of the survivability measures developed so far use the average or expected

values of quantities computed over the entire network, thus giving a global view of the

network survivability. But the extent of the impact of a fault on its neighborhood and the

reach of the impact remain uncharacterized. This work proposes a way of filling this gap

with new measures of local as well as global survivability of a network that can characterize

the effect of a fault at different scales of distance. The proposed survivability measures use

both topology-based and traffic-based performance measures.

Large and complex networks are computationally expensive to visualize, and pre-

2



dicting their response to faults and attacks is even more challenging. In addition, in in-

frastructure networks interactions between different sections of the network are at times

more important than node-to-node interactions. For instance, the flow between two road

intersections is much less important than the flow between two parts of a city or even two

different cities.

There is work on graph partitioning and network coarsening that tries to address

these problems. The focus of most of network coarsening approaches is mainly to maintain

much of the properties of the original network, such as degree distribution and topology

[5], rather than maintaining the geographic information. Although, there are geographic-

based coarse-graining approaches [6], they are more reliant on the geometry of the network

than on the actual geographic locations. This work presents a combination of graph par-

titioning, in the form of node clustering, and coarsening procedures to reduce the size of

a network. The network’s nodes are clustered according to their geographic locations and

their connectivity constraint. The geographic coarse-graining approach is used to estimate

network level measures and implement a shortest-path hierarchical routing.

This dissertation addresses three main challenges of network survivability analy-

sis. The first key issue is the formulation of graph-theoretic survivability measures and

analyzing the propagation of performance loss in a network. A wide range of options are

considered to quantify network survivability. This work focuses on the local aspects of sur-

vivability, in addition to well known global survivability measures. The second challenge

is to reduce the computational complexity of survivability analysis that arise due to the size

of the network and the number of fault scenarios. A geographic-based coarsening approach
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is implemented to address this challenge on different levels of network resolution. Coars-

ening is also used to obtain a reduced-order model of the network. The third challenge is

the combinatorial nature of fault scenarios. Most fault analysis in networks are limited to

random single failures. This work proposes ways of creating attack scenario and simulation

of multiple random and targeted as well as geographically localized failures.

As an example of real-world spatial networks, the highway networks of some of

the South East states of the US are considered. The basic network model of the highway

system represents any kind of intersection between two roads as a node and the actual roads

as links. GIS data of the national highway planning network (NHPN) is obtained from U.S.

Department of Transportation, Federal Highway Administration website1.

1.1 Synopsis

This dissertation is organized as follows. Chapter 2 presents basic concepts in net-

work theory with emphasis on network models and network essential problems that are

useful in characterizing the survivability of a network. In Chapter 3, global measures of

network robustness based on the graph topology are developed. The response of a network

under different types of perturbation as a function of these measures is also part of this

chapter. In Chapter 4, a local survivability measure is formulated to quantify the contain-

ment and propagation of an impact of a fault. In Chapter 5, a network coarsening theory is

presented and geographic-based partitioning is employed to obtain a reduced-order model

of a network. Chapter 6 presents the emergence of small-world property in road network

at higher levels of coarsening. Finally, the conclusions are presented in Chapter 7.

1 See http://www.fhwa.dot.gov/planning/nhpn/
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CHAPTER 2

BACKGROUND

2.1 Graph Basics

Graphs are made up of set of vertices (usually called nodes in networking) and the

set of edges (links) connecting them. The most common notation for graphs is G(V,E),

where V (G) is the vertex set of graph G with cardinality n and E(G) is the edge set of

graph G with cardinality m. The order of a graph n(G) is the number of vertices in G.

A graph’s nodes and links represent different concepts based on the network it represents.

For instance, in transportation network roads and highways are represented by edges while

intersections are nodes; in telecommunication network nodes can be computers, routers,

repeaters, etc. and edges can be cables, fiber optics, wireless media, etc.; in social networks

nodes can be people and groups whereas links can be relationship between people such as

colleague, friend, family, etc.

Different prefixes to the word graph are added to show a special type of graph, such

as multigraph. A Multigraph is a graph containing parallel edges, i.e., there is a repetition

in the edge set E(G). In a weighted graph the edge set is mapped to a weighing function.

Undirected graphs have edges that do not have any specific direction of connection, as

opposed to directed graph. Subgraphs are graphs made out of graphs. Mathematically a

subgraph G′(V ′, E′) is defined as a graph whose vertex set V ′(G′) and edge set E′(G′) are

subsets of V (G) and E(G) respectively. IfE′(G′) contains all of the edges inE(G) joining

all the vertices in V ′(G′) it is called an induced subgraph. There are also planar graphs,

non planar graphs, Bipartite graphs, cliques, etc.
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The Degree of a vertex i, δi, is the number of edges in E that have i as a source

or end-vertex. In directed graphs, the in-degree of a node is not necessarily equal to its

out-degree. If δi = k for all i ∈ V , where k is a non-negative integer constant, the corre-

sponding graph is called a regular graph.

A walk is an alternating sequence of vertices and edges starting from one vertex

and ending on another vertex. If the start vertex and end vertex are same the walk is called

a cycle. A walk that does not have any repeated edge is called a path. Two paths are said

to be internally disjoint if they do not share a non endpoint vertex, for instance, the dotted

paths in Figure 2.1d. A graph is said to be strongly connected if there exists a path between

every pair of vertices. The graphs in Figures 2.1c and d are strongly connected. A weakly

connected graph is a digraph that is not connected but its equivalent undirected graph is

strongly connected.

Figure 2.1. Graph connectivity. (a) Unconnected (b) Weakly connected (c) Strongly
connected (d) Internally disjoint paths

A flow network is a directed graph with a function assigning non-negative capacities

to the edges, and two distinct vertices source and sink. A separating set or vertex cut of a

graph G is a set S subset of V (G) such that G− S has more than one component. A graph

G is k-connected if every vertex cut has at least k vertices. Connectivity of G, k(G), is the

maximum k such thatG is k-connected. A clique has no separating set. For bipartite graphs
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k(Km,n) = min{m,n}. A disconnecting set of edges is a set F subset of E(G) such that

G− F has more than one component. An edge cut [S, S ′] is a set of edges whose removal

separates the vertex set into S and S ′ = V − S where S is a non-empty proper subset of

V (G). A graph is k-edge-connected if every disconnecting set has at least k edges. The

edge connectivity ofG, k′(G), is the minimum size of a disconnecting set or the maximum

k such that G is k-edge connected. A block of a graph G is a maximally connected sub-

graph of G that has no cut-vertex. If G itself is connected and has no cut-vertex, then G is

a block. Cut-vertex and cut-edge are vertex cuts and edge cuts of size one respectively, that

increase the number of components of the graph.

Theorem 1 Let, k(G), k′(G), and δ(G) be the vertex connectivity, the edge connectivity

and the minimum degree of a graph G respectively. Then k(G) ≤ k′(G) ≤ δ(G).

In computer simulation and analysis a graph is typically represented by its adjacency-

matrix, adjacency list and node-arc incidence matrix. The adjacency matrix, A, of a graph

is an n by n matrix, such that A(i, j) is the number of links that are incident on both node

i and node j.

2.2 Network Essential problems

2.2.1 Connected components

In a network based systems, there are essential problems that need to be addressed

to have a full understanding of the system and to design a stable system. The first of such

problems is finding connected components of a network. A connected component of a

graph is an induced subgraph G′ that is connected and maximal, i.e., there exists no con-

nected subgraph G′′ with vertex set V ′′ that is superset of V ′. The problem of connectivity

is used to analyze graph connectivity at the face of edge(s) and/or node(s) failure with min-
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imum edges when connections are expensive. Loops are irrelevant for connection. The

problem of connectivity is deeply rooted in cut and cutset formulation. Tarjan’s algorithm

uses depth first search to find the strongly connected components of a network [7].

2.2.2 Shortest Paths

In weighted directed graphs, a distance between two vertices is measured by the

sum of the weights of the edges (and vertices if they are also weighted) that are in the path.

The shortest path problem is defined as a problem of finding a path that has the smallest

weight. It can be defined between a single source and a single destination, or a single

source and the rest of the vertices, or between all vertices against every other vertex.

In unweighted graphs, the single-source shortest paths can be obtained using a

breadth first search. If there are no negative weights in the graph Dijkstra’s algorithm is

the most common solution to the single source shortest path problem. If the graph contains

edges with negative weights but no negative cycles a modified Dijkstra or a Bellman-Ford

algorithm can be used to find shortest paths. All of these algorithms share the relaxation

technique as a mode of discovering better paths [8–10].

The solution to the all-pair shortest path problem can involve running single source

shortest paths for all sources or using dynamic programming like the Floyd-Warshall algo-

rithm or Johnson’s algorithm in case of sparse graphs [10]. The shortest-path algorithms

listed here are developed with static weights in mind. Time-dependent shortest-path algo-

rithms have also been researched, especially in transportation networks [11]. The average

path and the longest of the shortest paths over all node-pairs in a network are called the

network’s characteristic path length and diameter respectively.
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2.2.3 Shortest Disjoint Paths

Shortest path problems have various applications ranging from physical computa-

tion of shortest distance transportation paths to minimum delay paths in telecommunication

networks. But finding the shortest path does not suffice to quantify survivability. To ensure

survivability maximally disjoint paths are important in the network, hence computation of

shortest pair or, more generally, set of shortest disjoint paths is essential. This problem has

a wide range of application. For instance, dispatching hazmat trucks requires minimizing

the interaction risks and delays associated with potential accidents while minimizing the to-

tal transit costs. Similarly, in a congested and unreliable communication network, duplicate

routing of packets via disjoint paths is necessary. A network is called k-node survivable if

at least k node-disjoint paths between all pairs of nodes exist [12].

The shortest-pair disjoint paths problem is defined as finding a pair of paths between

two vertices that are independent of each other and are “shortest”. If the path independence

is based on edge disjointedness, the paths are called shortest pair of edge-disjoint paths.

Node-disjoint paths, also called internally disjoint paths, do not have any common node

except the start and end nodes [9]. From an optimization point of view, the shortest k-

disjoint paths can be seen as a minimum sum (min-sum) problem, that minimize the total

cost of the paths, or a minimum maximum (min-max) problem, that minimize the longest

path [13]. The prominent work in obtaining minimum cost pair of edge-disjoint paths is

done by Suurballe using multiple invocation of the Dijkstra algorithm and graph transfor-

mation of a modified graph [14]. Bhandari has provided an improved algorithm that does

not require graph transformation by using a modified Dijkstra or breadth first search algo-
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rithm to obtain the paths [9].

2.2.4 Network Cut and Flow

A flow network is a directed graph with a function assigning non-negative capac-

ities to the edges. A flow is computed between two distinct vertices, called source and

sink, that satisfy capacity constraints on the edges. The main objective of a network flow

problem is finding a feasible flow pattern that maximizes the source to destination total

flow. The prominent work of Ford and Fulkerson [15], Kirchoff’s flow conservation law,

and linear programming are widely used to address network flow problems. Network flow

problems are found from classical problems such as operations research, transportation,

water pipeline, communication flow to more recent problems such as sky survey, binary

image reconstruction, radiation therapy and many more.

In general, a flow unit that is relevant for one origin-destination pair cannot be

substituted for another unit corresponding to another pair. Therefore a multi-commodity

flow must be considered. Consider a set of K commodities, Jk = (ik, jk, δk, f
∗
k ), where

ik, jk, δk, f
∗
k are the source node, destination node, demand for Jk and optimal flow of Jk

respectively. The optimal flow over the network is constrained by

fk ≥ δk (1)

∑

j′∈V

fk(i
′, j′)−

∑

j′∈V

fk(j
′, i′) =






f∗k , i′ = ik
0 otherwise

−f ∗k , i′ = jk

(2)

c(i′, j′) ≥
K∑

k=1

fk(i
′, j′) ≥ 0, (i′, j′) ∈ E, (3)

where c(i′, j′) and fk(i
′, j′) are the capacity of link (i′, j′) and the flow of commodity Jk

over it respectively. Equations (2) and (3) represent the conservation of flow and the flow
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capacity constraints.

The objective in multi-commodity flow problems is often cost minimization, or flow

maximization when there are no demands specified. This is an NP-complete problem for

more than one commodity. Therefore, for the sake of simplicity, and because most of the

conclusions are expected to extend to the multi-commodity flow, the maximum feasible

single-commodity flow (max-flow) is the most common flow problem considered. Hence,

the graph can be rewritten as G(V,E, c, f), where c and f are the capacity and flow func-

tions respectively. The set of the flows {fij} is called the flow pattern. A feasible flow in

a network is a flow pattern that satisfy the constraint and conservation equations, i.e., the

difference of flow coming and going out of every node except source and sink is zero and

flow in every arc is less than the capacity of the arc [16, 17].

The maximum network flow problem for a source s and sink t is defined as finding

a flow pattern with an objective of maximizing the flow from the source to destination, fst,

while satisfying the conservation equations and the link capacity constraints. The above

problem can be formulated as a linear program.

max fst, subject to (4)

∑

j∈V

f(i, j)−
∑

j∈V

f(j, i) =






fst, i = s
0 otherwise

−fst, i = t
(5)

c(i, j) ≥ f(i, j) ≥ 0, (i, j) ∈ E. (6)

By definition, [S, T ] specifies the set of edges having one endpoint in S and the

other in T . Such a cut is called s − t cut, where s ∈ S, t ∈ T , and T = V − S. For two

distinguished nodes s and t in a directed graph, an s − t cutset is a minimal set of edges

whose removal breaks all the path from s to t. An s − t cut is specified with its capacity.
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Capacity of a cut in a network described by G(V,E, c, f) is the total flow capacity of set

[S, T ]. Hence, the minimum s− t cut is defined as a cut having the least capacity among all

possible s− t cuts. Ford and Fulkerson’s theorem [18] states that the maximum flow from

node s to node t, in a capacitated network is equal to the capacity of the minimum s − t

cut.

The classic solutions for max-flow min-cut problem use the Ford-Fulkerson label-

ing algorithm to systematically search flow augmenting paths and increase the flow in these

paths [17, 18]. A flow augmenting path is a path all of whose forward edges are unsatu-

rated, i.e., f(i, j) < c(i, j), and the reverse edges are not flowless. A flow is said to be

maximum if there exists no augmenting path with respect to it.

2.2.5 Centrality

Centrality indices are quantifications of the fact that some nodes/edges are more

central or more important in a network than others. Different centrality indices are suitable

for different applications, but most of them have structural significance and require that the

network be connected [19]. Centrality indices that involve volume or length of a walk are

usually referred to as radial. Examples include degree-like and closeness-like measures.

Indices based on the number of paths passing through a node, such as the betweenness

measure, are called medial [20].

A large amount of work in centrality comes from the social network studies [21–23].

Centrality in such networks is usually interpreted as a measure of power and social strat-

ification. There are also many instances of centrality applications in biological networks

[24, 25], communication networks [26, 27], power networks [28] and transportation net-
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works [29, 30]. In spatial networks, centrality measures are used in developing design

requirement and studying vulnerability. In vulnerability analysis, centrality is used to iden-

tify critical locations and “vulnerability backbones” in the network and to assess how well

the network is distributed. Removing central nodes generally leads to an increase in diam-

eter, a reduction of flow and a decrease in structural connectivity [31].

The simplest centrality measure is node degree, that is, the number of neighbors

a node has. Therefore the degree-centrality index is the degree vector of the graph. In

contrast, spectral centrality measures, e.g., Bonacich centrality and α-centrality, take the

importance of these neighbors into consideration [22]. Eigenvectors are important in spec-

tral analysis of network and centrality measures [32]. The eigenvector centrality of a node

i, cEi , can be defined [22] as a quantity satisfying

cEi =
1

λ

n∑

j=1

Aijc
E
j (7)

where λ is a constant (an eigenvalue), n is the number of nodes in the network and A is the

adjacency matrix.

Equation (7) can be rewritten as λCE = ACE, where CE a is vector of centrality

indices. Both λ and elements of CE must be nonnegative. The Perron-Frobenius theorem

and its extensions [33] state that, a symmetric irreducible matrix with nonnegative entries

has a simple real maximum eigenvalue λmax and the entries of the corresponding eigen-

vector υmax are all positive. This result is directly applicable to the adjacency matrix of a

connected graph. Similar, but weaker, results are available for digraphs. A matrix is irre-

ducible if it could not be made block diagonal by row and column permutations. In short,

υmax can be interpreted as a centrality vector.
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Closeness-based centrality finds the distance center or the median of a graph. It has

application in facility location [21], package delivery [23] and similar operations research

problems. It is computed by summing up the distances from the candidate node to all

remaining nodes. Let dij be length of shortest path between nodes i and j, then closeness

centrality cCi is

cCi =
n∑

j=1

dij (8)

The lesser the sum is, the more central is the node.

Betweenness is one of the most prominent centrality measures. It measures the in-

fluence/brokerage of a node over the connection of other nodes by summing up the fraction

of shortest paths between the other nodes that pass through it [34,35]. This definition qual-

ifies betweenness as a medial measure [20]. Given any two nodes i and j, one can compute

the number of shortest paths, Pij, between i and j that satisfy a given criterion such as a

threshold on path length. Out of all the possible shortest paths, some will pass through the

node h whose centrality is considered. Let P h
ij denote the number of these paths, then the

shortest path betweenness centrality of node h is defined as

cBh =
n∑

i=1

n∑

j=1

P h
ij

Pij
for i, j �= h (9)

There are also many more centrality measures but they are usually variants of the

indices defined above. Variants of shortest path betweenness can be obtained by includ-

ing influence of endpoints, sources and targets, bounding or scaling the shortest distance,

considering edge betweenness and group betweenness [34]. Sometimes betweenness is de-

fined as a communicability betweenness. Communicability betweenness takes all paths

into account rather than just the shortest paths [35].
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Delta centrality, proposed in [36], is defined as the decrease in generic cohesiveness

measure of the graph when the node is deactivated or removed from the network.

2.2.6 Graph Clustering

The average clustering coefficient of a network, which is the arithmetic mean of the

clustering coefficient of the nodes, measures the tendency of the network to form tightly

connected neighborhoods. The clustering coefficient of a node is defined as the ratio of

number of triangles of which the node is a member of to the number of triangles the node

could possibly participate in [37, 38]. Thus, the clustering coefficient of node i is

Ci =

∑
j �=i

∑
h�=i,j AijAihAhj

δi(δi − 1)
(10)

2.2.7 Graph Spectra

Eigenvalues of matrices in a graph, especially the adjacency matrix, the Laplacian

matrix and the normalized Laplacian matrix reflect structural properties about the graph.

For instance, adjacency matrix is useful for counting paths of certain length in a graph,

number of spanning trees and connected components can be determined from the Lapla-

cian, and the normalized Laplacian enables recognition of connected components and bi-

partite structures [43]. In addition, eigenvalue centrality indices and several partitioning

algorithms have their root in spectral analysis of graphs. Let a graph has an adjacency

matrix A and let an n by n degree matrix D be defined as

dij =

{
d(i) for i = j
0 otherwise

}
(11)

Then the Laplacian of the graph is defined as L = D − A. L is a symmetric positive

semi-definite matrix. A normalized Laplacian is L̄ = D− 1

2LD
1

2 .

The second smallest eigenvalue, λ2, of the Laplacian is the algebraic connectivity
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of a graph. If λ2 is positive the graph is connected, and the eigenvector corresponding to it,

u, adds up to zero [44]. The simplest way of bisecting a graph using the spectrum involves

dividing the set of vertices into half using the median value of u and assigning vertices

to the corresponding half. This bisection does not guarantee optimality [45]. There are

various alternative cuts to bisection, such as ratio cut, sign cut and gap cut. Any two way

partitioning can be recursively applied to find a k-way partitioning but [46] develops a

spectral k-way ratio cut partitioning using k-way weighted quadratic placement and ratio

cost metrics.

There are several important problems involving graphs such as finding the minimum

spanning tree and determining whether two graphs are isomorphic or not. A tree is a

connected acyclic graph. A spanning subgraph of G is a subgraph with vertex set V (G).

A spanning tree is a spanning subgraph that is a tree. The minimum spanning tree of a

network is a spanning tree with minimum total length/cost. The most popular algorithms

to solve this problem are Kruskal’s algorithm [39] and Prim’s algorithm [40].

Two graphs are isomorphic with each other if they contain same number of vertices

connected in same way, i.e., if permutation of rows and columns of the adjacency matrix

of one gives the other’s adjacency matrix. This problem has a wider application in pattern

recognition, biocomputing and finding network topologies in large networks. The classical

solution for isomorphism problem is Ullmann’s algorithm which does permutation of the

main graph’s or it’s subgraphs adjacency matrix and compare it to the adjacency matrix of

the second graph until a match is found or end of permutation [41]. Comparison of various

subgraph isomorphism algorithms is found in [42]. Determining whether two graphs are
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isomorphic or not is an NP complete problem.

2.3 Network Models

2.3.1 Random Networks

Random networks are types of networks whose underlying graph connections are

governed by a random process. There are several models of random graphs, but the most

prominent ones are Erdos-Renyi [47] and Gilbert [48] models proposed in the late 1960s.

For a sufficiently large number of nodes, these networks exhibit a Poisson degree distrib-

ution. Erdos-Renyi random networks, gn,m are selected randomly from the set Gn,m of all

possible graphs that can be formed by n nodes and m links. A Gilbert random graph gn,p

is composed of n nodes with pairwise connection probability p.

2.3.2 Small-world Networks

The small-world phenomenon has been studied in social networks since the early

experimental works [49, 50] that led to the concept of “six degree of separation”. Recent

studies describe small-world networks as a network exhibiting high ordered locality (clus-

tered) while still being globally small (short inter-node paths). Networks showing small-

world property can be generated by interpolating a regular lattice and random network

[51, 52]. The small-world property has been observed in author-collaboration networks,

the world wide web (www) [53], the power-grid [51], and transport network [54].

Lattice networks are made from a point lattice, a regularly spaced array of points

with finite dimension, and regular connections between points within defined range of lat-

tice distance. Lattice networks are often described by the dimension of the point array (d),

the set of points (V ), and radius (r) [55, 56]. A node in a lattice network is connected
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directly to all the nodes that are with in r distance from it. Lattice networks used for small-

world network generation are usually either one dimensional (1-D) or two dimensional

(2-D) with ring [51, 54] and torus [57] structures respectively.

The characteristic path length and the average graph clustering measure the global

“smallness” and order in the network respectively. The difference in the clustering and

characteristic path length values between the regular lattice and the random network de-

termines whether a small-world network emerges due to rewiring or not. For instance,

if several networks are constructed from a 1-D regular lattice by rewiring links randomly

with probability µ = [0, 1], as shown in Figure 2.2, then the characteristic path length varies

from an order of |V |/r to ln |V |/ ln r and the clustering varies from approximately 0.75 to

an order of r/|V | [56]. Generally r is much smaller than |V | and it has been shown that

there is a broad range of µ that generates networks with large clustering, C, and small char-

acteristic path length, d̄. This is because d̄ drops rapidly for low values of µ, and C does

not start dropping until µ is significantly high [51].

There are some 2-D lattice networks on square grids that have been used to study

small-world behavior [58, 59], but they are often not built on planar lattices. For road

networks, which are often approximated as planar or near-planar with small average degree,

these models are impractical because 2-D lattice networks have high average degrees for

r > 1.

2.3.3 Scale-free Networks

Scale-free networks exhibit a power-law degree distribution [24, 52]. The prob-

ability that a node has k links, for a tunable scaling exponent γ, is P (k) ∼ k−γ [60].
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Figure 2.2. Watts-Strogatz model, rewiring of a regular lattice. (a) Regular 1-D lattice
(µ = 0) (b) Rewired network with µ = (0, 1) (c) Random network (µ = 1) (d) Variation
of graph clustering and characteristic path length.

The long-tailed distribution is often achieved using a growth and preferential attachment

mechanisms that favor the connection of new nodes to nodes that have high degrees [56].

Scale-free networks are characterized by the existence of mega-hubs, as shown in Figure

2.3, and their tolerance to random failures. They also have, generally, a small diameter and

their clustering coefficient decrease with an increase in network size.

2.4 Network Coarsening

Large and complex networks are common in many fields of studies; for instance,

protein structures, the world wide web (www), road networks, etc. The large size of a

network often presents a computational challenge on network based applications. The most

common methodologies used to mitigate this computational burden are graph partitioning

and coarse graining.
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Figure 2.3. A scale-free network.

Graph partitioning algorithms divide the node set of a graph into disjoint subsets.

A k-way partitioning divides the node set into k disjoint sets. The partitioning procedure

usually will have a constraint in the form of the sizes of the partitions and a cost minimiza-

tion objective function. The partitioning is accomplished by removing links. The sum of

the weights of the removed links is often part of the partitioning cost. This problem does

not have exact solution and hence is intractable in polynomial time. Partitioning a graph

can help develop efficient solutions to a wide range of problems which include distributing

computation [61] and community detection in social and biological networks [62] among

others.

Coarse-graining is the process of reducing the resolution of a network. Coarse-

graining is often achieved by iterative application of link/node contraction. A link is said

to be contracted if the nodes at its opposite ends are lumped together [61], while nodes

are contracted by replacing shortest paths passing through them with a shortcut [63]. In

addition to complexity reduction, coarse-graining is important to implement region and
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hierarchy-based applications, such as routing. A coarsening-based routing finds the union

of local paths (paths inside partitions) and global paths (paths between partitions) [64, 65].

There are various heuristics used to solve the graph partitioning problem. They

are classified as hypergraph-based versus graph-based, spectral versus iterative and k-way

versus two-way [46]. The classical algorithm for partitioning [66] starts from an arbitrary

two partitions and exchanges elements of the subsets that reduce the cost until a local

minimum is reached. The two-way partitioning is extended to k-way partitioning by trying

to achieve pairwise optimality.

Spectral partitioning equate the spectrum of a graph to a cost function. The eigen-

vector of the k smallest eigenvalue of the Laplacian of a graph can be used to find an embed-

ding of the node into k-dimensional subspace which is transformed into k partitions [46].

Some partitioning algorithms use centrality measures, for instance, link-betweenness. This

algorithm singles out the highly central links based on betweenness indices and remove

them one by one until the graph is no longer connected [67].

The links and nodes to be contracted for coarse-graining are often selected based on

some measure of importance. Another coarsening strategy is lumping all the node in close

spatial proximity [6, 68, 69]. Part of the spectrum of the graph, for instance, the entries

in the eigenvector corresponding to the largest eigenvalue, can also be used to select the

nodes that are to be lumped [5]. Coarse-graining is mainly used to reduce computational

complexity [70–72].

Graph-partitioning and coarse-graining are closely related and sometimes interde-

pendent. For instance, coarse-graining is used in multilevel partitioning [61, 73]. Multi-
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level partitioning generally involves three steps; constructing a coarse graph, partitioning

the coarse graph, and uncoarsening and refining the partitions. Partitioning can also be

used to implement coarse-gaining [74]. Another related concept to coarse-graining is clus-

tering. Clustering in graphs is used to find subgraphs that are strongly connected [62, 75].

It is similar to partitioning and often one can be found from the other.

2.5 Survivability Measures

Survivability is the ability of a system to continuously deliver essential services

and maintain essential properties such as integrity, confidentiality and performance despite

attacks, failures or accidents that damage or compromise a significant portion of the sys-

tem [1]. Attacks can be physical, such as the destruction of nodes and/or links, but can

also include intrusions, probes and denial of service. Failures, which are mostly internally

generated, include system deficiencies, software design errors, hardware degradation, hu-

man error and corrupted data. Accidents are usually random and external, such as natural

disasters [1, 2].

In an early work [3] on the survivability of command, control and communication

(C3) networks, survivability was described in terms of the existence of communication

paths, the number of nodes in the largest connected section, the shortest surviving paths,

the fraction of nodes that can still communicate, and the maximum time required to trans-

mit messages after attack. In Markovian models, network survivability is quantified by

combining various performance models of the different failure propagation and recovery

phases [4].

There are primarily two types of survivability measures, topology-based and traffic-
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based. A weighted-average of the two can also be used as a survivability measure [76].

Topological measures are built on some notion of connectivity, such as the smallest number

of disjoint paths between a node pair in the network. High connectivity in a network is

generally an indication of survivability [9, 76–79]. The ratio between the number of node

pairs that can still interact after a fault, and the number of node pairs that were able to

interact before fault, is another topology-based survivability measure [76, 80].

Traffic-based survivability measures use the amount of disruption on the flow be-

tween origin-destination pairs to quantify survivability [81–83]. The disruption can be in

terms of the demand not met [81], the traffic blocking probability at different sections of the

network [83] and probability distribution of the percentage of total data flow after failure

[82].

There are also methods that employ vulnerability analysis of the network compo-

nents to quantify survivability [84, 85]. In these approaches, various attack scenarios are

analyzed and often the survivability of the system is determined by its weakest component.

This is more common in computer and information networks where the main attack types

are intrusion and compromise. This approach does not take the response of the system into

consideration once an attack has occurred. Hence, one cannot tell whether the system can

provide essential services after attack or not.

Kang et al. [78] proposed measuring the survivability of a network by removing

one node at a time until the network is disconnected. They defined the survivability as the

sum of the connectivity of the networks obtained after each removal. A similar approach

that removes links instead of nodes until the network is disconnected is found in [79].
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Molisz [82] used probabilistic attack scenarios and assessed their impact on the

delivered total data flow to measure the expected survivability. A survivability model and

measure that addresses both structural and functional issues of a network is proposed by

Heegard and Trivedi [4]. They measure the expected values of total loss and end-to-end

delay in a telecommunication network using a continuous time Markov chain.

Graph-theoretic measures such as efficiency, clustering, assortativity and the likes

are used to characterize and study structural performance and property of a network. Let

dij be the number of edges (hops) along the shortest paths between nodes i and j of a graph,

n the number of nodes in the graph and V be the node set, then efficiency of the graph is

defined as [54]

η =
1

n(n− 1)

∑

i�=j∈V

1

dij
(12)

Assume that a measure, M, characterizes a desired network performance, and that

it is equal toM0 andMa before and after a fault, respectively. Then, the survivability of the

network can be quantified as some statistic of the difference, ∆M, between M0 and Ma.

Alternatively, the ratio of the difference to the original performance, ∆M/M0, can be used.

In addition, the time needed to restore the performance to an acceptable value, tr, can be

used to quantify the survivability [4].

Examples of performance measures of a network that are used in survivability

analysis include: (a) The shortest path length (communication delay, transit time) between

origins and destinations, (b) The network flow (transfer rate, packet loss and blocking prob-

ability) from origins to destinations, and (c) The connectivity of given node-pairs. The
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connectivity of network, γ(k), after k nodes are removed can be defined as [78]

γ(k) =
n−k−1∑

i=1

n−k∑

j=i+1

mijk∑

p=1

1

l(p)
, (13)

where, mijk is the number of disjoint paths between nodes i and j after k nodes are re-

moved, n is the number of nodes in the original network and l(p) is the length of the pth

disjoint path between i and j. Then, the connectivity-based survivability, S, is

S =
v−1∑

k=1

γ(k), (14)

where v is the maximum number of nodes that can be removed before the network is

disconnected. This measure captures the structural behavior of a network as individual

nodes are randomly removed but fails to indicate the functional survivability of the network.

25



CHAPTER 3

NETWORK FAULTS AND ROBUSTNESS

Robustness of a network is mainly reflected by its ability to maintain its character-

istic behavior under perturbation. Network perturbations include single or multiple random

failure of nodes and/or links, targeted attacks and large-scale failures. In general, robust

networks are survivable. The behavior of a network is often described by some form of

the measures described in section 2.2. Thus, robustness can be measured by, for instance,

the increase in characteristic path length and/or the increase in the number of connected

components.

This chapter presents a linear programming based approach for finding the average

connectivity of a network. Then the average connectivity and network efficiency are used to

analyze the response of a network to different types of perturbation. The two measures are

selected because they complement each other. While efficiency measures the compactness

of the network, small inter-nodal distances, connectivity measures availability of optimal

alternative paths. In addition to the disruption in the networks behavior, the size of fault

the network can withstand before a significant breakdown in behavior happens is also used

to measure the network’s robustness.

3.1 Average Connectivity

Connectivity is one of the most important measures of network survivability. Ex-

istence of a path between network elements is crucial to the normal functioning of any

network. The classical definition of connectivity of a network is the minimum number of

nodes or edges whose removal will increase the number of connected components in the
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network. This definition is equivalent to the minimum number of disjoint paths between

over all node-pairs in the network. This does not reflect the overall network property, since

it is based on the worst case. For instance, the two graphs in Figure 3.1 both have a network

connectivity of 1, although the one on the left is almost a complete graph.

Figure 3.1. Graphs with equal network connectivity.

The algebraic connectivity of a graph, the second-smallest eigenvalue of the Lapla-

cian matrix of the graph (λ2(G)), is an alternative connectivity measure. But λ2(G) is

upper bounded by the vertex connectivity of a graph, which in turn is upper bounded by

the edge-connectivity. Therefore, the algebraic connectivity measure has similar drawback

as vertex and edge connectivity measures.

To address this misrepresentation, an average connectivity measure was proposed

[86]. As its name suggests, the average connectivity of a network is defined as the average

of the vertex/edge connectivities over all node-pairs in the network. Let k(u, v) be the

minimum number of node removal that makes v unreachable from u, then the classical

network connectivity, γc, is

γc = min
(u,v)∈V

k(u, v) (15)

and average connectivity of the network, γa, is

γα =
1

n(n− 1)

∑

(u,v)∈V

γ(u, v). (16)
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The average connectivity measure in Equation (16) measures only the existence of

disjoint paths without any regard to the quality of the paths. Another average connectivity

measure built from the length of the disjoint paths is proposed in [78]. It is obtained by

setting k to 0 in Equation (13). Thus, the average connectivity of a network, γl, is

γl =
1

n(n− 1)

∑

(u,v)∈V

∑

p∈Puv

1

l(p)
(17)

where Puv is the set of the shortest disjoint paths between nodes u and v and l(p) is the

length of path p.

A complete graph has γc = γa = n − 1, λ2 = n and γl = n
2
− 1. From the

three connectivity measures discussed here, only γl evaluates both the number and quality

of disjoint paths. Table 3.1 shows that γl is the most intuitive and informative measure of

the networks characteristics in terms of connectivity. Therefore, this work will use γl as a

measure of average connectivity of a network. Hence, average connectivity, γ, will refer to

γl in the rest of this chapter.

Table 3.1. Summary of connectivity measures of graphs in Figure 3.2

Measures a b c d

γc 1 1 0 1
λ2 1 1 0 0.27
γa 3 1 2 1
γl 1.87 0.67 1.22 0.58

To find the average connectivity of a network, the set of shortest disjoint paths

between every pair of nodes needs to be found. The simplest algorithm to find Puv, for

nodes u and v, is a greedy algorithm that can be implemented by iterating any shortest path

algorithm. The algorithm first finds the shortest path, then removes all edges in the shortest

path and run the shortest path algorithm again. This is repeated until the two nodes are no
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Figure 3.2. Graphs with varying structures.

longer connected. A greedy algorithm that tries to minimize the total cost of edges used to

form edge-disjoint paths set can be summarized with the steps shown in Figure 3.3.

Figure 3.3. Greedy shortest disjoint paths algorithm.

The greedy approach does not always yield an optimal solution. For example, for

the graph shown in Figure 3.4, the greedy algorithm returns the path ABDF between nodes

A and F in the first run and finds no other path in the next iteration since the removal of

edge AB and DF disconnects A and F. But, it can be shown that there are two edge-disjoint
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paths, ABCEF and AJIDF, between A and F.

Figure 3.4. A simple graph showing the shortfall of greedy algorithm.

One alternative to the greedy algorithm is a linear programming approach that is

guaranteed to return the optimal set of shortest disjoint paths. Finding the optimal set

of disjoint paths between two nodes is achieved in two steps. First, the number of the

maximum achievable disjoint paths is found. Second this number is incorporated as a

constraint to an integer linear program (ILP) that minimizes the total number of edges

needed to achieve the maximum number of disjoint paths.

3.1.1 Flow and edge-disjoint Paths

For a pair of vertices i and j, the terminal capacity from i to j, is the value of the

minimum i − j cut. If all arcs of a graph have a unity flow-capacity then the terminal

capacity of i and j is the minimum number of arcs that must be removed to disconnect i

and j, which is equivalent to the number of edge-disjoint paths between i and j [17]. Since

a minimum cost requirement is not associated with the min-cut/max-flow optimization, the

length of the paths returned is not guaranteed to be optimal. Thus, given an optimal terminal
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capacity, k∗, an LP can be formulated to minimize the number or cost, in case of weighted

graphs, of links used to meet the k∗ edge-disjoint path requirement. This is a min-sum type

of minimization described in section 2.2.3.

Let I be the node-link incidence matrix, where I(i, j) is 1, −1 or 0 if node i is the

origin, destination or neither of link j respectively. Let xj be the binary decision variable

whether link j is used or not in obtaining k∗, and wj be the length/cost of link j, then the

min-sum edge-disjoint paths can be found by solving

min
∑

j∈E

wjxj subject to, (18)

∑
I(i, j)xj =






k∗ , i = s
0 otherwise

−k∗ i = t
(19)

Equation (18) is the objective of the ILP. The constraints in Equation (19) are the number

of disjoint path requirement from s to t. If the graph is not weighted, wj is equal to one for

all edges. In this ILP there are |V | constraints and |E| decision variables. The edge-disjoint

paths are obtained by grouping the set {j ∈ E : xj = 1}.

The max-flow and min-sum LP used to find the min-sum edge disjoint paths can be

further simplified into a single ILP. Let G′(V ′, E′) be a graph formed by adding two addi-

tional nodes each attached with a single edge, that has infinite capacity and negative cost,

to the source and sink nodes of G as shown in Figure 3.5. Then, assuming the magnitudes

of the weights of (s′, s) and (t, t′) are very large but finite, the min-sum edge-disjoint path

set can be constructed from the minimum cost flow pattern from s′ to t′.

Let the weight of edges (s′, s) and (t, t′) be −M , whereM >> 1, xj be a decision

variable associated with edge j ∈ E′. If the objective of the optimization is minimizing
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Figure 3.5. Graph transformation to find the optimal set of disjoint paths.

∑
j∈E′ wjxj, then an increase in x(s′,s) decreases the objective function. On the other hand,

it is a decrease in all xj, j ∈ E : j �= (s′, s), (t, t′) that contributes to the minimization.

Hence, the large value ofM secures that the number of disjoint paths is given priority than

the length of the paths. If M is not made large enough the program will converge to the

trivial solution of xj = 0, ∀j ∈ E.

Since the number of disjoint paths between two vertices is always less than or equal

to the minimum of the degrees of the vertices, x(s′,s) is bounded from up by the minimum

of the outgoing degree of s and the incoming degree of t. From flow conservation, x(s′,s) =

∑
x(s,i) where i ∈ V and A(s, i) > 0. Since xj is an integer for all j ∈ E, then x(s′,s) is

also an integer. In fact, x(s,s′) is the number of edge-disjoint paths. Let I ′ be the vertex-edge

incidence matrix of graph G′, then a single mixed integer linear program that can find the

set of edges that can be used to construct the min-sum edge-disjoint path set is

min
∑

j∈E

wjxj −Mx(s′,s), subject to (20)

∑

j∈E′

I ′(i, j)xj = 0, (21)

0 ≤ x(s′,s) ≤ min(δ+(s), δ−(t)). (22)
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where δ+(i) and δ−(i) are the outgoing and incoming degrees of vertex i respectively.

3.1.2 Vertex-disjoint Paths

Similarly to edge-disjoint paths, the problem of finding vertex-disjoint paths can

be formulated using standard LPs. Let P be list of edges in a path, u, v and z be vertices

in the graph, u, v, z �= i, j. For two paths, P1 and P2, between vertices i and j, to be

vertex-disjoint, if (u, v) is in P1 then (z, v) can be in neither P1 nor P2. This implies that

vertex-disjoint paths are also edge-disjoint. Therefore, the maximum number of vertex-

disjoint paths can be found by appending this constraint to the max-flow constraints. In

other words,

max k, subject to (23)

∑

j∈V

f(i, j)−
∑

j∈V

f(j, i) =






k , i = s
0 otherwise

−k i = t
, (24)

∑

j∈V

f(i, j) ≤ 1, i �= s, (25)

1 ≥ f(i, j) ≥ 0 (i, j) ∈ E. (26)

Equation (25) indicates that no vertex can be used more than once in the paths

between i and j. Let Iv be the outgoing vertex-edge incidence matrix, where Iv(i, j) is 1

if node i is origin of link j and 0 otherwise. To minimize the total cost of edges used, an

ILP is formulated as

min
∑

j∈E

wjxj (27)

∑

j∈E

I(i, j)xj ≤






k ∗ , i = s
0 otherwise

−k ∗ i = t
, (28)

∑

j∈E

Iv(i, j)xj ≤ 1, i �= s (29)
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Both the maximization and minimization programs have 2|V | constraints and |E|

decision variables. Hence, this approach will get computationally intensive as the size of

the graph increases. If all arc capacities and supplies/demands of vertices are integers,

then an integer solution exists for the minimum cost flow problem [87]. Thus, all the

ILPs formulated to find edge-disjoint and vertex-disjoint paths are guaranteed to return an

optimal solutions.

3.1.3 Algorithm Performance

The greedy algorithm shown in Figure 3.3 is used as a benchmark to evaluate the

performance of the LP approach to finding disjoint paths. Performance measurement is

only done for edge-disjoint paths, since the conclusions about the algorithms are easily

extensible to the vertex-disjoint path cases. The number of disjoint paths obtained, the total

length/cost of the paths (for cases where both algorithms return equal numbers of disjoint

paths), and the running time of the algorithms are all used for performance comparison.

For numerical simulations, undirected random Gilbert graphs [48] are generated

with size connection probability of
log |V |
|V |

, where |V | ranges from 10 to 100 incrementing

by 10. To solve the ILPs, MATLAB’s bintprog from the optimization toolbox is used.

Edge-disjoint shortest paths are computed for all combinations of vertices. Hence, there

are |V ||V − 1|/2 runs for each algorithm and for each graph. Figure 3.6a shows the time

cost of the ILP approach relative to the greedy algorithm, and Figure 3.6b shows the number

of vertex-pairs whose cost of edge-disjoint path set is improved by ILP.

From the simulation results, it can be seen that as the network size increases LP

improves a significant number of paths in length. In addition, the number of edge-disjoint
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Figure 3.6. Peformance comparison of greedy and LP algorithms (a)LP : Greedy
running time ratio (b) Percentage improvement on length of paths using LP

paths is improved for several node-pairs. But the percentage improvement does not show

any pattern with the size of the network, which might be attributed to the random nature of

the graph generation strategy.

3.2 Network Response to Perturbation

3.2.1 Single node failures

A single node/link failure occurs in one of two situations: either a random node/link

in the network is faulty, or there is a targeted attack on the most important node of the

network. In this section only node failures are considered for the sake of computational

simplicity, but by extension it can be easily shown that link failures have similar property

as node failures. The response of a network to failures is quantified by the amount of

relative loss, ∆M/M, due to the failure as discussed in section 2.5. The measures used are
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connectivity (γ) and efficiency (η). Network efficiency is computed using Equation (12).

The average response of scale-free and Erdos-Renyi random networks for a single

node failure in 10 runs is shown in Figures 3.7 and 3.8. The plots show centrality versus

relative loss of network average connectivity and efficiency, 0 indicates the least central

and 1 indicates the most central nodes of the network.
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Figure 3.7. Relative loss in connectivity in (a) scale-free and (b) random network.
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Figure 3.8. Relative loss in efficiency in (a) scale-free and (b) random network.

The results confirm that scale-free networks are vulnerable to targeted attack, i.e.,

failing of highly central nodes. In addition, comparison of Figures 3.7a and 3.8a suggests
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that connectivity is more sensitive to node failures than efficiency in scale-free networks.

Figures 3.7 and 3.8 also suggests that an increase in the size of the network dampens the

effect of single node failures, which can be intuitively explained as "safety in numbers".

3.2.2 Multiple Failures

Multiple failures, similar to single node failures, can result from either random

failures or from targeted attacks. In addition, the failures can be confined to a certain part

of the network or can be distributed all over the network. Hence, this work considers four

types of multi-failure scenarios: random distributed failures, random localized failures,

targeted distributed failures (coordinated attacks), and targeted localized failures. In this

section, only random and targeted distributed failures are presented and the discussion on

the other two is deferred to the next section.

Figure 3.9 shows an average relative loss in average connectivity and in efficiency

when 5 nodes from a network of 100 nodes are removed. The result shown is an average

over 10 random scale-free and Erdos-Renyi networks.
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Figure 3.9. Average response to multiple node failures (a) loss in efficiency (b) loss in
connectivity
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Since the losses in scale-free networks are smaller than the losses in random net-

works for the most part of plots in Figure 3.9, it can be concluded that scale-free networks

are more robust than random networks under random perturbations. Targeted failure (coor-

dinated attacks) are shown to have a severe impact on scale-free networks. Targeted attacks

in this experiments were simulated by removing the 5 nodes with the highest sum total cen-

trality index. In general, the loss patterns in multi-node failure are similar with single node

failures except for the size of the losses.

3.3 Localized Faults in Spatial Networks

Let nf be the number of fault nodes, then there are
(

n
nf

)
fault scenarios. Hence,

all possible fault scenarios cannot be considered for even moderate sized networks. Most

cases of failures in an infrastructure network, such as the ones caused by weapons of mass

destruction and natural disaster, damage nodes and links in a shared neighborhood. Since

for every node in a network there is only one set of neighborhood with size nf , the assump-

tion in the locality of fault will reduce the number of fault scenarios to less than or equal

to the number of nodes. Locality can refer to graph locality (topological neighborhood)

or geographic locality (physical neighborhood). This work will focus on the latter, since

infrastructure networks can generally be assumed to be geographically embedded.

3.3.1 Fault Scenarios

Let r be the radius of an area in a network, G, that is destroyed. Then assuming

a random fault centered at a node, v ∈ V , the group of nodes that are destroyed depends

on the location of v in the network. Hence for each node a neighborhood can be built

as shown in Figure 3.10. In this figure, a weight on a link of the graph is the geometric

38



distance between its end nodes. Each neighborhood represents a possible localized fault

scenario of radius r.

Figure 3.10. Construction of neighborhood network for r = 3.

Let Nv denote the neighborhood v, i.e., the set of nodes that are within r distance

from node v. Then, the possible fault scenarios can be represented by a |V |x|V | boolean

matrix, N , such that N(i, j) is 1 if node j belongs to neighborhood i. Figure 3.10 shows

that neighborhoodsNf and Ng are identical. Hence, the actual fault scenarios are 7 instead

of 8, which is the number of nodes in the network. The number of overlapping scenarios

increases as the size of the network and radius of the fault increase. Therefore, there are

much less localized multiple-fault scenarios than single-fault scenarios.

For both single node failures and distributed multiple failures, it is shown that the

centrality of the fault is an important predictor of the loss suffered by the network due
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to the fault. To extend a similar approach, it is important to define the centrality of a

neighborhood. A simple way to define centrality of a neighborhood is aggregating the

centrality of the nodes in it. Let C(v) be the centrality index of v, then the centrality of Nv

is CN (v) = NvC
T . Thus,

CN = NCT (30)

The centrality of a neighborhood is intended to evaluate the importance of the neighbor-

hood towards the rest of the network. But, the importance measure of a node inside a

neighborhood is not limited to those outside the neighborhood. Hence, a simple aggrega-

tion will not only measure the importance of a region to other regions, but also to itself.

Let D(i, j) be the set of shortest edge-disjoint paths between nodes i and j and let

Dv(i, j) be the subset of D(i, j) passing through v. Similar to the betweenness centrality

in Equation (9), the centrality centrality of a neighborhood can be computed as

CNv
=

∑

(i,j)∈V \Nv

|DNv(i, u, j)|

|D(i, j)|
(31)

where DNv(i, u, j) ∈ D(i, j) that contains at least one node u ∈ Nv.

3.3.2 Neighborhood Centrality vs. Loss

A numerical experiment is conducted on a portion of the North Carolina highway

network around the Piedmont Triad region, shown in Figure 3.11. For the sake of simplic-

ity, only node failures and connectivity-based robustness measure are considered, but link

failures can also be simulated by placing an intermediate failed node on the failed link.

This experiment is used to demonstrate that the centrality of a neighborhood impacts the

network response to the failure of that neighborhood. In addition, the size of failure and

the worst expected loss in average network connectivity are shown to be directly related.
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Figure 3.11. The simplified highway network of the Piedmont Triad.

For a given fault radius, a neighborhood network is first constructed as described

above. Then the group centrality of each of the neighborhoods is computed. Figure 3.12a

shows the expected loss is generally increasing with the centrality of the neighborhood

removed. The worst loss clearly happens when the most central neighborhood is removed.

Figure 3.12b shows the worst expected losses as a function of the size of fault in terms of

the average radius of the neighborhoods. The worst loss is assumed to happen when the

most central neighborhood is removed. As expected, the loss increases almost linearly with

the size of fault.
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Figure 3.12. (a) Centrality versus connectivity loss. (b) Fault size versus loss.

41



CHAPTER 4

NETWORK LOCAL SURVIVABILITY MEASURES

In the preceding chapter and in much of the reported research on network surviv-

ability, the survivability of the network is described as a disruption on the average char-

acteristic behavior of the network. These approaches underestimate the fact that a fault

is not expected to impact all parts of the network equally. Due to the large size of most

real-world networks, averaging does not reflect actual impact of the faults, since impacts of

some faults are contained in local neighborhoods while others have a global reach.

This chapter analyzes the local aspects of survivability by quantifying the propa-

gation of loss in the network in terms of the distance of the fault from the shortest path

connecting a given origin-destination node pair. Two performance measures, connectivity

and maximum feasible flow, are used to quantify both the local and global survivability of

the network.

4.1 Distance between a node and a path

The failure of a node in a network impacts individual nodes (degree, clustering

coefficient), as well as interaction between nodes (shortest path, max-flow, connectivity),

and the entire network characteristics (characteristic path, connectivity, average clustering,

...). In large networks, measuring the impact of a node failure on the entire network can

be misleading about the survivability of the network because the quantifiable impact will

be dampened due to the network size. In addition, intuition suggests that nodes in close

proximity are more dependent on each other than nodes that are further apart.

For instance, a fault on node h in Figure 4.1 increases the length of the shortest path
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between nodes a and A by 3 hops and reduces the number of disjoint paths from 2 to 1. On

the other hand, a fault on node h does not affect the shortest path from b to B but reduces

their number of disjoint paths by 1. Both the shortest path and number of disjoint paths

between c and C are not affected by the fault on node h.

It is no accident that the failure of node h in Figure 4.1 affects node pairs (a,A),

(b, B), and (c, C) differently. The fault node is in the shortest path of (a,A), 1 hop away

from shortest path of (b, B), and 3 hops away from the shortest path of (c, C). Thus, the

impact of the failure of node h on the node pairs is positively correlated to the distance

between h and the shortest path of the node pairs. Therefore, a survivability measure that is

a function of the distance of a node from a node-pair will be more descriptive of the impact

of node failure on the network.

Figure 4.1. Diagramatic representation of the distance from a node pair to a node.

An intuitive definition for the shortest distance of a node to a path is the shortest

distance between the node and any of the nodes in the path. The continuous form of this
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distance is the length of a perpendicular line segment from a point to a line. Let Pij be the

list of intermediate nodes in the shortest path of nodes i and j, i �= j, and lij be the shortest

path length (SPL) between nodes i and j. Then for any node h, h �= i, j, the shortest

distance, dh∗ij , from a node, h, to the shortest path, Pij , is

dh∗ij = min
k∈Pij

lkh. (32)

Using Equation (32) in large networks is computationally expensive. In addition,

Equation (32) is less representative of the fault node’s significance to the node-pair. There-

fore, a more robust distance measure which is less computationally expensive is proposed

below. An approximation of the shortest distance between a node, h, and the shortest path

between i and j (DNSP) can be suggested by the triangular inequality of triangle ihj, i.e.,

dhij = lih + lhj − lij . (33)

Note that if h belongs to the shortest path between i and j, then dhij = dh∗ij = 0. Since the

sum of two sides of a triangle is always greater than the third, lij ≤ lih + lhj . Hence, as

suggested by the triangle inequality, dhij ≥ 0 for all i, j, h. This is proven below.

Theorem 2 In an undirected, graph dhij is tightly bounded by 0 from below and 2dh∗ij from

above.

Proof. Let k be the node in Pij that is closest to h. Hence from Equation (32), dh∗ij = lkh.

Substituting lij = lik + lkj in Equation (33) leads to

dhij = lih − lik + lhj − lkj. (34)

Moreover, since lih is the length of the shortest path from i to h a path from i to h

through k cannot be shorter, i.e.,

lih ≤ lik + lkh. (35)
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Similarly,

lhj ≤ lhk + lkj. (36)

Substituting lih − lik ≤ lkh from Equation (35) and lhj − lkj ≤ lhk from Equation

(36) into Equation (34) gives dhij ≤ 2lkh = 2dh∗ij .

The lower bound can be established from the fact that lih+lhj can never be less than

lij , because lij is the length of the shortest path between i and j. When h is on the shortest

path lih + lhj = lij , and therefore dhij = 0. Figure 4.2 shows the case where dhij = 2dh∗ij .

lij = 3, lih = 4, ljh = 3. Therefore dhij = lih + lhj − lij = 4, but dh∗ij = lkh = 2. Thus

dhij = 2dh∗ij .

The above theorem suggests that dhij is a reasonable approximation for a distance

from a node to the shortest path of a node-pair.

Figure 4.2. A case of dhij = 2dh∗ij .

The characteristic path length of a network is

l =
1

n(n− 1)

n∑

i=1

n∑

j=1,j �=i

lij. (37)

Similarly, the average DNSP, d, over all i, j and h, is

d =
1

n(n− 1)(n− 2)

n∑

i=1

n∑

j=1,j �=i

n∑

h=1,h �=i,j

dhij . (38)

Theorem 3 In an undirected graph, the average DNSP is equal to the average SPL (char-
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acteristic path length) of the network.

Proof. Substituting Equation (33) into Equation (38)

d =

∑n
i=1

∑n
j=1,j �=i

∑n
h=1,h �=i,j(lih + lhj − lij)

n(n− 1)(n− 2)

Expanding the first term inside the bracket gives
∑n

i=1

∑n
j=1,j �=i

∑n
h=1,h�=i,j lih

=
n∑

i=1

{
n∑

j=1

{
n∑

h=1,h�=i

lih − lih|h=j

}

−

i∑

j=i

{
n∑

h=1,h �=i

lih − lih|h=j

}}

=
n∑

j=1

{
n∑

i=1

{
n∑

h=1,h�=i

lih − lij

}

−
n∑

i=1

{
n∑

h=1,h �=i

lih − lij|j=i

}}

= nn(n− 1)l −
n∑

j=1

n∑

i=1

lij −
n∑

i=1

n∑

h=1,h �=i

lih

= nn(n− 1)l − 2n(n− 1)l

= n(n− 1)(n− 2)l.

The second and third terms can be shown to be equal to the first by exchanging

summation variables. Thus, the sum of the terms in the bracket is n(n − 1)(n − 2)l and

hence, d = l.

4.2 Loss propagation

In this work, topology-based (edge-connectivity) and traffic-based performance

measures (max-flow) are used to measure survivability. Losses reflected in these perfor-

mance measures are used to quantify survivability. Let Mij be a performance measure

associated with nodes i and j and let Mh
ij be the corresponding measure after the failure

of node h, then the relative performance loss between i and j due to the failure of h is

denoted

∂Mh
ij =

Mij −M
h
ij

Mij
. (39)
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The quantity Mij can be solved for through a maximization problem, individually

for each pair (i, j). Intuition suggests that both the edge-connectivity and max-flow cannot

be improved by failure of any link or node in the network. This implies thatMh
ij is always

less than or equal to Mij. Therefore, ∂Mh
ij ∈ [0, 1], with 0 being no loss and 1 being

complete loss.

The severity of ∂Mh
ij is assumed to be related to the DNSP of h and (i, j). There-

fore, the average relative performance loss (ARL), between any node pair that is at a DNSP

of d away from fault node, is

LD(d, h) =
1

|Ihd |

∑

i,j∈Ih
d

∂Mh
ij , (40)

where Ihd = {(i, j) ∈ V 2 such that dhij = d}.

To quantify the ARL between node pairs as a function of their DNSP from the fault,

an additional measure, LD(d), needs to be introduced. LD(d) is obtained by averaging

L(d, h) over all fault cases. Let p(h) be the probability of failure of node h, then the ARL

due to a single node failure is

LD(d) =
n∑

h=1

p(h)L(d, h). (41)

In this chapter only single-node failures are considered, i.e.,
∑
p(h) = 1. If the

probability of failure is assumed to be equal for all nodes, i.e., p(h) = 1/n, ∀h ∈ V , then,

Equation (41) can be rewritten as

LD(d) =
1

n

n∑

h=1

L(d, h). (42)

Since L(d, h) and LD(d) are obtained by averaging several ∂Mh
ij, the range of both

functions is always [0, 1]. Another way to describe survivability is by the relative remaining
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performance after a failure, i.e., Mh
ij/Mij. Let SD(d) be the average remaining relative

performance between node pairs that are at a DNSP of d from fault, then

SD(d) = 1− LD(d). (43)

Equation (43) can be verified using the definition in Equation (39):

LD(d) =
1

n

n∑

h=1

1

|Ihd |

∑

i,j∈Ih
d

Mij −M
h

ij

Mij

=
1

n

n∑

h=1

1

|Ihd |

∑

i,j∈Ih
d

{

1−
M

h

ij

Mij

}

(44)

= 1−
1

n

n∑

h=1

1

|Ihd |

∑

i,j∈Ih
d

M
h

ij

Mij
= 1− SD(d).

Another factor that impacts the amount of loss in flow and connectivity between

nodes i and j due to failure of node h is the SPL between i and j. Intuitively, when the

nodes are far away from each other, it is expected that they will have more alternative paths

connecting them that are of equal or nearly equal length. Hence, the flow and connectivity

of the two nodes is less likely to be affected significantly by failure of a single node.

Similarly to Equation (40), the expected loss between node pairs whose SPL is l

due to a fault at node h is

LL(l, h) =
1

|Il|

∑

i,j∈Il

∂Mh
ij, (45)

where Il = {(i, j) ∈ V
2 such that lij = l}.

Therefore, assuming all node failures are equally probable and that there is only a

single node failure, the ARL between node pairs as a function of the SPL is

LL(l) =
1

n

n∑

h=1

L(l, h). (46)
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The ARL between node pairs of similar SPL and at same DNSP from fault is

LDL(d, l) =
1

n

n∑

h=1

1

|Ihdl|

∑

i,j∈Ih
dl

∂Mh
ij, (47)

where Ihdl = {(i, j) ∈ V
2 : lij = l and dhij = d}.

The corresponding loss functions for the two performance measures, max-flow and

connectivity, are LF and LC respectively. For large networks, it is impractical to compute

max-flow for all n(n − 1)(n − 2) fault node and node pair combinations. Therefore, a

statistical mean of the max-flow and connectivity measures computed on a randomly se-

lected origin-destination pairs and fault nodes is used to determine the mean loss at a given

distance.

4.2.1 Numerical Simulations

The proposed approach proceeds as follows: assuming there is a random node fail-

ure, three subsets of equal size are generated from the node set of the network randomly.

Nodes in the first set are designated as source nodes, the second set as destination nodes

and the third set as fault nodes. The max-flow and connectivity between each node pair,

(i, j), are computed before any fault and also after each case of failure, h.

Three networks will be used in this simulation: the highway networks of North

Carolina, South Carolina and Tennessee. All the networks used are undirected and con-

nected. Six network level indices are used to describe the networks as shown in Table 4.1.

Connectivity in Table 4.1 is obtained by taking the average of all node pair connectivities.

Connectivity, average clustering, and average degree measure redundancy and availability

of alternative paths in the network. Hence higher value of these measures is desirable to

ensure survivability.
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Table 4.1. Network level indices of networks used for experiment

deg ree clustering l C D n

NC 3.24 0.13 24.21 2.71 70 1534
SC 3.20 0.10 17.42 2.56 44 849
TN 3.16 0.09 22.86 2.61 68 1024

The contour plot shown in Figure 4.3 indicates the DNSP of node pairs from a fault

is dependent on their SPL. The most common node-pair to fault node combinations have

medium SPL and have small DNSP to fault nodes.

Figure 4.3. DNSP vs. SPL contour plots (a) the number of node triples (i, j, h) de-
tected, (b) the average relative flow loss.

4.3 Relationship between Loss and DNSP

The dependence of the loss function on the DNSP between node pair and fault

is described using Equation (41). Figure 4.4 illustrates this dependence graphically from

experimental results on the NC and SC highway networks. As shown in Figure 4.4 the

logarithm of max-flow loss, LF
D can be fitted to a linear function of DNSP. Therefore, the
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flow loss functions is approximated as an exponential function, i.e.,

LF
D(d) = AF e

−rF d. (48)

Let dF = 1/rF be defined as the flow distance constant of the network, then Equation (48)

suggests that there is a 63% decrease in the average flow loss between node pairs as their

distance from the fault node increases by dF .
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Figure 4.4. Logarithms of average loss of measure of interest in node pairs

The loss in connectivity does not show a clear pattern as the distance increases. But

it decreases sharply at a distance dc, defined here as a cutoff distance. The parameters of the

loss functions can be used to define various survivability measures. The magnitude of the

losses AF = LF
D(0) and AC = LC

D(0) at d = 0, i.e., when the fault node is in the shortest

path of the node pairs, naturally represent the maximum loss incurred on node pairs. The

rate of decay of the flow loss, rF , shows how quickly the impact of fault decreases as

one moves away from the fault node. And the connectivity loss cutoff distance, dc, where
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LF
D(d) is negligible for d > dc, shows the reach of the impact.

Using max-flow and connectivity as performance measures, the survivability of a

network can be described by four indices: (a) the flow distance constant, dF ; (b) the con-

nectivity cutoff distance, dc; (c) the flow loss at d = 0, AF ; and (d) the connectivity loss at

d = 0, AC . Naturally, a survivable network exhibits smaller values for all the four indices.

The cutoff distance is obtained by setting 0.01% as a threshold for negligible loss, i.e.,

losses less than 10−4 are considered as no loss. The results of the experiments conducted

on NC, SC and TN highway networks is summarized in Table 4.2.

Table 4.2. Coefficients of loss versus distance functions

Networks AF dF AC dc(L
C ≥ 10−4)

NC 0.027 1.72 0.028 6
SC 0.041 1.72 0.039 7
TN 0.037 2.08 0.042 6

All the survivability measures indicate that the network in NC has the best surviv-

ability of the three. This can be explained by the fact that NC has the highest average

clustering and marginally highest average connectivity and average degree of the three. All

of which are indication of tightly and highly connected networks, which usually implies a

better chance of survivability.

4.4 Impact of SPL on Performance

The results in the previous section are obtained by assuming that there is no distinc-

tion between node pairs with different SPL as far as the expected loss is concerned. But

the contour in Figure 4.3b shows that the loss is dependent on the SPL. Although they have

the same mean, SPL and DNSP have different distributions as shown in Figures 4.5a and

4.5b. If the range of the SPL is trisected into R1 (short), R2 (medium), and R3 (far), the
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loss functions decay differently for each group as shown in Figures 4.5c and 4.5d..
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Figure 4.5. (a) Probability density function (pdf) of the SPL in NC. (b) pdf of DNSP.
(c,d) Expected flow and connectivity loss as a function of DNSP grouped separately.

Since the reach of the impact is limited to the neighborhood of the fault, only the

node to node-pair combinations whose DNSP is lower than the cutoff distance should be

considered while evaluating the dependence of the loss on the SPL. Therefore, Equation

(46) is revised to

LL(l) =
1

n

n∑

h=1

1

|Ihl |

∑

i,j∈Ih
l

∆Mh
ij, (49)

where Ihl = {(i, j) ∈ V 2 such that lij = l and dhij ≤ dc}

Figure 4.6 shows a clear trend of decreasing loss with an increase in SPL. There are

two anomalies in this trend. The first is when the SPL is equal to 1. The SPL between nodes

is equal to one only when the two nodes are directly connected, i.e., no intermediary node.
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Therefore, from the definition of DNSP, Equation (33), there is no node h such that dhij is

zero. But, as shown in Figure 4.4, loss is significantly higher when the distance between

fault node and node pair is zero. This suggests that directly linked node pairs are spared

the worst loss, and hence the lower values shown in Figure 4.6.

0 20 40 60
0

0.02

0.04

0.06

Path length(l)

F
lo

w
 A

R
L
 (

L
F
(l
))

0 20 40 60
0

0.01

0.02

0.03

0.04

Path length (l)

C
o
n
n
e
c
ti
v
it
y
 A

R
L
 (

L C
(l
))

 

 

N1

N2

N3

Figure 4.6. Average loss vs. SLP computed using eq. (49).

The second anomaly applies to node pairs that are very far apart. These node pairs

are located in diametrically opposite fringes of the network, and have usually a very low

degree. Therefore, they are heavily dependent on their few neighbors for their interaction

with each other. This makes the node pairs vulnerable to single node failures.

According to Figure 4.5, the loss in R1 and R2 decays steadily, while it decays

much slower in R3 where the anomaly occurred in Figure 4.6. R3 and node pairs whose

SPL is 1 are removed when computing the log-log relation between SPL and loss shown in

Figure 4.7. Therefore, both max-flow and connectivity losses can be approximated as

LF
L(l) = KF l

−γF , (50)

LC
L(l) = KCl

−γC . (51)
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Figure 4.7. Log-log plot of SPL vs. loss after removing the anomalies in figure 4.6.

The function parameters of LF
L and LC

L for NC, SC and TN highway networks are

summarized in Table 4.3.

Table 4.3. ARL vs SPL decay constants

Networks KF γF KC γC
NC 0.16 0.93 0.19 1.09
SC 0.08 0.76 0.11 0.99
TN 0.07 0.68 0.12 0.87

Table 4.3 shows that the NC network has the highest KF and KC but also has the

sharpest decay rates. This suggests the LL will be very small for l around the character-

istic path length where most node-pairs are located. This is also reflected in the better

survivability indices shown in Table 4.1.
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CHAPTER 5

GEOGRAPHIC-BASED NETWORK COARSENING

Large and complex networks are computationally expensive to visualize, and pre-

dicting their responses to faults and attacks is even more challenging. In addition, in in-

frastructure networks interactions between different sections of the network are at times

more important than node-to-node interactions. For instance, the flow between two road

intersections is much less important than the flow between two parts of a city or even be-

tween two cities.

To address these two problems in spatial networks, i.e., the need for neighborhood-

based analysis, and to avoid computational explosion, this work proposes a way of clus-

tering the network’s nodes according to their geographic locations and their connectivity

constraint. Each cluster represents a geographic neighborhood, and the interactions of the

neighborhoods form the coarsened network.

To coarsen a network there are mainly three issues that need to be addressed. (a) The

first is how to divide the node set into different groups; (b) The construction of the topology

of the coarsened network needs to be addressed; and (c) The node and link parameters of

the coarsened network needs to be determined.

5.1 Algorithms for Partitioning the node set

The first mechanism involves partitioning the node set of a network into several

groups. In spatial networks, these groups represent geographic regions if they are contigu-

ous. A region can be defined using graph properties, e.g., a subgraph g with diameter d,

or geometric properties, e.g., a circular area of radius r in the network layout [88]. In this
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work, a region is defined as a mega-node formed by collapsing all the nodes that share

same geographic neighborhood as determined by a cluster-seeking or graph-partitioning

algorithm. A region can also be viewed as a subset of the node set of the network, R ⊆ V,

closest to a cluster center. The average size of a node in the coarsened node, i.e., the num-

ber of nodes in the original network represented by a single node in the coarsened network

defines the coarsening ratio. The size of a region can be defined as some characteristic

distance of the graph or the level of coarsening desired.

This work proposes two ways of partitioning the node space. The first method, clus-

tering by node location, assumes that the geographic coordinates of nodes are known. The

algorithm groups the nodes into clusters using standard clustering techniques while satis-

fying connectivity constraints. The second method is a minimum weight partitioning. This

method finds a proximity weight between two nodes and employ a partitioning algorithm

that breaks the network into the desired number of components while minimizing the total

cost of edges cut.

5.1.1 Clustering by node location

In a typical k-mean clustering algorithm, a point is assigned to a cluster if the cen-

troid of the cluster is the closest to the point than all other centroids. Here, a point is

assigned to a cluster whose centroid is closest to the point among all clusters that contain

at least one node that has a direct link to the node represented by the point. This algorithm

returns the clustered set and takes as an input the number of clusters desired (k = |V R|),

adjacency matrix of the network (A), and the locations of the nodes (P), where Pi = (xi, yi)

is the geographic coordinate where the node i is located. This algorithm has a worst case
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running time of O(|V ||V R|N ), where N is the maximum number of iterations. The al-

gorithm is similar to k-mean except the step where a point is assigned to a cluster and a

cleaning up step at the end. A typical iteration of the modified k-mean algorithm is shown

in Figure 5.1.

Figure 5.1. A modified k-mean algorithm.

The second for loop in the modified k-mean algorithm is a cleaning-up step that is

required to make sure that all the clusters are contiguous.

5.1.2 Minimum-weight partitioning

Regions, or neighborhoods in a network can be identified using a grouping approach

that minimizes a certain type of proximity weight of inter-regional links. Hence, in spatial

networks the notion of physical proximity must be defined. This is achieved by transform-

ing the distance and the adjacency matrix of the network into a proximity weight matrix.

In this work, the proximity weight between two nodes is defined as the weighted average

of the physical distance between the given nodes and the size of their shared neighbor-
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hood. Let gd(i, j) be the geographic distance between nodes i and j, then a distance-based

weight,WD, can be defined as

WD(i, j) = 1−
gd(i, j)−min(gd)

max(gd)−min(gd)
. (52)

Thus, WD ∈ [0, 1]. The extreme cases of 0 and 1 occur at the longest and shortest links

respectively.

The second proximity measure assumes that nodes in the same geographic neigh-

borhood tend to have more common neighbors than nodes of different neighborhoods. In

this work, two types of neighbors are considered: (a) immediate neighbors and (b) sec-

ondary neighbors. Let the immediate neighbors of node i be Ii = {h ∈ V : A(i, h) =

1}and the secondary neighbors of node i, be I2i = {h ∈ V \Ii and k ∈ Ii : A(k, h) =

1}\{i}. Then the number of first common neighbors between i and j, F, and the number

of second common neighbors, S, are

F (i, j) = |Ii ∩ Ij|, (53)

S(i, j) = |Ii ∩ I
2
j |+ |I

2
i ∩ I

2
j |+ |I

2
i ∩ Ij|. (54)

Equations (52)-(54) can be combined to define an overall weight of link (i, j). Therefore,

the proximity weight between nodes i and j is

W (i, j) =

{
ωdWD(i, j) + ωFF (i, j) + ωSS(i, j) if A(i, j) = 1
0 if A(i, j) = 0

(55)

where ωd + ωF + ωS = 1. An example of common neighborhood counting is shown in

Figure 5.2.

Once the weights of all the links are determined, any weight-based partitioning

algorithm can be used to partition the node set. In this work, the gpmetis program of
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Figure 5.2. Computation of proximity weight due to common neighborhood.

METIS multilevel graph partitioning software [89] is used to obtain high quality partitions.

The gpmetis is set to return contiguous partitions using a k-way cut, where k is the number

of partitions desired. It tries to minimize the imbalance between partition size and the total

weight of edges cut. The partitions returned from gpmetis are used to build the adjacency

matrix of the region network as shown in Equation (56).

5.2 Construction of Coarsened Network

The second issue in network coarsening addresses how the network of regions is

represented as a graph. As a compression strategy, coarsening will result in a loss of in-

formation. What information to lose and what information to keep depends on the purpose

of the coarsening. There are several ways of representing the links of the coarsened net-

work. These representations are desired to reflect application specific properties. Figure

5.3 shows three types of representation, assuming that the original graph is simple graph,
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i.e., that the graph contains neither loops nor parallel edges.

Figure 5.3. Coarsened network representations. (a) Original network. (b) Multi-
graph. (c) Simple graph. (d) Weighted graph.

Each of the three representations shown in Figure 5.3 has its own merit. In the multi-

graph representation the number of links incident on the same two regions is preserved,

while in the simple graph only the availability of connection is shown. The weighted graph,

with weight assigning function f of the number of links between regions, can take several

interpretations; for instance, time-delay or capacity information between regions. Hence

the higher the number of links the lesser the delay and the higher the capacity.

Figure 5.3 deals with the different ways of constructing inter-region links. Another

important issue is how a region is represented in the coarsened network. The simplest

case is to represent the region as a single node as shown in Figure 5.3. A region can

also be represented as a star graph as shown in Figure 5.4. For instance, region Ra is
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represented by a central node A, which is made up of all intermediate nodes of the region,

and peripheral nodes ab, ac and ad, which are made up of nodes bordering regions Rb, Rc

and Rd respectively. The intra-region links can also be defined similarly to the inter-region

links to reflect traffic delay, capacity, number of links, etc.

Figure 5.4. Representing a region with multiple nodes.

In addition to the construction mechanisms discussed so far, various topologies can

be proposed depending on the motive for coarsening. For instance, loops can be used to

show the number of intra-region links, nodes of the coarsened network can be weighted

to show their size. A multi-node representation of a region can be used to show a regions

shape if, for instance, it is unproportionally wide.

5.2.1 Adjacency Matrix

A graph representation of a network is composed of nodes and links. Nodes and

links can be described by several numbers that are used to describe the network topology,

link capacities, geometric distances and etc. These descriptors of nodes and links of the

coarsened network depend on the construction strategy employed.

Let a region be represented by a single node and the number of links originating

from region i, Ri, and terminating in region j, Rj be L(i, j). Let A be the adjacency
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matrix of the original graph, where A(i, j) is the number of links from node i to node j.

Then, the adjacency matrices of the simple, ARs, and multigraph, ARm, representation of

the coarsened network are,

L(i, j) =
∑

k∈Ri

∑

h∈Rj

A(k, h) (56)

ARs(i, j) =

{
0 if L(i, j) = 0
1 otherwise

(57)

ARm(i, j) = L(i, j) (58)

For instance, the single node representation of the network shown in Figure 5.4 is

ARs =

Ra Rb Rc Rd

Ra 0 1 1 1
Rb 1 0 0 0
Rc 1 0 0 0
Rd 1 0 0 0

and ARm =

Ra Rb Rc Rd

Ra 0 1 2 1
Rb 1 0 0 0
Rc 2 0 0 0
Rd 1 0 0 0

.

The multi-node representation of regions can be achieved by expanding Equations

(56)-(58).

5.2.2 Link and node weights

In the multigraph representation, the capacity of inter-region links will remain the

same. But in the simple graph representation, the capacity of the link between two regions

is an aggregate of all the capacities between the given regions. Let F (i, j) be the capacity

of a link between nodes i and j, then the capacity of a link connecting two regions, Ri and

Rj , in a simple graph is formulated as

FR(i, j) =
∑

k∈Ri

∑

h∈Rj

F (k, h) (59)

The distance between the regions can be defined as the distance of the shortest arc

connecting any node k ∈ Ri and any node h ∈ Rj , the distance between the centers of

the regions, the average distance between two nodes belonging to the different regions, etc.
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For instance,

DR(i, j) =
1

|Ri||Rj|

∑

k∈Ri

∑

h∈Rj

D(k, h) (60)

Node weights are associated with nodes to identify a region’s internal characteristics

(since nodes in the coarsened network represent regions in both single node and multi-

node representations). The weights associated with a node can be used to describe the

corresponding network property of the subgraph represented as a region, such as number

of nodes/links or other network parameters such as the diameter and density.

5.3 Effect of Coarsening on Network Parameters

Figures 5.5 - 5.7 show how some of the network important measures change as the

level of coarsening increases in the NC and SC highway networks. The network properties

considered here are the characteristic-path length, average clustering, and average connec-

tivity. In this work, connectivity between a given node pair i, j is defined as the number of

edge-disjoint paths from i to j. The average connectivity is an average over all node-pairs.
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Figure 5.5. Characteristic path length vs. coarsening ratio.
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The characteristic path length of a network is the number of average hops; therefore

a simple graph representation is used. A simple graph representation is also used to find the

average clustering in the network, since multiple edges between two given nodes can make

a nodes clustering exceed the clustering coefficient [0, 1]. On the other hand, the number

of disjoint paths between two regions depends on the number of links between the regions.

Hence, a multigraph representation is more fitting to analyze the impact of coarsening on

network’s average connectivity.
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Figure 5.6. Network clustering vs. coarsening ratio.

From Figure 5.7, it can be seen than there is no pattern between coarsening ratio

and average connectivity when minimum weight partitioning algorithm is used to partition

the node set. This is because minimizing the total weight of edges cut also minimizes the

number of edges cut. Hence, the increase in inter-region links is not proportional to the

increase of the coarsening level. This hinders the average connectivity from increasing

proportionally with the coarsening ratio.
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Figure 5.7. Network connectivity vs. coarsening ratio.

5.4 Application of Coarsening: Complexity Reduction

5.4.1 Computational Complexity reduction

To find the characteristic-path length of a network, the easiest way is to invoke

Dijkstra’s algorithm |V | times and then take the average of the computed path lengths.

This has a complexity of O(|V |2 log |V |+ |V ||E|). For large networks, this algorithm will

require large resources.

This work proposes a way of partitioning the network into smaller sub-networks

and finding desired network parameters on all the sub-networks. The parameters are then

merged using probabilistic models to estimate the original network measures as shown

in Figure 5.8. Methods to find the characteristic-path length and average clustering of

a network are developed. From here onwards distance between two nodes refers to the

length of the shortest path between them.
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Figure 5.8. Basic structure of coarsening based parameter estimation model.

5.4.1.1 Characteristic-path length

The shortest path between Ri and Rj in a coarsened network has a form

Ri1 − Ri2 − Ri3 − ...− Rim−1 − Rim

where m is the number of regions in the path, Ri1 = Ri and Rim = Rj. Let the distance

Dhk between two adjacent regionsRh andRk be the average length of links connecting the

boundaries of Rh and Rk. Let Wk be the width of Rk measured as the distance from one

boundary to another in Rk. Then the distance between Ri and Rj is formulated as

|Ri − Rj| =
m−1∑

k=2

Wik +
m−1∑

k=1

Dik,ik+1 (61)

The distance between two nodes in different regions, for instance, nodes pi in Ri

and pj in Rj in Figure 5.9, can be approximated as the sum of the distances between the

nodes to their respective boundaries and the distance between Ri and Rj , |Ri − Rj|. Let

Bhk denote the boundary betweenRh andRk, i.e., the set of nodes inRh that are connected
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to nodes in Rk. Then the distance between pi and pj is

|pi − pj| = |pi − Bi1,i2 |+ |pj − Bim,im−1|+ |Ri − Rj| (62)

Equation (62) is applicable only if Ri �= Rj.

Figure 5.9. Illustration of graph complexity reduction.

The characteristic-path length of a network is the average distance between two

nodes over all (i, j) ∈ V 2/i �= j. The expected distance between any two nodes in the

network that belong to different regions is L′N = E [|pi − pj|], and it can be found from

Equations (61) and (62) as the expected value of |pi − pj|.

L′N = E

[

|pi − Bi1,i2 |+ |pj − Bim,im−1|+
m−1∑

k=2

Wik +
m−1∑

k=1

Dik,ik+1

]

(63)

= 2E [|pi − Bi1,i2 |] + (m̄− 2)W̄ + (m̄− 1)D̄ (64)

where m̄ is the average number of hops between any two regions of the coarsened network.

Since m̄ and D̄ can be found while constructing the coarsened network, they will not be

discussed any further. To find E [|pi − Bi1,i2 |] and W̄ , let a random variable X i1,i2

h be

defined as the distance between a random node in Ri1 and node h in Bi1,i2 . Then, the
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shortest distance between a random node in Ri1 , and any of the nodes in Bi1,i2 , is

Y i1,i2 = min{X i1,i2

1 , X i1,i2

2 , ...,X i1,i2

k } (65)

where k is the cardinality of the set Bi1,i2 . For the rest of this section the superscript i1, i2

will be dropped. The probability that the distance is less than z, where z is a dummy

variable, is thus given by;

Pr(Y ≤ z) = Pr(min{X1,X2, ...,Xk} > z}
′) (66)

= 1− Pr
(
∩k

h=1{Xh > z}
)

(67)

Assuming Xh is independently and identically distributed (iid), Equation (67) can be sim-

plified as

Pr(Y ≤ z) = 1− [Pr(Xh > z)]
k = 1− [1− FXh

(z)]k (68)

where FXh
(z) is the cumulative distribution function ofXh. Therefore, the average distance

between a random node in a region and the region’s boundary is

E [Y ] =

∫ ∞

−∞

zfY (z)dz = k

∫ DR

0

zF ′Xh
(z)[1− FXh

(z)]k−1dz (69)

where DR is the graph diameter of the region.

The width of a region (the average distance between two boundary sets of a region)

can be obtained following similar procedure. Let the two boundaries of Ri2 with Ri1 and

Ri3 be Bi2,i1 and Bi2,i3 respectively. Let X i1,i2,i3
hh′ be the distance between nodes h in Bi2,i1

and h′ in Bi2,i3 . Then, assuming X i1,i2,i3
hh′ is iid, the shortest distance between the two

boundary sets is

W i1,i2,i3 = min{X i1,i2,i3
11 , X i1,i2,i3

12 , ...,X i1,i2,i3
1m , X i1,i2,i3

21 , X i1,i2,i3
22 , ..., Xi1,i2,i3

ks } (70)

where k is the cardinality of setBi2,i1 and s is the cardinality of setBi2,i3 . Thus, the average
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distance between two boundary sets, i.e., the average width of a region, is

E [W ] =

∫ ∞

−∞

zfW (z)dz = sk

∫ DC

0

zF ′Xhh′
(z)[1− FXhh′

(z)]ks−1dz (71)

Therefore, the average distance between nodes of different region is given by L′N = 2Ȳ +

(m− 2)W̄ + (m− 1)D̄.

Figure 5.10 shows the distribution of X , Y , and W in the NC highway network

with 1:20 coarsening ratio. As expected, the mean of the distributions moves to the left as

the number of nodes increases.
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Figure 5.10. Average distributions of shortest path inside regions.

Equation (62) finds the average distance between two nodes belonging to different

regions. To find the overall average distance of a network, a weighted average of the dis-

tances between the intra-region node-pairs and inter-region node-pairs is used. Let U be

a random variable representing the distance between two nodes in the same region. Let ζ

be the probability that the two nodes in a given node pair belong to same region. Then the

expected distance between the two nodes can be approximated by

LN ≈ E[U ]ζ + L
′
N(1− ζ) (72)

where E[U ] is the average intra-region distance. Let r be the average number of nodes in a
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region, then

ζ =
|V |
r
r(r − 1)

|V |(|V | − 1)
=
r − 1

|V | − 1
(73)

Thus, the overall characteristic-path length of the original network is

LN ≈
L′N(|V | − r) + E[U ](r − 1)

(|V | − 1)
(74)

At the extreme case, where each node is a region, i.e., r = 1, LN = L′N and since

there is only one node in the regionX =W = Y = 0. Therefore, LN = Ĺ′N = (m̄− 1)D̄.

Which is the characteristic path length of the coarsened network. In addition, if the entire

network is a single region, i.e., r = |V | and D̄ = 0, then LN = E[U ], which is the

characteristic path length of the region. This shows that the approximation of average

distance using Equation (74) gives exact solutions at the two extreme cases of coarsening.

5.4.1.2 Average Clustering

Graph clustering of a node h in a given network is

ch =
∆h

δh(δh − 1)
, (75)

where ∆h is the number of triangles node h belongs to and δh is its degree. Let |Vi| and

C̄i be the number of nodes and the average graph clustering of Ri respectively. C̄i is

computed directly from the subnetwork represented by Ri. Assuming there are no links

between nodes in different regions, the clustering of the network can be approximated as

C̄R =
1

|V |

|V |/r∑

i=1

C̄i|Vi| (76)

where |V |/r is the number of regions in the network. Ignoring the inter-region links reduces

the degrees of nodes, thus effectively increasing the network clustering. Let νh be the

number of links connecting node h to nodes outside its region. Then assuming all the

triangles containing node h are inside the region containing h, the graph clustering of h,
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cRh , becomes

cRh =
∆h

(δh − vh)(δh − vh − 1)
. (77)

Equation (77) shows that a node’s average clustering in the subnetwork of its region is

greater than its clustering in the original network in Equation (75). Let εh be the node

clustering discrepancy of node h between the region subnetwork and the original network,

then

εh =
∆h

(δh − vh)(δh − vh − 1)
−

∆h

δh(δh − 1)
(78)

=
∆hνh(2δh − vh − 1)

δh(δh − 1)(δh − vh)(δh − vh − 1)
(79)

εh = chβhνh (80)

where βh = 2δh−vh−1
(δh−vh)(δh−vh−1)

is the graph clustering overestimation factor per link for node

h. Therefore the average network clustering is given by:

E [ch] = E
[
cRh
]
−E [chβhvh]

C̄N = C̄R − C̄N β̄ν̄

C̄N =
C̄R

1 + β̄ν̄

If the entire network is a single region, i.e., r = |V | and νh = 0, ∀h ∈ V , then εh = 0 and

ch = cRh .

If there are r nodes in a region on average, the time complexity of finding all shortest

paths, using Dijkstra’s algorithm, between nodes of the same region is

O(
|V |

r
(r2 log r + re)) = O(|V |r log r + |V |e)

where e = |E|r
|V |

is the average number of links in a region. The probabilistic model used

to merge these results from all the regions has a complexity of constant time. Thus the
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complexity of this approach isO( |V |
r
(r2 log r+re)) as opposed toO(|V |2 log |V |+|V ||E|).

This significant complexity reduction comes at the cost of the coarsening procedure and

from a less than exact answers. But, the cost of coarsening is offset by the fact that once

the network is coarsened several other measures can be computed similarly. Table 5.1

shows the performance of the coarsening approach in predicting network level topological

measures. A 1:10 coarsening ratio is used. In the table, the values in A are found from

original network and the values in R are found using the above approximation strategies.

Table 5.1. Actual and estimated characteristic-path length and average clustering of
highway networks

C̄N LN |V |
State A R A R

NC 0.13 0.14 24.21 24.71 1534

SC 0.10 0.10 17.42 18.48 849

TN 0.09 0.09 22.86 23.66 1024

VA 0.11 0.11 21.12 22.63 1220

The performance of location-based clustering depends on the initial condition and

convergence of the clustering algorithm and hence the estimation of the above model is not

unique. But, in general, clustering is much more predictable than characteristic path length

and the estimation errors are positive. The worst error found in this experiment, 7.15%,

corresponds to the VA highway characteristic path length.

5.4.2 Hierarchical Shortest-Path Routing

The previous section illustrates that a reasonable approximation of network sta-

tistics can be found without the actual network level computation. This is achieved by

using the distributions in the coarsened network and the subnetworks represented by a re-

gion. This section considers another possible application of this coarsening approach. A
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shortest-path routing problem. This is a fairly straightforward problem and has a polyno-

mial solution. When the network size is very large, and finer details of the network are not

available globally, the solution to this problem can be resource intensive. In addition, hi-

erarchical routing methods are important in interconnected network systems, such as the

internet.

Equations (61) and (62) represent a way of finding the shortest path between two

nodes in a network using coarsening. Based on these equations, a simple greedy algorithm

that finds the shortest path from a source node s in region Ri to a destination node d in

region Rj is proposed as shown in Figure 5.11. For a path to be found via this approach the

subnetworks represented by a region should be contiguous.

Figure 5.12 compares the shortest paths found by running shortest path algorithms

directly on the original network (L) with those computed by using the above hierarchi-

cal algorithm (L′) on the NC highway network. The distribution shows the cumulative

distribution of L/L′ over all node pairs of the network.

As shown earlier, there are |V |(r− 1) intra-region node-pairs for a coarsening ratio

of r. The hierarchical algorithm is similar to the direct shortest path algorithm for these

node pairs. Hence, the algorithm guarantees a minimum of (r−1)/(|V |−1) exact routing.

The CDF in Figure 5.12 is obtained for r = 20 and |V | = 1534. This guarantees a 1.24%

exact routing. But the algorithm has achieved over 16% exact routing. In addition over

80% of the routes in the hierarchical routing are within 30% of the actual shortest path. On

average, the hierarchical route is 23% longer than the shortest route.
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Figure 5.11. Hierarchical routing algorithm.
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Figure 5.12. Comparison of shortest paths obtained hierarchically and directly.
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CHAPTER 6

SMALL-WORLD PROPERTY OF ROAD NETWORKS

The study of small-world phenomena in networks often uses the rewiring of 1-D

lattices to obtain highly ordered and globally compact networks. This approach has led

to many important observations in social networks. In both grid plan and street hierarchy

road network plans, a 2-D lattice can be considered as the backbone of the network. This

chapter presents a study of network statistics and small world property of 2-D planar lattice

network. The small-world property of a road network at different levels of view is also

investigated. The different levels of view are defined by the coarsening ratio as defined in

chapter 5.

6.1 Grid lattices and their network statistics

The simplest 2-D lattice is a grid with m horizontal and n vertical points. Thus,

the graph of the lattice has |V | = nm nodes. Lattice nodes are connected only to their

lattice neighbors. In planar lattices, nodes are connected only to their physically immediate

neighbors. In this work, the definition includes the node diagonally opposite to a given

node as an immediate neighbor. This forms triangular cells. Figure 6.1 shows two types of

2-D planar lattices, rectangular and triangular.

6.1.1 Characteristic-path length of 2-D lattices

Let d(i, j) be the number of edges in the shortest path between nodes i and j, then

the characteristic-path length, mean of all the shortest paths between all node pairs is

LN =
1

|V |(|V | − 1)

|V |∑

i=1

|V |∑

j=1,j �=i

d(i, j) (81)

For a rectangular lattice the characteristic-path length can be formulated as a func-
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Figure 6.1. 2-dimensional rectangular and triangular planar lattices.

tion of the lattice dimensions. Let (i, j) be the node in the lower right corner of a lattice.

The sum of all paths originating from (i, j) can be viewed as composed of three types of

paths. These paths are: (a) paths to i− 1 nodes on the vertical line, (b) paths to j− 1 nodes

on the horizontal line, and (c) paths to ij − i− j + 1 nodes that do not share any of (i, j)’s

coordinates. The distance between nodes that do not share any of the coordinates with node

(i, j) is equal to the distance of the nodes from node (i− 1, j − 1) plus two.

Let S(i, j) be the sum of the distances of nodes in the vertical and horizontal lines

of node (i, j)

S(i, j) =
i−1∑

i′=1

i′ +

j−1∑

j′=1

j′ (82)
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and letDT (i, j) be the span of the minimum spanning tree with its root at node (i, j)

DT (i, j) = S(i, j) + 2(ij − i− j + 1) +DT (i− 1, j − 1) (83)

=
i(i− 1)

2
+
j(j − 1)

2
+ 2(ij − i− j + 1) +DT (i− 1, j − 1)

DT (0, x) = DT (y, 0) = 0 (84)

Equations (82 - 84) can be solved using mathematical induction

DT (i, j) =
ij

2
(i+ j − 2) (85)

From symmetry it can be shown that DT (1, j) = DT (i, 1) = DT (1, 1) = DT (i, j).

A node (i, j) at any location in the lattice will have a maximum of four diagonal

neighbors, thus dividing the lattice into four separate lattices as shown in Figure 6.2. The

sum of the distance of all nodes from node (i, j) is computed similar to Equation (83),

except that in this case there are four diagonal neighbors; i.e.,

DT (i, j) = S(i, j) + 2(mn−m− n+ 1) +DT (i− 1, j − 1) +DT (i− 1,m− j)

+DT (n− i, j − 1) +DT (n− i,m− j) (86)

and

S(i, j) =
i−1∑

i′=1

i′ +
n−i∑

i′=1

i′ +

j−1∑

j′=1

j′ +

m−j∑

j′=1

j′ (87)

Thus, the sum of the distance between all pairs of the nodes is

DT =
n∑

i=1

m∑

j=1

DT (i, j) (88)

Using Equations (85) and (86), the solution to Equation (88) is

DT =
1

3
(n3m2 + n2m3 − n2m− nm2) (89)

The number of node-pairs in the lattice is nm(nm − 1)̇. Therefore, the characteristic-

path length of the rectangular lattice, LN = 1
3
(n + m). Let ∆mn = |n − m|, then the
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Figure 6.2. Pictorial depiction of Equation (86).

characteristic-path length is

LN =
2

3

√
|V |+

1

4
∆2

mn (90)

The increase in LN by order of |V |1/2 for a two dimensional lattice conforms with

the increase found in [56]. This value is also a loose upper bound for characteristic-path

length of a triangular lattice. A loose lower bound can be obtained by changing the coeffi-

cient of (ij − i − j + 1) in Equation (83) from 2 to 1. This suggests there is a direct link

between nodes (i, j) and (i− 1, j − 1).

6.1.2 Clustering coefficient

Since no triangles exist in a regular rectangular lattice, the average clustering of the

network is 0. To maintain planarity, there can at most be one diagonal link in any of the

rectangles of a triangular lattices. Hence, the number of neighbors of a node is defined

by binomial probability distribution; i.e., inside a given rectangle a diagonal can take one

of the two possible orientations. For very large networks all nodes can be assumed to be

inside the lattice boundaries. Thus every node belongs to 4 rectangles and have neighbors

ranging from 4 to 8. In each rectangle there is one diagonal. If the diagonal has its end
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on the node of interest, the node belongs to two triangles and otherwise to one. Therefore

based on the orientation of the four possible diagonals a node can belong to 4 to 8 number

of triangles as shown in Figure 6.3. The number of triangles incident on the node follows a

binomial probability distribution.

Figure 6.3. Clustering index: node has (a) four and (b) eight triangles incident on it.

Let Xi ∈ {0, 1, 2, 3, 4} be the number of diagonal links incident on the node of

interest, i, then Ti ∈ {4, 5, 6, 7, 8} is the corresponding number of triangles incident to the

node. Since orientations of the links inside all the four rectangles are independent of each

other with each probability, p = 1/2, the probability of finding x diagonal links incident to

i is

Pr(Xi = x) =

(
4

x

)
(
1

2
)x(1−

1

2
)4−x =

1

16

(
4

x

)
(91)

For Xi = x, the degree and the number of triangles incident to i are both 4 + x,, thus the

clustering coefficient of i (the ratio of existing triangles incident on i to possible triangles

that i can be a vertex to) is C(x) = 4+x

(4+x2 )
. Therefore, the average network clustering is

C = E[C(x)] =
4∑

k=0

C(x) Pr(X = x) (92)

=
1

16

4∑

x=0

(
4

x

)
4 + x(
4+x
2

) ≈ 0.42

For large networks, the number of non-boundary nodes is significantly higher than the
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number of boundary nodes. Therefore the network’s average clustering is C ≈ 0.42.

6.2 Small-world properties of networks built on grid lattices

The lattice structures discussed so far are only connected to their immediate neigh-

bors. To obtain small-world networks from these lattices, rewiring some of the links is

necessary. Rewiring is the process of replacing one end node of a link by another node.

The clustering coefficient of planar rectangular lattices is 0. Since small-world networks

are expected to be highly clustered, obtaining a small-world network by rewiring a rectan-

gular lattice is highly improbable. Hence it is better to study the small-world property of a

triangular lattice.

Let link (u, v) connect nodes u and v, then with a given rewiring probability, µ, the

link (u, v) is replaced by link (u,w) where w is an arbitrary node that is not connected to

node u. Let LNµ be the characteristic-path length and Cµ be the average clustering of the

rewired network, and let LNo and Co be the corresponding values in the original network.

Then for a small ε, µl (ε) is defined as the lowest rewiring probability such that LNµ/LNo is

less than ε. Similarly, µu (ε) is the highest rewiring probability such that Cµ/Co is greater

than 1− ε. The value of ε and the range [µl (ε) , µu (ε)] indicate the emergence small-world

property [56]. Figure 6.4 shows the impact of rewiring on a network with |V | = 4000.

Figure 6.4a shows a range of rewiring probability ≈ 0.05 for ε = 0.3. These

values are significantly different from those of 1-D lattices which show strong small-world

property [51]. The example 1-D lattice rewiring shown in Figure 2.2 has a range of rewiring

probability ≈ 0.05 for ε = 0.2. A triangular 2-D lattice has six neighbors on average

and 0.42 average clustering, and its characteristic-path length is less than
√
|V |. On the
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Figure 6.4. Characteristic path length and clustering of a network versus rewiring
probability (a) random rewiring (b) distance based rewiring, α = 4.

other hand, a 1-D lattice with average degree of six has an average clustering of 0.6 and

a characteristic-path length of |V |/12 approximately. The characteristic-path length of

random networks is function of ln |V |. Therefore, LNµ/LNo decays at a much lower rate

when rewiring triangular lattices than 1-D lattices forcing ε to larger values and closing the

[µl (ε) , µu (ε)] span.

A jump from one end of a network to another end via rewiring is possible in random

reconnection. This reduces the characteristic-path length significantly. Although this might

be the case in social networks, building such type of links in actual infrastructure networks

is less practical. Therefore, jumps are limited to nodes that are a short lattice-distance away.

Therefore, when replacing link (u, v) by (u,w), node w is selected based on a probability

distribution built on the lattice distance. A lattice distance between node u and v is the

number of hops that takes to reach v from u in the original full lattice.
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In this work, a power-law function is used, similar to Kleinberg’s navigability model

[90], to favor near nodes while ensuring all nodes have a chance to be at the end of the

rewired link. Let duw be the lattice distance between nodes u and w, then the probability

of the new link (u,w) having duw lattice distance is given by p(duw) = Ad
−α
uw , where A is

normalization constant and α is the decay factor.

In distance-dependent rewiring, since the lattice distance of the shortcuts is limited,

the expected rate of decrease of characteristic-path length and clustering is smaller than the

randomly rewired case as shown in Figure 6.4b.

6.3 Small-world highway network

To study the small-world property in an actual road network, rewiring is performed

on part of the North Carolina road network. The network is obtained from TIGER/Line

road network database, as provided by the Ninth DIMACS Implementation Challenge2.

Specifically, the area around the Research Triangle Park (RTP) is selected. The selected

network consists of 20,000 nodes and has an |E|/|V | ratio of 2.38. The road network

is shown in Figure 6.5. A closer view shows that there are much more rectangles than

triangles, hence low clustering. The road network of Research Triangle Park, NC.

The RTP network has a characteristic-path length LN = 44 hops and an average

clustering C = 0.019 respectively. The random network equivalent of this network has

LN = 11.12 and C = 3 ∗ 10−4. The lattice equivalent of the network has LN = 105.7 and

C = 0.124. Therefore the clustering and characteristic-path length ratios areCµ/Co = 0.15

and LNµ/LNo = 0.42 respectively. From Figure 6.4 it is clear that there is no value of µ

2 See http://dimacs.rutgers.edu/Workshops/Challenge9/
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Figure 6.5. The road network of Research Triangle Park, NC.

in both (a) and (b) plots that satisfies both ratios. Hence, the small-world property is not

observed at this granularity.

The network can be coarsened by using the coarsening procedures discussed in

chapter 5. In this work, a 1:20 coarsening is used in this work. The coarsened network has

1000 nodes and |E|/|V | ratio of 3.47.

The coarsened network has a 14 hops characteristic path length and 0.21 average

clustering. An equivalent 2-D planar lattice of the coarsened network has 20 and 0.23

characteristic path length and average clustering paths respectively. A complete distance

based rewiring of this lattice with a = 4 results in a network with LN = 5.5 and C = 0.002.

Therefore Cµ/Co = 0.91 and LNµ/LNo = 0.7. Figure 6.4b can be interpolated to return a

µ value of 0.02 that satisfies both conditions. This indicates that a road network exhibits a

small-world property.
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CHAPTER 7

CONCLUSIONS

This work has addressed three issues of critical importance in analyzing the surviv-

ability of a network.

• Measures were developed to capture structural and functional survivability.

• Measures were proposed to quantify the propagation of impact of a fault across the

network.

• A model was developed to reduce the complexity of large and complex networks.

Among several types of connectivity measures investigated, a measure that captures

the essence of the survivability was developed as a connectivity-based robustness measure.

A linear program that finds the shortest set of edge-disjoint paths was formulated and used

to measure the connectivity of the network. The algorithm developed has a complexity of

a single run of an integer linear program with |V | + 1 constraints and |E| + k decision

variables for a graph G(V,E).

Localized large-scale faults exhibit different pattern than random single or even

multiple nodal failures. Although multiple-failure scenarios can be combinatorial in nature,

the geographical locality is shown to reduce the number of fault scenarios significantly.

A model that captures the pattern of geographically localized large-scale fault in spatial

networks is developed. A group centrality measure is developed to predict the response of

a network to large-scale localized perturbation.

In Chapter 4, survivability measures that capture the propagation of impact of node

failures throughout the network were proposed. This was achieved by introducing the
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notion of local survivability and node-to-path distance.

Using local survivability measures, the following were observed experimentally;

• The expected decrease in loss of performance between node pairs as a result of single

node failure is a function of the distance between the fault node and the node pair and

the shortest path length of the node pair.

• The expected loss in max-flow capacity between two nodes decreases exponentially as

a function of the distance between a fault node and the node pair.

• The expected flow and connectivity losses decay as a power of shortest path length.

• Node pairs with smaller shortest path length and closer to the fault node are more

affected by a node failure.

To mitigate the computational burden of survivability analysis, a geographic-based

coarse-graining procedure for network complexity reduction is proposed. The coarse grain-

ing strategy is implemented by building a graph-based representations of the interactions of

a network partitions. The partitions are designed to be contiguous and geographically com-

pact so that each partition behaves as a subnetwork. A significant complexity reduction

in graph computations is achieved by partitioning the network into regions and applying

a probabilistic model on the original and coarsened network. The probabilistic estima-

tion model produced more accurate results for graph clustering than for characteristic-path

length. The coarse graining strategy is also used to develop a hierarchical routing algo-

rithm. The hierarchical algorithm is shown to find shortest paths that are comparable to the

traditional shortest path algorithms.

The level of coarsening is found to affect the network measures. A series of valida-
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tion tests were conducted using highway networks to confirm the validity of this coarsening

approach:

• The characteristic-path length of a network decreased exponentially with an increase

in the coarsening level while both the average clustering and the network connectivity

increased.

• On average, the hierarchical route is only 23% longer than the shortest route.

• The worst estimation error of network measures found is 7.15%.

Another byproduct of the coarse graining strategy was the demonstration of small-

world property in road networks. The results obtained from rewiring triangular planar

lattices indicate emergence of small-world networks. Nevertheless, the small-world prop-

erty observed is not as strong as 1-D ring lattices. This work demonstrated that a high-level

(coarsened) view of the road network has a similar small-world property as a network

that lies somewhere between a regular triangular 2-D lattice and a random geographically-

localized network. It is also shown analytically that 2-D planar lattices have a characteristic-

path length of order |V |1/2 and maximum average clustering ≈ 0.42.

The experiments in this work were conducted using the highway network, but the

conclusions on survivability and coarsening can be easily extended to include other spa-

tial networks. This work can be improved by investigating optimal structural addition to

increase local and global survivability. In addition, the hierarchical estimation and routing

approaches developed using coarsening can be used to implement a hierarchical survivabil-

ity enhancement scheme and to improve the performance of distributed adaptive routing

algorithms.
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