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Abstract 

Due to its potential for significant impact, interest continues to grow in the assessment of 

products from a life cycle perspective. As the nature of products shifts from mechanized and 

Newtonian to more adaptive and complex, the behavior of products more closely resembles 

biological organisms in community. The change in product nature is increasingly mirrored at the 

component level. The work presented in this dissertation is twofold. First, the research proposes 

a general, systematic and holistic classification of life cycle data to transform the design problem 

into an optimization problem. Second, the research proposes two new metaheuristics (bio-

inspired and socio-inspired) to solve optimization problems to produce grouped solutions that are 

efficient, evolvable and sustainable. The bio-inspired approach is schooling genetic algorithms 

(SGA), while the socio-inspired approach is referred to as genetic social networks (GSN).  

SGA is an approach that combines fish schooling concepts with genetic algorithms (GAs) to 

enable a dynamic search process. The application of GA operators is subject to the perception of 

the immediate local environment by clusters of candidate solutions behaving as schools of fish. 

GSN is an approach that adds social network concepts to GAs, implementing single and dyadic 

social interactions of social groups (clusters of similar candidate solutions) with GA operators. 

SGA and GSN both use phenotypic representations of a hypothetical product or system as input. 

The representations are derived from the proposed life cycle engineering (LCE) data 

classification. The outputs of either method are the representations that are more than likely to 

perform better, longer, and more autonomously within their environment during their life cycle. 

Both methods can also be used as a decision making tool. Both approaches were tested on 

product design problems with differing parametric relations, underlying solution space, and 

problem size.  
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CHAPTER 1  

Introduction 

Systems engineering is defined as an “interdisciplinary approach and means to enable the 

realization of large and complex systems that meet a defined set of organizational and technical 

requirements” (INCOSE, 2006). Systems engineering (SE) as a scientific approach has been 

around since the 1940s and has evolved significantly from its prior engineering approaches. SE 

development post WW II was driven by U.S aerospace and defense industries, which formulated 

SE theory and best practices. Today, many techniques developed by those pioneering industries 

(e.g. parts traceability, materials and process control, improved product accountability) are being 

applied in other industries. In many ways, this field is mature. However, with the incorporation 

of information technology (IT) in ordinary products to create smart systems, the methods and 

tools that have made traditional SE successful are in need of improvement. 

Traditionally, SE has emphasized: (1) design optimization into a fixed configuration, (2) 

system decomposition in order to facilitate system analysis, and (3) the guiding role of systems 

engineers to design and maintain systems. Such an emphasis does not account for products 

and/or product parts that are getting smarter, and tend to make SE heavily rely on the design 

engineer’s knowledge and expertise. These limitations, and the increasingly shortened life cycle 

of products (Griffin, 1997b) make it difficult for engineers to innovate and to sustain their 

design. With products becoming more complex and resembling biological entities (sense, 

process and act depending on environment), tools and approaches are necessary that will allow 

engineers in general, and design engineers in particular, to achieve system efficiencies. The work 

presented here is an attempt at crafting such an approach and associated tools. The research 
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provides a holistic approach, and relies both on the data gathered during a product’s life cycle, 

and on the evolution of durable products. 

1.1 Product Life cycle Engineering 

SE is interdisciplinary and proceeds from concept to production and to operation by 

considering both the business and the technical needs with the goal of providing a quality 

product that meets the user needs at a low cost. SE integrates life cycle data, and has the same 

objectives as product life cycle engineering (PLE). PLE is a holistic business concept that was 

developed in the late 1980’s to manage a product throughout its life cycle. PLE is the activity of 

managing, in the most effective way, a company’s products across their life cycles from product 

concept to retirement and disposal (Stark, 2011). PLE allows any organization to oversee the 

whole lifespan of a product and the information connected with it (Sääksvuori & Immonen, 

2008). To achieve its goal, PLE has become a central approach for the integrated management of 

product related data, engineering processes, and applications along the different phases of the 

product life cycle. PLE enables an organization to learn from its customers, analyze challenges 

and constraints, forecast changes in the development of a product or process, and make decisions 

based on the changes. PLE evolves with the product, its associated processes and its targeted 

market.  

The remainder of the chapter is organized as follow: Section 1.2 addresses durable 

product evolution followed by the motivations of the research work in Section 1.3. The 

objectives of the research and the research contribution follow in Section 1.4 and 1.5 

respectively. Finally, an overview of the remainder of the dissertation is given in Section 1.6, 

followed by a summary of the chapter. 
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1.2 Durable Product Evolution 

Increasingly, the design of durable products, such as automobiles and aircraft, has 

expanded from traditional mechanical design to include more biologically inspired capabilities - 

learn, morph, communicate, and sustain. The trend of using analogies to biological systems to 

develop solutions for engineering problems, also called biologically inspired design, is somewhat 

new and keeps gaining importance as a wide-spread movement in design (Anastas & Warner, 

2000; Benyus, 1997). Biologically inspired design often results in innovation (Collins & 

Brebbia, 2004; Forbes, 2005; Vogel, 2000). The timeline of the growth of biologically inspired 

design patents is described by Bosner (Bosner, 2006; Bosner & Vincent, 2006). The transition to 

biologically inspired design is making its way to high value assemblies and parts on such 

products. These changes have resulted in terms such as ‘‘evolving parts/products families’’ 

(ElMaraghy, 2007; Wiendahl et al., 2007) to address and describe the changes occurring to those 

product families as mutations, with product features losses and gains through generations, and 

the appearance of new families of products. The transition is enabled by Sensor-Integrated 

Automatic Identification Technology (SIAIT), which can provide data collection, storage, 

processing, and communication capabilities with minimal power requirements as depicted in 

Figure 1.1.  

 

Figure 1.1. AIT technologies in modern product parts 
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The intelligent use of these enhanced capabilities depends primarily on the development 

of integrated processes. Processes that are needed to use the collected data to improve 

part/product design and operating parameters in order to minimize total cost of ownership, 

extend product life cycles, and enhance sustainability. As an example, the DoD alone spends 

US$10s billions each year on these issues (AT&L, 2012). Due to the biological nature of the 

parts, bio/eco systems are expected to be the primary sources of process innovation. 

1.3 Motivation of Research 

Consider the Sikorsky 70 helicopter (Table 1.1).  The U.S Army, the U.S Coast Guard, 

and the U.S Navy all use different variations of the same helicopter model. The variation the U.S 

Army uses is known as Black Hawk and operates in a typically arid environment; whereas the 

variation the U.S Coast Guard uses, the Jayhawk, operates in a damp environment and was 

designed to better accommodate its type of missions. 

Table 1.1 

Sikorsky 70 models in the U.S. military 

 Army 

UH-60 Black Hawk 

USCG 

HH-60 Jayhawk 

Navy 

SH-60 Seahawk 

Model 

   

Missions 

Combat Search and 

Rescue, Special Forces 

operation… 

Security and interdiction, 

offshore rescue… 

Search and rescue, vertical 

replenishment, logistics 

support… 

Environment Land (Desert, Sahel) Water Sea, Land 
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Such a variation in the environment makes the annual acquisition and maintenance of the 

Sikorsky 70 inventory costly and difficult. In addition, the complexity makes it hard to know 

where to standardize designs and operational processes for the operational efficiency of the 

helicopter. The complexity also makes it difficult to detect where to customize a specific 

helicopter model to meet its mission objectives. 

Today, organizations use a segmented LCE approach to remain competitive and 

innovative while managing the life cycle of their diverse portfolio. Firms would customize their 

tools so they can better integrate them with their different processes and at the same time, 

streamline the flow of material and information. However, the customization, segmentation of 

LCE phases, and integration of tools do not only come at a high cost (Jardim-Goncalves, Grilo, 

& Steiger-Garcao, 2006; Lin, Harding, & Shahbaz, 2004), but also fail (in its current state) to 

address one of the main issues the systems engineers still face. The main problem encountered is 

that the decisions taken during the beginning of life (BOL), which comprises conception, design 

and production are fixed and infrequently change; yet they are known to have a huge impact on 

middle of life (MOL) and end of life (EOL) decisions. The MOL stage of a product includes 

product’s sale, operation, support and sustainment; whereas the EOL stage includes product’s 

retirement for disposal or recycling. The data that is used in a segmented fashion could provide 

the good results for its segment, but not necessarily for the life cycle system. Information and 

material flow in a typical product life cycle implementation is represented in Figure 1.2. Figure 

1.2 does not account for pieces of information such as consumers/users gained experience 

through recurrent product usage, or of the possible interactions among a life cycle BOL, MOL, 

and EOL. 
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Figure 1.2. Product life cycle information and material flow (Hong-Bae Jun, Dimitris Kiritsis, & 

Xirouchakis, 2007) 

1.4 Objectives of Research 

Working within the context of product life cycle management, the objective of this 

research was to develop a framework that allows capturing the complex changes occurring in 

products and their attributes during their life cycle. This representation is an important first step 

towards their integration and the effective management of life cycle product evolution. 

Considering the nature of the problems described within the previous sections, and the fact that 

there is no existing exact method to approach them, metaheuristics are suggested as a basis for 

the research.  The research problem addressed the following problem. Based on the shift in 

product nature, how does one characterize and extend PLE, using biological and sociological 

inspiration, to incorporate evolvability (evolution in design and operational parameters of 
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products and product’s parts), grouping (based on environmental parameters related to a 

product), and sustainability (ability of the system to maintain and improve itself)? In other 

words, how does one develop metaheuristic search algorithms, with the emphasis here on 

evolutionary approaches, using biological/sociological inspiration and grouping to design 

processes that can use a product’s collected life cycle data to maintain and improve it totally 

(whole product) or partially (parts of the product) in a way that minimizes costs, and 

human/expert intervention? 

Regarding the other part of the research, which is the development of a PLE-data based 

methodology for continuous sustainable product design, there is another research question. The 

research question is to find out whether and how metaheuristic search algorithms can be used to 

iterate through product life cycle data and find meaningful patterns to help engineers within an 

organization design better products for their users. The goal is to make available to the 

systems/design engineers the knowledge captured from the products’ interactions with both the 

users, and the environment. 

1.5 Research Contribution 

The intellectual contribution of the research presented here falls in two categories 

associated with modeling product life cycle. First, a general characterization of life cycle data 

was made. The characterization was then used to develop a new, generic, and iterative approach 

for life cycle based product development. The new approach is called generalized life cycle 

product design (GLPD). Next, two new metaheuristic tools were developed, implemented and 

tested as metaheuristic tools applicable to both product design, via GLPD, and general stochastic 

optimization. The developed tools are a bio-inspired approach known as schooling genetic 

algorithms (SGA), and a socio-inspired approach known as genetic social network (GSN). Both 
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tools solve problems by not only looking for solutions that can perform better, but also by 

looking for solutions that have groupings, evolvability, and sustainability characteristics. The 

intellectual contribution is summarized in Table 1.2 

Table 1.2 

Research contribution 

 Modeling Product Life cycle 

  Characterization of LCE data 

Generalized Life cycle Product Development (GLPD) 

Chapter 3 

Biology Schooling Genetic Algorithms 

(SGA) Chapter 4 

SGA in GLPD Chapter 5 

Sociology Genetic Social Network 

(GSN) Chapter 6 

GSN in GLPD Chapter 7 

1.6 Dissertation Overview 

The dissertation is comprised of eight chapters. Chapter 2 contains the literature review 

of biomimetics and life cycle engineering. Chapter 3 describes a new suggested PLE-data based 

representation for continuous sustainable product design that is consistent with life cycle 

principles. Chapter 4 introduces SGA in terms of concepts, parameters and implementation. 

Chapter 5 is about using PLE-data to apply SGA to product design. Chapter 6 introduces GSN. 

Chapter 7 is about the application of GSN to product design using PLE-data. Finally, Chapter 8 

concludes the dissertation and discusses possible future work. 
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1.7 Summary 

Within this chapter, the dissertation topic was introduced and PLE defined. The 

progression of durable product was explained and the motivations of the research work were 

given. The objectives of the research work were then explained, followed by the intellectual 

contribution. Finally, a complete overview of the dissertation, chapter by chapter was given. 
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CHAPTER 2 

Overview of Product Design and Biomimetics 

A literature review of product design and biomimetics is performed in this chapter. LCE 

methodologies for product design are reviewed as well. Some of the gaps, inherent to traditional 

SE, are identified. Uses of biomimetics in industry are also reviewed from a conceptual and 

computational perspective that fits within the traditional view of SE. 

 From an engineering standpoint, the design for durable goods consists of finding and 

defining the geometry and materials so the required prescribed physical behavior of that system 

is realized. Product design is the efficient and effective generation and development of ideas 

through a process that leads to new products (Morris, 2009).  

Biomimetics on the other hand, also known as biomimicry is the examination of nature, 

its models, systems, processes, and elements to emulate or take inspiration in order to solve 

human problems ("The University of Reading: What is Biomimetics?," Retrieved June 5, 2012). 

Biomimetics is the abstraction of good design from nature (Low, 2009). This chapter covers both 

concepts. 

2.1 Product Design 

Usually embedded in a larger process called “product development” or “new business 

development”, the design of a product requires engineers reasoning from function to form and 

use. Figure 2.1 shows the model of reasoning by designers. This model of reasoning is based on 

induction (bottom-up reasoning) and is also known as synthesis. Despite the fact that companies 

are aware (Roozenburg & Eekels, 1995) of the necessity to learn to innovate effectively, and if 

possibly to overhaul their new product processes to incorporate ideas for successful new 
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products, Griffin (1997a) reported that almost 40% of firms surveyed still use no formalized 

product development process.  

 

Figure 2.1. Model of reasoning by designers. (Roozenburg & Eekels, 1995) 

The function and sustained performance of a product does not only depend on its 

properties (geometrical and physico-chemical form), but also on its environment, mode and 

conditions of use. However, one can reasonably say that product design stage decisions play the 

most important role in a product’s performance during its entire life cycle.  

Traditional SE is a mature field. Table 2.1 shows a brief summary of available resources 

on the topic of SE from commonly used academic resources. “Systems Engineering and 

Analysis” by  Blanchard and Fabrycky, “Product Lifecycle Management” by Saaksvuori and 

Immonen, and “Product Lifecycle Management: 21
st
 Century Paradigm for Product Realisation” 

by Stark, are well-known and often cited books in SE. The International Society for the Systems 

Sciences (ISSS), and the International Council Of Systems Engineering (INCOSE) are two 

professional organizations established in 1956 and chartered in 1991 respectively. Both 

organizations have been establishing guidelines, and are references in the field of systems 

engineering. 

http://isss.org/world/
http://isss.org/world/
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Table 2.1 

System engineering and life cycle engineering resources 

Literature on SE and LCE Source 

3,500,000+ Articles and (e)books Google Scholar 

2,400,000+ Articles and (e)books Engineering Village 

1,500,000+ Articles Science Direct 

7,000,000+ Articles and (e)books Bluford library 

1,500,000+ Articles IEEE Xplore 

6,000,000+ Articles and (e)books ProQuest 

 

Figure 2.2 and Figure 2.3 represent a sample of the more well-known LCE product 

design methodologies. The waterfall model, often used in software development processes, was 

first formally described by (Royce, 1970) as a sequential design process in which progress is 

seen as flowing steadily downwards through the phases of requirements specification, design, 

coding, integration, testing and debugging, installation, and maintenance. The waterfall model is 

the classic software and durable good life cycle model. The model represents the life cycle using 

processes and products, with each process transforming a product to produce a new product as 

output. The new product becomes the input of the next process, marking the completion and 

perfection of the preceding phase, and the progression of a product development processes. 

Because it requires the completion of a phase of a product's life cycle perfectly before moving to 

the next phases and learning from them, the waterfall model is viewed as a rigid approach to 
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product development as a project constantly changes due to requirement modifications and new 

realizations about the project itself. 

 

Figure 2.2. LCE methodologies: (a) Waterfall model (Horner, 1993), and (b) Spiral model 

(Boehm, 1986) 

   

Figure 2.3. LCE methodologies: (a) IPPD model (DEFENSE, 1996), and (b) Dual Vee Model 

(Kevin Forsberg & Mooz, 1997) 

(a) 
(b) 

(a) (b) 
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Different approaches have been used to overcome the limitations of the waterfall model. 

Such methods include having an experienced developer spending time early to consolidate the 

design or using modularity with interfaces to adjust to the forward momentum the model creates 

in order to increase the flexibility of the product with respect to the design. Based on the review 

of the waterfall model, the model would not be adequate as a continuous design approach for 

sustainable product development. 

The spiral model (Figure 2.2.b), also often used in software and durable goods’ 

development process, was originally described by (Boehm, 1986) as a “process model generator” 

that guides a team of developers working on a design project, to adopt elements of one or more 

process models depending on the risks associated with the project. Also known as the spiral life 

cycle model, the spiral model combines elements of one or more process models in an effort to 

combine advantages of top-down and bottom-up concepts. In (Boehm, 2000), Boehm lists six 

characteristics or invariants common to all authentic applications of the spiral model. The focus 

on the system and its life cycle is the last (sixth) invariant of the model, and it highlights the 

importance of the overall system and the long-term concerns spanning its entire life cycle. As the 

spiral model continues towards the final phase, the customer's expertise on the new system 

grows, enabling smooth development of the product meeting client's needs. However, the model 

needs extensive skill in evaluating uncertainties or risks associated with the project and its 

abatement. Depending on how intensive the risk evaluation process is, it might translate to extra 

cost for building the system. The model also requires strict adherence to the project’s protocol 

for its smooth operation, potentially building some rigidity within the overall development 

process. 
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The dual Vee model (Figure 2.3.b), often used in systems engineering for the design and 

development of complex systems, is a top-down model built on the Vee Model to manage a 

system of systems. The model uses two Vees: (1) an architecture Vee that manages the system, 

and (2) an entity Vee that branches off the architecture Vee to manage sub-systems. The 

architecture Vee produces the what, why, and who (which entity level) that are responsible for a 

system’s architecture. The entity Vee illustrates the entity development and realization process, 

which describes how each entity, will be obtained (development, purchase, reuse, etc.). Within 

each Vee, the model organizes development phases into levels of complexity with the most 

complex item on top and least complex item on bottom (Kevin; Forsberg & Mooz, October 

1991).  The left side of the Vee is about a project definition; the bottom is about the project 

implementation whereas the right side deals with the project’s test and integration. Proceeding 

this way, the Vee model connects the requirements to the operation, while connecting 

verification to design. Each Vee within the dual Vee model is flexible as it can either be 

expanded to meet system requirements or evolve its architecture baseline from initial 

requirements to a delivered system. A major advantage of the dual Vee model over the waterfall 

model is the lack of prohibition against exploratory design and analysis at any point in the 

project cycle to investigate or prove performance or feasibility. A major advantage of the dual 

Vee model over the spiral model is the opportunity and risk investigations that may be performed 

either serially or in parallel in the dual Vee model rather than being conducted sequentially and 

prior to the design development process, as it is the case with the spiral model. Working on a 

system of systems, the dual Vee model would provide excellent horizontal scaling. However, the 

model appears not to be inclusive of the life cycle of the system it designs, and not to be 

accounting for possible similarities between components across subsystems. The dual Vee model 



18 
 

guaranteed performance of a system is limited to the as-integrated and as-verified performance. 

The dual Vee model also appears to be an expert-based system design approach that does not 

account for the use of SIAIT in design improvements. 

The last of the sampled methodologies is the Integrated Product and Process Design 

(IPPD). The IPPD is explored within the next section. The IPPD is a model that, in a rather clear 

fashion, encapsulates some of the emphasis of traditional SE that was mentioned earlier. 

2.1.1 Integrated product and process development. Developed in the early 1980s by 

the U.S. industry as a way to improve global competitiveness, the integrated product and process 

design (IPPD) concept has its roots in integrated design and production practices, concurrent 

engineering, and total quality management (DEFENSE, 1996). The U.S Department of Defense 

(DoD) defines IPPD as, “a management process that integrates all activities from product 

concept through production/field support, using a multifunctional team, to simultaneously 

optimize the product and its manufacturing and sustainment processes to meet cost and 

performance objectives.” IPPD is a generic iterative process with no single solution or 

implementation strategy. This means that IPPD’s implementations are product and process 

specific. 

In the ideal IPPD scenario, the user knows and communicates his/her needs. The experts, 

within the design process, listen to the users. An integrated product team (IPT) of people, using 

their technical expertise, set the requirements, design and manufacture the product. The team 

works by using multidisciplinary tools with axiomatic design methodology for durable product 

development (Goel & Singh, 1998). An axiomatic design methodology is a systems design 

methodology that uses matrix methods to systematically analyze the transformation of customer 

needs into functional requirements, design parameters, and process variables. Figure 2.4 has a 
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more detailed overview of the process. With a strict IPPD approach, creativity and innovation are 

not always part of the solution. Also, the socio-cultural aspect of innovation, the life cycle of the 

product being designed, the smart capabilities of today’s product, and the possible interactions 

between the parameters affecting the performance of a product, among other factors, were not 

considered. 

 

Figure 2.4. Integrate product design process (Hock, 1997)  

As a bottom-up approach, the IPPD methodology puts the system engineers as the experts 

and the enablers of the system. The user of the system is part of the IPPD design process as an 

input provider. The engineer creates a solution to a problem, serves as the expert; and the 

consumers and users communicate their concerns. However, the users of a product can 

contribute more to help the designers generate innovative, functional and more intuitive 



20 
 

products, the users can be turned into co-designers who can add valuable information to the 

process. 

Within the IPPD process, a multidisciplinary team of engineers works to design the best 

product that satisfies a given set of requirements. The team achieves that by (1) decomposing the 

system to be built to facilitate its analysis, and then (2) building the system into a configuration 

that would allow the system to perform well under some given criteria. With the more frequent 

integration of AIT in products today, what this entails is that the IPPD methodology helps 

building smart products with rich sensorial and actuator capacities. Those capacities are able to 

collect data during the life cycle of a given product. IPPD is unable to utilize effectively that data 

to keep improving the quality of that product.  

So far, some of the well-known LCE design methodologies were reviewed and some of 

their strengths and limits were assessed. The next sections give us some elements of answer to 

the questions raised within the previous sections. 

2.1.2 Deductive product development approaches. Deductive product development 

approaches (DPDA) are top-down reasoning approaches to product design. DPDA is product 

design in reverse. Using the data gathered during the life cycle of a product, hidden patterns are 

mined that can better inform product designers, or IPTs. Such methods are geared towards 

products wide acceptance via mass customization and/or rigorous testing and validation. Two 

methods for product design are reviewed: (1) a design for operational feasibility approach; and 

(2) a user-behavior based approach. Either method naturally contributes to product design with a 

creativity and innovation touch, key elements to survival and profitability in a rapidly evolving, 

complex and competitive global business environment. 
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2.1.2.1 Design for operational feasibility. Generally known as Design for X, the design 

for operational feasibility is used by organizations to guarantee that some essential and desired 

operational parameters are built into a product/system being realized. The life cycle factors, once 

selected, are imparted during the design and development of the considered product. A non-

exhaustive list of such parameters includes reliability, maintainability, usability, affordability, 

producibility, supportability, sustainability, recyclability, and disposability. The first four 

parameters are further explored. 

Reliability is defined as the probability of a product to accomplish its designated goal or 

mission for a given period and when used under specified operating conditions. Reliability is a 

critical life cycle factor that must be properly defined during the conceptual design phase of a 

product in meaningful quantitative terms (Henley & Kumamoto, 1985). Designing for reliability 

allows an organization to have its product evaluated using precisely defined reliability concepts 

and measures. Three accepted ways or methods of reliability measure are the mean time between 

failure (MTBF), the mean time to failure (MTTF), and the failure rate (λ). Qualitative and 

quantitative reliability requirements for a product are developed through feasibility analysis, 

operational requirements and the maintenance concept identification (Blanchard & Fabrycky, 

2011). 

Maintainability is defined as the ease, accuracy, safety, and economy in the performance 

of the maintenance function (Bloom, 2005; Dhillon, 2006). Two accepted metrics for 

maintainability are the mean time to repair (MTTR), and the mean down time (MDT). Like 

reliability, maintainability is design-dependent. Two approaches of dealing with maintainability 

are through the use of corrective maintenance to restore a system or product to a specified level 
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of performance, and preventive/predictive maintenance to retain a system at a specified level of 

performance (Blanchard & Fabrycky, 2011). 

Designing for usability means designing with consideration for the user/operator of the 

product. Also known as ergonomics or human factors, usability acknowledges the fact that 

product hardware and software alone will not guarantee good system operability (Lehto, Landry, 

& Buck, 2007). Designing for usability, the design team would normally consider factors such 

as: anthropometric (by considering the dimensions of the human body), sensory (by being 

cognizant of certain human sensory capabilities), physiological (by recognizing the effects of 

environmental stresses on the human body while performing system tasks), and psychological 

(by acknowledging the human mind and the aggregate of emotions, traits, and behavior patterns 

as they relate to job performance) (Blanchard & Fabrycky, 2011). Similarly, a designing team 

would choose the most adequate approach for measuring the impact of human factors on a 

product. Two such approaches could be the quantity of personnel required to operate a system or 

the number of human errors committed per period of time. 

Designing for affordability, an organization would design with life-cycle cost in mind. 

Life cycle cost (LCC) refers to all costs associated with a system: such costs include enterprise 

costs, users’ costs, and societal costs. LCC represents the estimated total incremental cost of 

developing, producing, using, supporting and retiring a system (Asiedu & Gu, 1998). Initially 

applied by the US Department of Defense (DoD), the importance of the LCC concept in defense 

was stimulated by findings that operation and support costs for typical weapon systems 

accounted for as much as 75% of the total cost (Gupta, 1983). There are many existing tools and 

approaches to perform LCC analysis. Two such approaches are the LCC by money flow 

modeling and the LCC by economic optimization. The former approach relies on economic 
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equivalence expressed as the present/annual/future equivalent, the internal rate of return and the 

payback period. The latter approach is based on the models of economic evaluation, design 

optimization, and finite population queuing (Blanchard & Fabrycky, 2011). LCC is the most 

important of all life cycle factors that organizations designing for X would consider as it is 

inclusive of the costing of all the activities related to the life cycle of a product. 

Organizations use different approaches to achieve their goals when designing for 

operational feasibility. Approaches used rely on surveys, simulations, stress testing, failure 

testing, validation testing, experimental design, statistical analyses, and use case scenarios. 

Design for X reinforces the design of systems to best configuration, and organizational design 

activities are considered completed right as the product enters its production phase. Within the 

context of durable product evolution, customers now have a wide range of life cycle decisions 

they can take that will impact a product life and performance. Such life cycle decisions include 

but are not limited to change(s) in an organization’s policies, the frequency and type of 

maintenance uses, a decision to scale up an existing system, or a decision to extend the life of a 

system beyond the manufacturer’s recommendations. 

2.1.2.2 User-behavior based. Design based on user behavior can be a difficult goal to 

attain, as that would require a design team to account for the occasional or opportunistic user of 

the system. Designing with the user-behavior can be achieved for some systems. Computer-

based products and services having some sort of user interface, as well as some ergonomically 

designed goods such as car seats or desks have been designed for a while now with the user-

behavior and attitude in mind (Kühme, 1993; Oyewole, Haight, & Freivalds, 2010). Working on 

the benefits and costs of adaptive user interfaces, (Lavie & Meyer, 2010) reached the conclusion 

that the preferred type of system depends on a number of factors, such as the frequency at which 
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the tasks are performed, the user’s age, the difficulty level of the task and the level of user 

involvement in the task. In other terms, a robust system is not enough; the system must be 

considerate of the user. At the end of a couple of case studies, (Z.-j. Wu, Li, Chen, & Cai, 2010)  

concluded that designers can acquire interactive relationships between user and product by 

behavioral process analysis, and design creativity can be realized by creating any new variables 

of scenarios, actions, or schemes of product part. 

2.1.2.3 Bio-inspired product design methodology. There is no known framework that 

approaches product design from a holistic and complex adaptive system view. Although bio-

inspired has been around for some time, it has been used as a way of directly capturing and 

abstracting the metaphors of nature into product design. Bio-inspired design is used to design 

products in the traditional sense: leveraging the knowledge of multi-disciplinary teams to design 

innovative and durable products. 

2.2 Biomimetics 

The term biomimetics was coined by Otto Schmitt in the 1950s for the transfer of ideas 

and analogues from biology to technology (J. F. V. Vincent, Bogatyreva, R., Adrian, & Pahl, 

2006). Biomimetics operate under the premise that nature works for maximum achievement at 

minimum effort. In engineering, the reason of mimicking life is to make engineering products 

adaptable, self-functioning, energy-efficient and reliable (J. Vincent, Bogatyreva, & Bogatyrev, 

2007). Biomimetics are used both as computing tools and as a conceptual framework when it 

comes to engineering design. A review of biomimetics as a tool is given first, followed by its use 

as a framework. 

2.2.1 Biomimetics a computing tool. A subfield of optimization, known as 

metaheuristics, provides a general algorithmic framework consisting of problem-independent 
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general heuristic approaches, which can be applied to many optimization problems. Many of the 

metaheuristic approaches are computational biomimetics.  These approaches mimic biological 

and other natural processes. Genetic algorithms (GAs) are a notable example as they mimic the 

natural evolutionary process, survival of the fittest, and the natural selection process. Many types 

of metaheuristic approaches exist including simulated annealing (Cern´y, 1985; Kirkpatrick, Jr., 

& Vecchi, 1983), Tabu search (Glover, 1989, 1990; Glover & Laguna, 1997), iterated local 

search (Lourenço, Martin, & St¨utzle, 2002), evolutionary computation (Fogel, Owens, & Walsh, 

1966; Holland, 1975; Rechenberg, 1973; Schwefel, 1981), and ant colony optimization (Dorigo 

& Caro, 1999; Dorigo, Caro, & Gambardella, 1999; Dorigo, Maniezzo, & Colorni, 1996; Dorigo 

  St tzle, 2004). This section focuses on four metaheuristic types that are bio-inspired. Figure 

2.5 shows how some biology metaphors are used in manufacturing. 

 

Figure 2.5. Common tasks in a manufacturing firm and relevant biological analogies(Mill & 

Sherlock, 2000) 

2.2.1.1 Ant colony optimization. Ant colony optimization (ACO) metaheuristic mimics 

the behavior of ants depositing and following pheromone (Dorigo, Birattari,   St tzle, 200 ; 

Dorigo & Stützle, 2003; Dorigo   St tzle, 2004). Ants leave and return to their nest discharging 
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pheromone on their path. Other ants follow the pheromone before it dissipates, and eventually 

mark a path that leads to a food source. ACO’s premise is that as the amount of pheromone 

discharged on the path to the food increases, the path to the food will become more “obvious” to 

the ants. This trait emerges because at the colony-level, the behavior of ants is based on 

autocatalysis, the exploitation of positive feedback that the ants use to find the shortest path. 

Developed by Goss et al. (Goss, Aron, Deneubourg, & Pasteels, 1989), a model is built of ants 

observed behavior in a double bridge experiment in which one bridge is significantly longer. 

Assuming that at a given moment in time m1 ants have used the first bridge and m2 the second 

one, the probability p1 for an ant to choose the first bridge is given as: 

   
       

               
 

where, parameters k and h are to be fitted to the experimental data, and p2 = 1 − p1 is the 

probability for ants to choose the second bridge. 

The computational model of this behavior has many applications. ACO has been 

successfully used on different types of problems to include routing, assignment, scheduling, and 

subset (Dorigo et al., 2006). 

2.2.1.2 Particle swarm optimization. Particle swarm optimization (PSO) (Kennedy & 

Eberhart, 1995; Ozcan & Mohan, 1999) combines social psychology principles and evolutionary 

computation to mimic social behavior (Kennedy, 1997) as a stylized representation of the 

movement of organisms in a bird flock or fish school. The movements of the particles are guided 

by their best-known position in the search space as well as the swarm's best-known position. 

PSO’s premise is that as each particle improves and updates its position relatively to all other 

particles, all particles will eventually converge to a satisfactorily solution. It is postulated that 
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some same rules available in PSO underlie animal social behavior, including herds, schools, and 

flocks, and even that of humans. As particles move within a domain, they modify their velocities 

based on previous best and global (or neighborhood) best. 

                                         (       ) 

            

Where d is the dimension of the domain, c1 and c2 are positive constants, rand() and 

Rand() are random functions, w is the inertia weight of the particle, pid is the particle's best 

known position,     and     are the current position and velocity of particle i, and pgd is the 

swarm best known position. The adjustment toward pid and pgd by the particle swarm optimizer is 

conceptually similar to the crossover operation utilized by genetic algorithms. 

PSO has various applications and does not need the previous knowledge of the problem 

space. Applications include scheduling, sequencing, forecasting, traffic management and data 

mining (Sedighizadeh & Masehian, 2009). 

2.2.1.3 Genetic algorithms. The genetic algorithm (GA) metaheuristic (Davis, 1991; 

Goldberg, 1994; Holland, 1975) mimics evolution and the survival of the fittest. A population of 

individuals (solution candidates to a problem) interacting evolves over time (generations). The 

interactions are through mating of “randomly” selected sets of individuals, or mutation of single 

individuals. GAs’ premise is that as time progresses, the population will naturally improve by 

preserving its more fit children (survival of the fittest) while discarding its unfit members. Like 

PSO, GAs belong to the ontogeny category of natural computing paradigms in the sense that it 

requires adaptation of special organisms to their environment. 

GAs have been used for timetabling, scheduling, design, network, rule discovery, and a 

wide range of engineering problems (Ross & Corne, 1994). Besides their strengths, GAs have 
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some shortcomings such as its built-in inductive evolution, naturally occurring genetic drift that 

sometimes causes suboptimal solutions to be created, the highly individualized nature of its 

operations (crossover, mutation and selection), or their operations and processes that tend to be 

static rather than adaptive. Those shortcomings cause, to some extent, GAs to underperform for 

problems where grouping and evolvability are prevalent. 

2.2.1.4 Schooling genetic algorithms. Introduced by Wanko and Stanfield in 2011 

(Wanko & Stanfield, 2012), schooling genetic algorithms (SGA) are a new GA-based model that 

enable process and operator adaptability by mimicking fish schooling. Within SGA, operators 

behave differently depending on the perceived immediate environment and of school dynamics. 

SGA was designed to address some of the listed shortcomings of GAs, to make GAs suitable for 

problems where grouping and evolvability are prevalent such as product design for different 

geographic, social, or economical users’ categories. 

2.2.2 Biomimetic as a conceptual framework. As a conceptual framework, biomimetic 

is used both as a way of innovative ideation and as an assessment tool. The next two subsections 

detail those two uses, their strengths and their limits. 

2.2.2.1 Bio-inspired design. From the perspective of design, a number of characteristics 

make biologically inspired design an especially interesting and attractive problem to study. 

Biologically inspired design is inherently interdisciplinary (engineering and biology). Both 

biologists and engineers typically use different terminology, creating communication challenges. 

Because biologists seek to understand designs occurring in nature while design engineers 

generally seek to generate designs for new problems, biological designs characteristically result 

in more multi-functional and interdependent designs than engineering designs. Therefore, the 

resources, such as materials and processes, available in nature to realize an abstract design 
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concept typically are very different from the resources available in the engineering domain 

(Helms, Vattam, & Goel, 2009). Investigating the use of biologically-inspired design as a context 

from which to teach innovative design, Nelson, Wilson, and Yen worked with mechanical 

engineering students on design projects (Nelson, Wilson, & Yen, 2009). They found that ideation 

behavior among mechanical engineering that had a semester-long course specifically focused on 

biologically inspired design had an average novelty score 80% higher than those from a control 

group of students that did not take such a class. The results of the findings were statistically 

significant. Such a study was one of the first to put in evidence the link between bio-inspired 

design and innovation. Using biological concepts to design can yield to designs that are 

innovative since it forces the engineer to think like a biologist. However, it still is the 

responsibility of the designer to find and to harness the analogies. 

2.2.2.2 Life cycle assessment. Life Cycle Assessment (LCA) is another framework 

commonly used by organizations wanting to measure the total environment effect of their 

product from “cradle to grave.” LCA is a tool used to evaluate the potential environmental 

impact of a product, process or activity throughout its entire life cycle by quantifying the use of 

resources (“inputs” such as energy, raw materials, water) and environmental emissions 

("outputs" to air, water and soil) associated with the system that is being evaluated (EPA, 17 

October 2010). LCA is based around three principles (Duda & Shaw, 1997).  

The first principle, known as inventory analysis, entails the identification and 

quantification of material and energy inputs and outputs for each stage of the product life cycle. 

The second principle, called impact assessment, helps characterizing the various impacts 

identified during inventory analysis. And the third principle, called improvement assessment, 

involves identifying options for reducing environmental burden in product systems and 
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developing strategies for environmental improvements in the product life cycle. LCA places the 

onus of the design on the engineer who must carefully inventory the inputs and outputs of his/her 

product. It emphasizes designing sustainable products, but it does not account for the end user’s 

interests, preferences, and concerns. 

2.3 Summary 

Within this chapter, a literature review of both product design and of biomimetics was 

performed. The product design process was viewed both from a top-down approach, and from a 

bottom-up approach. The structured approach of the latter was elaborated and contrasted with the 

rather newer and reverse course of the former, which is based on latent knowledge. The design 

for operational feasibility, also known as design for X was reviewed to show the impact of SE 

factors on product design. Four life cycle factors namely reliability, maintainability, usability and 

affordability were further defined and explained. Some gaps were identified within the current 

approaches to product design to include (1) the non-inclusion of life cycle data from smart 

product/systems back into the design process for traditional product design approaches, and (2) 

the reliance of product design processes on expert knowledge.  

Biomimetics was defined and reviewed. Application of biomimetics to stochastic 

optimization processes (select metaheuristics) was reviewed. A metaheuristic was defined as a 

higher-level search method that uses incomplete or imperfect information to provide a 

sufficiently good solution to an optimization problem. Some heuristic approaches were defined 

and explained including ant colony optimization, particle swarm optimization, genetic 

algorithms, and schooling genetic algorithms. A case was made for the lack of adequate 

stochastic models dealing with problems where grouping and evolvability are prevalent. These 

types of problems are very crucial in life cycle engineering and design where the environment, 
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the culture, legislative and competitive pressure among others require firms to think differently 

to stay competitive while being innovative and sustainable. Some gaps were identified within the 

current applications of biomimetics to product design to include (1) the lack of in-depth research 

and appropriate methods that look at design as an optimization problem, and (2) the lack of 

known framework that characterizes product design enabling evolvability, grouping, and 

sustainability.  

The gaps identified within the review reinforce and make more specific the intellectual 

contribution of the current dissertation work. The contribution includes (1) the elaboration of a 

biologically-inspired framework for product design that uses PLE data, and (2) the conception of 

a biologically-inspired analytical tool that could at the very least, be used as a complement tool 

of the framework. 
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CHAPTER 3 

Product Design 

In the previous chapter, a literature review of product design and biomimetics was 

provided. The strengths and weaknesses of some of the existing tools and frameworks were 

identified, and the gaps addressed by this dissertation were detailed. Chapter 3 details a 

generalized methodology for product design. The methodology discussed here is about 

characterizing PLE data in a general way that facilitates the search of metaheuristic solutions, 

and assists the system/design engineers in making better sense of the factors affecting the 

product design space as shown in Figure 3.1. 

 

Figure 3.1. Product design factors 

Chapter 3 is organized as follows. First, the existing gaps on product design are reviewed. 

Next, the parameters driving the performance of a product are discussed in more detail, and a 

non-exhaustive list of some attributes is constructed and explained. After that, a suitable 
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sustainable performance measurement for our approach is defined. Finally, a new PLE-data 

representation of continuous sustainable product design is given and discussed. 

3.1 Current Product Design Limits 

The field of engineering design can be divided into three branches: the traditional school 

(still dominant), the algorithmic school, and the axiomatic school (Suh, 1999). The traditional 

school believes that design is a creative process, which cannot be completely performed by 

deductive reasoning, and requires experience. The algorithmic school relies on optimization tools 

such as Genetic Algorithms, Neural Networks, or Fuzzy Logic to achieve the best possible 

design based on some design goals. The axiomatic school is based on the premise that there are 

generalizable principles that form the basis for distinguishing between good and bad designs. 

According to (Suh, 1999), a good design needs to use all three methodologies when going 

through all the required design activities. Different approaches exist that use or combine together 

any of the three approaches. 

(Nelson et al., 2009) research with engineering students working on their design projects 

found in a statistically relevant experiment that ideation behavior, and therefore the creative 

process, can be infused through the use of biologically inspired design. On a study focusing on 

the collective beliefs of managers in competing firms and how they interpret and respond to 

successful technological innovation, Jenkins identified some of the potential interplay between 

design innovation and design imitation by organizations in order to sustain an incremental 

innovation (Jenkins, 2013). The study suggested a more nuanced way of considering incremental 

innovation by extending the potential opportunities for creating competitive advantage through 

innovative imitation and also imitative innovation. Therefore, there are many ways a company 
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can use and sustain the traditional design views of design. Both the use of biological models and 

the use of models from competitive marketed products appear to be viable sources of inspiration.  

The algorithmic approach to design relies on mathematical processes to solve problems 

related to design. The algorithmic approach automates some aspects of the design process, 

enabling design engineers to compute optimal parameters and dimensions of the design that 

would maximize or minimize some design objective (Kumar, 2005). The considered aspects of 

the design process would include, among others, the enhancement of customer satisfaction (Chen 

& Chuang, 2008), the streamlining of the supply chain (Akanle & Zhang, 2008; Elimam & 

Dodin, 2013; Ghasimi, Ramli, & Saibani; Kabak & Ülengin, 2011), the product specification 

process (Wallace, Jakiela, & Flowers, 1996), the improvement of the production system (Jeong, 

2000; Ohno, 2011; Stanfield, King, & Joines, 1996), or the minimization of the product overall 

life cycle cost (Janz, Sihn, & Warnecke, 2005; Massarutto, Carli, & Graffi, 2011). However, 

whether considering SE with life cycle based factors or the engineering activities of an 

enterprise, existing algorithmic approaches do not consider the ambient intelligence concept. 

Ambient intelligence is the convergence of ubiquitous computing (useful, pleasant and 

unobtrusive presence of computing devices everywhere), ubiquitous communication (access to 

network and computing facilities everywhere), and intelligent user adaptive interfaces 

(perception of the system as intelligent by people who naturally interact with the system that 

automatically adapts to their preferences) (Kopácsi, Kovács, Anufriev, & Michelini, 2007). 

Ambient intelligence is a natural result of the evolution of durable product, which is enabled by 

smart capabilities that can provide data collection, storage, processing, and communication 

capabilities with minimal power requirements such as previously depicted in Figure 1.1. Within 

an ambient intelligence area, the algorithmic approach of system design ought to include the best 
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way to integrate smart capabilities into a design and to be part of the product life cycle from 

conception to retirement/recycling instead of sales. Using the algorithmic approach to blend the 

life cycle results with the reuse of the enterprise expertise acquired while working on previous 

products can help an organization make its design sustainable. However, such a new way of 

using the algorithmic method to design requires a different approach that will make the design 

process life cycle-based and continuous (design never ends). 

The axiomatic design approach has contributed to the advancement of design practice, 

and design evaluation criteria based on design axioms. Such design evaluation criteria include 

(but are not limited to) level of innovativeness, quality of design, intuitiveness of design, 

functionality, choice of material, safety, the positive influence on the environment, and some life 

cycle factors such as ergonomics, reliability or affordability. Most of the metrics set in place look 

at design as a static activity. Once prototyped, tested and validated, a product is set to have met 

the design requirements, and as the design phase of the product is considered completed, the 

product enters its production phase. Extrapolating from the axiomatic design perspective, a good 

design is a differentiation factor of a product from the competition. A good design is one of the 

key factors a consumer would consider when deciding whether to acquire a product. However, 

the factors affecting the way a user looks and assesses a product change over time. As listed in 

Figure 3.1, some of those factors can be decided by the user such as the frequency and the type 

of maintenance to perform. Some other factors, such as the functions to be built into a product, 

can be decided only by the manufacturing firm. There are other remaining factors, such as the 

operational environment, that are not set at the discretion of the user or the designers. Therefore, 

knowing the relationship between the performance of a product and the life cycle factors that 

impact it can only facilitate the work of the designer by putting in place a sustainable product 
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design process. Yet, the axiomatic approach typically does not consider design as a holistic life 

cycle sustainable process. 

Finally, consider the objective of a systems engineer to find the best solution that 

optimizes the operation of a product within a given configuration, context, and environment. 

From the SE traditional perspective, sustainability means ecological balance to avoid depletion 

of natural resources. In other words, being sustainable equates to being environment friendly. 

Sustainability is accomplished by having a small footprint on the environment by using less 

material, shipping with smaller or recycled packaging, being free of many toxic substances and 

being as energy efficient and recyclable as possible. Several methods, both qualitative and 

quantitative, have been proposed to solve the design problem from the sustainability point of 

view. Some of the methods include qualitative matrices (Allenby, 1992), abridged LCA 

(Graedel, Allenby, & Combrie, 1995), checklists (Clark & Charter, 1999; Fiksel, 1996),  LCA 

streamlining (Mueller & Besant, 1999), eco-design (Braungart, McDonough, & Bollinger, 2007; 

Knight & Jenkins, 2009), and Whole Systems Design (Blizzard & Klotz, 2012). Nevertheless, all 

the methods listed recommend good and sustainable design based on both the knowledge of the 

engineer and the projected impact of a product on its environment. The approaches appear not to 

build on the smart capabilities built into products. The design approach presented here defines 

sustainability as the ability of a product to be designed, operated and supported with the least 

possible intervention of the systems engineers. The approach is life cycle centered and relies on 

life cycle parameters. 

3.2 Life Cycle Parameters 

Product life cycle parameters are factors that impact the life cycle performance of a 

product. The objective is to find the different factors, from conception to retirement or recycling, 
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that are key determinants of the product’s performance. The concern this section addresses is a 

way of measuring, tracing and tracking the inputs that affects performance in an objective, and 

comparable manner. The case was made in last section on the necessity for using PLE-data to 

make designed products perform better and be more innovative. The case was made about 

factors that affect the performance of a product or system. Some factors such as the type of 

maintenance performed on a system, the type of functions available on a system, and the 

environment where the product is used are functions of the user, the designer, and the 

environment respectively. In order to proceed further, a categorization of the parameters that can 

impact the performance of a product is made. Life cycle parameters are divided into three 

categories, namely design, operational, and environmental. Figure 3.2 shows the relationships 

between the parameters and the performance within the systemic view of a product. 

 

Figure 3.2. Systemic view of a product 

Figure 3.2 illustrates that a product’s performance is a function (whether simulated by a 

model or observed in the real system) of the interactions between that product design, 

operational, and environmental parameters. Figure 3.2 also illustrates individual learning by a 

product through user’s interactions, and group learning by the product through interactions with 

other products. Using the same parameters to group products according to their similarities can 

inform the systems engineer or designer of the relevance of one parameter or type of parameter. 
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A similarity based grouping can help the systems engineer make some informed decisions to 

either decrease production cost while maintaining product performance, or to improve 

performance by changing an existing system configuration. Using a similarity based grouping, a 

design parameter could be turned into an operational parameter, and vice versa, provided that the 

existing product makes the shift feasible. Figure 3.3 shows the performance plot of the instances 

of a hypothetical product grouped according to its design parameters (vertical axis), operational 

parameters (horizontal), and its operating environment (shape: green diamond vs. red square). 

 

Figure 3.3. Impact of parameters on product performance 

Suppose Figure 3.3(a) is the starting point for a metaheuristic search. It represents the 

product designed with diversity (different design and operational value combinations for each 

environment) built-in. The other three graphs (following directional arrows) represent three 

possible outcomes if each product is able to improve itself during its life cycle. Figure 3.3(b) 

shows two distinct clusters, one from each environment. Such a grouping tells the designer that 

the combination of design and operational parameters should be customized to the environment. 
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Figure 3.3(d) shows no distinct grouping and with reduced range along the design parameter 

axis. Finally, Figure 3.3(c) represents a case the operational parameter should be customized 

based on environment.  The design parameter might be common (and appears to be flexible) for 

both environments. Table 3.1 shows a sample of parameters. It is important to note that engineers 

set the design parameters of any product before the production of that product begins. They are 

infrequently changed. Operational parameters are those that can be changed by the user to meet a 

specific use or need. The environmental parameters are tied to the environment and are out of the 

designers of users’ control. The attributes listed within the table come from the literature review, 

and they will be described later in this chapter. 

Table 3.1 

Samples for life cycle parameters 

Design Operational Environment 

Layout Type of use Temperature 

Material Frequency of use Humidity 

Functions Type of Maintenance Culture 

Sensors Frequency of Maintenance Infrastructure 

Size Custom settings Regulations 

Shape Number of resets Similar Products 

Dimension   Climate 

Manufacturing Process    Location 

Setting the operational parameters is the responsibility of the user or maintainer. Figure 

3.4 shows a collaborative life cycle. A collaborative life cycle is formed by the different user-to-

product (operational parameters), and product-to-product interactions that occur during a 
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product’s life. A collaborative life cycle can better inform the designers of a product when 

working on the next generations of the product. A collaborative life cycle enables group learning 

through products’ interactions. Considering that the success of product updates strongly depends 

on consumer heterogeneity, on the rate of content consumption, and on the social interaction of 

consumers (Albuquerque & Nevskaya, 2012; Keeney & Lilien, 1987), using a product smart 

capabilities to capture the changes in operational parameters during product’s interactions can 

give designers valuable insights on the next generation of a product. 

 

Figure 3.4. Collaborative life cycle 

Therefore, by using PLE in product design, the PLE-data the engineers need to work on 

can be modeled as an aggregation of design, operational, and environmental parameters. Table 

3.2 shows a brief summary of the attributes of each category of parameter.  

Table 3.2 

Classifying LCE data 

Parameters Controllable Evolution cycle Associated LCE stage 

Design Yes (Engineer) Slow BOL 

Operational Yes (User) Fast MOL+EOL 

Environmental No (Environment) N/A N/A 
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Each of those categories of parameters will now be defined, and the meaning of the use 

of some attributes given. 

3.2.1 Design parameters. Design parameters are the qualitative and quantitative aspects 

of physical and functional characteristics of a component, device, product, or system that are 

input to the product design process. The design parameters determine the cost, design, and risk 

tradeoffs in an item's production. The design parameters are set by the engineers who use matrix 

methods to systematically analyze the transformation of customer needs into functional 

requirements, design parameters, and process variables. Design parameters are set by the 

engineers during the design process, and are not changed easily. Examples of commonly used 

design parameters are now described. 

3.2.1.1 Material.  A material is the matter from which a product is or can be made. The 

choice of materials to be used for the design of a product is of strategic importance. These days, 

the criteria choice of material used in components not only have to meet some given functional 

and performance requirements, but must also account for environmental considerations to 

minimize the environmental impact associated with the product’s entire life-cycle (Giudice, La 

Rosa, & Risitano, 2005; Mayyas, Qattawi, Mayyas, & Omar, 2012). 

3.2.1.2 Functions.  Functions are defined as the “product’s answer to the set of user 

tasks”; unlike features that are the “user tools” inherent in the product used to perform the 

functions (Technologies, 2012). It is common to see products with the same functions, but with 

different features. Product types have different sets of functions, and each model within a type of 

product accomplishes its functions through potentially different features (Technologies, 2012). 

3.2.1.3 Sensor.  By definition, a sensor is a device that can detect or measure a physical 

property and record, indicate, or otherwise responds to it. Sensors are used to allow devices 
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becoming aware of something via the senses. Sensors are the counterparts of actuators. As 

mentioned earlier, the evolution of products from a mechanized to a more biological entity has 

been enabled thanks to the use of AIT components, some of them being sensors. Today, a cell 

phone for instance is a very complex device capable of sensing temperature, altitude, location, 

and motion at a minimum. The decision to include a specific type of sensor within a product may 

be more of a strategic decision (Seltzer, 2012) than an engineering decision, but the choice of the 

make and the integration of a given type of sensors are the prerogative of the design engineers. 

3.2.2 Operational parameters. Operational parameters are defined as a product 

functional attributes that can change with values set by the user or maintainer of that product. 

Operational parameters are product features that allow flexibility. The operational parameters are 

set by the user to get a service. Operational parameters are under the control of the user and may 

be changed frequently. The following are examples of operational parameters that can impact the 

performance of a product. 

3.2.2.1 Type of use.  The type of use is defined within the context of a product with many 

different features. Within that context, the type of use is a measure that tracks the type of feature 

the user of the product makes use of. The type of use reveals among others the preferential use of 

the product by the main user. The type of use can prompt engineers to make a given feature of a 

product better, or to attach a given service or related product to the initial product. 

3.2.2.2 Frequency of use. The frequency of use keeps track of the frequency with which 

any feature or component of a product is used at any given time by its user or other components. 

From an engineering reliability standpoint, some components are more likely to fail based on 

their usage frequency. Metal fatigue, in material sciences, is a typical example. Therefore, the 
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frequency of use can inform engineers about the part of the design that can focus on to make 

their product more reliable or more appealing. 

3.2.2.3 Type of maintenance.  Maintenance is defined as the process of keeping 

something in good condition. Complex products such as an airplane will require different types 

of maintenance during its life cycle. The maintenance can be preventive (performed specifically 

to prevent faults from occurring), predictive (performed to determine the condition of a system in 

order to predict when maintenance should be performed) or corrective (performed to identify, 

isolate, and rectify a fault so that a failed system can be restored to an operational condition 

within the prescribed tolerances or limits). The type and/or frequency of maintenance tend to be 

set according to an organization’s policy. 

3.2.3 Environmental parameters. We define environmental parameters as the attributes 

of the context or environment a product is being operated or used. It is not part of the product per 

say, but part of its surroundings. The user cannot change environmental parameters, but they do 

affect the way the product performs. The following are examples of environmental parameters 

that can impact the performance of a product.  

3.2.3.1 Physical environment. Temperature, humidity, and vibration all fit within this 

category. Temperature for instance can directly affect product performance (Fakhim, Behnia, 

Armfield, & Srinarayana, 2011; Larrosa-Guerrero et al., 2010; PILCHER, NADLER, & 

BUSCH, 2002). The effects of temperature, whether low or high can either enhance or impair the 

performance of a product. Keeping track of the performance of a device along with the operating 

temperature over time can help an engineer not only better understand the relation between 

performance and temperature for given environments, but also better decide on the make of a 

specific product component. 
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3.2.3.2 Alternative products.  Those are also known as competition. Similar products 

altogether with the product of interest define the ecosystem. Watching the competition’s market 

serves a twofold interest. On one hand, it allows a company to stay knowledgeable and carefully 

follow the design trend of the market, and on the other, it allows a company to engage in a 

proactive learning. According to (Bapuji & Beamish, 2008) any company, in order to avoid 

hazardous design flaws,  should at a minimum study competitors’ recalls, overall recall trends, 

issues leading to recalls, or regulators’ comments. There is a lot that can be learnt, either directly 

or indirectly, from the competition. 

3.2.3.3 Culture. The definition of culture used here is the distinct ways that people living 

in different parts of the world or of a country classified and represented their experiences, and 

acted creatively. Although (Im, Hong, & Kang, 2011) showed that the UTAUT model is affected 

by culture, the model strengthen the evidences according to which the acceptance of a product 

depends not only on the way it was designed by the engineers, but also on the way it is being 

perceived by the users within a both personal and socio-cultural context. The knowledge of such 

a context calls for the need of a design tool that can inform the engineers about the users at large 

and their environment in order to design great products. 

3.3 Sustainable Performance 

The mapping of life cycle parameters to performance, treated by this section, is not a 

trivial issue. Performance measurements should carefully be defined whenever designing a 

system. A performance measure is an indicator of progress toward achieving a goal. The design 

of performance measurement systems appropriate for modern organizations is a topic of 

increasing concern for both academics and practitioners (Neely, 1998). According to (MWG, 

2010), performance measurement in SE aims at helping managers controlling the SE processes to 
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improve the quality, timeliness, efficiency, and effectiveness of the products and supporting 

processes. 

The ability to measure any significant activity associated with a product during its life 

cycle is critical. Such measurements give the engineers the aptitude to improve the design of the 

product and of all the associated processes, to allocate or reallocate resources to that product, or 

to compare that product against the competition. A system with sustainable performance 

accounts for the evolution of the product and processes tied to it. 

As an example, the performance of a procuring function in a firm could be gauged by the 

costs and availability of raw materials. The availability of a production system within an 

organization could be gauged by its reliability (probability of a system to perform its designated 

mission for a given period when used under specified conditions), its maintainability (the ease, 

accuracy, safety and economy in the performance of maintenance function), its supportability 

(ability to install, configure, monitor, identify issues, and restore systems), and its producibility 

(the capacity of making goods and services). The performance of a manufacturing function could 

be gauged by capacity utilization, defects, output, and down time; whereas the performance of 

sales within an organization can be gauged by the (preferably high) amount of sales and of the 

(preferably low) number of returns. However, devising a model that spans across the entirety of 

the life cycle spectrum requires an adequate performance measure that will go with it.  

Performance or measures can be based on a priori set multi-criteria, or on aggregated 

targeted objectives. The MACBETH (Measuring Attractiveness by a Categorical Based 

Evaluation Technique) or the Analytic Hierarchy Process (AHP) approaches are examples of 

multi-criteria decision analysis approaches that are used in different industries and fields as an 

efficient technique for rank ordering alternatives (R. W. Saaty, 1987; T. L. Saaty, 1982, 1990, 
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2005; Zahedi, 1986). However, when defined as an aggregated value, performance can be 

formalized using the following mapping (Berrah, Mauris, & Vernadat, 2004): 

EEEEEA nig  ......: 21   

)....,...,,()....,...,,( 2121 nigAni ppppAppppp
g
  

Where the iE ’s are the universes of discourse of the elementary performance expression 

)....,...,,( 21 ni pppp and E is the universe of discourse of the global performance expression
gAp . 

And since that the universes iE ’s and E can be different, the determination of the aggregation 

mapping gA , which is generally not straightforward, would require some heuristics to deal with 

the heterogeneity of the life cycle data. Going further, since the objective here is to assess a life 

cycle-based performance measurement from an SE point of view, a more appropriate example of 

an aggregated performance measurement known as the System Operational Effectiveness (SOE) 

is described.  

The SOE is a concept that was defined to reflect the holistic objective of SE and 

integration efforts in achieving a balance between system performance, availability, process 

efficiency (operational, maintenance, and support processes), and total system ownership costs. 

Figure 3.5 shows the SOE model. The SOE requires proper attention and balance among all the 

factors included in the SOE model in order to maximize operational effectiveness, and to prevent 

risks and challenges associated with end-of-life obsolescence (Verma, Farr, & Johannesen, 

2003). An example of unbalanced approach could consist of a disproportionate allocation of 

resources and attention to one area (e.g. performance) at the expenses of others (e.g. availability 
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or efficiency) and could lead to an excessive ownership costs. The SOE model is an aggregated 

performance measure. 

 

Figure 3.5. System Operational Effectiveness (SOE) (Verma & Gallois, 2001) 

The next section synthesizes all the components of the LCE data characterization, and 

explains how the components are integrated. The section also makes the case for a generalized 

approach to product design that could be applied to any design methodology that is inclusive of 

the life cycle data.  

3.4 Generalized Life cycle Product Design 

The generalized life cycle product design (GLPD) is a generalized PLE-data based 

product design approach resulting from the proposed LCE data classification. As its name 

implies, GLPD is a product design approach that relies on the data collected during the life cycle 

of a product or system to better design products or systems. Table 3.3 shows some GLPD 

process elements. The processes are categorized both by the life cycle phase they belong to, and 
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by the desired characteristic of the product they target: evolvability (E), sustainability (S), and 

grouping (G).  

Table 3.3 

GLPD process elements 

Life Cycle Phase Processes E/G/S 

Research / Development - Determine key life cycle parameters 

- Create initial parameter categorization 

 

Design / Simulation - Create performance evaluator/simulator 

- Search to find  

- High performance configurations 

- Grouping opportunities 

- Consider parameter shift 

- Design to operational 

- Operational to design 

 

 

S 

G 

 

E 

G 

Operation / Sustainment - Use actual system performance 

- Enable evolution through 

- Change in objective 

- Change in parameter representation 

- Enable group-based efficiency by 

- Group configuration evolution 

- Group merges and division 

- Enable sustainability through 

- Metaheuristic-driven group and 

individual change 

S 

E 

E/S 

E/S 

G 

E/G 

E/G 

S 

E/G/S 

 

The GLPD approach is a top-down-up approach. A top-down-up approach is one that is 

both top-down and bottom-up. A top-down-up approach is defined here as an approach that 

decomposes an existing system into smaller components with the goal of providing a holistic 

perception and an improved reconstruction of the system with a subset of the same or similar 
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components. GLPD aims at assisting engineers with the design of innovative and creative 

products that are user-centered, evolvable, and sustainable. GLPD is a life cycle data sourced 

approach that integrates with current practices and views a product design process as continuous. 

GLPD recognizes the ongoing evolution in durable product, as well as the increasing use of 

smart components within systems to offer a continuous design representation. Rather than solely 

focusing on the BOL part of the life cycle during the design process, GLPD recommends using 

the data gathered during the lifetime of similar products or previous versions of a product when 

working on a prototype for that product next generation. Figure 3.6 represents the GLPD 

approach for continuous design, along with all its components.  

  

Figure 3.6. Generalized life cycle product design (GLPD) approach 

The GLPD approach is iterative, continuous, and spans through the life cycle of a product 

or family of products. The approach forms a closed loop process that can sustain the design 

process by constantly processing inputs (life cycle data) to turn those inputs into “better” 
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characteristics for a product. The iterative nature of the GLPD approach enables a rapid 

transition from simulated to realistic design, supporting this way any design methodology that 

promotes or uses short life cycle. Being continuous and iterative, GLPD is also able to respond 

rapidly to changing customer needs occurring during the life cycle usage of a given product.  

Therefore, GLPD can be viewed as a decision making tool as it allows organizations to respond 

to local changes by using information specific to a given locale: the life cycle data. The 

classification of life cycle data enables GLPD to provide a life cycle holistic view of the design 

process by integrating the various life cycle parameters into the design process. Such a holistic 

view of the life cycle, when used with an aggregated performance measurement, provides the 

design process with a performance modeling tool. By representing a product as an assembly of 

three defined life cycle classes, GLPD creates an implicit mapping between an aggregated life 

cycle-based SE performance indicator and the evolving characteristics of a product. That 

mapping or relationship between product’s performance and the life cycle data classes enables 

the designer to decide on whether to turn a design parameter into an operating parameter (or 

conversely), without impacting the performance of the product.  

Using the GLPD suggested representation of a product (dashed box in Figure 3.6), a 

metaheuristic search tool can be used that cluster products along the defined life cycle 

parameters, looking for possible relationships between the life cycle classes and performance, 

and determining the degree of importance of lifecycle attributes to the performance of a product. 

Grouping, as enabled by the GLPD representation provides the designer with design 

alternatives for a given range of desired performance values. Grouping would make the solution 

of a GLPD-based approach capable of scaling and of being flexible from a configuration point of 

view as shown in Figure 3.7. 
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Figure 3.7. Grouping vs. performance 

Using the same shape nomenclature for the product as in Figure 3.3, Figure 3.7 shows a 

possible outcome of grouping which results in four groups with two of them presenting 

interesting properties for a system designer. Solutions from group#3, like those from group#1 

and group#4 are performing well. However, because group#3 and group#4 are more spread out 

than group#1, they offer a better starting point for risk analysis, and further performance 

improvement for a system. Also, when comparing group#3 against group#4, group#3 offers a 

diversity that can be used for instance: (1) to build efficient systems that the change of 

environment will not significantly affect, (2) to scale a system without adverse effects on the 

overall performance of the system, or (3) to build efficient systems capable of operating in 

heteroclite environments. By being cognizant of the relationships in case they exist, between 

LCE parameters, a systems engineer could decide to change the class of a product performance 

parameter. Such a change could include a shift of a lesser-used performance parameter from 

operational to design without hurting a system performance. 

Finally the GLPD approach, when applied to a bigger and complex system such as a 

vehicle or an aircraft inventory with numerous interchangeable parts can help a systems 

engineer, using the appropriate grouping tools, to simplify the design of that system by enabling 
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him/her to either discover interoperable parts that impact that system’s performance, or parts of 

the design that, because of their nature, could be pushed from design to operational without 

compromising that system long term performance. 

3.5 Summary 

Within this chapter, three views of engineering design, known as the traditional, the 

algorithmic, and the axiomatic views were explored, and their limitations identified. The 

limitations were primarily identified as caused by the ongoing trend of using smart components 

in complex systems. The use of smart components is changing the way systems engineers look at 

life cycle data. A case was made for a continuous design process that can be self-sustaining. A 

generalized, iterative, and highly responsive design process called generalized life cycle product 

design (GLPD) was given. Performance measurement, key attribute of the proposed GLPD 

methodology was discussed. After addressing some commonly used performance measuring 

systems, a case was made for one approach that uses aggregated data, with heuristics or real 

experience as a mapping function between the proposed life cycle parameters set and the 

performance universe that any organization can set to assess and improve its life cycle. The 

components of the proposed methodology namely the life cycle parameters (LCP) were 

explained and some components were defined, with their importance and their meanings 

explained from a design point of view. An example of interactions between design and 

operational parameters was discussed for a hypothetical product. A case was made for GLPD to 

be used in conjunction with an appropriate clustering/grouping tool to complement expert 

knowledge, with aggregated knowledge from life cycle data. Finally, an example of grouping, as 

enabled by GLPD was given, followed by possible interpretations. 
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CHAPTER 4 

Schooling Genetic Algorithms 

This dissertation seeks to develop optimization models dealing with problems where 

grouping, evolvability, and sustainability are key characteristics of the solution. These 

characteristics are prevalent in smart system LCE and design. Considering the nature of the 

described problems, metaheuristics, with the emphasis here being put on evolutionary methods, 

provide a foundation to solve the described problems. As a result, an enhanced metaheuristic 

search approach that uses biological inspiration and grouping by exploiting fish schooling group 

dynamics is created. The method is termed “schooling genetic algorithms”. 

Schooling genetic algorithm (SGA) are GA-based models that enable process and 

operator adaptability by mimicking fish schooling. SGA represents an adaptive type of 

metaheuristic where operators behave differently depending on the perceived immediate area of 

the search domain in the context of fish schooling dynamics. SGA was built from concepts with 

multiple objectives in mind, notably the ability to “naturally” group candidate solutions based on 

some type of similarity, the ability to “intuitively” ungroup clusters of candidate solutions based 

on the local perception of the immediate environment, and the ability to exploit the evolvability 

of a subpopulation to possibly predict the performance trend of that subpopulation. This chapter 

serves as a detailed introduction to SGA. 

4.1 Introduction 

Genetic algorithms (Holland, 1975) are global optimization techniques inspired by the 

mechanisms of natural evolution. GAs are useful both as search methods for solving problems 

and for modeling evolutionary systems. GAs operate on a population of individuals (or potential 

solutions to a problem) and within a domain without an explicit mathematical description. GAs 
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work by applying the principle of survival of the fittest to achieve an optimal (or strong) 

solution. 

The successful application of GA mainly depends on the population size or the diversity 

of individual solutions in the search space, and on the devising of the crossover and the mutation 

operators. If the GA cannot hold its diversity well before the global optimum is reached (ideally), 

it may prematurely converge to what is known as a local optimum. Such a phenomenon is known 

as a genetic drift, which is responsible for reducing the genetic variation within a population. 

Though maintaining diversity is the predominant concern of GA, it also increases the 

computational cost of GA. Various techniques have been attempted and used to find a balance 

between the population diversity and the performance of GA (exploration and exploitation). 

An approach that has proved successful at increasing the diversity and exploiting its 

benefits is the use of distributed subpopulations. It is a “divide and conquer” approach that 

allows tackling increasingly complicated cost functions emanating from complex simulations 

common for engineering design problem. For solving complex problems, parallel GAs are used. 

Combining GAs with other alternatives has often proved to yield better results than traditional 

GAs, which uses a single large panmictic population. In parallel GA, it can reasonably be argued 

that having multiple subpopulations helps preserving the genetic diversity, since each 

subpopulation can potentially follow a different search trajectory through the search space. Two 

parallel GA approaches which have proved to be successful are known as the Island Genetic 

Algorithm (IGA) (Cantú-Paz, 2000), and the Niching Genetic Algorithms (NGA) (Mahfoud, 

1995). The remainder of the chapter will be structured as follow. Since SGA represents an 

inherent form of parallel genetic algorithms, parallel GA (notably NGA and IGA) are described. 
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Using biology, the context of SGA will be situated followed by a detailed explanation of the 

SGA procedure and life cycle. 

4.2 Parallel Genetic Algorithms 

In ecology, a niche is defined as the sum total of an organism’s use of the living and 

nonliving resources in its environment. Mahfoud and Watson both suggest an evolutionary 

classification method based on the way multiple niches are found in a GA (Mahfoud, 1995). In 

GA, niching refers to the notion that competing individuals or species cannot coexist in the same 

local environment. Both spatial and temporal (sequential) niching approaches have been used in 

the literature. Spatial methods can be further categorized depending on whether they use sharing, 

crowding, or clearing methods, whereas temporal or sequential niching methods find multiple 

niches iteratively or temporally. By maintaining subpopulations in so-called “niches”, NGA 

prevents genetic drift and forces parallel convergence within the solution domain. The two main 

objectives of niching algorithms are (i) a converge to multiple, highly fit, and significantly 

different solutions, and (ii) a slowdown convergence in cases where only one solution is required 

(Mengshoel & Goldberg, 2008). 

IGA operates differently as it does not avoid genetic drift, but isolates the subpopulations 

that are only allowed to exchange information via a migration operator. The migration operator 

acts as a fitness-based probabilistic selection operator for migration selection and replacement. In 

IGA, a third operator (besides mutation and crossover), known as the migration operator, is 

responsible for the communication between these “islands” of chromosomes. The 

communication occurs infrequently. The separation into subpopulations aims at preventing 

premature convergence by acting as a non-dominating strategy for the population as a whole. 

Such a scheme can lead to the finding of multiple solutions to a problem. Therefore, IGA has 
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been proven to be more suitable for linearly separable problems, although also slower 

(implementation) since it tends to perform better on larger total population sizes (Whitley, Rana, 

& Heckendorn, 1998). Although IGA is parametric (requires at least the provision of the given 

number of islands as a parameter in order to get the full benefits of using subpopulations), its 

implementation arbitrarily assigns solution candidates to islands. 

Although both reviewed parallel strategies (IGA and NGA) involve groups of genes, 

which are usually sent to separate processors to evolve apart from the rest of the population 

(common characteristics of parallel GAs), the approach used in each case is what makes them 

different and unique. However, maintaining all islands and/or niches during the search process 

does not take advantage of the topology (attractors) of the solution domain. Further, both 

methods despite being inherently parallel are not using mutation and crossover in an 

advantageous way. The basic idea behind mutation is to reintroduce divergence into a 

converging population through exploration, whereas crossover aims at improving a population 

by exploiting its strengths. Consider the objectives of both mutation and crossover in traditional 

GAs. It is possible to make a parallel GA approach more adaptive by looking into a proper 

balancing of the use of GA operators (Luke & Spector; Spears, 1992). SGA is a suggested 

approach.  

In Chapter 3, Figures 3.3 and 3.7 help demonstrate the connection of such a method in 

the LCE domain. In Figure 3.3, the impact of parameters on product performance showed that 

the performance of a system depends on the type of interaction between the design, operational, 

and environmental parameters. Determining the nature of the relationship between good 

performance and LCE parameters is a complex task requiring consideration of individual and 

group characteristics and accounting for interactions between systems.  As SGA is now further 
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described and the suitability of schooling behavior to search heuristics is assessed, efforts will be 

made to answer the second question. 

4.3 SGA Overview 

Since SGA mimics the way fish live in community, a summary of schooling dynamics is 

necessary. 

4.3.1 Fish school. A group of fish (shoal) that stay together not only for social reasons, 

but also for coordinated group swimming are said to be schooling (Bonabeau & Dagorn, 1995). 

Fish derive many benefits from schooling behavior including defense against predators (through 

better predator detection and diminished chance of individual capture), and enhanced foraging 

success. Schooling fish are usually of the same species and tend to have similar size. Schooling 

fish are capable of undertaking complicated maneuvers (Moyle & Joseph J. Cech, 2004). Fish 

school is a classic example of emergence, where there are properties that are possessed by the 

school but not by the individual fish (Parrish, Viscido, & Grunbaum, 2002). The emergent 

properties give an evolutionary advantage to members of the school, which individual fish do not 

receive. 

Fish schools, ant pheromone trail networks, bird flocks, or aggregation of cockroaches 

are some typical examples of collective behavior of animals that have been accurately described 

in terms of individuals following simple sets of rules. Fish schools for instance are known to 

come in many different shapes and sizes: predator avoiding vacuoles, stationary swarms, flash 

expansions, herds and balls, hourglasses and vortices; highly aligned cruising parabolas (Parrish 

et al., 2002; B. L. J. Partridge, 1982; B. L. J. Partridge, Johansson, & Kalisk, 1983 ), and the 

principles that give rise to their collective behavior have already been more or less successfully 
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explained (Ballerini, Cabibbo, Candelier, Cavagna, Cisbani, Giardina, Vincent, et al., 2008; 

Inada, 2000; Pitcher, 2001; Sumpter, 2006). 

4.3.2 Terminology and taxonomies. SGA intends to exploit fish schooling dynamics to 

enhance metaheuristic search. SGA is not a simulator, as its key concern is not to accurately 

mimic the explicit actions of schools of fish. SGA is an optimization technique based on an 

evolutionary algorithm: GA. An SGA fish is a GA string of encoded genes also known as a 

candidate solution. A local cluster, group, or subpopulation of fish is a school of fish and 

represents fishes that share some similarities. The domain of definition of an SGA problem is its 

search domain or the sea. In SGA, food and predators are represented by attractive and 

unattractive locations in the search domain respectively. SGA incorporates a technique for food 

depletion to encourage exploration. Figure 4.1 gives an example of food vs. predator for a 

maximization problem. 

 

Figure 4.1. Food vs. Predator 

Using this terminology, SGA can then be defined as an enhanced metaheuristic search 

technique in which the fishes discover and eat food, and spawn new fish whenever the conditions 

are favorable while avoiding, by escaping means, existing predators. SGA does so by modifying 

Food 

Predator 
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traditional GA to account for schooling. It uses a model’s parameters to control the different 

methods/functions/processes available within the model. As a process mimicking natural 

methods, SGA then accounts for the way a model’s parameter either changes independently, or 

as a consequence of the variation in another model’s parameter. Figure 4.2 shows the taxonomy 

of search techniques.  

 

Figure 4.2. Taxonomy of search techniques 

In SGA, schools are sensitive to their surroundings. Schools use their perception of the 

environment to guide the search through the solution domain. SGA has an adaptive parameter 

control mechanism, meaning that there is some form of feedback from the search that is used to 

determine the direction and/or magnitude of the change to the strategy parameter. Figure 4.3 

shows the taxonomy of parameter setting. SGA falls under the red labeled (adaptive) category. 

 

Figure 4.3. Taxonomy of parameter setting in evolutionary algorithms (Michalewicz & Fogel, 

2004) 



60 
 

The next section addresses the procedural aspect of SGA. It explains the fish school 

concepts and details the implementation of those concepts. 

4.4 SGA Procedure 

The fish in the presented algorithm randomly but collectively “swim” and discover new 

places to feed. Each time a new feeding ground is found; the school consumes it, and then moves 

on to look for another (not yet fed on) location to exploit. The act of leaving a location after 

feeding from it is to prevent any school, for time to time, from being trapped in an optimum 

(whether local or global) solution. The behavior of depleting the food when feeding is also 

intended for the schools to explore new areas of the sea in which the global solution may be 

discovered. 

During the schooling process, schools sometimes encounter predators and are forced to 

escape using various strategies. SGA mimics such a behavior by first defining a predator as any 

region of the search domain where solutions are relatively worse than the currently obtained best 

solutions. A predator avoidance mechanism built into each school allows the fish of that school 

to swiftly escape predators while looking for feeding grounds.  

The sea can host many schools at a time. With SGA, within school and between schools’ 

interactions are behavior based. Applying genetic operators such as mutation and crossover 

carries out the interactions between fishes and between schools. Due to the dynamic nature of the 

interactions, the mutation rate (number of offspring to result from the mutation process), the 

mutation magnitude (defined here as the length of the phenotype to be affected by the mutation 

process), and the crossover rate (number of offspring to result from the crossover process) 

change during the run of an SGA algorithm. Their values change according to the size of a 

school, the overall average fitness of that school, and the relative perception of the local area of 
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the sea by a fish school. Figure 4.4 shows a side-by-side comparison of traditional GA and SGA. 

The “Food Foraging”, “Predator Avoidance”, and “School Maintenance” are processes 

belonging to SGA. “School Division” and “School Formation” are simple collateral effects of the 

SGA processes. The collateral effects are not built into SGA, but are the consequences of the 

grouping mechanism built into SGA. The SGA processes are the fish school dynamics SGA uses 

to enhance GA heuristics. 

 

Figure 4.4. Genetic Algorithms vs. Schooling Genetic Algorithms (* often omitted) 

4.5 SGA Modeling 

The most notable features of SGA are its ability to “naturally” group subpopulations, and 

to exploit the evolvability characteristics of a population when assessing its performance. Both 

grouping and evolvability features rely on the perception of the local search space by fish 

schools. 

4.5.1 School merging and splitting. Fish schools have various shapes and sizes, and 

those shapes and sizes change depending on the environment (proximity of food or predator 
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etc.). Couzin, Krause, James, Ruxton, and Franks (2002) proposed a model in which individual 

animals living in communities follow three simple rules of thumb: (1) move away from very 

nearby neighbors; (2) adopt the same direction as those that are close by and (3) avoid becoming 

isolated. A number of grouping techniques might be employed.  In order to make SGA grouping 

simple, an unsupervised density based clustering algorithm is created for use in this research. 

The algorithm has an       average runtime. The developed clustering approach named 

GEMAC (Geometrically Expanded Membership for Automated Clustering), allows SGA to 

group fish in schools based on: (1) the relative proximity of other fishes to any given fish within 

the school, and (2) on the relative geometric proximity of shared near neighbors. The density 

within the aggregations of fish schools is nonhomogeneous, as fishes are packed more tightly at 

the border than the center of the shoal (Ballerini, Cabibbo, Candelier, Cavagna, Cisbani, 

Giardina, Orlandi, et al., 2008). The change in density is responsible for the oblong shape 

frequently observable with fish schools (Hemelrijk & Hildenbrandt, 2008; B. L. Partridge, 1980). 

The benefit of the oblong shape is considered to be the protection against predators (Hemelrijk & 

Hildenbrandt, 2008, 2012; Hemelrijk, Hildenbrandt, Reinders, & Stamhuis, 2010). GEMAC was 

not designed to exactly replicate the density distribution of fish schools, but to mimic the change 

of density along a cluster. 

Let  },...,, 21 Nxxx  be a set of data points in an L dimensional Euclidean vector space. It is 

required that these N points be clustered in K groups (K unknown) where each group must fulfill 

the requirement of changing density from the head to the tail of the group. Let us consider the 

subset },...,, 21 Mxxx  as a cluster of points from the previous set. To build such a cluster with 

GEMAC, points must be added one by one to the cluster, starting with 1x  and ending with Nx . 
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Let ix , jx , kx , and lx be four points added to the precedent cluster in that exact order. The 

distances formed by the pairs ( ix , jx ), ( jx , kx ), and ( kx , lx ) should have values that are either 

the same or decrease in a geometrically scaled down fashion. The highest distance between two 

consecutively added points to the cluster should not exceed the modal distance calculated 

between the first vector to the cluster and a randomly sampled set of points within the search 

domain. 

4.5.1.1 Computational aspect of GEMAC.  The clustering algorithm using the above 

grouping concept is carried out in the following manner. 

 Step 1: Compute an    proximity matrix of the set },...,, 21 Nxxx . This operation has 

a       runtime complexity. 

 Step 2: Randomly sample a set number of entries from each row of the proximity matrix. 

Sample the same number of entry from each row, and calculate the row-wise mean of all the 

samples entries. A mean is the modal distance to be used for the corresponding row. 

Geometrically scale all modal distances by dividing them by an a priory set value higher than 1. 

Values between two and three seem to yield excellent results. 

 Step 3: For each vector, starting from the first vector, assign to the same cluster all points 

located within the calculated modal distance for that vector. 

 Step 4: For each vector assigned in step 3, use the same modal distance geometrically 

scaled one more time, and assign to the cluster of the starting vector, all points located within the 

newly calculated modal distance for that vector. 

Step 5: For each vector left unassigned, repeat step 3 and step 4 until a vector either finds 

a cluster, or is left unassigned to form its own cluster. Step 3 thru step 5 represents an overall 

worst case complexity of        
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Rather than using the Euclidean distance, the taxicab distance (Krause, 1987) is used to 

speed up the algorithm. Further, making GEMAC simple also has the benefit of minimizing SGA 

overhead beyond the GA. 

4.5.1.2 Clustering in action with GEMAC.  Figure 4.5 represents the partitioning that 

was used for testing GEMAC. 

 

Figure 4.5. Domains with predetermined cluster centers 

Two dimensional data with values   across each dimension set such that            . 

Three test results are reported here. Each test was performed by generating, using a normal 

distribution (                         
   

                  

 
              ), a number 

           of points around each of the centers (represented with an X in Figure 4.5) of all 

the domains. The resulting data points for each domain were passed to a GEMAC routine for 

automated clustering, and the output of GEMAC plotted. In Test 1, points were generated around 

the designated cluster centers with a standard deviation  
                  

 
. Test 2 (respectively 

Test 3) used a standard deviation   
                  

 
 (respectively   

                  

 
) to test 
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how GEMAC would perform with respect to a changing density. 12% of each row was sampled 

to determine the modal distance as explained in step 2 above. The value          was used as 

the scaling factor for the modal distances. Figure 4.6 thru 4.8 show the output of GEMAC for 

Test 1 thru 3. 

 

Figure 4.6. GEMAC output for Test 1  

 

Figure 4.7. GEMAC output for Test 2  
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Figure 4.8. GEMAC output for Test 3 

Table 4.1 summarizes the results of all eight experiments run to test the GEMAC. 

Table 4.1 

GEMAC clustering output summary 

Number of given cluster  

centers 

Number of cluster found per case and per test 

 Test 1 Test 2 Test 3 

2 16 13 10 

3 12 9 7 

4 13 7 5 

5 11 7 6 

6 9 6 6 

7 8 7 7 

8 9 8 7 

7 8 7 7 
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Since the role of GEMAC is solely to group, split and/or merge schools in an 

unsupervised fashion, no  clustering validity checking approaches based on either internal and 

external criteria is presented or discussed, a simple comparison table is provided. Since GEMAC 

was created to meet a specific clustering need and a particular problem, the final partitions of the 

tested data set does not require some sort of comparative evaluation as it is the case in most 

applications (Milligan & Cooper, 1985; Pal & Biswas, 1997; Ramze Rezaee, Lelieveldt, & 

Reiber, 1998). 

4.5.2 Behavior setup. Figure 4.9 shows a simple view of a school behavior assignment. 

Using the performance of a school center of mass (  ), the averaged performance value of all the 

schools within the sea (    ), and some cutoffs ( offoff h ,l ), the behavior of any school within a 

sea can be defined:  a low value for    with respect to     would be characterized as the 

presence of a predator. All other fish school behaviors will refer to Figure 4.9 which also has a 

decision making node (selection statement) called “Is Food still available?” that also leads to the 

predator avoidance mode. 

 

Figure 4.9. Fish school behavior assignment 
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The “Is food still available?” selection statement of Figure 4.9 connects to the predator 

avoidance in case of no food availability. The purpose of the selection statement is to mimic the 

depletion of food within any given area of the sea. By translating the time spent (generation 

wise) by a school of fish in an area of the sea (whether attractive or not) into the food being 

depleted; any school will be pushed away to explore other possibilities after some time.  

4.5.3 Predator avoidance. Predator avoidance occurs when the school enters a 

dangerous or unattractive area. Fish swiftly move in an attempt to escape the detected predator. 

Such an operation sometimes results in school division, as the fishes will quickly swim in diverse 

directions. Figure 4.10 shows how a predator avoidance maneuver is performed. To create the 

appearance of motion of a school fleeing from a predator, SGA proceeds via two phases. First, 

some mutation operations are randomly performed on the fish of the school. Then the fish 

resulting from the mutation are used as the first parents for some crossover operations (during 

the second phase) with the members of the school. To keep SGA as simple as possible, both the 

proportion of crossover operations and the number of mutation operations could be equally set to 

half the proportion of fish allocated to the school by SGA. 

 

Figure 4.10. Predator avoidance maneuver. 
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To be able to assess the perception of a predator requires an assumption: the presence of a 

predator is characterized by a portion of the sea perceived as dangerous/unattractive by a fish 

school. This means that the fishes might perform worse than expected if performing a depth 

search within the local area. Therefore, to locally perceive an environment as one that requires a 

predator avoidance behavior, the SGA uses the fitness of the center of mass (CM) of that school 

and compares it to the average fitness (sea wise) of all the other schools. The center of mass in 

return, is assessed as a fitness-weighted combination of all the fish within a school. Proceeding 

such a way to get a school center of mass makes the center of mass biased towards the strongest 

fish of the school. The approach is simple and forces any underperforming school to keep 

exploring, whereas it allows the better performing schools to capitalize by exploiting 

performance. The center of mass CM of a school of n fish, where fish in the school are 

represented by data points Xi  (Xi = <x1…xL>), and have fitness values fi should be calculated as: 

   
∑      

 
 

∑   
 
 

 

The choice of the “escapee” fish, picked during the first phase of the predator avoidance 

maneuver, is explained below. The farther from the school CM, and the stronger a fish is, the 

higher is the selection likelihood of that fish as the escapee fish. During the second phase, the 

second parents are picked probabilistically, proportionally to their fitness values, using a simple 

fitness proportionate selection. Let pi represent the probability of selection of fish i as an escapee 

fish,  fi represent the fitness of fish i within a school of N fish, and di the distance of fish i to the 

center of mass of the school. The probability value of pi should be calculated as: 

   
    

∑     
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During the second phase, the parents are picked probabilistically using a simple fitness 

proportionate selection. 

 In reality, a school can either move as one entity further away from a predator or split as 

it moves away. Since the flee forces the fish to explore new areas of the sea, predator avoidance 

can result in the split of a school. SGA mimics the predator avoidance mechanism by giving high 

fitness fish locate on the outside of a school, a higher probability of pulling the school during a 

predator avoidance maneuver. Since GEMAC operates on a proximity basis for grouping, such 

an implementation of predator avoidance may yield a school split, which is a desirable intended 

side effect. 

4.5.4 Food foraging. The food foraging behavior occurs when a fish school finds a 

relative safe or attractive area. Fish foraging assumes that the proximity of food would cause a 

school to have its average performance higher than the whole sea average performance. 

Therefore, the food foraging behavior would manifest when a part of the search domain is 

perceived as attractive by a school. 

Looking back at Figure 4.9, a school in food foraging mode is already performing well 

compared to the other schools within the sea. For that reason, the mutation rate of a school in 

food foraging mode is low when compared to that school crossover rate. The crossover operator 

is a process that takes more than one parent (two in SGA) solutions to produce a child solution. 

Crossover is analogous to reproduction and capitalizes on the strengths/fitness of the parents to 

generate a hopefully more fit child.  

The choice of the fish to use for either mutation or crossover during the food foraging 

mode is conditioned by the fitness of the fish. The higher the fitness value of a fish is, the higher 

is the selection likelihood of that fish as a parent for crossover. This is a typical fitness 
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proportionate situation. Let pi represent the probability of selection of fish i, and fi represent the 

fitness of fish i within a school of N fish. The probability value of pi should be calculated as: 

   
 

 

∑   
 
   

 

Although the choice of the fish to use for mutation during the food foraging mode solely 

depends on the fitness of the fish from the school, the mutation magnitude is not and will be 

small. The mutation magnitude is defined as the length of the phenotype to be affected by the 

mutation operator. The purpose of mutation during the food foraging mode is to mimic a fish 

school spreading over an area to feed. Because of the use of mutation operations to simulate the 

feeding process, food foraging can end up with a school split. Such a split as a result of foraging 

is not very likely. 

The implementation of the food depletion, as listed on Figure 4.9, relies on the periodic 

use of the GEMAC clustering and of a recency Tabu list. Performing school clustering 

periodically with GEMAC enables schools in a given behavioral mode to stay in that mode for a 

given (short) period of time. The recency-based tabu list can serve many purposes, with one of 

them providing medium-term knowledge of the search history. During the metaheuristic search 

process, all known better solutions are stored in a Tabu list. The solutions are updated or 

removed to the list on a first-entered first-removed basis. While a solution is still in the Tabu list, 

no school is allowed within a given proximity. Therefore, the Tabu list also guides the search 

process by guaranteeing that a given part of the search domain, once explored for food by any 

school, will not be visited again until it is removed from the list. The list size determines the 

duration of a location in tabu status. 
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4.5.5 School maintenance. School maintenance occurs when a fish school is neither 

looking for food, nor trying to escape predators. This behavior, as shown on Figure 4.9, is the 

default behavior for any school. In school maintenance mode, both GA operators (crossover and 

mutation) are balanced, as a school in this mode represents a school that is both exploring and 

exploiting. Unlike the procedure for predator avoidance, school maintenance uses all the fish of 

the school to sample the candidate solutions for both crossover and mutation. A maintaining 

school is a wandering school. 

When choosing the candidate parents, whether for crossover or mutation, SGA uses 

roulette-wheel selection (SCX), also known as fitness proportionate selection. SCX allows SGA 

to select fishes based on their fitness, with the probability of a fish being selected increasing with 

the fitness of the fish greater or less than its competitor's fitness. In other terms, if    is the fitness 

of fish i, and school   has  fishes, then its probability    of being selected among the other fishes 

of the school is: 

   
   

∑   
 
   

 

When applying either crossover or mutation to a fish school, a proportionate measure is 

used to guarantee the survival of the more fit schools. The number of crossover and/or mutation 

operations a school can perform depends on a proportion allocated to the school based of the 

collective performance of its fish. The higher the number of high fitness fish in a school, the 

higher its proportional value. Assuming there are   schools within the sea, and that each of those 

schools   possesses    fishes where the performance of fish 𝑗 is denoted  , then the computation 

of the number Ci to breed by school i will be calculated as follow: 
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4.5.6 SGA Life Cycle. The SGA life cycle represents the steps required for implementing 

an SGA algorithm based on the given concepts. The implementation of the life cycle of SGA 

alternates between groupings and the application of GA operators based on the local perception 

of the sea by the diverse fish schools. 

The initial number of schools could either be set manually and the grouping performed 

using a clustering algorithm such as the k-means algorithm (Hamerly, 2010; Nock & Nielsen, 

2006; X. Wu et al., 2008). However, the GEMAC algorithm was built so that anything related to 

groupings (merge and split) can be unsupervised and nonparametric. Next, all the concepts 

talked about will be tested for the ability of SGA to converge to a global optimum within an 

unconstrained domain, and to perceive and avoid deceptive features of the search domain. 

 

Algorithm 1. Schooling Genetic Algorithm High Level Metaheuristic 

Set the parameters, initialize the population 

while termination condition not met do 

Organize fishes in schools 

Set schools’ statuses based on performances of fishes 

     Foreach school within the sea: 

          If school’s status is foraging then look for food //Crossover rate > Mutation rate 

          If status is predator avoidance then escape //Mutation precedes Crossover 

          If status is maintenance then (explore and exploit) //Crossover rate = Mutation rate 

    endforeach 

Proceed with reduction to keep overall population size constant 

endwhile 
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4.6 Summary  

Within this chapter, SGA, a new metaheuristic created to work on problems where 

grouping, evolvability, and sustainability are characteristics of the solution was developed, 

explained, and discussed. Increasingly complicated cost functions emanating from complex 

simulations use life cycle data and could benefit from SGA.  Such cost functions are common for 

engineering design problem.  

SGA mimics fish schooling and uses GAs that it extends with some new concepts. SGA 

develops and implements the concepts of predator avoidance, food foraging, school maintenance, 

and food depletion/replenishment. SGA uses a new density based clustering approach named 

GEMAC. GEMAC is used within SGA for all tasks related to grouping and splitting in fish 

schooling. To finish, a high level view of SGA was given. 

  



75 
 

Chapter 5 

Applying Schooling Genetic Algorithms to Generalized Life cycle Product Design 

5.1 Introduction 

Schooling genetic algorithms (SGAs) are GA-based metaheuristics built using fish 

schooling mechanisms, and designed for problems where evolvability, grouping, and 

sustainability are characteristics of the solution. Generalized life cycle product design (GLPD) is 

a product life cycle engineering (PLE) based approach for product design that uses life cycle 

engineering (LCE) data characterization to assist system engineers with their design process. In 

this chapter, the applicability of SGA to product design, using GLPD, is investigated. Using 

simulated life cycle engineering data, different case scenarios are envisioned to assess SGA as an 

analytic tool for better product design. 

5.2 Problem Definition 

Traditional SE, when designing for the life cycle, not only transforms a need into a 

system configuration, but also strives to ensure design compatibility with related physical and 

functional requirements. Traditional SE tends to emphasize design optimization into fixed 

configuration, along with system decomposition to facilitate system analysis, and the central role 

of systems engineer for design and sustainment. Such an approach does not capitalize on the 

ongoing trend of using analogies to biological systems to develop solutions for engineering 

problems, also called biologically inspired design. Therefore, based on the shift in product 

nature, there is a need to characterize and extend product life cycle engineering (PLE), to 

incorporate evolvability (modularity, interoperability, and software level configurability), 

grouping (system efficiency due to the economy of scale), and sustainability (ability to 

continuously operate with minimal intervention). 
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In an attempt to meet and characterize the need of extending PLE, SGA will be applied to 

the generalized life cycle product design (GLPD) model. Using simulated PLE-data generated 

for a product, a product’s DNA, as displayed in Figure 5.1, was created and was used as an input 

to an SGA algorithm. The objective was to find out the potential benefits of using SGA and 

GLPD in the design process of a system/product. Within the designed SGA test bed created for 

this chapter, values for n, m, and p representing the number of genes to encode the design, 

operational, and environmental parameters respectively, varied from 0 to 2. 

 

Figure 5.1. Transformation of a designed product into a GA entity 

Being able to assess the effects of grouping on performance when running SGA is 

important. Such an assessment assists in interpreting the solutions returned by SGA, and possibly 

helps objectively mapping the fitness values of the final solutions. A solution quality assessment 

indicator was defined as the trait performance indicator (TPI). The TPI was defined such that its 

value would indicate how important (0.0 to 1.0) any given phenotype is to the observed 

performance values. Considering all the final solutions returned by the SGA implementation, the 

wider the spread over the range of permissible values for a given phenotype, the higher the 

importance of that phenotype. Let BP be the set of all the final solutions returned by the SGA, 

and jP any element of BP. jP is a solution candidate. Let j

iP designate a trait i of the solution jP . 
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Ideally, each trait has a range of values (constraints on trait) that fall between a minimum and a 

maximum. Let E designate the set of minima and maxima for all the traits of the phenotype, with 

m

iE / M

iE representing the minimum/maximum value for trait i. For a phenotype subset of n traits, 

the TPI values are computed in a way similar to a relative error, giving an indication of how 

important the selected set of traits is to the observed performance, relatively to the whole 

phenotype. The TPI value for trait i ( iTPI ) is computed as:  

m

i
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i

j
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The TPI values account for all the solutions returned by the SGA. TPI values should inform the 

systems engineer about a stricter constraint that can be imposed on a given parameter without 

sacrificing the system overall performance. The possible implications of a TPI value are as 

follow: 

- The corresponding or involved component of the system/product can be changed to 

another less accurate, sensitive, or performing without hurting the system performance. 

- The corresponding or involved attribute can be pushed from design to operational or vice 

versa, without hurting the system performance. 

5.3 Applying SGA to GLPD 

When applying SGA to GLPD, the SGA concepts take the following meanings within the 

LCE context: 

- A fish is an instance of a product/system configuration represented by the life cycle 

parameters that will yield the predicted performance if designed. 

- A school is a set of product/system configurations sharing some similarities 
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- A school center of mass (CM) is the central configuration for a cluster of systems, that is, 

it represents the average best configuration of a set of given configurations. Unlike a 

fish’s performance value that only informs about the performance of one product, a CM 

on the other hand should inform about the average best of a set of configurations. 

- A SGA’s tabu list represents the set of best solutions found. 

- A TPI value provides further insights into the SGA’s group performance values that were 

recorded during the search process into the SGA’s tabu list. Assuming that the SGA is 

able to return the absolute best solution for a problem, the TPI values would help the 

designer capture the lower and upper specification limits of the  LCE parameters 

involved. 

Using probability distributions, constrained continuous random values were generated 

that represent the design, operational of a hypothetical product. Considering the immutable 

character of environmental parameters, their values were set (discrete values) and for any given 

product, could not change during the simulation. The proportion of the number of products 

available for each environment over the number of products that is available overall was set and 

kept constant, via population reduction, throughout each simulation. Simulations were carried 

using one or more parameters of each LCE type. LCE data was generated to test GLPD with 

SGA for the following five scenarios (explained in following sections): 

- Environment driving design for performance 

- Environment driving both design and operation for performance  

- Environment and design both driving operations for performance  

- Environment and design only driving performance 

- Environment, design, and operations all driving performance 
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5.4 Experimental Design 

For the experiments/simulations, each candidate solution had n design genes/parameters, 

m operational genes/parameters, and p environmental genes/parameters. Therefore, each 

candidate solution was an N-dimensional data point of the search space, where N = n+ m + p. 

Each dimension or independent product performance parameter was coded with a 10-bit string 

value (actual decimal values falling within the range of -500 to 500). The size of the population 

was set and maintained at 120 fish. The proportion for each environment was 55% for 

environment A, and 45% for environment B. The stopping criteria was set to be either the 

maximum number of generations (set to 1000), or the lack of improvement of the average fitness 

value of the population for three consecutive generations, whichever came first. Each experiment 

was repeated three times and the recorded assessment criteria were:  

- the number of generations it took for SGA to converge (if convergence occurs) 

- the distribution of the behavioral states 

- the best solutions obtained 

- the best school, and  

- the TPI values of each dimension (allele) of the product.  

GEMAC was used to handle all SGA grouping operations. Each simulation started with a 

population of fish randomly (uniform distribution) distributed across the search domain (design 

and operational parameters). This step was followed by the environmental parameter value(s) 

being assigned, using a uniform distribution. This process was adopted to allow schools to form 

in various proportions from each environment, since that GEMAC, the non-parametric clustering 

algorithm that was used for school formation, is a proximity-based clustering method. 
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Table 5.1 shows the factors, assessment criteria, and methods that were used to assess the 

results of the experiments. As far as the relationship is concerned (first factor), five were tested 

as explained within the previous section. The number of parameters/alleles ranged from three to 

six. Besides the simple case of a linear and polynomial underlying shape (not listed within the 

table), the Ackley, Griewank, and Schwefel functions were used to characterize the underlying 

shape of the search domain. On the assessment criteria side, the number of generations to 

convergence, along with the TPI values, the best schools and distributions of behavioral states 

were used. For some experiments, SGA performance was also compared to island GA (IGA) and 

parallel GA (PGA). 

Table 5.1 

Factors, assessment criteria, and methods for SGA. 

Factors Assessment criteria 

Relationship }{ zationCharacteriLCE  Number of generations to convergence 

Size }/allelesparameters ofNumber {  Quality of solutions obtained 

Underlying shape 

}Schwefel ,Polynomial Linear, Griewank, Ackley,{  
TPI values for each LCE parameter type 

 

Best schools 

 

Distribution of behavioral states 

Methods 

Schooling Genetic Algorithms (SGA) vs. }IGA PGA,{   
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5.4.1 Environment driving design for performance. The objective of the experiments 

carried here was to determine the ability of SGA to effectively use grouping to converge on 

separate environments, and to check the ability of SGA to characterize the life cycle parameters’ 

relationship.  The relation used for the experiments was linear as follow: 

                

{
 
 

 
     

  

     

                  

    
  

     

                  

                 

Using a linear relationship, the expected characterization is vertical lines within the (D, 

O) plane. The lines should contain the best solutions of the problem. This test is for the case of a 

product with a simple (linear) performance function that depends on just two life cycle attributes. 

 5.4.2 Environment driving both design and operations for performance. The objective of 

the experiments carried here was to determine the ability of SGA to effectively use grouping to 

converge on separate environments, and to check the ability of SGA to characterize the life cycle 

parameters’ relationship.  The relation used for the experiments was polynomial as follow: 
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Using a polynomial relationship as described above, the expected characterization is 

interceptions of vertical and horizontal lines within the (D, O) plane. The best solutions of the 

problem should be located around the interception points of the lines. This test is for the case of a 

product with a performance function that depends on three life cycle attributes. 

5.4.3 Environment and design both driving operations for performance. The objective of 

the experiments carried here was to determine the ability of SGA to effectively use grouping to 
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converge on separate environments, and to check the ability of SGA to characterize the life cycle 

parameters’ relationship.  The relation used for the experiments was linear as follow: 
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Using a linear relationship, the expected characterization is vertical lines within the (D, 

O) plane. However, the expected characterizing lines should only occupy half of the plane and 

should contain the best solutions of the problem. This test is for the case of a product with a 

performance function that depends on three life cycle attributes and that has two main modes of 

operations depending on the environment where the product is being used. 

5.4.4 Environment and the design both driving performance. The objective of the 

experiments described in this section was to not only determine the ability of SGA to effectively 

use grouping to converge on separate environments, but also to check the ability of SGA to 

operate on “noisy” life cycle data. Similar to the previous experiments, the solution 

representation was picked to have three parameters, one of each kind. Two different sets of 

experiments were performed. They differed in the function that was used to represent the LCE 

relationship. This test was for the case of a product with a performance function that depends on 

many life cycle attributes and that has multiple modes of operations depending on the 

environment where the product is being used.  
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The Griewank function was used for the first experiment, and the Schwefel function was 

used for the second experiment. The Griewank function (Griewank, 1981)  is a standard test 

functions for unconstrained global optimization, and it is used to test the convergence of 

optimization functions. It has many widespread local minima regularly distributed, to act as 

attractor to deceive the search process. The function that was used was a modified Griewank 

function to make the problem a maximization problem. The function is defined by: 
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For              , Figure 5.2 shows the typical Griewank function plotted for n=2.  

 

Figure 5.2. Griewank  function in [-100, 100] plotted using Matlab 

The Schwefel function on the other hand is a deceptive function that has its global 

minimum geometrically distant, over the parameter space, from the next best local minima. 

Therefore, with the Schwefel function, the search algorithms are potentially prone to 

convergence in the wrong direction. The function that was used was a modified Schwefel 

function to make the problem a maximization problem. The function is defined by: 
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For              , Figure 5.3 shows a plot of the Schwefel’s function. 

 

Figure 5.3. Schwefel function in [-100, 100] plotted using Matlab 

5.4.5 Environment, design and operations driving performance. The objective of the 

experiments was to determine the ability of SGA to effectively use grouping to converge on 

separate environments, and to check the ability of SGA to operate on “noisy” life cycle data. 

Unlike the previous experiments and setups, two experiments were carried here, each with a 

different representation of a solution. This test was for the case of a product with a performance 

function that depends on many life cycle attributes and that has multiple modes of operations 

depending on the environment where the product is being used. The supposed product required 

five parameters/genes for encoding: one for environment, and two of each of the other kind. The 

Ackley function was used to model the LCE relationship. The Ackley’s function is a widely used 

multimodal test function. It has the following definition: 
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For            , Figure 5.4 shows a plot of the Ackley’s function.  

 

Figure 5.4. Ackley's function in [-25, 25] plotted using Matlab 

After testing with the Ackley’s function, an extra parameter was added to the product 

definition to give it six performance parameters (two for each kind). This time, a modified 

Schwefel function was used to model the complex multidimensional LCE relationship. The 

modified Schwefel function that was used is defined by: 
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5.5 Results and Interpretation 

For each set of experiments that were carried out, results were collected and an 

interpretation provided. The following subsections show the typical results for each set of 

experiment. 
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5.5.1 Environment driving design for performance. Table 5.2 represents a sample of the 

initial population after a first grouping using GEMAC. There were 22 schools total. 

Table 5.2 

Sample of initial population for experiment 1 

Design Operational Environmental School ID Fitness 

3.805499 -22.01624352 B 1 -1.791211 

-30.3083 -20.23126913 B 2 -0.782837 

-15.6684 5.927718548 A 3 -0.618067 

-4.18381 -10.30136624 A 1 -0.785097 

49.54511 -4.415981823 B 4 -0.86212 

-28.8373 19.94448208 B 5 -2.05356 

26.28639 35.06889827 B 6 -0.767593 

10.33888 -6.631614192 A 1 -0.75937 

-7.83431 10.97721849 A 3 -1.033247 

-2.90412 14.73992981 B 7 -1.974045 

-49.2247 -20.66500862 B 2 -1.100193 

6.438105 9.207032362 A 8 -1.466603 

-27.5468 20.13691809 A 5 -0.860644 

-3.15706 3.092316367 A 3 -0.558884 

11.26315 57.94968662 B 9 -0.767323 

-9.65659 -24.69150235 B 1 -1.996565 

11.7271 -58.62095676 A 10 -1.345763 

-61.5013 30.50116642 A 11 -2.0623 

81.21945 -2.676410108 A 12 -3.063364 

 

Plotting the contents of the experiment’s tabu list showed the SGA was able to capture 

the nature of the relationship between the LCE parameters. Figure 5.5 shows the plot of the tabu 

list contents. The best performance for environment A (red dotted line) and environment B (blue 
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dotted line) are both plotted. The contents of the tabu list tend to follow the line that the plot of 

the performance within (D, O) plan would return for each environment. The observed trend gives 

an idea of the embedded relationship between performance and LCE parameters. 

 

Figure 5.5. Tabu list contents plot for experiment set 1 

Table 5.3 shows the contents of the SGA’s tabu list for experiment 1. The tabu list is 

recency based with elements representing the best feeding locations recorded by SGA during the 

search process. Along with the locations, are listed the composition, environment wise, of the 

number of fish that made that school. The CM values represent the average best configurations 

available to the designer. 



88 
 

Table 5.3 

Tabu list contents for experiment 1 

Center of mass from tabu List Tabu 

Performance 

# fish 

from A 

# fish 

from B 
Total 

Design Operational Environmental 

209.2005 -169.253392 A 0.881598961 1 0 1 

156.6719 248.6509379 A 0.986656224 3 1 4 

146.0206 -229.1916984 A 0.992041137 4 1 5 

135.1326 64.83714354 A 0.970265136 19 7 26 

148.7408 257.8771119 A 0.997481554 1 0 1 

151.2075 118.6229351 A 0.99758492 1 0 1 

148.7791 -77.94622939 A 0.997558292 43 0 43 

150.5193 84.01986896 A 0.998961384 8 0 8 

350.6195 115.1523153 B 0.998761058 0 9 9 

354.9097 209.0342458 B 0.990180656 0 2 2 

348.7395 -84.68739403 B 0.99747906 0 51 51 

349.7957 98.50342012 B 0.999591313 0 19 19 

 

The contents of the tabu list were used to calculate the TPI. The TPI value for the design 

parameter (0.2523) indicates that the recorded best performance was achieved for values of the 

design parameter occupying just 25.23% of the available range [-500, 500]. This means that the 

best performances recorded can still be achieved, even if the designers was to only consider that 

small range of values for the design parameters. The TPI value for the operational parameter was 

0.8025, indicating a wider coverage of the permissible values by the operational parameters. The 

TPI value for the environment should always be 1 when the performance is to some extent 

environment dependent.  Unlike Table 5.4 that shows a sample of the final population, Table 5.3 

has more information because of the convergence of SGA. 
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Table 5.4 

Sample of final population for experiment 1 

Population 

Design Operational Environmental School ID Performance 

350 -85.75016356 B 1 1 

350 -85.75016356 B 1 1 

350 -85.75016356 B 1 1 

150 -79.03928056 A 2 1 

150 -79.03928053 A 2 1 

150 -79.03928051 A 2 1 

 

Figure 5.6 shows a plot of the final results for one of the experiments. From Figure 5.6, it 

can be seen that as the population’s average fitness improves, the number of schools decreases to 

a final count of 2, matching the number of environments. 

 

Figure 5.6. SGA results per generation for experiment 1 

The lower right graph represents the number of schools that were on a given behavioral 

mode during a given generation. School maintenance (SM) is in red (R), predator avoidance 

(PA) is in green (G), and food foraging (FF) is in blue (B). Although all behavioral modes were 

in used early during the simulation, by the time the final count of 2 is reach, the improvements 
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per generation to the population’s average fitness become too small and school maintenance 

become the predominant behavior for the schools. Table 5.2 shows the contents of the SGA’s 

tabu list for experiment 1. Along with the locations, are listed the composition, environment 

wise, of the number of fish that made that school.  

5.5.2 Environment driving both design and operations for performance. The simulation 

started with 120 fish initially grouped in 23 schools using GEMAC. Table 5.5 below represents a 

sample of the initial population.  

Table 5.5 

Sample of initial population for experiment 2 

Design Operational Environmental School ID Fitness 

41.45297 -13.7693545 A 1 -1.068152565 

1.105899 22.2292995 B 2 -0.551974849 

4.139539 7.56370167 B 2 -1.546313486 

9.176969 -7.13024429 A 3 -0.591220148 

33.95105 -5.21207269 A 1 -0.9252308 

-31.0792 4.32645342 A 8 -1.67771339 

-37.2721 -3.80320293 A 8 -1.768311975 

-45.6622 -3.00839178 B 7 -1.630178013 

As a contrast to Table 5.5, Table 5.6 displaying a sample of the final population has much 

less diversity. This is a result of the convergence of SGA. 
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Table 5.6 

Sample of final population 

Population 

Design Operational Environmental School ID Performance 

-350 -150.408 B 1 1 

-350 -150.408 B 1 1 

-350 -150.408 B 1 1 

-150 6.0132 A 2 1 

-150 6. 0132 A 2 1 

-150 6. 0132 A 2 1 

 

The convergence of SGA is also observable from Figure 5.7 that shows a plot of the final 

results for one of the experiments. From Figure 5.7, it can also be seen that as the population’s 

average fitness improves, the number of schools decreases to a final count of 2. The SM mode is 

the only school behavior that was used during the simulation by all schools. This could be 

explained by the nature of LCE parameters relationship that was used. An LCE relationship that 

changes linearly or smoothly will make effective perception of the environment hard to be 

achieved, causing the default behavior of fish to be used most of the time. 

 

Figure 5.7. SGA results per generation for experiment set 2 



92 
 

Table 5.7 shows the contents of the tabu list at the end of the simulation. The tabu list is 

recency based with elements representing the best feeding locations recorded by SGA during the 

search process. Along with the locations, are listed the composition, school and environment. 

Table 5.7 

Tabu list contents for experiment 2 

Center of mass from tabu List Tabu 

Performance 

# fish 

from A 

# fish 

from B 

Total 

Design Operational Environmental 

357.1424 220.0255 B 0.997999 0 0 2 

157.1135 276.0899 A 0.997897 1 0 1 

316.0363 146.6837 B 0.999549 0 3 3 

354.0654 141.5273 B 0.999862 0 1 1 

-152.593 -212.36 A 0.998572 7 0 7 

189.1089 361.0956 A 0.998264 1 0 1 

-349.138 150.9856 B 0.999997 0 15 15 

-322.118 -150.408 B 0.999955 0 6 6 

-342.429 -150.408 B 0.999988 0 27 27 

347.8761 -150.408 B 0.999997 0 7 7 

150.3152 -291.122 A 0.999926 26 0 26 

-150.086 90.7473 A 0.999911 25 0 25 

-149.999 6 A 0.999999 10 0 10 

-350 0 B 1 0 1 1 

The contents of the tabu list represent the average best solutions gathered by the SGA 

during the process. The values of the tabu list were used to calculate the TPI. The interpretation 

of those values is as follow: the TPI for the operational and the design parameters (0.6522 and 

0.7071 respectively) indicates that the recorded best performance was achieved for values of the 

operational and the design parameter occupying just 65.22% and 70.71% respectively of the 
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available range [-500, 500]. Considering the relation used for LCE parameters, a TPI value of 

75% (
          

          
) or lesser was expected that would capture the lower and upper specification 

limits of each LCE parameter. 

Plotting the contents of the experiment’s tabu list showed that the tabu list was able to 

capture the nature of the relationship between the LCE parameters. Figure 5.8 shows the plot. 

The best performance for environment A and environment B are both plotted: red dotted line and 

blue dotted line respectively. The contents of the Tabu list tend to follow the lines and line 

intersections for each environment, giving an idea of the performance trend hidden within the 

life cycle data. 

 

Figure 5.8. Tabu list contents plot for experiment set 2 

5.5.3 Environment and design both driving operations for performance. Figure 5.9 shows 

a plot of the final results for one of the experiments. From Figure 5.9, it can be seen that as the 

population’s average fitness improves, the number of schools decreases to a final count of 3. The 

SM mode dominated during most of the simulation, with PA being the first behavior to stop 

being used after a couple of generations. 
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Figure 5.9. SGA results per generation for experiment set 3 

Table 5.8 shows the contents of the SGA’s tabu list for experiment 3. As a reminder, the 

tabu list is a recency based tabu list whose elements represent the best feeding locations recorded 

by SGA during the search process. Along with the locations are listed the composition, 

environment wise, of the number of fish that made that school. 

The contents of the tabu list were used to calculate the TPI. The interpretation of the TPI 

values is straightforward. The TPI for the operational and the design parameters (0.7751 and 

0.7021 respectively) indicates that the recorded best performance was achieved for values of the 

operational and the design parameter occupying up to 77.51% and 70.21% respectively of the 

available range [-500, 500].  

Plotting the contents of the experiment’s tabu list showed the tabu list was able to capture 

the nature of the relationship between the LCE parameters. Figure 5.10 shows the plot. The best 

performance for environment A (red dotted line) and environment B (blue dotted line) are both 

plotted. The contents of the tabu list tend to follow the half-lines for each environment, giving an 

idea of the performance trend hidden within the life cycle data. 
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Table 5.8 

Tabu list contents for experiment set 3 

Center of mass from tabu List Tabu 

Performance 

# fish 

from A 

# fish 

from B 

Total 

Design Operational Environmental 

59.29144 -190.786 B 0.918429 0 2 2 

60.55729 -51.0816 A 0.997837 4 3 7 

159.3046 50.94962 A 0.998101 2 0 2 

50.0277 157.3688 B 0.985262 0 2 2 

-271.822 -438.411 A 0.976821 1 0 1 

65.7312 -166.77 B 0.96646 0 5 5 

34.33504 -133.416 B 0.966832 0 5 5 

262.0071 -55.5769 A 0.988846 1 0 1 

406.3256 -131.402 B 0.962804 0 1 1 

-75.1225 336.6956 B 0.973391 0 15 15 

170.409 168.5702 B 0.96286 0 35 35 

205.8378 167.9305 B 0.964139 0 31 31 

430.2609 -55.5769 A 0.988846 11 0 11 

414.0749 -55.5769 A 0.988846 14 0 14 

394.8999 -55.5769 A 0.988846 9 0 9 
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Figure 5.10. Tabu list contents plot for experiment set 3 

So far, the plotting of the tabu list has succeeded in giving a trend of the underlying LCE 

parameters relationship. The success has been observed with both linear and polynomial 

relationship characterizing the LCE parameters. The setup of school behavior, based on the 

perception of the environment by fish schools, appears to work as expected: SGA is able to use 

grouping to prevent premature convergence of a population while learning relationships within 

the data.  

5.5.4 Environment and the design both driving performance. As mentioned during the 

setup phase, two sets of experiments were carried out for this case. 

5.5.4.1 Using Griewank to characterize LCE’s relationship. The Griewank function was 

modified to turn the problem into a maximization problem with global best performance value 

being 0. The simulation started with 27 schools, and ended with 2 schools. Figure 5.11 shows a 

plot of the final results for one of the experiments. 
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Figure 5.11. SGA results per generation for experiment set 4 – Griewank 

From Figure 5.11, it can be seen that as the population’s average fitness improves, the 

number of schools decreases to a final count of 2. The PA and FF modes of behavior dominated 

during the whole simulation. Although such domination was expected, its underlying cause 

cannot be determined with 100% confidence. The assignment of a school behavior based on the 

relation between the school CM’s fitness and the current global average rather than past school 

history, or  the regularly spaced sinusoidal-shaped subdomains making up the entire search 

domain are two possible reasons. With the later reason, the subdomains created by the Griewank 

function would then cause fish schools to perceive the environment predominantly as either food 

or predator. Table 5.9 shows the contents of the SGA’s tabu list for experiment set 4. Along with 

the locations are listed the composition, school, and environment. 
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Table 5.9 

Tabu list contents for experiment set 4 – Griewank 

Center of mass from tabu List Tabu 

Performance 

# fish 

from A 

# fish 

from B 

Total 

Design Operational Environmental 

31.03806 -16.3634 A -0.31139 0 0 1 

34.53917 -89.5806 B -0.85465 3 0 3 

-22.2395 -61.805 B -0.69388 2 0 2 

44.07288 -24.9635 A -0.4897 0 2 2 

0 -67.032 A 0 0 1 1 

0 73.32395 A 0 0 2 2 

-0.61877 -89.0321 A -0.18551 1 17 18 

-0.4102 -108.575 A -0.083 1 9 10 

-0.04092 28.67091 A -0.00084 0 8 8 

1.87E-09 220.4507 A 0 0 4 4 

0 141.3936 A 0 0 2 2 

3.31E-09 115.2158 A 0 0 3 3 

4.42E-10 -218.242 A 0 0 3 3 

4.74E-09 -21.5506 A 0 0 4 4 

0 -262.493 A 0 0 1 1 

0 -131.247 A 0 0 2 2 

-0.31273 162.7716 A -0.04853 1 9 10 

2.12E-09 45.25208 A 0 0 1 1 

3.41E-09 90.50417 A 0 0 1 1 
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The contents of the tabu list were used to calculate the TPI values. The TPI for the 

operational and the design parameters (0.9547 and 0.1512 respectively) indicates that the 

recorded best performance was achieved for values of the operational and the design parameter 

occupying up to 95.47% and 15.12% respectively of the available range [-500, 500]. The big 

difference was not expected, considering the shape and the symmetry of the Griewank space. 

Finally, plotting the contents of the experiment’s Tabu list revealed a peculiar median 

line that happens to be one of the lines of local minima of the Griewank function. The nature of 

the relationship between the LCE parameters was more complex in this experiment than within 

the previous experiments. Figure 5.12 shows the plot. The best performance for environment A 

(red circle) and environment B (black stars). 

 

Figure 5.12. Tabu list contents plot for experiment set 4 – Griewank 

No direct explanation can be given to explain the line trend observable from Figure 5.12. 

The same pattern was observed for three repetitions of the same simulations. 
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5.5.4.2 Using Schwefel to characterize LCE’s relationship. The Schwefel function was 

modified to turn the problem into a maximization problem with global best performance value 

being 0. Figure 5.13 shows a plot of the final results for one of the experiments. From Figure 

5.13, it can be seen that although the simulation started with 9 schools, as the population’s 

average fitness improved, the number of schools decreases to a final count of 2 matching the 

number of environments. The PA mode of behavior dominated during the whole simulation. 

Such a behavior was not expected. The Schwefel function, like the Griewank function, creates 

deceptive attractors all over the search domain. However, both PA and FF are not used the same 

way in this experiment as they were in the previous experiment. 

 

Figure 5.13. SGA results per generation for experiment set 4 – Schwefel 

Table 5.10 shows the contents of the SGA’s tabu list for experiment set 4 with Schwefel. 

Along with the locations are listed the composition, school and environment. Unlike other 

experiments, the tabu list has more heterogeneous schools (school made of fish from different 

environment). Within the LCE context, heterogeneous school would represent groups of diverse 

products that can scale out when used together. 
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Table 5.10 

Tabu list contents for experiment set 4 – Schwefel 

Center of mass from tabu List Tabu 

Performance 

#fish 

From A 

# fish 

From B 

Total 

Design Operational Environmental 

-250.589 200.4185 A -668.096 4 0 4 

52.03411 -177.402 B -674.953 3 6 9 

43.96935 -196.146 B -628.541 2 6 8 

190.3945 85.05112 A -641.294 1 1 2 

-46.2981 57.2122 B -760.096 3 45 48 

-48.6146 -214.007 B -618.408 0 3 3 

-66.2954 60.12544 A -714.58 6 0 6 

-53.8317 53.7223 A -744.667 11 3 14 

386.7243 59.9561 A -496.749 1 0 1 

-76.0 -60.9655 A -727.712 5 3 8 

193.3622 29.97805 A -671.441 2 0 2 

-78.8 52.95076 A -752.547 10 0 10 

-183 155.5399 A -704.687 1 0 1 

-212 -14.4036 A -652.891 1 0 1 

-185.958 19.295 A -693.135 14 0 14 

221.7683 4.757077 A -672.518 1 0 1 

-225.367 1.062059 B -692.607 4 16 20 

-187 2.3209 A -668.605 36 0 36 

-223 -1.00857 A -681.406 32 0 32 

-187.419 -24.846 A -692.896 17 0 17 

-381.054 -4.83064 A -597.112 30 0 30 

-412.277 -7.06338 A -425.163 38 0 38 

-423.489 -5.21758 B -415.84 12 54 66 
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The contents of the tabu list were used to calculate the TPI values. The values for the 

design and the operational parameter were 0.8102 and 0.4144 respectively. The interpretation of 

those values follows the same logic as previously used. 

Similar to the previous experiments, the final population lost its diversity because of the 

premature convergence the GA. Figure 5.14 shows the plot of the contents of the experiment’s 

tabu list. The best performance for environment A is represented with red dotted circle, whereas 

environment B is represented with black stars. The plotting shows some areas of the design and 

operational spectrum where performance will favor one environment at the expenses of the other. 

Those are areas where only a concentration of best performing products from one type of 

environment is observed. The plot also shows area of the same spectrum were a product 

manufactured for environment A, is expected to perform equally well if moved to environment 

B. Those are areas where there is an overlap between a red dot and a star.  

  

Figure 5.14. Tabu list contents plot for experiment set 4 – Schwefel 

5.5.5 Environment, design and operations all driving performance. Performing 

experiments with more than three parameters and comparing the results obtained to other known 
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GA-based approaches make possible seeing the potential benefit of grouping on GA, as well as 

the possible use of SGA as a general optimization method. GA is a trial and error method to 

problem solving. GA is solution-oriented and makes no attempt to discover why a solution 

works; merely that it is a solution. SGA on the other hand was built to not only discover 

solutions that work, but also solutions that share some common characteristics so they can 

grouped to make them scale. The purpose of the experiments carried out in this section was to 

determine whether the grouping feature built into SGA make SGA a lesser metaheuristic 

performer when compared to other well-known GA derivatives. Two sets of experiments were 

carried out for this case. 

5.5.5.1 Using Ackley to characterize LCE’s relationship. The Ackley’s function was 

modified to turn the problem into a maximization problem with global best performance value 

being 0. Figure 5.15 shows a plot of the final results for one of the experiments. 

 

Figure 5.15. SGA results per generation for experiment set 5 – Ackley 

From Figure 5.15, it can be seen that as the population’s average fitness improves, the 

number of schools decreases to a final count of 2. The predator avoidance (PA) mode of 

behavior dominated during the whole simulation. Table 5.11 shows the contents of the SGA’s 
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Tabu list for experiment set 5 with Ackley’s function. Along with the locations are listed the 

composition, schools, and environment. 

Table 5.11 

Tabu list contents for experiment set 5 – Ackley 

Center of mass from tabu List Tabu 

Perform. 

# fish 

From A 

# fish 

From B 

Tot 

Design Design Operation. Operation. Environ. 

258.00 -224.77 -236.931 -152.174 A -20.8506 3 0 3 

-0.9928 165.980 224.9858 -119.284 A -20.7190 4 0 4 

61.885 203.219 66.9298 -65.0451 B -20.7005 0 5 5 

342.91 -203.80 -240.03169 -185.0174 A -20.5072 2 0 2 

11.129 183.018 14.9800 16.9225 B -20.2851 0 5 5 

124.17 -227.93 -70.0579 64.9784 A -20.4186 2 2 4 

44.911 55.1262 236.0550 -65.902 B -20.4305 0 1 1 

115.00 -59.997 -37.170105 49.027457 B -20.3397 0 1 1 

115.00 -59.997 -37.1701 49.0274 A -20.3396 2 1 3 

 The contents of the Tabu list were used to calculate the TPI. The TPI values for the 

design parameters were 0.3439 and 0.4312. The TPI values for the operational and 

environmental parameter were 0.4761 and 0.25 respectively. With low TPI values, a designer 

can change the specification limits on all LCE parameters. Such a change of specifications 

without impact of the observed performance can significantly lower the overall production cost 

of any product/system.  
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Once again, a convergence of the underlying GA was observed, as the final population 

completely lacked diversity. Therefore, the school mechanisms built into SGA appear to not 

prevent premature convergence. However, SGA returns more information besides the final 

solutions. SGA allows the engineer to get an idea on how the underlying life cycle processes a 

product goes through during its life affect its performance or operational efficiency. 

The implementation of parallel GA (PGA) that was made had a total of five 

subpopulations evolving separately from one another. The number of five has no specific 

meaning. Each subpopulation had access to the entire search domain. Figure 5.16 shows the 

evolution per generation of the PGA implementation. 

 

Figure 5.16. Average population fitness over time with PGA for experiment set 5 – Ackley 

Table 5.12 represents a sample of the final population obtained after running PGA. 

Although no better results were achieved by PGA when compared to those recorded by SGA, the 

final population in PGA has a lot more diversity than that of SGA. 
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Table 5.12 

Sample of final population for PGA experiment set 5 – Ackley 

Population 

Design Design Operational Operational Environment Performance 

-164.799 -481.572 143.7725 -50.9452 B -21.5891 

-150.984 -129.014 45.69213 -48.8014 B -21.0889 

-152.78 42.47536 -0.91078 -143.042 B -21.4305 

134.262 -24.4091 -17.4822 3.941685 A -21.9349 

-10.1991 -158.589 19.10951 -50.6574 B -21.7926 

157.0182 180.3656 -10.7803 246.5109 A -21.8312 

-110.008 9.519213 -55.0603 157.9034 A -21.167 

54.69766 28.84379 87.06999 20.79368 A -21.2958 

-30.1471 265.754 -37.3501 -48.7556 A -21.6995 

-66.0542 165.0322 75.19613 104.2058 B -20.8368 

32.89862 -79.0304 -54.6876 297.3046 A -21.4126 

-166.391 -3.13498 328.9591 -93.6539 A -21.6443 

48.71317 -351.099 128.035 -93.0879 B -20.8908 

-247.845 216.9395 3.951581 229.2697 A -20.9307 

 

The implementation of island GA (IGA) that was made had a total of five subpopulations 

evolving on separate islands from one another. However, a migration operator was available to 

IGA that every 30 generations, would allow the islands to exchange in a round-robin way, up to 



107 
 

5 of their best solutions as a way to re-introduce diversity within a given island. Figure 5.17 

shows the evolution per generation of the IGA implementation. 

 

Figure 5.17. Average population fitness over time with IGA for experiment set 5 – Ackley 

Table 5.13 represents a sample of the final population obtained after running IGA. Here 

also, no better results were achieved when compared to SGA. Also, unlike SGA, the final 

population in IGA has a lot more diversity. 

Making an overall comparison based on the quality of the final population (final 

population average fitness), SGA appears to be performing slightly better than both PGA and 

IGA. Therefore, the grouping feature built into SGA seems to keep the quality of the solutions at 

worst at the quality level of PGA and SGA. 
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Table 5.13 

 Sample of final population for IGA experiment set 5 – Ackley 

Population 

Design Design Operational Operational Environment Performance 

59.17157 149.4894 78.91444 -44.9946 A -21.3225 

-51.3367 67.59259 -58.8961 -185.948 B -21.6164 

-6.18678 -127.84 -0.44204 14.86595 A -21.5407 

-16.9806 -66.4336 377.3741 -265.759 A -21.85 

36.25633 149.859 -100.201 -98.6796 A -21.5935 

-124.87 -63.334 6.866562 -211.447 A -21.7417 

79.23545 -131.754 -107.063 -82.734 A -21.4536 

-37.0189 -45.1076 -44.081 -148.812 B -20.588 

-153.066 -290.224 62.93955 -140.625 A -21.3334 

38.14309 60.99853 407.2399 -113.165 A -20.9871 

-135.449 -44.9966 239.352 46.58049 B -22.0175 

149.4617 104.3652 152.6735 55.39732 A -22.2333 

-29.057 -43.0327 261.2078 341.5205 A -21.3733 

11.56537 -149.069 -154.211 -148.015 A -21.3592 

106.5239 128.9473 -398.941 -297.036 A -21.1254 

-48.8613 233.3871 28.19601 -116.926 A -21.3975 

 

5.5.5.2 Using Schwefel to characterize LCE’s relationship. The Schwefel function was 

modified to turn the problem into a maximization problem with global best performance value 
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being 0 with six parameters. Figure 5.18 shows a plot of the final results for one of the 

experiments. 

 

Figure 5.18. SGA results per generation for experiment set 5 – Schwefel 

From Figure 5.18, it can be seen that the simulation started with 23 schools, and as the 

population’s average fitness improved, the number of schools decreases to a final count of 2. The 

PA mode of behavior dominated during the whole simulation. Table 5.14 shows the contents of 

the SGA’s Tabu list for experiment set 5 with Schwefel. Along with the locations are listed the 

composition, school, and environment. 

The contents of the tabu list were used to calculate the TPI. The values found were 

0.1205 and 0.5988 for the design parameters, and 0.4281 and 0.4255 for the operational 

parameters.  The interpretation of those values follows the same logic as previously used. 
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Table 5.14 

Tabu list contents for experiment set 5 – Schwefel 

Center of mass from tabu Tabu 

Perform. 

# fish 

From A 

# fish 

From B 

Tot 

Design Design Oper. Oper. Envmt Envmt 

210.499 -44.3764 -211.401 -58.9357 -421 -421 -1215.6 12 0 12 

203.901 -54.981 -186.05 -57.551 -421 -421 -1211.7 12 0 12 

128.126 391.989 216.716 74.3986 421 421 -1240.4 0 1 1 

214.337 4.01311 -170.286 203.008 -421 -421 -1210.0 3 0 3 

200.08 -187.992 216.413 100.685 421 421 -1187.2 0 2 2 

93.820 -8.093 -203.508 366.578 -421 -421 -1386.1 3 0 3 

193.668 -206.812 174.553 133.469 421 421 -1290.0 0 47 47 

190.887 -192.707 194.522 117.762 421 421 -1232.7 2 44 46 

210.410 -75.729 7.47638 189.982 -421 -421 -1247.9 1 1 2 

199.587 -190.474 210.934 105.087 -421 -421 -1185.6 23 2 25 
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Here also, the SGA converged. Table 5.15 shows a sample of the final population. 

Table 5.15 

Sample of final population for SGA in experiment set 5 – Schwefel 

Population 

Design Design Oper. Oper. Envmt. Envmt. School ID Performance 

199.726 -189.773 212.4815 103.8441 -421 -421 1 -1185.686114 

199.726 -189.773 212.4815 103.8441 -421 -421 1 -1182.902624 

199.726 -189.773 212.4815 103.8441 -421 -421 1 -1182.897779 

199.726 -189.773 212.4815 103.8441 421 421 1 -1181.014161 

199.726 -189.773 212.4815 103.8441 421 421 2 -1183.284507 

199.726 -189.773 212.4815 103.8441 421 421 2 -1181.469692 

 The same implementation of parallel GA (PGA) was modified to use a phenotype of 

length six and was run with subpopulations evolving separately from one another. Figure 5.19 

shows the evolution per generation of the PGA implementation.  

 

Figure 5.19. Average population fitness over time with PGA for experiment set 5 – Schwefel 
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Table 5.16 represents a sample of the final population obtained after running PGA. Unlike SGA, 

the final population in PGA did not converge and therefore, has a lot more diversity. 

Table 5.16 

Sample of final population for PGA experiment set 5 – Schwefel 

Population 

Design Design Operation Operation Environment Environment Performance 

-110.764 110.6206 114.1634 -122.78 421 421 -2103.88 

-25.7738 -152.613 168.5419 -135.198 421 421 -1773.22 

-234.052 -91.0003 123.9331 163.4755 421 421 -1680.41 

-149.203 -41.7851 150.3702 -21.3514 -421 -421 -1786.03 

-46.3813 -211.623 100.9683 192.426 -421 -421 -1331.79 

-180.18 105.9761 -330.7 -46.8641 421 421 -1799.66 

-117.068 10.2877 115.6455 81.87175 -421 -421 -1874.06 

235.6803 -159.186 -163.512 218.4388 421 421 -1375.04 

-37.0359 281.4288 -71.315 91.45364 421 421 -1883.17 

-85.9352 44.27344 193.3139 33.32065 421 421 -1474.88 

-320.59 141.7975 155.5812 116.4146 421 421 -2150.88 

18.55694 -31.4216 37.39198 -144.287 -421 -421 -1794.91 

-85.6409 112.4326 245.2906 64.79873 421 421 -1690.4 

225.2474 77.72268 1.193966 27.54271 -421 -421 -1509.05 

4.131756 -450.11 -114.329 -130.813 -421 -421 -1584.54 

223.6794 -55.4336 78.82555 21.12316 -421 -421 -1452.28 
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The same implementation of island GA (IGA) was modified to use a phenotype of length 

six and was run with subpopulations evolving separately from one another. Figure 5.20 shows 

the evolution per generation of the IGA implementation.  

 

Figure 5.20. Average population fitness over time with IGA for experiment set 5 – Schwefel 

Table 5.17 represents a sample of the final population obtained after running IGA. Unlike 

SGA, the final population in IGA has a lot more diversity. 

Once again, making an overall comparison based on the quality of the final population 

(final population average fitness), SGA performance appears to be just as bad as either PGA or 

IGA. Therefore, the grouping feature built into SGA seems not to be affecting the ability of GA 

to successfully perform metaheuristic search. 
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Table 5.17 

 Sample of final population for IGA experiment set 5 – Schwefel 

Population 

Design Design Operation Operation Environment Environment Performance 

75.329 -167.453 -262.074 300.293 -421 -421 -1984.768 

-33.249 154.567 341.833 -63.650 421 421 -1770.517 

83.422 -122.429 294.779 -45.117 421 421 -2048.165 

-186.50 175.472 -61.005 206.677 -421 -421 -1138.464 

-18.631 -8.129 -133.941 98.169 421 421 -1848.615 

-364.10 107.688 443.436 101.915 421 421 -1386.967 

-138.43 119.805 -320.32 224.222 -421 -421 -2005.699 

130.081 -346.562 -287.362 133.558 -421 -421 -2260.600 

13.845 -251.76 -202.456 -190.149 -421 -421 -1342.991 

258.964 55.81715 -328.877 -61.453 -421 -421 -1875.343 

52.933 228.1491 -420.826 121.588 -421 -421 -1204.704 

40.352 -220.977 -66.664 98.310 -421 -421 -1491.028 

29.213 58.4483 -39.935 -114.615 -421 -421 -1749.626 

493.048 385.762 -107.189 5.968 421 421 -1588.027 

 

5.6 Summary 

Within this chapter, schooling genetic algorithms (SGA) was applied to the GLPD 

methodology of continuous product design. Simulations of SGA were carried out according to a 

set of factors including the relationship between LCE parameters, the number of parameters, and 
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the shape of the search domain. The quality of the solutions returned by SGA was assessed using 

different criteria including the TPI values for each LCE parameter type, and the distribution of 

behavioral mode. 

A first set of experiments (1-4) was successfully carried to better understand how SGA 

works on different types of environments, and how the SGA built-in grouping shapes both the 

search process and the interpretation of the returned results. As the nature of the LCE 

parameters’ relationship gets more complex, SGA appears to return more heterogeneous groups 

when  the density of deceptive attractors within the search domain is low (Schwefel function). 

Similarly, SGA appears to return more homogeneous groups when the density of deceptive 

attractors within the search domain is high (Griewank, Ackel function).   

A last (5
th

) set of experiments that was carried to assess the impact of grouping on the GA 

search process by comparing SGA to both parallel GA (PGA) and island GA (IGA) proved 

conclusive. The grouping mechanism appears not to negatively impact SGA. However, further 

experiments with different type of LCE parameter relationships would be necessary to decide 

whether the metaheuristic search process of GA was improved as suggested by the results from 

one of the sets of experiments. 

Overall, the SGA would converge even when GA, PGA and SGA will not. By returning 

the average best solutions that were found and stored within a recency list, SGA provides a view 

of the series of improvements a group of products has gone through. With some of the 

experiments the SGA was able, via the TPI values, to provide insights on better specification 

limit for LCE parameters. 

Table 5.18 summarizes the results of all the experiments. 
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Table 5.18 

 Summary of experiments on SGA 

SGA Summary 

Linear & Polynomial 

Performance 

Griewank & Schwefel 

Performance 

Ackley & Schwefel 

Performance 

Convergence observed within 

population for both 

environments  

Some delimited characterization 

of LCE parameters relationship 

for both environments 

Performs better than 

IGA and PGA on 

optimization 

Good characterization of LCE 

parameters relationship for both 

environments 

Food foraging and predator 

avoidance were both frequently 

used 

Tabu shows that best 

schools are small schools 

School maintenance observed as 

the predominant behavior for 

schools 

TPI values indicate where 

parameter range can be reduced 

TPI values indicate 

where parameter range 

can be reduced 

TPI values indicate where 

parameter range can be reduced 

Final best school centers in tabu 

indicate the presence of multiple 

attractors within the search 

domain 

Predator avoidance 

observed as the 

predominant behavior 

  Center of mass capturing best 

solutions for both environments 

were found 

Population average 

fitness quickly rise and 

stabilizes 
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CHAPTER 6 

Genetic Social Networks 

Genetic Social Networks (GSNs) are GA-based models that enable process and operator 

adaptability by mimicking social networks. In GSN, operators behave differently depending on 

the perceived immediate area of the search domain, and on social networking connections and 

dynamics. This chapter serves as an introduction to GSN. 

6.1 Introduction 

GAs have been successful at solving problems in a variety of engineering fields ranging 

from engineering cost control to the design and the implementation of systems (Hassan, Azubir, 

Nizam, Toha, & Ibrahim, 2012; Sarkar, Mandal, Saha, Mookherjee, & Sanyal, 2013; Toulabi, 

Shiroei, & Ranjbar, 2014). Applications of GAs to complex design optimization problems rely 

on population’s diversity in order to generate solutions that are acceptable. GAs are a trial and 

error approach, and as such, GAs are solution-oriented, and problem-specific (do not attempt to 

generalize a solution to other problems). GAs require little knowledge to get started, and are 

typically good for problems where there are multiple chances to get the best solution. Such 

problems are common in engineering design.  

However, when solving for a problem in general, and for a design problem in particular, 

solutions with given characteristics are sometimes desirable. Such characteristics include 

evolvability; have some system efficiency due to the economy of scale, or the ability to 

continuously operate with minimal intervention. Solving a problem by looking for solutions with 

the described characteristics is difficult for GAs. But building on the strengths of GAs, the 

motivation for using social networks comes from the dynamic nature of the component of social 

networks: people or organizations. Within social networks, individuals can join or leave a group 
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at any time. Social networks are resilient and scale naturally (A.-L. Barabási & Albert, 1999; A. 

L. Barabási et al., 2002). The adaptability and scaling features of social networks are important 

and desirable in life cycle engineering (LCE). By mimicking social network interactions, the 

main objective is to come up with LCE solutions possessing the same characteristics as those of 

social networks. 

This chapter presents a new approach to GAs. The approach is carried out by adding 

social networking behavior to GAs. In order to assess the suitability of social networking 

behavior to search heuristics, a model is designed that mimics a population of individuals who 

are socially networked. The proposed model is called genetic social network (GSN). It is further 

described in the next sections.   

6.2 GSN Overview 

Social networks (SNs) are social structures made up of a set of social entities (such as 

individuals or organizations) and a set of interactional ties between these entities. The growing 

trend and rise in power of some social networks such as Facebook or Twitter have driven 

increased research. Social network’s modeling serves at least two purposes. First, such modeling 

promotes understanding of social networks formation and evolution. Second, studying network-

dependent social processes by simulation can be used to specify or anticipate the structure of 

social networks’ interactions (A. L. Barabási et al., 2002; Eubank et al., 2004). GSN serves a 

third purpose: mimicking and applying high level social network concepts to problem solving. 

A GSN is a hybrid model that combines social network dynamics with GAs. GSN applies 

nodal attribute models (NAMs) with an evolutionary aspect to traditional GAs. NAMs are social 

networks models where the probability of each link existing within the network depends only on 

nodal attributes, the local network structure being irrelevant (Toivonen et al., 2009). NAMs have 
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also been described by the term spatial models (Boguna, Romualdo, Diaz-Guilera, & Arenas, 

2003; Wong, Pattison, & Robins, 2006), to refer to the fact that the attributes of each node 

determine its ‘location’ in a social or geographical space. NAMs represent one of the main two 

categories of models existing in physics-oriented network literature (Toivonen et al., 2009). The 

other category, network evolution models (NEMs), is characterized by the addition of new links 

(friends joining), based on the local network structure. NEMs focus on network evolution 

mechanisms, and are used to predict the outcome of a network growth based on specific network 

evolution mechanisms observed within that network. GSN uses a distance-based scheme 

(referred to as influential distance) to determine the membership of an individual to a specific 

group sample (group of friends) of a population. GSN applies NAMs by assigning probabilities 

to edges     forming between two nodes (respectively nodes i and j) as a function of the 

attributes of nodes i and j only. 

GSN adds social network concepts to GAs, by implementing single and dyadic social 

interactions of social groups with GA operators (crossover and mutation). GSN does this by 

viewing a whole GA population as a graph, and using both the fitness values and the strengths of 

the created links/bounds to assess whether a node (an individual from the population) is fit for 

mating. In GSN mutation is used to implement single social interactions, whereas dyadic social 

interactions are implemented via crossover. 

To mimic social interactions concepts with groups, GSNs introduce the following 

notions: 

- theme 

- group 

- term 
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- leader, and membership 

Themes are candidate solutions, not part of the original population, which are either 

carefully or randomly selected by the GSN. Real life group themes could be: fashion, hip hop, 

soccer…. Themes are first set at the beginning of a GSN simulation, and updated periodically, at 

the beginning of each term. A group is organized around a single theme. The number of themes 

(therefore groups) to be used by GSN is a design decision and can be set to any arbitrary value. 

Terms correspond to the number of GA generations an individual gets to be the leader of a group 

before group themes are updated. Group themes are updated at the beginning of every term to 

keep up with the changes that have occurred within the population. as a result, the themes 

themselves evolve as the population evolves. Themes are used to select the leader of their 

groups. Leaders’ selection occurs at the beginning of a term. Leaders are among the most fit and 

theme “knowledgeable” individuals of the population. An individual becomes a group leader 

when two conditions are met. First, of all the individuals making up the population, an individual 

must have the highest similarity (proximity) to any given theme. Second, the fitness value of that 

individual must be higher than an arbitrary threshold value set at the beginning of the simulation. 

The requirement for the highest similarity to the theme is to mimic the expertise of a group 

leader as the most knowledgeable individual of his group. The requirement on the fitness value 

of the leader is to only allow “strong” individuals as group leaders. The use of two requirements 

for a group leader also makes it impossible for any individual within a well-diversified 

population, to lead more than one group at a time. Finally, there is a membership concept 

characterizing the level of belonging of an individual to a group. In GSN, an individual’s 

membership level to a given group is expressed as a rational number (0.0 to 1.0). The 

memberships of individuals to groups change constantly causing the population to dynamically 
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reorganize itself according to the formation of links between its selected leaders and the 

population. Those constant reorganizations are based on the ability of leaders to influence others. 

Such ability is represented in GSNs as a gravitational pull. The higher the leadership ability of an 

individual, the higher is the leader’s ability to form links/bounds that yield dynamic mating 

scheme called proportionate breeding. 

In GSN, the structures observed within the social network are explained by the 

interactions of individuals, with reference to their intrinsic properties (ability to influence peers). 

In social networks, links are created based on assumptions about the local mechanisms of tie 

formation, such as people meeting friends of friends, and thus forming connections with their 

network neighbors (triadic closure) (Granovetter, 1973). GSN uses a different approach by 

automatically creating links from all individuals (also referred to as solution or configuration 

when within the context of LCE problem solving) to the group leaders. The approach of GSN is 

simple, enables a global (population wise) linkage mechanism. 

Figure 6.1 shows a graphical representation of a GSN with nine individuals and two 

themes. Since there are two themes, there are groups that are formed and therefore two leaders. 

 

Figure 6.1. Genetic social networking 
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The two leaders are represented by the individuals with more than two links connected to 

them. Each group is also characterized by the color of the link. The thickness of the links 

represents the level of membership of the corresponding individuals to the given groups. Fit 

individuals with high level of membership to a group have a higher selection probability for 

mating and lower selection probability for culling. 

6.2.1 Gravitational pull.  Also known as the sphere of influence’s value, this is a value 

quantifying the influence a leader has on the population. The gravitational pull is proportional to 

both a leader and a follower fitness values, and inversely proportional to the squared distance of 

the follower to the leader. A follower is any individual that an individual who is not a leader. The 

gravitational pull by the leader of group i on individual j, calculated at the beginning of each 

term, is given as: 

                                                              
       

    
                                                                

where      is the fitness of the leader of group i,    is the fitness of the potential follower j, and 

    the Manhattan distance leader to potential follower. 

6.2.2 Proportionate breeding. During the mating process, group level proportionate 

breeding is observed. Proportionate breeding stems from the fact that each generation, each 

group is allowed to gain a certain number of new members. GSN rewards groups based on their 

overall fitness and on their size. For example, large groups of individuals with fitness values 

around the overall population average can be given the same opportunities to gain new members 

as small groups of highly fit individuals. 

Assuming a constant number of crossovers and mutations for each generation, a group 

breeding proportion is calculated based on its relative size and performance level. The proportion 

indicates the percentage of new members allowed for that term for that group. With   social 
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groups in the environment composed of   individuals, where the performance of individual 𝑗 in 

group , denoted     , is calculated as the product of individual j fitness by its membership level 

     within group i. The allocation of the numbers of new members NMi to group i is calculated 

as: 
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The performance       of individual 𝑗 in group  is calculated as the product of their fitness 

by their membership level      as a way of rewarding “committed” members. Proceeding this 

way, groups with high performing (high membership and fitness values) members have a higher 

probability of thriving compared to groups of either smaller size, or less high performing 

individuals. The next section is about the GSN procedure and includes a high level pseudocode 

description of GSN algorithms. 

6.3 GSN Procedure 

Themes {      } are created first. The number of initial themes determines the upper 

limit for the number of groups that will ever exist at one point of time within the environment. 

Themes and individuals are encoded with the same phenotype. This way, it is possible to define 

and use a similarity measure between individuals and themes. Such a measure mimics the 

affinity of an individual to that given theme. A non-exhaustive list of usable distance and 

similarity measures is available in (Cha, 2007). Assuming that the Sørensen distance       

represents the similarities between individuals Ij and the existing    themes, the leader of group i 

would be the individual meeting the following two requirements: 

      
  

{      
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}, and       
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where    is the fitness value of individual j, and    the previously described threshold value. To 

be problem independent,    ould be set as a given percentage of the current best fitness value. 

If no individual meet both requirements for a given theme during any term, the GSN will then 

only run with the other groups during that term. The group without a leader will be considered as 

dormant. Such situations are likely in social networks where a group can be inactive just because 

of lack of membership or of appropriate leadership. If more than one individual is eligible to the 

leadership role, then the first found candidate is selected. 

Following the emergence of leaders due to their affinity level (determined by their 

relatively strong similarities to the existing themes), links from leaders to followers are formed 

based on the influences of group leaders. Choosing leaders instead of the themes as the attraction 

is because a leader, unlike a theme, already has the obligation to be a “good” candidate solution. 

Therefore, relying on leaders for the attraction is likely to yield a higher performance for the 

followers. Every individual is modeled as belonging to all groups, with a given level of 

membership. Fuzzy membership is used to represent levels of membership to groups. 

Figure 6.2 shows a high level diagram of GSN.  Similar to SGA, GSN is adaptive and 

does not follow the systematic execution flow of GA operations. A group that is expanding will 

need to do more exploration (using the GA mutation operator) in order to become more diverse, 

whereas a group that is specializing will capitalize on the strengths of its members only. 

 

Figure 6.2. GSN high level diagram 
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6.4 GSN Modeling 

The modeling of GSN involves the different processes of GSN along with the underlying 

concepts. GSN most notable features are its ability to group individuals based on their common 

interests, and to exploit the grouping. The grouping feature relies on the ability of individuals to 

create and maintain links. 

6.4.1 Joining and leaving groups. Figure 6.1 showed an example of social network with 

two themes. Within the network, each group is a subset of the social network. The GSN 

algorithm is implemented so that each group has exactly one leader. Since each group is based 

on a given theme set at the very beginning of the experiment, individuals join groups based on 

their level of affinity with the leader of that group. Because leaders, rather than themes, are used 

to attract members, the GSN always assigns a membership value of 1.0 to all the leaders. The 

membership level of the other members to the group, after they join, is determined by the pull of 

the leader of the group.  

Let us have the Sørensen distance      represent the similarity between individuals Ij and 

the existing    themes.  Let     represent the membership level of individual Ij to group i,    the 

fitness value of individual Ij, and         the value of theme    at term t +1. Let    represent 

the normalization factor of the gravitational pull that is used to ensure that     is within the (0.0 

1.0) range, with the membership of a leader being 1.0. Finally, let    , represent the fitness value 

of the leader of group i, and      the distance from group leader to follower j. The following are 

the expressions of some of the dynamic concepts related to joining and leaving groups: 

           𝑗 
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6.4.2 Fuzzy membership. The current unique purpose of the memberships is to drive the 

search process. Using fuzzy membership, each individual may be represented as a member of all 

of the existing groups, but with different levels of membership. Only two types of membership 

exist within any group: a leader, and a follower. A member of a group, leader excluded, has a 

level of involvement in the group that depends on their membership level. 

In GSN, it is assumed that brand new members (whether created by crossover of 

mutation) to a group would join because of the attributes of their friends. For that reason, the 

level of membership is an inheritable characteristic. Therefore, pending a reassessment of themes 

at the end of a leadership term, the level of membership of offspring (new members to a group) 

is calculated differently depending on whether the offspring is a result of a crossover or a 

mutation. Such an approach is used to account for the differences between the crossover and the 

mutation operators: the former requires at least two parents from which a child would inherit 

characteristics, whereas the later requires one. Considering crossover, the new member’s level of 

membership will then be a fuzzy AND of the parents’ level of membership. This way, the 

offspring only gets the best from their parents. Considering mutation, the new member’s level of 

membership will be a fuzzy OR of the single parent with random values (0.0 1.0). This way, the 

offspring gets a chance of exploring the network as a whole. Both cases are summarized below: 

                                                
            

         

                                               
             

The application of GA operators is based on groups. But since individuals belong to all 

groups with various levels of memberships, each individual gets a chance to participate to 
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crossover and mutation within all the available groups. Proceeding further, when choosing the 

candidate parents, GSN uses weighted roulette-wheel selection (SCX), a form of fitness 

proportionate selection. Except that performance, instead of fit ness, is used within the selection 

process. The weighted SCX takes into consideration the level of membership of individuals 

within the group when computing the chances of being selected. Let G be the population size of 

the GSN. The probability of individual selection (for either crossover of mutation)       of 

individual j from group i is given as: 
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The GSN life cycle represents the steps required for implementing a GSN algorithm 

based on the given concepts. The life cycle of GSN is rather short. A high level overview of the 

GSN is given next. 

 

Algorithm 2. Genetic Social Network High Level Metaheuristic 

Set the parameters, initialize the population 

while termination condition not met do 

     Set/update the themes for each group           

     Organize individuals in groups based on group theme 

     Assign Leadership role based on parameters’ values 

     Reset all term counters for newly elected leaders 

     while term counter still running             

          Foreach group within the world: 

              Calculate the number of new members that are allowed            

              Apply GA operators based on the number of new members and group dynamics 

              Increment term counter for leaders   

         Endforeach 

        Proceed with culling via reduction to keep overall population size constant 

    endwhile 

endwhile                 
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6.5 Summary 

Within this chapter, genetic social networking (GSN), a new metaheuristic created to 

work on problems where scaling and sustainability are characteristics of the solution was 

developed, explained, and discussed. GSN mimics social networking and uses GAs that it 

extends with some new concepts. GSN develops and implements the concepts of group joining 

and leaving, and of group fuzzy membership. GSN defines and uses the concepts of group, term, 

theme, membership, and leader to mimic and track dyadic links within a social network. To 

finish, a high level overview of GSN was provided. 
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Chapter 7 

Applying Genetic Social Networks to Generalized life cycle product design 

7.1 Introduction 

Genetic social networks (GSNs) are GA-based metaheuristics emulating social 

networking dynamics, and designed for problems where evolvability, grouping, and 

sustainability are characteristics of the solution. Generalized life cycle product design (GLPD) is 

a PLE-based approach for product design that uses LCE-data characterization to assist system 

engineers with their design process. The product design process is complex and costly. It relies 

on expert knowledge. In this chapter, the applicability of GSN to product design, using GLPD, is 

investigated. Using simulated life cycle engineering data, different case scenarios are envisaged 

to assess GSN as an analytic tool for better product design. 

7.2 Applying GSN to GLPD 

The GLPD approach is proposed as an attempt to define a life cycle based sustainable 

design process. The aim of the GLPD is to capitalize on biologically and sociologically inspired 

design to create product configurations that can evolve, group, and sustain. Figure 3.6 shows the 

GLPD approach.  Considering the highly scalable nature of social networks, structures that 

GSNs mimic, how do we use GSN to incorporate evolvability (evolution in design and 

operational parameters of products and product’s parts), grouping (based on environmental 

parameters related to a product), and sustainability (ability of the system to maintain and 

improve itself) into a product attributes? 

In an attempt to answer the question, GSN will be applied to the GLPD representation. 

Using simulated PLE-data generated for a product, a product’s DNA, as displayed in Figure 7.1, 

was created and was used as an input to a GSN algorithm. 
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Figure 7.1. Transformation of a designed product into a GA entity 

The GSN concepts, within the LCE context, take the following meanings: 

- A theme is one of the early better configurations the systems engineer came up with for a 

product/system. It is a conceptual configuration. 

- A leader is a current good configuration for a product/system. Defined this way, the role 

of a leader is to coordinate the improvements of a group based on constantly updated life 

cycle parameters. A leader is a prototype or most closely configured fielded system. 

- A group is a set of configurations with common characteristics. Since all solutions 

(product/system configuration) are members of all existing groups with some level of 

membership, then the notion of group makes better sense within a meaningful definition 

of membership. 

- A membership level is assigned as a prerogative of a group leader. Therefore, the higher 

the membership of a candidate solution is, the lesser is the variability between that 

solution the leader of the group. 

7.3 GSN Approach to the Problem 

The objective is to find out the potential benefits of using GSN and GLPD in the design 

process of a system/product. Using the PLE-data generated by a product, a product DNA, as 

displayed in Figure 7.1 was created and was used as an input to a GSN algorithm. Within the 
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designed GSN test bed, values for n, m, and p varied from 0 to 2. When applying a fuzzy or GA 

operator to a solution, the environmental phenotypic value is given special care so both its 

permissible values (discrete only), and proportion are preserved in between generations. 

Using probability distributions, constrained random values were generated that 

represented the design, operational and environmental parameters of a hypothetical product. 

Simulations were then carried using one or more parameters of each type. LCE data was 

generated to test GLPD with GSN for the following scenarios described in the following 

sections: 

- Environment driving design for performance 

- Environment driving both design and operation for performance  

- Environment and design both driving operations for performance  

- Environment and design only driving performance 

- Environment, design, and operations all driving performance 

7.4 Experimental Design 

For the experiments/simulations, each candidate solution was an n-dimensional vector of 

the search space, where n is the sum of the number of parameter (of each kind) used. Each 

dimension or independent product performance parameter was coded with a 10-bit string value 

(actual decimal values falling within the range of -500 to 500). The size of the population was set 

and maintained at 120 individuals. The proportion for each environment was 55% for 

environment A, and 45% for environment B. The stopping criteria was set to be either the 

maximum number of generations (set to 1000), or the lack of improvement of the average fitness 

value of the population for three consecutive generations, whichever came first. Each experiment 

was repeated three times and the recorded assessment criteria were: (1) the number of 



132 
 

generations it took for GSN to converge (if convergence occurs), (2) the solutions returned, and 

(3) the quality of the final themes. Each simulation started with a population of individuals 

randomly distributed (normally) across the search domain, followed by the environmental 

parameter value(s) being assigned, using a uniform distribution, to each individual. 

Table 7.1 shows the factors, assessment criteria, and methods that were used to assess the 

quality of the experiments that were carried out. As far as the relationship is concerned (first 

factor), five were tested as explained within the previous section. The number of parameters or 

alleles changed from three to six. Linear, polynomial, Ackley, Griewank, and Schwefel functions 

were all used to characterize the underlying shape of the search domain. Different assessment 

criteria were used. For some experiments, GSN performance was also compared to island GA 

(IGA) and parallel GA (PGA). Table 7.1 shows all the factors, assessment criteria, and methods 

that were used to test GSN. 

Table 7.1 

Factors, assessment criteria, and methods 

Factors Assessment criteria 

Relationship }zationcharacteri LCE{  Number of generations to convergence 

Size }/allelesparameters ofNumber {  Quality of solutions obtained 

Underlying shape 

}Schwefel ,Polynomial Linear, Griewank, Ackley,{  
Quality of final themes 

Methods 

Genetic Social Network (GSN) vs. }SGA IGA, PGA,{   
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7.4.1 Environment driving design for performance. The objective of the experiments 

carried here was to determine the ability of GSN to effectively use grouping to converge on 

separate environments, and to check the ability of GSN to effectively characterize the life cycle 

parameters’ relationship.  The relation used for the experiments was linear as follow: 
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 7.4.2 Environment driving both design and operations for performance. The objective of 

the experiments was to determine the ability of GSN to effectively use grouping to converge on 

separate environments, and to check the ability of GSN to characterize the life cycle parameters’ 

relationship.  The relation used for the experiments was polynomial as follow: 
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7.4.3 Environment and design both driving operations for performance. The objective of 

the experiments carried here was to determine the ability of GSN to effectively use grouping to 

converge on separate environments, and to check the ability of GSN to characterize the life cycle 

parameters’ relationship.  The relation used for the experiments was linear as follow: 
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7.4.4 Environment and design both driving performance. The objective of the experiments 

was to not only determine the ability of GSN to effectively use grouping to converge on separate 
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environments, but also to check the ability of GSN to operate on “noisy” life cycle data. Similar 

to the previous experiments, a typical representation of a solution was picked to have three 

parameters, one of each kind. Two different sets of experiments were carried. They differed in 

the function that was used to generate the LCE relationship. The Griewank function was used for 

the first experiment, and the Schwefel function was used for the second experiment. The 

Griewank function (Griewank, 1981)  is a standard test functions for unconstrained global 

optimization, and it is used to test the convergence of optimization functions. It has many 

widespread local minima regularly distributed, to act as attractor to deceive the search process. 

The function that was used was a modified Griewank function to make the problem a 

maximization problem. The function is defined by: 
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The Schwefel function on the other hand is a deceptive function that has its global 

minimum geometrically distant, over the parameter space, from the next best local minima. 

Therefore, with the Schwefel function, the search algorithms are potentially prone to 

convergence in the wrong direction. The function that was used was a modified Schwefel 

function to make the problem a maximization problem. The function is defined by: 
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For              , Figure 7.2 shows the typical Griewank function plotted for n=2.  
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Figure 7.2. Griewank  function in [-100, 100] plotted using Matlab 

7.4.5 Environment, design and operations all driving performance. The objective of the 

experiments was to not only determine the ability of GSN to effectively use grouping to 

converge on separate environments, but also to check the ability of SGA to operate on “noisy” 

life cycle data. Unlike the previous experiments and setups, two sets of experiments were carried 

here, each with a different representation of a solution. The Ackley function was first used to 

model the LCE relationship, with each solution candidate having five parameters, one for the 

environment, and two for each of the other kind. Then, a modified Schwefel function was used to 

model the LCE relationship, with each solution candidate encoded with six parameters, two for 

each kind.  

The Schwefel function is a deceptive function that has its global minimum geometrically 

distant, over the parameter space, from the next best local minima. Therefore, with the Schwefel 

function, the search algorithms are potentially prone to convergence in the wrong direction. For 

             , Figure 7.3 shows a plot of the Schwefel function. The Schwefel function is 

defined by: 
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Figure 7.3. Schwefel function in [-100, 100] plotted using Matlab 

On the other hand, the Ackley’s function function is a widely used multimodal test 

function. It has the following definition: 
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For            , Figure 7.4 shows a plot of the Ackley’s function.  

 

Figure 7.4. Ackley's function in [-25, 25] plotted using Matlab 

7.5 Results and Interpretation 

For each set of experiments that were carried out, results were collected and an 

interpretation provided. The following subsections show the typical results for each set of 

experiment. 
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7.5.1 Environment driving design for performance. Figure 7.5 shows a plot of the final 

performance values of the population for one experiment. The relative fitness values were used 

to plot the fitness of the population. Relative fitness values were used to give each individual as 

many relative fitness values as the number of existing themes. The relative fitness value of an 

individual to a group was calculated as a product of that individual (absolute) fitness with their 

membership level to that group. The group average fitness per generation was then calculated as 

the mean of the averaged fitness values of the whole population calculated theme wise. 

 

 

Figure 7.5. GSN results per generation for experiment set 1 

Figure 7.5 shows that the population’s average performance improved over generations. 

The improvements displayed in Figure 7.5 are not steady, proof of the impact of the membership 

level values. Table 7.2 shows the population converged. A lack of diversity can be observed, 

since that the convergence was to a single point for each environment. 
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Table 7.2 

Sample of final population of GSN for experiment set 1 

Population 

Design Operational Environmental Fitness 

350.0362 -246.5235797 A 0.999927602 

150.0976 -171.6999546 B 0.999804854 

 

From Table 7.3, it can be observed that the themes did not improve from start to finish. 

This was not expected since that the themes contributed to the search process.  

Plotting the final population gave Figure 7.6. Nothing further can be inferred from the 

graph. The final population lack of diversity makes it impossible to capture the nature of the 

LCE parameters’ relationship. The lack of diversity in the final population also makes the scaling 

of the final solutions hard to achieve.  
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Table 7.3 

Starting and ending themes in experiment set 1 

Themes Start 

Design Operational Environmental Fitness 

65.1214 0.4947 A 0.4302 

265.8169 -92.3475 B 0.7683 

120.0846 -113.8714 A 0.5401 

80.1779 -286.7696 B 0.8603 

-271.4478 40.3410 A 0.2428 

Themes End 

Design Operational Environmental Fitness 

40.0775 380.4257 A 0.3801 

-483.2775 -467.6816 B 0.2665 

145.0424 336.2579 A 0.5900 

49.9128 375.1393 B 0.79982 

194.6495 369.2472 A 0.6892 
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Figure 7.6. Final population plot for experiment set 1 

7.5.2 Environment driving both design and operations for performance. Figure 7.7 shows 

a plot of the final results for one of the experiments. From Figure 7.7, the population’s average 

performance can be seen to improve.  

 

Figure 7.7. GSN results per generation for experiment set 2 

Table 7.4 shows a sample of the final population. The population converged. Like with 

the previous experiment, a lack of diversity can be observed, since that the convergence was to a 

single point for each environment. 
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Table 7.4 

Sample of final population for GSN in experiment set 2 

Final Population Sample 

Design Operational Environmental Fitness 

-234.27425 -350 A 1 

201.075351 50 B 1 

Figure 7.8 shows a plot of the final population. The algorithm had an environment wise 

convergence. Although converging in this scenario is good, it does remove the diversity from 

GSN. The red dotted line represents the relationship of LCE parameters to performance in 

environment A, and the blue dotted line the same in environment B. From Figure 7.8, there is no 

way to tell or approximate the LCE parameters’ relationship. 

 

Figure 7.8. Final population plot for experiment set 2 

7.5.3 Environment and design both driving operations for performance. Figure 7.9 shows 

a plot of the final results for one of the experiments. 
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Figure 7.9. GSN results per generation for experiment set 3 

From Figure 7.9, a trend similar to experiment set 1 and experiment set 2 is observable. A 

quick look at the final population show that the algorithm converged. Table 7.5 shows a sample 

of the final population. 

Table 7.5 

Sample of final population for SGN in experiment set 3 

Population 

Design Operational Environmental Performance 

-350.049 -149.99653 A 1 

-350 -147.21621 A 1 

-102.348 -350 B 1 

-102.348 -350 B 1 

Figure 7.10 shows a plot of the final population. The algorithm had an environment wise 

convergence. Convergence removes the diversity from GSN. Without diversity in the final 

population, the scaling of the final solutions would be hard to achieve. There is no way to tell or 
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even approximate the LCE parameters’ relationship. The trend so far seems to be that GSN 

would converge, and cannot be used to approximate an LCE parameters’ relationship to 

performance. 

 

Figure 7.10. Final population plot for experiment set 3 

7.5.4 Environment and the design both driving performance. As mentioned during the 

setup phase, two sets of experiments were carried out for this case.  

7.5.4.1 Using Griewank to characterize LCE’s relationship. The Griewank function was 

modified to turn the problem into a maximization problem with global best performance value 

being 0. Figure 7.11 shows a plot of the final results for one of the experiments. 
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Figure 7.11. GSN results per generation for experiment set 4 – Griewank 

There is a convergence after a steady but rapid average fitness growth. Table 7.6 shows a 

sample of the final population. 

Table 7.6 

Sample of final population for SGN in experiment set 4– Griewank 

Final Population Sample 

Design Operational Environmental Fitness 

-0.05237 491.7339 A -0.00137 

-0.05237 491.7339 A -0.00137 

-3.13813 -314.11 B -0.5588 

-3.13813 -314.11 B -0.5588 

Plotting the final population yields Figure 7.12 where the narrow range of values for the 

design parameters shows the ability of GSN to resolve best solutions across and within 

environment’s boundaries. However, there is not enough diversity within the final solution to try 

and apportion the observed performance values to the solutions’ LCE parameters classes. 
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Figure 7.12. Final population plot for experiment set 4 – Griewank 

 7.5.4.2 Using Schwefel to characterize LCE’s relationship. The Schwefel function was 

modified to turn the problem into a maximization problem with global best fitness value being 0. 

Figure 7.13 shows a plot of the final results for one of the experiments. 

 

Figure 7.13. SGA results per generation for experiment set 4 – Schwefel 

Figure 7.14 is the plot of the final population. The convergence of the algorithm is 

denoted by the concentration of the final solutions at two locations of the design-operational 

domain. However, population diversity was lost. 
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Figure 7.14. Final population plot for experiment set 4 – Schwefel 

7.5.5 Environment, design and operations all driving performance. Performing 

experiments with more than three parameters and comparing the results obtained to other known 

GA-based approaches make possible seeing the potential benefit of grouping on GA, as well as 

the possible use of GSN as a general optimization method. GA is a trial and error method to 

problem solving. GA is solution-oriented and makes no attempt to discover why a solution 

works; merely that it is a solution. GSN on the other hand was built to not only discover 

solutions that work, but also solutions that are diverse so they can be grouped and scaled. The 

purpose of the experiments carried out in this section was to determine whether the mimicking of 

social interactions built into GSN make GSN a lesser metaheuristic performer when compared to 

other well-known GA derivatives. Two sets of experiments were carried out for this case. 

7.5.5.1 Using Ackley to characterize LCE’s relationship. The Ackley’s function was 

modified to turn the problem into a maximization problem with global best performance value 

being 0. Figure 7.15 shows a plot of the final results for one of the experiments. 
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Figure 7.15. GSN results per generation for experiment set 5 – Ackley 

From Figure 7.15, it can be seen that as the number of generations increases, population’s 

average fitness first remains constant before starting to improve at around generation 600. 

Although the absolute best solution (0) was not reached, the group average fitness generation 

shows that the relative fitness was close to the absolute best. Such a value for the relative 

contrasts with absolute fitness values from Table 7.7. The contrast shows the importance of the 

membership level values that can be leveraged via a modified aggregated performance 

measurement to achieve better results. A sample of the final population is displayed in Table 7.7. 

Table 7.7 

Sample of final population for GSN experiment set 5 – Ackley 

Population 

Design Design Operation Operation Environment Fitness 

2.4066 -9.9765 -1.9909 -1.8854 A -14.1942 

-432.75 -257.25 -187.5 -492 B -21.7183 

-290 424 -314 -278 B -20 

-104 36 -180 -22 B -20 

364 36 340 -336 B -20 

2.4066 -9.9765 -1.9909 -1.8854 A -14.1942 
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Unlike SGA when tested in the same conditions, GSN had a diversity built into the final 

population. The final population could be used for some further analysis.  

The implementation of parallel GA (PGA) that was made had a total of five 

subpopulations evolving separately from one another. Table 7.8 represents a sample of the final 

population obtained after running PGA. Like GSN, the final population in PGA has diversity. 

Table 7.8 

Sample of final population for PGA experiment set 5 – Ackley 

Population 

Design Design Operational Operational Environment Fitness 

-164.799 -481.572 143.7725 -50.9452 B -21.5891 

-150.984 -129.014 45.69213 -48.8014 B -21.0889 

-152.78 42.47536 -0.91078 -143.042 B -21.4305 

134.262 -24.4091 -17.4822 3.941685 A -21.9349 

-10.1991 -158.589 19.10951 -50.6574 B -21.7926 

157.0182 180.3656 -10.7803 246.5109 A -21.8312 

-110.008 9.519213 -55.0603 157.9034 A -21.167 

32.89862 -79.0304 -54.6876 297.3046 A -21.4126 

-166.391 -3.13498 328.9591 -93.6539 A -21.6443 

48.71317 -351.099 128.035 -93.0879 B -20.8908 

18.68839 88.73163 -156.407 -70.0866 B -21.8296 

-247.845 216.9395 3.951581 229.2697 A -20.9307 
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Figure 7.16 shows the evolution per generation of the PGA implementation. Besides 

subpopulation 1, all other subpopulations appear to perform exactly the same. 

 

Figure 7.16. Average population fitness over time with PGA for experiment set 5 – Ackley 

The implementation of island GA (IGA) that was made had a total of five subpopulations 

evolving on separate islands from one another. A migration operator was available to IGA that 

every 30 generations, would allow the islands to exchange in a round-robin way, 5 of their best 

solutions as a way to re-introduce diversity within all the islands. Table 7.9 represents a sample 

of the final population obtained after running IGA. Like GSN, the final population in IGA also 

has some diversity.  

Figure 7.17 shows the evolution per generation of the IGA implementation. The graph is 

similar to that of PGA with a lot of jumps within the average fitness, characteristic of a noisy 

environment. 
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Table 7.9 

 Sample of final population for IGA experiment set 5 – Ackley 

Population 

Design Design Operational Operational Environment Fitness 

59.17157 149.4894 78.91444 -44.9946 -A -21.3225 

-51.3367 67.59259 -58.8961 -185.948 421 -21.6164 

-6.18678 -127.84 -0.44204 14.86595 -A -21.5407 

-16.9806 -66.4336 377.3741 -265.759 A -21.85 

36.25633 149.859 -100.201 -98.6796 A -21.5935 

-124.87 -63.334 6.866562 -211.447 A -21.7417 

79.23545 -131.754 -107.063 -82.734 A -21.4536 

-37.0189 -45.1076 -44.081 -148.812 B -20.588 

-153.066 -290.224 62.93955 -140.625 A -21.3334 

38.14309 60.99853 407.2399 -113.165 A -20.9871 

-135.449 -44.9966 239.352 46.58049 B -22.0175 

149.4617 104.3652 152.6735 55.39732 A -22.2333 

-29.057 -43.0327 261.2078 341.5205 A -21.3733 

11.56537 -149.069 -154.211 -148.015 A -21.3592 

106.5239 128.9473 -398.941 -297.036 A -21.1254 

-48.8613 233.3871 28.19601 -116.926 A -21.3975 
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Figure 7.17. Average population fitness over time with IGA for experiment set 5 – Ackley 

7.5.5.2 Using Schwefel to characterize LCE’s relationship. The Schwefel function was 

modified to turn the problem into a maximization problem with global best performance value 

being 0 with six parameters. Figure 7.18 shows a plot of the final results for one of the 

experiments. 

 

Figure 7.18. GSN results per generation for experiment set 5 – Schwefel 

From Figure 7.18, the population is observed to be constantly improving. Within the [-

500 500] range, the Schwefel function, as used, is known to converge (f(x
*
) = 0) for x

*
= (s1, s2,.., 

sn) where si = ±421 for 1≤i≤n. Table 7.10 is a sample of the final population. Two observations 

are important here: first, the final population does not have much diversity built in it, and second, 
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the final population appears not be fall away from one of the known optimum solution of the 

problem. 

Table 7.10 

Sample of final population for GSN experiment set 5 – Schwefel 

Population 

Design Design Operation Operation Environment Environment Performance 

435.8014 -407.731 -421.017 447.0183 A1 A2 -140.2422491 

435.803 -407.726 -420.994 447.0146 A1 A2 -138.5087513 

434.8028 -410.375 -434.876 449.2655 B1 B2 -170.8471386 

435.5377 -408.429 -424.676 447.6116 B1 B2 -142.7093332 

The same implementation of parallel GA (PGA) was modified to use a phenotype of 

length six and was run with subpopulations evolving separately from one another. Table 7.11 

represents a sample of the final population obtained after running PGA. Unlike SGA, the final 

population in PGA has a lot more diversity. Figure 7.19 shows the evolution per generation of 

the PGA implementation.  

The same implementation of island GA (IGA) was modified to use a phenotype of length 

six and was run with subpopulations evolving separately from one another. Table 7.12 represents 

a sample of the final population obtained after running IGA. Unlike SGA, the final population in 

IGA has a lot more diversity. 
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Table 7.11 

Sample of final population for PGA experiment set 5 – Schwefel 

Population 

Design Design Operation Operation Environment Environment Fitness 

-110.764 110.6206 114.1634 -122.78 B1 B2 -2103.88 

-25.7738 -152.613 168.5419 -135.198 B1 B2 -1773.22 

-149.203 -41.7851 150.3702 -21.3514  A1 A2 -1786.03 

19.25329 -467.823 -85.7605 110.0545 -A1 A2 -1610.85 

 

 

Figure 7.19. Average population fitness over time with PGA for experiment set 5 – Schwefel 
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Table 7.12 

Sample of final population for IGA experiment set 5 – Schwefel 

Population 

Design Design Operation Operation Environment Environment Fitness 

75.329 -167.453 -262.074 300.293 A1 A2 -1984.768 

-33.249 154.567 341.833 -63.650 B1 B2 -1770.517 

83.422 -122.429 294.779 -45.117 B1 B2 -2048.165 

-186.50 175.472 -61.005 206.677 A1 A2 -1138.464 

-18.631 -8.129 -133.941 98.169 B1 B2 -1848.615 

-364.10 107.688 443.436 101.915 B1 B2 -1386.967 

-138.43 119.805 -320.32 224.222 A1 A2 -2005.699 

130.081 -346.562 -287.362 133.558 A1 A2 -2260.600 

13.845 -251.76 -202.456 -190.149 A1 A2 -1342.991 

258.964 55.81715 -328.877 -61.453 A1 A2 -1875.343 

52.933 228.1491 -420.826 121.588 A1 A2 -1204.704 

40.352 -220.977 -66.664 98.310 A1 A2 -1491.028 

29.213 58.4483 -39.935 -114.615 A1 A2 -1749.626 

493.048 385.762 -107.189 5.968 B1 B2 -1588.027 

 

Figure 7.20 shows the evolution per generation of the IGA implementation. The jumpy 

fitness evaluations were not present in GSN. 
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Figure 7.20. Average population fitness over time with IGA for experiment set 5 – Schwefel 

7.6 Summary 

Within this chapter, genetic social networks (GSN) were applied to the generalized life 

cycle product design (GLPD) approach of continuous product design. Simulations of GSN were 

carried out according to a set of factors including the relationship between LCE parameters, the 

number of parameters, and the shape of the search domain. The quality of the solutions returned 

by GSN was assessed using different assessment criteria including their ability to capture the 

LCE parameters’ relationship to performance, as well as their ability to scale. 

A first set of experiments (1-4) was successfully carried to better understand how GSN 

works on different types of environments, and how the GSN built-in social interactions 

mimicking shapes both the search process and the interpretation of the returned results. Whether 

the nature of the LCE parameters’ relationship was simple or not, GSN appears to converge to 

two solutions, one for each environment. Using both absolute and relative fitness values in GSN 

enabled a better understanding of the meaning of membership levels.  The final themes, and the 

final membership level values, both outputs of GSN, could be used to inform about ways the 

observed LCE parameters can be tuned to increase the performance of a live system. Assuming 



156 
 

for instance that the life cycle aggregated performance measurement is defined as a linear map of 

selected LCE parameters, and then the membership level values could be used to scale their 

corresponding solutions in order to achieve the best possible performance. 

A last (5
th

) set of experiments that was carried to assess the impact of social networking 

on the GA search process by comparing GSN to both parallel GA (PGA) and island GA (IGA) 

proved conclusive. The performance of GSN was better when compared to that of PGA, IGA, 

and SGA. However, as the population would improve in GSN, the same trend was absent from 

the themes. Therefore, although they contribute to the optimization process by helping the GSN 

pick the leaders, the themes appear to only drive the optimization process. 

Overall, the GSN would leverage the connections of each solution to each group to 

generate system efficiency. By having leaders and themes both influencing individuals, yet 

“moving” at a less frequent pace than individuals, GSN converged by mimicking the concept of 

positive deviance. Table 7.13 summarizes the results of all the experiments. 

Table 7.13  

Summary of experiments on GSN 

Linear & Polynomial 

Performance 

Griewank & Schwefel 

Performance 

Ackley & Schwefel 

Performance 

Convergence observed within 

population 

Convergence observed within 

population 

Performs better than SGA, 

IGA and PGA on optimization 

Delimited characterization of 

LCE because of convergence 

Delimited characterization of 

LCE because of convergence 

Delimited characterization of 

LCE because of convergence 

Themes and leaders updates 

reflected by average fitness 

change pattern 

Themes and leaders updates 

reflected by average fitness 

change pattern 

  

  Performed better than SGA in 

terms of the quality of found 

solutions 
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Table 7.14 summarizes the results of the GSN algorithm compared to those obtained by 

SGA, IGA and PGA for the same experiment. 

Table 7.14  

Comparative results of GSN, SGA, IGA, and PGA 

 

Algorithm 

Ranking the Achieved Best by Algorithm and Environment 

Ackley Performance Schwefel Performance 

Environment A Environment B Environment A Environment B 

SGA 2 2 2 2 

GSN 1 1 1 1 

PGA 3 4 4 3 

IGA 4 3 3 4 
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Chapter 8 

Conclusion 

The work presented in this dissertation addressed the modeling and the application of 

biomimetic metaheuristics to product life cycle engineering. A broader classification of lifecycle 

data was suggested. The generalized life cycle product design (GLPD) model, generic model for 

sustainable continuous product design was presented. Two new metaheuristics that are GA-

based, using the concepts of fish schooling (SGA) or the concepts of social network dynamics 

(GSN) were presented, implemented and applied to GLPD. The basic functionality of both SGA 

and GSN for GLPD was assessed using a design of experiments. 

From a LCE relationship standpoint, SGA performed better than GSN by being able to 

capture patterns of good performance from life cycle data. A solution quality metric named trait 

performance indexes (TPI) was defined and used with SGA. The use of TPI values demonstrated 

their ability, in some cases, to help the product designer decide whether to maintain the 

permissible values for a life cycle parameter, or to change them without getting a life cycle 

performance hit. The use of TPI could also help a designer decide whether to turn an operational 

parameter into a design parameter or vice versa. A non-parametric clustering method named the 

geometrically expanded membership for automated clustering (GEMAC) was created and used 

with SGA. 

GSN converges most of the time, even when used within an environment with a high 

density of deceptive attractors (Griewank or Ackley). The final themes, and the final 

membership level values, both outputs of GSN, could be used to inform about ways the observed 

LCE parameters can be tuned to increase the performance of a live system. 
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Both presented metaheuristic methodologies have their strengths and limitations as listed 

throughout Chapter 5 and Chapter 7. The limitations can either come from the way life cycle 

fitness is calculated, or come from the way either method uses grouping to drive optimization. 

8.1 Contributions 

The intellectual contributions of the dissertation are listed as follow: 

- A sustainable continuous product design approach called GLPD was devised and 

presented. The approach is generic enough to be applied to existing methodologies. 

o The approach claims a top-down-up approach, and takes from both bottom-up, 

and top-down methodologies 

o The approach turns design problems into optimization problems 

- A GA-based approach to optimization named SGA, that mimics fish schooling, was 

presented. SGA was built for the GLPD approach. The ability of SGA to deal with 

grouping, and unconstrained optimization was tested and the results presented.  

- A GA-based approach to optimization named GSN, that mimics social networks’ 

interactions, was presented. GSN was built for the GLPD approach. The ability of 

GSN to deal with grouping, and unconstrained optimization was tested and the results 

presented. 

 

8.2 Future Directions 

This research opens many opportunities for future research, as there is still a lot that can 

be learned on SGA or GSN either by tuning their respective parameters to make them more 

problem-specific or by applying to new types of problem to further study the impact of grouping. 
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Following are a couple of suggestions for derivative and exploratory work that can be undertaken 

to improve the work performed: 

-  Improve the performance of SGA by tuning some of its parameters (tabu distance, 

behavior threshold values, metrics, clustering…). A fine-tuning could yield to better 

performance with heterogeneous (from different environments) groups. 

- Apply SGA or GSN to stochastic optimization problems, and determine when their 

use is appropriate. The work presented here just showed that either methodology 

(SGA and GSN) deals with unconstrained optimization problem in the worst case 

scenario as better as other forms of GA-based metaheuristics. 

- Apply SGA and GSN to the study and life cycle-based design of an actual product or 

service. Although the work presented was about using either methodology for 

continuous product design, it would be interesting to see them being used on a real 

product or service design. 

 



161 
 

References 

 

Akanle, O. M., & Zhang, D. Z. (2008). Agent-based model for optimising supply-chain 

configurations. International Journal of Production Economics, 115(2), 444-460. doi: 

http://dx.doi.org/10.1016/j.ijpe.2008.02.019 

Albuquerque, P., & Nevskaya, Y. (2012). The Impact of Innovation on Product Usage: A 

Dynamic Model with Progression in Content Consumption. Working Paper. Simon 

Graduate School of Business. University of Rochester, New York.  

Allenby, B. R. (1992). Design for Environment: Implementing Industrial Ecology. (Doctorate of 

Philosophy), Rutgers University, New Brunswick,NJ.    

Anastas, P., & Warner, J. (2000). Green chemistry: theory and practice: Oxford University 

Press. 

Asiedu, Y., & Gu, P. (1998). Product life cycle cost analysis: state of the art review. 

International Journal of Production Research, 36(4), 883-908.  

AT&L, D. (2012). DoD Maintenance FACT BOOK.  

http://www.acq.osd.mil/log/mpp/factbooks/DoD_Maintenance_Fact_Book_2012.pdf: 

Office of the Under Secretary of Defense for Acquisition, Technology and Logistics. 

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., . . . Zdravkovic, 

V. (2008). Empirical investigation of starling flocks: a benchmark study in collective 

animal behaviour. Animal Behaviour, 76(1), 201-215. doi: 

10.1016/j.anbehav.2008.02.004 

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., . . . Zdravkovic, 

V. (2008). Interaction ruling animal collective behavior depends on topological rather 

than metric distance: Evidence from a field study. PNAS, 105(4), 1232–1237.  

http://dx.doi.org/10.1016/j.ijpe.2008.02.019
http://www.acq.osd.mil/log/mpp/factbooks/DoD_Maintenance_Fact_Book_2012.pdf:


162 
 

Bapuji, H., & Beamish, P. W. (2008). Avoid Hazardous Design Flaws  Retrieved 24 September, 

2012, from http://hbr.org/2008/03/avoid-hazardous-design-flaws/ar/1 

Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 

286(5439), 509-512. doi: 10.1126/science.286.5439.509 

Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of 

the social network of scientific collaborations. Physica A: Statistical Mechanics and its 

Applications, 311(3–4), 590-614. doi: http://dx.doi.org/10.1016/S0378-4371(02)00736-7 

Benyus, J. (1997). Biomimicry: innovation inspired by nature: William Morrow. 

Berrah, L., Mauris, G., & Vernadat, F. (2004). Information aggregation in industrial performance 

measurement: rationales, issues and definitions. International Journal of Production 

Research, 42(20), 211-225.  

Blanchard, B. S., & Fabrycky, W. J. (2011). Systems Engineering And Analysis (Fifth ed.). 

Upper Saddle River, NJ: Pearson Prentice-Hall. 

Blizzard, J. L., & Klotz, L. E. (2012). A framework for sustainable whole systems design. 

Design Studies, 33(5), 456-479. doi: 10.1016/j.destud.2012.03.001 

Bloom, N. (2005). Reliability Centered Maintenance (RCM) : Implementation Made Simple: 

Implementation Made Simple: Mcgraw-hill. 

Boehm, B. (1986). A Spiral Model of Software Development and Enhancement. ACM SIGSOFT 

Software Engineering Notes, 11(4), 14-24.  

Boehm, B. (2000). Spiral Development: Experience, Principles, and Refinements Spiral 

Development Workshop. Pittsburgh: CMU/SEI-2000-SR-008. 

Boguna, M., Romualdo, P.-S., Diaz-Guilera, A., & Arenas, A. (2003). Emergence of clustering, 

correlations, and communities in a social network model. Physical Review E 70, 056122. 

http://hbr.org/2008/03/avoid-hazardous-design-flaws/ar/1
http://dx.doi.org/10.1016/S0378-4371(02)00736-7


163 
 

Bonabeau, E., & Dagorn, L. (1995). Possible universality in the size distribution of fish schools. 

PHYSICAL REVIEW. E. STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED 

INTERDISCIPLINARY TOPICS, 51(6). doi: citeulike-article-id:1128133 

Bosner, R. (2006). Patented biologically-inspired technological innovations: a twenty year view. 

Journal of Bionic Engineering, Vol 3, 39-41.  

Bosner, R., & Vincent, J. (2006). Technology trajectories, innovation, and the growth of 

biomimetics. Journal of Mechanical Engineering Science, Vol 221, 1177-1180.  

Braungart, M., McDonough, W., & Bollinger, A. (2007). Cradle-to-cradle design: creating 

healthy emissions – a strategy for eco-effective product and system design. Journal of 

Cleaner Production, 15(13–14), 1337-1348. doi: 10.1016/j.jclepro.2006.08.003 

Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms. Dordrecht: Kluwer 

Academic. 

Cern´y, V. (1985). A thermodynamical approach to the traveling salesman problem. Journal of 

Optimization Theory and Applications, vol. 45(no. 1), pp. 41–51.  

Cha, S.-H. (2007). Comprehensive Survey on Distance/Similarity Measures between Probability 

Density Functions. INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND 

METHODS IN APPLIED SCIENCES, 1(4), 300-307.  

Chen, C.-C., & Chuang, M.-C. (2008). Integrating the Kano model into a robust design approach 

to enhance customer satisfaction with product design. International Journal of 

Production Economics, 114(2), 667-681. doi: 

http://dx.doi.org/10.1016/j.ijpe.2008.02.015 

http://dx.doi.org/10.1016/j.ijpe.2008.02.015


164 
 

Clark, T., & Charter, M. (1999). Eco-design Checklists for Electronic Manufacturers, Systems 

Integrators, and Suppliers of Components and Sub-assemblies. The Centre for 

Sustainable Design. 

Collins, M., & Brebbia, C. (2004). Design and nature II: comparing design in nature with 

science and engineering: Wessex Institute of Technology Press. 

Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002). Collective memory 

and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1-11. doi: 

10.1006/jtbi.2002.3065 

Davis, L. (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold. 

DEFENSE, O. O. T. U. S. O. (1996). DoD Guide to Integrated Product and Process 

Development. ACQUISITION AND TECHNOLOGY Retrieved from 

https://www.acquisition.gov/sevensteps/library/dod-guide-to-integrated.pdf. 

Dhillon, B. S. (2006). Maintainability, Maintenance, and Reliability for Engineers: Taylor & 

Francis. 

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a colony of 

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 

26(no. 1), 29–41.  

Dorigo, M., & Caro, G. D. (1999). The Ant Colony Optimization meta-heuristic. London, UK: D. 

Corne et al. 

Dorigo, M., Caro, G. D., & Gambardella, a. L. M. (1999). Ant algorithms for discrete 

optimization. Artificial Life, vol. 5(no. 2), pp. 137–172.  

Dorigo, M., & Stützle, T. (2003). The Ant Colony Optimization Metaheuristic: Algorithms, 

Applications, and Advances. In Handbook of metaheuristics, 250-285.  

http://www.acquisition.gov/sevensteps/library/dod-guide-to-integrated.pdf


165 
 

Dorigo, M.,   St tzle, T. (2004). Ant Colony Optimization. Cambridge, MA: MIT Press. 

Dorigo, M., Birattari, M.,   St tzle, T. (200 ). Ant Colony Optimization, Artificial Ants as a 

Computational Intelligence Technique. IEEE COMPUTATIONAL INTELLIGENCE 

MAGAZINE. 

Duda, M., & Shaw, J. (1997). Life cycle assessment. Society, 35(1), 38-43. doi: 10.1007/s12115-

997-1054-x 

Elimam, A. A., & Dodin, B. (2013). Project scheduling in optimizing integrated supply chain 

operations. European Journal of Operational Research, 224(3), 530-541. doi: 

http://dx.doi.org/10.1016/j.ejor.2012.09.007 

ElMaraghy, H. (2007). Reconfigurable Process Plans For Responsive Manufacturing Systems. In 

P. Cunha & P. Maropoulos (Eds.), Digital Enterprise Technology (pp. 35-44): Springer 

US. 

EPA. (17 October 2010). Defining Life Cycle Assessment (LCA).   

Eubank, S., Guclu, H., Kumar, V. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N. 

(2004). Modelling disease outbreaks in realistic urban social networks. Nature, 

429(6988), 180-184.  

Fakhim, B., Behnia, M., Armfield, S. W., & Srinarayana, N. (2011). Cooling solutions in an 

operational data centre: A case study. Applied Thermal Engineering, 31(14–15), 2279-

2291. doi: 10.1016/j.applthermaleng.2011.03.025 

Fiksel, J. (1996). Design for Environment: Creating Eco-efficient Products and Processes. New 

York: McGraw-Hill. 

Fogel, L. J., Owens, A. J., & Walsh, a. M. J. (1966). Artificial Intelligence Through Simulated 

Evolution: John Wiley & Sons. 

http://dx.doi.org/10.1016/j.ejor.2012.09.007


166 
 

Forbes, P. (2005). The Gecko’s foot: bio-inspiration, engineering new materials and devices 

from nature: Harper Collins. 

Forsberg, K., & Mooz, H. (October 1991). The Relationship of System Engineering to the Project 

Cycle. Paper presented at the Proceedings of the National Council for Systems 

Engineering (NCOSE), Chattanooga, Tennessee. 

Forsberg, K., & Mooz, H. (1997). Visualizing System Engineering and Project Management as 

an Integrated Process. Paper presented at the Proceedings of the International Council 

for Systems Engineering (INCOSE) Conference, Los Angeles, CA. 

Ghasimi, S. A., Ramli, R., & Saibani, N. A genetic algorithm for optimizing defective goods 

supply chain costs using JIT logistics and each-cycle lengths. Applied Mathematical 

Modelling(0). doi: http://dx.doi.org/10.1016/j.apm.2013.08.023 

Giudice, F., La Rosa, G., & Risitano, A. (2005). Materials selection in the Life-Cycle Design 

process: a method to integrate mechanical and environmental performances in optimal 

choice. Materials &amp; Design, 26(1), 9-20. doi: 10.1016/j.matdes.2004.04.006 

Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, vol. 1(no. 3).  

Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, vol. 2(no. 1), 4–32.  

Glover, F., & Laguna, a. M. (1997). Tabu Search: Kluwer Academic Publishers. 

Goel, P. S., & Singh, N. (1998). Creativity and innovation in durable product development. 

Computers & Industrial Engineering, 35 (1-2), 5-8.  

Goldberg, D. E. (1994). Genetic algorithms in search, optimization, and machine learning. 

Reading, Mass [u.a.]: Addison-Wesley. 

Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J.-M. (1989). Self-organized shortcuts in the 

Argentine ant,. Naturwissenschaften, 76, 579-581.  

http://dx.doi.org/10.1016/j.apm.2013.08.023


167 
 

Graedel, T., Allenby, B., & Combrie, P. (1995). Matrix approaches to abridged life-cycle 

assessment. Environmental Science and Technology in Society, 29 (3), 134-139.  

Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360-

1380.  

Griewank, A. O. (1981). Generalized descent for global optimization. Journal of Optimization 

Theory and Applications, 34(1), 11-39. doi: 10.1007/bf00933356 

Griffin, A. (1997a). PDMA research on new product development practices: updating trends, and 

benchmarking best practices. The Journal of Product Innovation Management, 14, 429-

458.  

Griffin, A. (1997b). Modeling and measuring product development cycle time across industries. 

Journal of Engineering and Technology Management, 14(1), 1-24. doi: 10.1016/s0923-

4748(97)00004-0 

Gupta, Y. (1983). Life Cycle Cost Models and Associated Uncertainties. In J. K. Skwirzynski 

(Ed.), Electronic Systems Effectiveness and Life Cycle Costing (Vol. 3, pp. 535-549): 

Springer Berlin Heidelberg. 

Hamerly, G. (2010). Making k-means even faster. Paper presented at the In SIAM International 

Conference on Data Mining (SDM).  

Hassan, M. K., Azubir, N. A. M., Nizam, H. M. I., Toha, S. F., & Ibrahim, B. S. K. K. (2012). 

Optimal Design of Electric Power Assisted Steering System (EPAS) Using GA-PID 

Method. Procedia Engineering, 41(0), 614-621. doi: 

http://dx.doi.org/10.1016/j.proeng.2012.07.220 

Helms, M., Vattam, S. S., & Goel, A. K. (2009). Biologically inspired design: process and 

products. Design Studies, 30(5), 606-622. doi: 10.1016/j.destud.2009.04.003 

http://dx.doi.org/10.1016/j.proeng.2012.07.220


168 
 

Hemelrijk, C. K., & Hildenbrandt, H. (2008). Self-Organized Shape and Frontal Density of Fish 

Schools. Ethology, 114, 245–254. doi: 10.1111/j.1439-0310.2007.01459.x 

Hemelrijk, C. K., & Hildenbrandt, H. (2012). Schools of fish and flocks of birds: their shape and 

internal structure by self-organization. Interface Focus. doi: 10.1098/rsfs.2012.0025 

Hemelrijk, C. K., Hildenbrandt, H., Reinders, J., & Stamhuis, E. J. (2010). Emergence of Oblong 

School Shape: Models and Empirical Data of Fish. Ethology, 116(11), 1099-1112. doi: 

10.1111/j.1439-0310.2010.01818.x 

Henley, E. J., & Kumamoto, H. (1985). Design for Reliability and Safety Control. Upper Saddle 

River, NJ: Pearson Printice-Hall. 

Hock, T. (1997). Integrated product development. Sadhana, 22(2), 189-198. doi: 

10.1007/bf02744488 

Holland, J. (1975). Adaptation in Natural and Artificial Systems.  

Hong-Bae Jun, Dimitris Kiritsis, & Xirouchakis, P. (2007). Research issues on closed-loop PLM. 

Computers in Industry, 58, 855–868. doi: 10.1016/j.compind.2007.04.001 

Horner, K. (1993). Methodology as a Productivity Tool. In J. Keyes (Ed.), Software Productivity 

Handbook (pp. 97-117). New York, NY: Windcrest: McGraw-Hill. 

Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption: 

Testing the UTAUT model. Information &amp; Management, 48(1), 1-8. doi: 

10.1016/j.im.2010.09.001 

Inada, Y. (2000). Steering mechanism of fish schools. Complexity International, 8.  

INCOSE. (2006). SYSTEMS ENGINEERING HANDBOOK A GUIDE FOR SYSTEM LIFE 

CYCLE PROCESSES AND ACTIVITIES. 



169 
 

Janz, D., Sihn, W., & Warnecke, H. J. (2005). Product Redesign Using Value-Oriented Life 

Cycle Costing. CIRP Annals - Manufacturing Technology, 54(1), 9-12. doi: 

http://dx.doi.org/10.1016/S0007-8506(07)60038-9 

Jardim-Goncalves, R., Grilo, A., & Steiger-Garcao, A. (2006). Challenging the interoperability 

between computers in industry with MDA and SOA. Computers in Industry, 57(8–9), 

679-689. doi: 10.1016/j.compind.2006.04.013 

Jenkins, M. (2013). Innovate or Imitate? The Role of Collective Beliefs in Competences in 

Competing Firms. Long Range Planning(0). doi: 

http://dx.doi.org/10.1016/j.lrp.2013.04.001 

Jeong, K.-Y. (2000). Conceptual frame for development of optimized simulation-based 

scheduling systems. Expert Systems with Applications, 18(4), 299-306. doi: 

http://dx.doi.org/10.1016/S0957-4174(00)00011-7 

Kabak, Ö., & Ülengin, F. (2011). Possibilistic linear-programming approach for supply chain 

networking decisions. European Journal of Operational Research, 209(3), 253-264. doi: 

http://dx.doi.org/10.1016/j.ejor.2010.09.025 

Keeney, R. L., & Lilien, G. L. (1987). New industrial product design and evaluation using 

multiattribute value analysis. Journal of Product Innovation Management, 4(3), 185-198. 

doi: 10.1016/0737-6782(87)90003-8 

Kennedy, J. (1997, 13-16 Apr 1997). The particle swarm: social adaptation of knowledge. Paper 

presented at the Evolutionary Computation, 1997., IEEE International Conference on. 

Kennedy, J., & Eberhart, R. (1995, Nov/Dec 1995). Particle swarm optimization. Paper 

presented at the Neural Networks, 1995. Proceedings., IEEE International Conference on. 

http://dx.doi.org/10.1016/S0007-8506(07)60038-9
http://dx.doi.org/10.1016/j.lrp.2013.04.001
http://dx.doi.org/10.1016/S0957-4174(00)00011-7
http://dx.doi.org/10.1016/j.ejor.2010.09.025


170 
 

Kirkpatrick, S., Jr., C. D. G., & Vecchi, a. M. P. (1983). Optimization by simulated annealing. 

Science, vol. 220, pp. 671–680.  

Knight, P., & Jenkins, J. O. (2009). Adopting and applying eco-design techniques: a practitioners 

perspective. Journal of Cleaner Production, 17(5), 549-558. doi: 

10.1016/j.jclepro.2008.10.002 

Kopácsi, S., Kovács, G., Anufriev, A., & Michelini, R. (2007). Ambient intelligence as enabling 

technology for modern business paradigms. Robotics and Computer-Integrated 

Manufacturing, 23(2), 242-256. doi: 10.1016/j.rcim.2006.01.002 

Krause, E. F. (1987). Taxicab Geometry: An Adventure in Non-Euclidean Geometry: Dover 

Publications. 

Kühme, T. (1993). User-centered approach to adaptive interfaces. Knowledge-Based Systems, 

6(4), 239-248. doi: 10.1016/0950-7051(93)90015-l 

Kumar, A. V. (2005). Introduction. In F. Kreith & D. Y. Goswami (Eds.), The CRC Handbook of 

Mechanichal Engineering (Second ed., pp. 1576-1577): CRC Press LLC. 

Larrosa-Guerrero, A., Scott, K., Head, I. M., Mateo, F., Ginesta, A., & Godinez, C. (2010). 

Effect of temperature on the performance of microbial fuel cells. Fuel, 89(12), 3985-

3994. doi: 10.1016/j.fuel.2010.06.025 

Lavie, T., & Meyer, J. (2010). Benefits and costs of adaptive user interfaces. International 

Journal of Human-Computer Studies, 68(8), 508-524. doi: 10.1016/j.ijhcs.2010.01.004 

Lehto, M. R., Landry, S. J., & Buck, J. (2007). Introduction to Human Factors and Ergonomics 

for Engineers: Taylor & Francis. 



171 
 

Lin, H. K., Harding, J. A., & Shahbaz, M. (2004). Manufacturing system engineering ontology 

for semantic interoperability across extended project teams. International Journal of 

Production Research, 42 (24), 5099-5118.  

Lourenço, H. R., Martin, O., & St¨utzle, a. T. (2002). Iterated local search. In F. G. a. G. 

Kochenberger (Ed.), Handbook of Metaheuristics, (Vol. 57, pp. 321–353): Kluwer 

Academic Publishers. 

Low, K. H. (2009). Preface: Why biomimetics? Mechanism and Machine Theory, 44(3), 511-

512. doi: 10.1016/j.mechmachtheory.2008.11.008 

Luke, S., & Spector, L. A comparison of crossover and mutation in genetic programming.  

Mahfoud, S. W. (1995). A comparison of parallel and sequential niching methods. Paper 

presented at the Proceedings of the Sixth International Conference on Genetic Algorithms 

(ICGA). 

Massarutto, A., Carli, A. d., & Graffi, M. (2011). Material and energy recovery in integrated 

waste management systems: A life-cycle costing approach. Waste Management, 31(9–

10), 2102-2111. doi: http://dx.doi.org/10.1016/j.wasman.2011.05.017 

Mayyas, A. T., Qattawi, A., Mayyas, A. R., & Omar, M. A. (2012). Life cycle assessment-based 

selection for a sustainable lightweight body-in-white design. Energy, 39(1), 412-425. doi: 

10.1016/j.energy.2011.12.033 

Mengshoel, O. J., & Goldberg, D. E. (2008). The Crowding Approach to Niching in Genetic 

Algorithms. Evolutionary Computation, 16(3), 315-354. doi: 10.1162/evco.2008.16.3.315 

Michalewicz, Z., & Fogel, D. B. (2004). How to Solve It: Modern Heuristics. Germany: 

Springer. 

http://dx.doi.org/10.1016/j.wasman.2011.05.017


172 
 

Mill, F., & Sherlock, A. (2000). Biological analogies in manufacturing. Computers in Industry, 

43(2), 153-160. doi: 10.1016/s0166-3615(00)00064-6 

Milligan, G., & Cooper, M. (1985). An examination of procedures for determining the number of 

clusters in a data set. Psychometrika, 50(2), 159-179.  

Morris, R. (2009). The Fundamentals of Product Design. 

Moyle, P. B., & Joseph J. Cech, J. (2004). Fishes: An Introduction to Ichthyology (5 ed.): 

Benjamin Cummings. 

Mueller, K. G., & Besant, C. B. (1999). Streamlining life cycle analysis: a method. Paper 

presented at the Proceedings of the First International Symposium on Environmentally 

Conscious Design and Inverse Manufacturing, Tokyo. 

MWG. (2010). INCOSE Systems Engineering Measurement Primer v2.0. In INCOSE (Ed.), A 

Basic Introduction to Measurement Concepts and Use for Systems Engineering. San 

Diego, CA: International Council on Systems Engineering. 

Neely, A. (1998). Measuring Business Performance. Economist Books. 

Nelson, B., Wilson, J., & Yen, J. (2009, 18-21 Oct. 2009). A study of biologically-inspired 

design as a context for enhancing student innovation. Paper presented at the Frontiers in 

Education Conference, 2009. FIE '09. 39th IEEE. 

Nock, R., & Nielsen, F. (2006). On Weighting Clustering. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 28(8), 1-13.  

Ohno, K. (2011). The optimal control of just-in-time-based production and distribution systems 

and performance comparisons with optimized pull systems. European Journal of 

Operational Research, 213(1), 124-133. doi: http://dx.doi.org/10.1016/j.ejor.2011.03.005 

http://dx.doi.org/10.1016/j.ejor.2011.03.005


173 
 

Oyewole, S. A., Haight, J. M., & Freivalds, A. (2010). The ergonomic design of classroom 

furniture/computer work station for first graders in the elementary school. International 

Journal of Industrial Ergonomics, 40(4), 437-447. doi: 10.1016/j.ergon.2010.02.002 

Ozcan, E., & Mohan, C. K. (1999, 1999). Particle swarm optimization: surfing the waves. Paper 

presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 

Congress on. 

Pal, N. R., & Biswas, J. (1997). Cluster validation using graph theoretic concepts. Pattern 

Recognition, 30(6), 847-857. doi: 10.1016/s0031-3203(96)00127-6 

Parrish, J. K., Viscido, S. V., & Grunbaum, D. (2002). Self-organized fish schools: an 

examination of emergent properties. BIOLOGICAL BULLETIN- MARINE BIOLOGICAL 

LABORATORY, VOL 202; PART 3, 296-305.  

Partridge, B. L. (1980). The effect of school size on the structure and dynamics of minnow 

schools. Animal Behaviour, 28(1), 68-IN63. doi: 10.1016/s0003-3472(80)80009-1 

Partridge, B. L. J. (1982). The structure and function of fish schools. Scientific American, 246.  

Partridge, B. L. J., Johansson, J., & Kalisk, J. (1983 ). Structure of schools of giant bluefin tuna 

in Cape Cod Bay. Environ. Biol. Fish., 9, 253–262.  

PILCHER, J. J., NADLER, E., & BUSCH, C. (2002). Effects of hot and cold temperature 

exposure on performance: a meta-analytic review. ERGONOMICS, 45(10), 682-698.  

Pitcher, T. J. (2001). FISH SCHOOLING Encyclopedia of Ocean Sciences (Vol. 2, pp. 975–

987): Elsevier Ltd. 

Ramze Rezaee, M., Lelieveldt, B. P. F., & Reiber, J. H. C. (1998). A new cluster validity index 

for the fuzzy c-mean. Pattern Recognition Letters, 19(3–4), 237-246. doi: 10.1016/s0167-

8655(97)00168-2 



174 
 

Rechenberg, I. (1973). Evolutionsstrategie—Optimierung technischer Systeme nach Prinzipien 

der biologischen Information. Freiburg, Germany. 

Roozenburg, N., & Eekels, J. (1995). Product Design: Fundamentals and Methods. Chichester: 

Wiley. 

Ross, P., & Corne, D. (1994). Applications of Genetic Algorithms. AISB Quarterly 89, 23-30.  

Royce, W. W. (1970). Amplify Learning Managing the Development of Large Software Systems. 

Sääksvuori, A., & Immonen, A. (2008). Product Life Cycle Management   Retrieved from 

http://www.springerlink.com/content/V01R625382465324 doi:10.1007/978-3-540-

78172-1_1 

Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical 

Modelling, 9(3–5), 161-176. doi: 10.1016/0270-0255(87)90473-8 

Saaty, T. L. (1982). Decision making for leaders: The analytical hierarchy process for decisions 

in a complex world. Belmont, California: Lifetime Learning Publications. 

Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal 

of Operational Research, 48(1), 9-26. doi: 10.1016/0377-2217(90)90057-i 

Saaty, T. L. (2005). Analytic Hierarchy Process Encyclopedia of Biostatistics: John Wiley & 

Sons, Ltd. 

Sarkar, B. K., Mandal, P., Saha, R., Mookherjee, S., & Sanyal, D. (2013). GA-optimized 

feedforward-PID tracking control for a rugged electrohydraulic system design. ISA 

Transactions, 52(6), 853-861. doi: http://dx.doi.org/10.1016/j.isatra.2013.07.008 

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models.: John Wiley & Sons. 

http://www.springerlink.com/content/V01R625382465324
http://dx.doi.org/10.1016/j.isatra.2013.07.008


175 
 

Sedighizadeh, D., & Masehian, E. (2009). An particle swarm optimization method, taxonomy 

and applications. Proceedings of the international journal of computer theory and 

engineering, 5, 486-502.  

Seltzer, L. (2012). Is Apple Or NFC The Bigger Loser With iPhone 5?  Retrieved 24 September, 

2012, from http://www.informationweek.com/byte/personal-tech/wireless/is-apple-or-

nfc-the-bigger-loser-with-ip/240007606?queryText=iphone%205%20nfc 

Spears, W. M. (1992). Crossover or mutation. Foundations of genetic algorithms 2, 221-237.  

Stanfield, P. M., King, R. E., & Joines, J. A. (1996). Scheduling arrivals to a production system 

in a fuzzy environment. European Journal of Operational Research, 93(1), 75-87. doi: 

http://dx.doi.org/10.1016/0377-2217(95)00117-4 

Stark, J. (2011). Product Lifecycle Management (pp. 1-16): Springer London. 

Suh, N. P. (1999). Engineering Design. In F. Kreith (Ed.), The CRC Hanbook of Mechanical 

Engineering (pp. 2-17). Boca Raton: CRC Press LLC. 

Sumpter, D. J. T. (2006). The principles of collective animal behaviour. Philosophical 

Transaction of Royal Society B, 361, pp. 5-22. doi: 10.1098/rstb.2005.1733 

Technologies, I. (2012). Functions and Features  Retrieved 22 September 2012, from 

http://www.inclusive.com/mmr/findings/functions_and_features.htm 

Toivonen, R., Kovanen, L., Kivelä, M., Onnela, J.-P., Saramäki, J., & Kaski, K. (2009). A 

comparative study of social network models: Network evolution models and nodal 

attribute models. Social Networks, 31(4), 240-254. doi: 10.1016/j.socnet.2009.06.004 

Toulabi, M. R., Shiroei, M., & Ranjbar, A. M. (2014). Robust analysis and design of power 

system load frequency control using the Kharitonov's theorem. International Journal of 

http://www.informationweek.com/byte/personal-tech/wireless/is-apple-or-nfc-the-bigger-loser-with-ip/240007606?queryText=iphone%205%20nfc
http://www.informationweek.com/byte/personal-tech/wireless/is-apple-or-nfc-the-bigger-loser-with-ip/240007606?queryText=iphone%205%20nfc
http://dx.doi.org/10.1016/0377-2217(95)00117-4
http://www.inclusive.com/mmr/findings/functions_and_features.htm


176 
 

Electrical Power & Energy Systems, 55(0), 51-58. doi: 

http://dx.doi.org/10.1016/j.ijepes.2013.08.014 

The University of Reading: What is Biomimetics? (Retrieved June 5, 2012). from 

http://www.reading.ac.uk/biomimetics/about.htm 

Verma, D., Farr, J., & Johannesen, L. H. (2003). System training metrics and measures: A key 

operational effectiveness imperative. Systems Engineering, 6(4), 238-248. doi: 

10.1002/sys.10047 

Verma, D., & Gallois, B. (2001). Graduate Program in System Design and Operational 

Effectiveness (SDOE): Interface between developers/providers, and users/consumers. 

Paper presented at the International Conference on Engineering Design (ICED), 

Glasgow, United Kingdom.  

Vincent, J., Bogatyreva, O., & Bogatyrev, N. (2007). Towards a theory of biomimetics. 

Comparative Biochemistry and Physiology - Part A: Molecular &amp; Integrative 

Physiology, 146(4, Supplement), S129. doi: 10.1016/j.cbpa.2007.01.241 

Vincent, J. F. V., Bogatyreva, O. A., R., B. N., Adrian, B., & Pahl, A.-K. (2006). Biomimetics: 

its practice and theory. Journal of The Royal Society Interface, 3(9), 471-482. doi: 

10.1098/rsif.2006.0127 

Vogel, S. (2000). Cat’s paws and catapults: mechanical worlds of nature and people. 

Wallace, D. R., Jakiela, M. J., & Flowers, W. C. (1996). Design search under probabilistic 

specifications using genetic algorithms. Computer-Aided Design, 28(5), 405-421. doi: 

http://dx.doi.org/10.1016/0010-4485(95)00059-3 

http://dx.doi.org/10.1016/j.ijepes.2013.08.014
http://www.reading.ac.uk/biomimetics/about.htm
http://dx.doi.org/10.1016/0010-4485(95)00059-3


177 
 

Wanko, P. T., & Stanfield, M. P. (2012). Adaptive Metaheuristics with Schooling Genetic 

Algorithms. Paper presented at the Industrial and Systems Engineering Research 

Conference, Orlando, Florida. 

Whitley, D., Rana, S., & Heckendorn, R. B. (1998). The Island Model Genetic Algorithm: On 

Separability, Population Size and Convergence. Journal of Computing and Information 

Technology, 7, 33-47.  

Wiendahl, H. P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H. H., Duffie, N., & 

Brieke, M. (2007). Changeable Manufacturing - Classification, Design and Operation. 

CIRP Annals - Manufacturing Technology, 56(2), 783-809. doi: 

10.1016/j.cirp.2007.10.003 

Wong, L. H., Pattison, P., & Robins, G. (2006). A spatial model for social networks. Physica A: 

Statistical Mechanics and its Applications, 360(1), 99-120. doi: 

10.1016/j.physa.2005.04.029 

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., . . . Steinberg, D. (2008). 

Top 10 Algorithms in Data Mining. Knowledge and Information Systems, 14(1), 1-37.  

Wu, Z.-j., Li, L.-z., Chen, Y., & Cai, Y. (2010, 17-19 Nov. 2010). User's behavior -based 

creative product design process. Paper presented at the Computer-Aided Industrial 

Design & Conceptual Design (CAIDCD), 2010 IEEE 11th International Conference on. 

Zahedi, F. (1986). The Analytic Hierarchy Process—A Survey of the Method and its 

Applications. Interfaces, 16(4), 96-108. doi: 10.1287/inte.16.4.96 

 

  



178 
 

Appendix A 

This appendix contains the main algorithm for SGA. All the files that are referenced 

follow starting with Appendix E. to run the code for all 5 sets of experiments that were carried 

for the dissertation, some minor changes need to be made to this file and all the supporting files. 

Just follow the comments left within each file. The name of the following file is “sga.m.” 

%reset workspace and memory 

clear global variables; 

clear all; 

clc; 

global pop envStart envEnd offset nbrAlleles NbrOidx domainRange tolerance tabu 

tabuDistance tabuLen tabuIdx limits ext stop nc; 

stop = 0; 

stop_count = 0; 

tabuIdx=0; 

tolerance=1e-11; 

nbrAlleles=3; %each chromosome will be encoded using nbrAlleles alleles 

tabuDistance=5*nbrAlleles; %minimum distance for tabu 

ext=100;%500; 

%Sets number of each parameter 

nDp=1; 

nOp=1; 

nEp=1; 

%generate field data, this is where different types of relation are tested 

[X,Y] = meshgrid(-ext:1:ext); 

[Z minZ maxZ] = performance(X,Y); 

nbr_repetitions=1; 
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max_iterations=1020;%100 

maxSameMaxPeriod=3; 

exactIterCount = 0; 

past_avg = 0.0; 

tabuLen=round(max_iterations*.20);%20% of # of iterations 

tabu=zeros(tabuLen,nbrAlleles); 

tabuF=zeros(tabuLen,1); 

fromAnBnTots = zeros(tabuLen,3); 

GemacPeriod=10; %determines how often GEMAC runs. 

%for behavior logging, use the following: 1==FF;2=SM;3==PA 

nbrIter_AvgFitness_tConvg_nSchools_reptNbr=zeros(max_iterations,3,nbr_repetitions); 

sizStaFitMax=cell(1,max_iterations); 

pop_size=120; 

envAtot=round(0.55*pop_size);% 55% of population comes from environment A 

envBtot=pop_size-envAtot;% 45% of population comes from environment B 

nbr_children=round(0.50*pop_size);% 50% of pop size 

center=[0 0];% cartesian is [101,101] Matlab 

envStart=0; 

envEnd=6; 

domainStart=-ext; 

domainEnd=+ext; 

offset=ext+1; 

domainRange=domainEnd-domainStart+1; 

limits=[domainStart domainEnd; domainStart domainEnd; envStart envEnd];%we are in dim=3 

sigma=domainRange/6; 

%behavior cutoff values 

lw_cut=0.80;%20% under averaged mean 
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hg_cut=1.05;%5% over averaged mean 

 

pop=zeros(pop_size+2*nbr_children,nbrAlleles+2);%2 - |schID|fit) 

for i=1:nbr_repetitions  

    sgafig = figure('Name','SGA TEST | In Progress Solutions', 'NumberTitle', 'off', 'Units', 

'normalized', 'Position', [.10 .10 .90 .90]);     

    array1=normrnd(center(1,1),sigma,[1,pop_size]); 

    array2=normrnd(center(1,2),sigma,[1,pop_size]); 

    envID=randperm(pop_size); 

    %makes sure we start with feasible solutions, and correct the offset 

    for h=1:pop_size 

        pop(h,1)=array1(h)-domainRange*round(array1(h)/domainRange); 

        pop(h,2)=array2(h)-domainRange*round(array2(h)/domainRange); 

        %randomly assign population to environments 

        if envID(h)<= envAtot 

            pop(h,nbrAlleles)=envStart;%environment A 

        else 

            pop(h,nbrAlleles)=envEnd;%environment B 

        end 

    end 

 

    nmaxes=zeros(1,max_iterations); 

    %%%%%%%oIndexes(1,1:pop_size+2*nbr_children)=1:1:pop_size+2*nbr_children; 

    j=0; 

    while and(j < max_iterations, stop == 0) 

        NbrOidx=pop_size; 

         %creates schools of fish 

        [IDX nc]=gemac(); 
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        period=0; 

        while period < GemacPeriod; 

            t = cputime; 

            period=period+1; 

            j=j+1; 

            nbrIter_AvgFitness_tConvg_nSchools_reptNbr(j,3,i)=nc; 

            sizStaFitMax_temp =  struct('data','data'); %creates a 1-by-1 structure with no fields. 

            data_tmp=zeros(4,nc); 

 

            schools_statuses=zeros(1,nc); 

            sum_perf=zeros(1,nc); 

            mean_perf=zeros(1,nc); 

            school_cm=zeros(nc,nbrAlleles);%But, do not include the environment since it is discrete 

            max_perf=zeros(1,nc); 

            fitnesses=zeros(NbrOidx,nc); 

            fromAnBnTot=zeros(nc,3); 

            %neatly repack pop and fitnesses from returned GEMAC output 

            indexes=zeros(1,nc); 

            whereat=zeros(pop_size+2*nbr_children,nc); 

            for k1=1:NbrOidx; 

                indexes(IDX(k1))=indexes(IDX(k1))+1; 

                %copy performance and school ID the fish belongs to 

                pop(k1,nbrAlleles+1:nbrAlleles+2)=[IDX(k1),performance(pop(k1,1:nbrAlleles))]; 

sum_perf(1,IDX(k1))=sum_perf(1,IDX(k1))+pop(k1,nbrAlleles+2);                

fitnesses(indexes(IDX(k1)),IDX(k1))=pop(k1,nbrAlleles+2); 

                school_cm(IDX(k1),1:nbrAlleles-1)=school_cm(IDX(k1),1:nbrAlleles-

1)+pop(k1,1:nbrAlleles-1); 

                whereat(indexes(IDX(k1)),IDX(k1))=k1; 
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                if pop(k1,nbrAlleles+2)>max_perf(IDX(k1)); 

                    max_perf(IDX(k1))=pop(k1,nbrAlleles+2); 

                end 

            end 

             

            %When computing breeding proportion per school -- always round 

            %whether minimizing or maximizing, we only want to deal with 

            %numbers >0 

            for k2=1:nc 

                school_cm(k2,:)=school_cm(k2,:)/indexes(k2); 

                fromAnBnTot(k2,3)=indexes(k2); 

                for k21=1:indexes(k2) 

                    if pop(whereat(k21,k2), nbrAlleles)==envStart 

                        fromAnBnTot(k2,1)=fromAnBnTot(k2,1)+1; 

                    else 

                        fromAnBnTot(k2,2)=fromAnBnTot(k2,2)+1; 

                    end 

                end 

                school_cm(k2,nbrAlleles)=envStart; 

                opt1=performance(school_cm(k2,:)); 

                school_cm(k2,nbrAlleles)=envEnd; 

                opt2=performance(school_cm(k2,:)); 

                %the average of the cluster is a weighted average 

                

mean_perf(1,k2)=(opt1*fromAnBnTot(k2,1)+opt2*fromAnBnTot(k2,2))/fromAnBnTot(k2,3); 

                if fromAnBnTot(k2,1)>=fromAnBnTot(k2,2) 

                    school_cm(k2,nbrAlleles)=envStart;%envEnd; 
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                end 

            end 

            %Determines best and puts it inside (recency) tabu if not yet in already 

            is_there=0; 

            [v i33]=max(mean_perf); 

            for k22=1:min(tabuLen,tabuIdx+1) 

                %Close to there is as good as being there 

                if (similarity('cityblock',school_cm(i33,:),tabu(k22,:)) <= tabuDistance) 

                    is_there=1; 

                    break; 

                end 

            end 

            if is_there == 0 %insert in tabu list and record best for tpi 

                tabu(mod(tabuIdx,tabuLen)+1,:)=school_cm(i33,:); 

                tabuF(mod(tabuIdx,tabuLen)+1,1)=performance(school_cm(i33,:)); 

                fromAnBnTots(mod(tabuIdx,tabuLen)+1,:)=fromAnBnTot(i33,:); 

                tabuIdx=tabuIdx+1; 

            end 

            nmaxes(1,j)=max(max_perf); 

            nbr_breed=pop_size+nbr_children-NbrOidx; 

            mean_schools=mean(mean_perf); 

            ratios=sum_perf.*indexes; 

            totalRatio=sum(ratios); 

            breed_per_school=round(nbr_breed*ratios./totalRatio); 

            %in case some sums were negative while others were positive 

            for ps=1:length(breed_per_school) 

                if breed_per_school(ps)<0 



184 
 

                    breed_per_school(ps)=0; 

                end 

            end 

            %Check whether a stopping criteria has been reached 

            if (abs(past_avg-mean_schools)<=tolerance) 

                stop_count = stop_count +1; 

                if stop_count == maxSameMaxPeriod 

                    exactIterCount = j; 

                    stop = 1; 

                end 

            else 

                past_avg = mean_schools; 

                stop_count = 0; 

            end 

            %we are only interested in the behavior of schools that can breed 

            for k3=1:nc 

                if breed_per_school(k3)<1; continue; end 

                %%if indexes(k3)==1; schools_statuses(k3)=3; continue; end 

                if mean_perf(k3)<=lw_cut*mean_schools 

                    schools_statuses(k3)=3; continue;%Predator Avoidance 

                end 

                if mean_perf(k3)>=hg_cut*mean_schools 

                    %schools_statuses(k3)=1;%Food Foraging 

                    %school is not close to tabu location and food still 

                    % availabe for consumption by the fish 

                    [bool pos]=isClear(school_cm(k3,:)); 

                    % If food has depleted, then it is time to move 
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                    if or(abs(pos-mod(tabuIdx,tabuLen)) < 05*GemacPeriod, pos==0) 

                        schools_statuses(k3)=1;%Food Foraging 

                    else %get away from tabu location 

                        schools_statuses(k3)=3;%Predator Avoidance 

                    end 

                else %default status 

                    schools_statuses(k3)=2;%School maintenance 

                end 

            end 

            %record data for all schools and store them 

            data_tmp(1,:)=indexes;%stores number of fish per school 

            data_tmp(2,:)=schools_statuses;%stores statuses of all schools 

            data_tmp(3,:)=mean_perf;%stores avg perf of each school 

            data_tmp(4,:)=max_perf;%stores the best performer per school 

            sizStaFitMax_temp.data=data_tmp; 

            sizStaFitMax{1,j}=sizStaFitMax_temp; 

            %Execute behaviors 

            for k4=1:nc 

                if breed_per_school(1,k4)==0; continue; end %No need 

                switch schools_statuses(k4) 

                    case 1 %Food Foraging – crossover rate > mutation rate 

                        wtpc=selection(0,breed_per_school(1,k4),fitnesses(1:indexes(k4),k4),0); 

                        for k41=1:2:breed_per_school(1,k4) 

child=crossOver(pop(whereat(wtpc(k41),k4),:),pop(whereat(wtpc(k41+1),k4),:)); 

                            NbrOidx=NbrOidx+1; 

                            pop(NbrOidx,:)=child; 

%                             indexes(k4)=indexes(k4)+1; 
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%                             whereat(indexes(k4),k4)=NbrOidx; 

                        end                         

                    case 2 %School Maintenance – crossover rate = mutation rate 

                        start1=indexes(k4); 

                        wtpc=selection(0,round(breed_per_school(1,k4)/2),fitnesses(1:indexes(k4),k4),0); 

                        for k42=1:2:round(breed_per_school(1,k4)/2) 

                            

child=crossOver(pop(whereat(wtpc(k42),k4),:),pop(whereat(wtpc(k42+1),k4),:)); 

                            NbrOidx=NbrOidx+1; 

                            pop(NbrOidx,:)=child; 

%                             indexes(k4)=indexes(k4)+1; 

%                             whereat(indexes(k4),k4)=NbrOidx; 

                        end 

                        wtpm=selection(0,round(breed_per_school(1,k4)/2),fitnesses(1:start1,k4),1); 

                        for k42=1:round(breed_per_school(1,k4)/2) 

                            %school_maintenance=max(1.0-mean_perf(k4)/nmaxes(1,j),howFar) 

                            

child=mutation(pop(whereat(wtpm(k42),k4),:),max(tolerance,mean_perf(k4)/nmaxes(1,j))); 

                            %child=mutation(pop(whereat(wtpm(k42),k4),:),randint(1,1,[round((1.0-

mean_perf(k4)/mean_schools)*10000) 

round((mean_perf(k4)/mean_schools)*10000)])/(10000)*domainRange); 

                            

%child=mutation(pop(whereat(wtpm(k42),k4),:),max(howFar2,howFar)*domainRange); 

                            NbrOidx=NbrOidx+1; 

                            pop(NbrOidx,:)=child; 

%                             indexes(k4)=indexes(k4)+1; 

%                             whereat(indexes(k4),k4)=NbrOidx; 

                        end 

                    case 3 %Predator Avoidance – Mutation precedes Crossover 
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                        start=NbrOidx+1; 

                        start2=indexes(k4); 

                        %Prob Select = f (fitness, distance from CM) 

                        %Farther from CM & higher fitness = higher prob 

                        %First, compute all distances to school CM 

                        dist2CM=zeros(indexes(k4),1); 

                        for k423=1:indexes(k4) 

                            

dist2CM(k423,1)=similarity('cityblock',school_cm(k4,:),pop(whereat(k423,k4),1:nbrAlleles)); 

                        end 

                        %Compute the vector for probabilities 

                        vect4prob=dist2CM.*fitnesses(1:indexes(k4),k4); 

                        wtpm2=selection(0,round(breed_per_school(1,k4)/2),vect4prob,1); 

                        for k43=1:round(breed_per_school(1,k4)/2) 

                            child=mutation(pop(whereat(wtpm2(k43),k4),:),max(tolerance, 

mean_perf(k4)/nmaxes(1,j))); 

                            NbrOidx=NbrOidx+1; 

                            pop(NbrOidx,:)=child; 

%                             indexes(k4)=indexes(k4)+1; 

%                             whereat(indexes(k4),k4)=NbrOidx; 

                        end 

                        %Crossover: 1st parent comes from pool of mutant fish 

                        

wtpc1=selection(0,round(breed_per_school(1,k4)/2),pop(start:NbrOidx,nbrAlleles+2),1); 

                        %Crossover: 2d parent comes from remaining school 

                        wtpc2=selection(0,round(breed_per_school(1,k4)/2),fitnesses(1:start2,k4),1); 

                        for k44=1:round(breed_per_school(1,k4)/2) 

                            child=crossOver(pop(start+wtpc1(k44)-1,:),pop(whereat(wtpc2(k44),k4),:)); 
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                            NbrOidx=NbrOidx+1; 

                            pop(NbrOidx,:)=child; 

%                             indexes(k4)=indexes(k4)+1; 

%                             whereat(indexes(k4),k4)=NbrOidx; 

                        end   

                    otherwise 

                        error('This should never occur')%nothing to be done 

                end 

            end 

            %split population by environment -- to maintain ratio 

            %keeps population size constant 

            %First, remove duplicates if any 

            pop=unique(pop(1:NbrOidx,:),'rows'); 

            NbrOidx=size(pop,1); 

            popA = pop(pop(1:NbrOidx,nbrAlleles)==envStart,:); 

            popB = pop(pop(1:NbrOidx,nbrAlleles)==envEnd,:); 

            nbr_popA=length(popA); 

            nbr_popB=length(popB); 

            nbr_popA_to_remove = nbr_popA-envAtot; 

            nbr_popB_to_remove = nbr_popB-envBtot; 

            if nbr_popA_to_remove>0 

                %create the perf vector 

                perf_vector=popA(:,nbrAlleles+2); 

                %select indexes to remove 

                idx_to_remove=selection(1,nbr_popA_to_remove,perf_vector,0); 

                i2r=sort(idx_to_remove); 

                for k6=1:nbr_popA_to_remove 
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                    popA(i2r(k6)-k6+1,:)=[]; 

%                     perf_vector(i2r(k6)-k6+1,:)=[]; 

                end 

            end 

            if nbr_popB_to_remove>0 

                %create the perf vector 

                perf_vector=popB(:,nbrAlleles+2); 

                %select indexes to remove 

                idx_to_remove=selection(1,nbr_popB_to_remove,perf_vector,0); 

                i2r=sort(idx_to_remove); 

                for k6=1:nbr_popB_to_remove 

                    popB(i2r(k6)-k6+1,:)=[]; 

%                     perf_vector(i2r(k6)-k6+1,:)=[]; 

                end 

            end 

            pop=zeros(pop_size+2*nbr_children,nbrAlleles+2 

            NbrOidx=size(popA,1)+size(popB,1); 

            pop(1:NbrOidx,:)=vertcat(popA,popB); 

            clf(sgafig,'reset');%deletes from the current figure all graphics objects 

            %record cputime it took 

            nbrIter_AvgFitness_tConvg_nSchools_reptNbr(j,2,i)= cputime-t; 

            nbrIter_AvgFitness_tConvg_nSchools_reptNbr(j,1,i)=mean_schools; 

            %creates population of fishes and group them 

            %[IDX nc]=gemac(); 

            fprintf('Done with iteration %d.\n',j); 

            %pause;             

            uniqueIDs=unique(pop(1:NbrOidx,nbrAlleles+1)); 
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            hmany=size(uniqueIDs,1); 

            newIDs=1:1:hmany; 

            for y=1:pop_size 

                for z=1:hmany 

                    if(pop(y,nbrAlleles+1)==uniqueIDs(z,1)) 

                        pop(y,nbrAlleles+1)=newIDs(1,z); 

                        break; 

                    end 

                end 

            end 

            IDX=pop(1:NbrOidx,nbrAlleles+1);%%%IDX=pop(:,nbrAlleles+1); 

            if max(IDX) ~= hmany %check the packing happened well 

                error('Error: length(uniqueIDs) value MUST MATCH hmany'); 

            end 

            nc=hmany; 

        end 

    end  

    %update value of max_iterations if convergence caused by 'stop == 1' 

    if stop == 1 

        max_iterations = j;%exactIterCount; 

        tabu=tabu(1:tabuIdx,1:nbrAlleles); 

    end 

    %Format data for SGA results plotting 

    nf=zeros(1,max_iterations); 

    statuses=zeros(3,max_iterations); 

    nmeans=zeros(1,max_iterations); 

    iter_vect=linspace(1,max_iterations,max_iterations); 
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    for m1=1:max_iterations 

        nf(1,m1)=nbrIter_AvgFitness_tConvg_nSchools_reptNbr(m1,3,i);%sizStaFitMax(m1).data; 

        nmeans(1,m1)=nbrIter_AvgFitness_tConvg_nSchools_reptNbr(m1,1,i); 

        nmaxes(1,m1)=max(sizStaFitMax{1,m1}.data(4,:)); 

        for m2=1:length(sizStaFitMax{1,m1}.data(2,:)) 

            switch sizStaFitMax{1,m1}.data(2,m2) 

                case 1 

                    statuses(1,m1)=statuses(1,m1)+1;%FF 

                case 2 

                    statuses(2,m1)=statuses(2,m1)+1;%SM 

                case 3 

                    statuses(3,m1)=statuses(3,m1)+1;%PA 

                %otherwise %school without progeny 

                    %error('Case should never occur'); 

            end 

        end 

        fprintf('Done with iteration %d.\n',m1); 

    end 

    % Plots the SGA Results 

    sgares=figure('Name','TEST_SGA | Results','Numbertitle','off'); 

    subplot(2,2,1); 

    plot(iter_vect,nf,'k*-'); 

    title('# Schools per Generation'); 

    subplot(2,2,2); 

    plot(iter_vect,nmeans,'mv-'); 

    title('School Average Fitness per Generation'); 

    subplot(2,2,3); 
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    plot(iter_vect,nmaxes(1,1:max_iterations),'cd-'); 

    title(sprintf('Max fitness per Generation with best = %1.4f',max(nmaxes))); 

    subplot(2,2,4); 

    plot(iter_vect,statuses(1,1:max_iterations),'b.-');%FF 

    hold on 

    plot(iter_vect,statuses(2,1:max_iterations),'r.-');%SM 

    plot(iter_vect,statuses(3,1:max_iterations),'g.-');%PA 

    title('Behavior per Generation. SM-R, PA-G, FF-B'); 

    hold off; 

    filename=strcat('results',num2str(i)); 

    saveas(sgares,filename,'png');% exports figure to JPEG 

    %Compute TPI index of all parameters 

    tabu = tabu(1:min(tabuIdx,tabuLen),:); 

    [tpi pd] = impactOnPerformance(tabu,nDp,nOp,nEp,limits);%lce_extremes); 

    disp('TPI values are:'); 

    disp(tpi); 

    disp('PD values are:'); 

    disp(pd); 

end  
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Appendix B 

This appendix contains the main algorithm for GSN. All the files that are referenced 

follow starting with Appendix E. to run the code for all 5 sets of experiments that were carried 

for the dissertation, some minor changes need to be made to this file and all the supporting files. 

Just follow the comments left within each file. The name of the following file is “gsn.m.” 

%reset workspace and memory 

clear global variables; 

clear all; 

clc; 

global offset MinKnowledge tolerance pop domainRange themes nbrAlleles NbrOidx 

memberships stop ext limits envEnd envStart;% tabu tabuLen tabuDistance; 

stop = 0; 

stop_count = 0; 

MinKnowledge=0.7; 

tolerance=1e-11; 

nbrAlleles=3; %each chromosome will be encoded using nbrAlleles alleles 

%tabuDistance=15*nbrAlleles; %minimum distance for tabu 

ext=500; 

%Sets number of each parameter 

nDp=1; 

nOp=1; 

nEp=1; 

%generate field 

[X,Y] = meshgrid(-ext:1:ext); 

[Z minZ maxZ] = performance(X,Y); 

nbr_repetitions=1; 
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max_iterations=1000; 

maxSameMaxPeriod=3; 

exactIterCount = 0; 

past_avg = 0.0; 

%tabuLen=round(max_iterations*.20);%20% of # of iterations 

%tabu=zeros(tabuLen,nbrAlleles); 

lTerm=10;%determines how many generations leaders are elected for 

NbrIter_AvgFitness_tConvg_nGroups_reptNbr=zeros(max_iterations,3,nbr_repetitions); 

pop_size=120; 

percentA=0.55; 

envAtot=round(percentA*pop_size);% 55% of population comes from environment A 

envBtot=pop_size-envAtot;% 45% of population comes from environment B 

nbr_children=round(0.5*pop_size);% 50% of pop_size 

nbr_themes=5; 

%howFar=0.01;%proportion of search domain to be used for mutation range 

%howFar2=0.50;%proportion of search domain to be used for mutation range 

center=[0 0];%{0,0] cartesian is [101,101] Matlab 

%lce_extremes=zeros(nbrAlleles,2); 

envStart=-421;%0; 

envEnd=421;%6; 

domainStart=-ext; 

domainEnd=+ext; 

offset=ext+1; 

domainRange=domainEnd-domainStart+1; 

limits=[domainStart domainEnd; domainStart domainEnd; envStart envEnd];%we are in dim=3 

sigma=domainRange/6; 
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pop=zeros(pop_size+2*nbr_children,nbrAlleles+1);%1 - |fit| 

themes=zeros(nbr_themes,nbrAlleles+1); 

%Zp=zeros(pop_size+2*nbr_children,1); 

nmaxes=zeros(1,max_iterations); 

 

for i=1:nbr_repetitions  

    gsnfig = figure('Name','GSN TEST | In Progress Solutions', 'NumberTitle', 'off', 'Units', 

'normalized', 'Position', [.05 .05 .90 .90]); 

    array1=normrnd(center(1,1),sigma,[1,pop_size]); 

    array2=normrnd(center(1,2),sigma,[1,pop_size]); 

    array4=normrnd(center(1,1),sigma,[1,nbr_themes]); 

    array5=normrnd(center(1,2),sigma,[1,nbr_themes]); 

    array6=randperm(nbr_themes); 

    envID=randperm(pop_size); 

    %makes sure we start with feasible solutions, and correct the offset 

    for h=1:pop_size 

        pop(h,1)=array1(h)-domainRange*round(array1(h)/domainRange); 

        pop(h,2)=array2(h)-domainRange*round(array2(h)/domainRange); 

        %randomly assign population to environments 

        if envID(h)<= envAtot 

            pop(h,nbrAlleles)=envStart;%environment A 

        else 

            pop(h,nbrAlleles)=envEnd;%environment B 

        end 

        pop(h,nbrAlleles+1)=performance(pop(h,1:nbrAlleles)); 

    end 

%     for h2=1:nbrAlleles 

%         lce_extremes(h2,1)=min(limits(h2,:)); 
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%         lce_extremes(h2,2)=max(limits(h2,:)); 

%     end 

    %makes sure we start with feasible group themes, and correct the offset 

    for h2=1:nbr_themes 

        themes(h2,1)=array4(h2)-domainRange*round(array4(h2)/domainRange); 

        themes(h2,2)=array5(h2)-domainRange*round(array5(h2)/domainRange); 

        if array6(h2)<=round(percentA*nbr_themes) 

            themes(h2,nbrAlleles)=envStart;%environment A 

        else 

            themes(h2,nbrAlleles)=envEnd;%environment B 

        end         

        themes(h2,nbrAlleles+1)=performance(themes(h2,1:nbrAlleles)); 

    end 

    themes0 = themes; 

    j=0; 

    NbrOidx=pop_size; 

    %Zp(1:NbrOidx,1)=performance(pop(1:NbrOidx,1),pop(1:NbrOidx,2),pop(1:NbrOidx,3)); 

    while and(j < max_iterations, stop == 0)  

        %creates population of individuals and group them <- put out of loop so it 

        %can be called right at the end of each iteration 

        leadIndx=createSocialGroups();   

        nc = length(leadIndx); 

  membership=zeros(pop_size+2*nbr_children,nc); 

  membership(1:NbrOidx,:)=memberships; 

        term_counter=0; 

        NbrIter_AvgFitness_tConvg_nGroups_reptNbr(j+1,3,i)=nc; 
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        while term_counter < lTerm 

            t = cputime; 

            j=j+1; 

            sum_perf=zeros(1,nc); 

            mean_perf=zeros(1,nc); 

            max_perf=zeros(1,nc); 

            perf=zeros(NbrOidx,nc); 

            for k2=1:nc 

                perf(:,k2)=membership(1:NbrOidx,k2).*pop(1:NbrOidx,nbrAlleles+1); 

                sum_perf(1,k2)=sum(perf(:,k2)); 

                max_perf(1,k2)=max(perf(:,k2)); 

                mean_perf(1,k2)=mean(perf(:,k2)); 

            end 

            term_counter=term_counter+1; 

            nmaxes(1,j)=max(max(perf));%max(pop(1:NbrOidx,nbrAlleles+1)); 

            new_members=pop_size+nbr_children-NbrOidx;             

            ratios=sum_perf./sum(sum_perf); 

            members_per_group=round(new_members*ratios); 

%             %in case some sums were negative while others were positive 

%             for ps=1:length(members_per_group) 

%                 if members_per_group(ps)<0 

%                     members_per_group(ps)=0; 

%                 end 

%             end 

            mean_groups=mean(mean_perf); 

            %effective number added 

            %to_add=0; 
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            %for k3=1:nc 

            %    to_add=to_add+2*round(members_per_group(1,k3)/2); 

            %end 

            %for_children=zeros(to_add,3); 

            %Check whether a stopping criteria is reached 

            if (abs(past_avg-mean_groups)<tolerance) 

                stop_count = stop_count +1; 

                if stop_count == maxSameMaxPeriod 

                    exactIterCount = j; 

                    stop = 1; 

                end 

            else 

                past_avg = mean_groups; 

                stop_count = 0; 

            end  

            %plotting part -- Not available from 4+ dimensions 

%             contour3(X,Y,Z,70) 

%             %%%%%%%%%%%%%%%init_pos=campos; 

%             xlabel('X-plan','FontSize',8) 

%             ylabel('Y-plan','FontSize',8) 

%             zlabel('Z-performance','FontSize',8) 

%             %colormap default 

%             colormap('white')%'bone' 'white' 'winter' 

%             colorbar 

%  

%             hold on 

%             plot3(pop(1:NbrOidx,1),pop(1:NbrOidx,2),pop(1:NbrOidx,nbrAlleles+1),'ob'); 
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%             campos([0 0 maxZ]); 

%             title(sprintf('Total Fitness Average = %1.4f, Iteration = %d',mean_groups,j)); 

%             drawnow 

%             hold off; 

%             %Uncomment the next 2 lines if you don't mind waiting 

%             filename=strcat('frame',num2str(j)); 

%             saveas(gsnfig,filename,'jpg');% exports figure to JPEG 

            %execute GA operators 

            for k4=1:nc 

                wtpc=selection(0,round(members_per_group(1,k4)/2),perf(:,k4),0); 

                for k42=1:2:round(members_per_group(1,k4)/2) 

                    child=crossOver2(pop(wtpc(k42),:),pop(wtpc(k42+1),:)); 

                    NbrOidx=NbrOidx+1; 

                    pop(NbrOidx,:)=child; 

                    %Crossover requires 2 parents (think fuzzy AND to pass on membership) 

                    %child_membership=min([membership(wtpc(k42),:); 

membership(wtpc(k42+1),:)]); 

                    %membership(NbrOidx,:)= child_membership; 

                    membership(NbrOidx,:)= min([membership(wtpc(k42),:); 

membership(wtpc(k42+1),:)]); 

                end 

                wtpm=selection(0,round(members_per_group(1,k4)/2),perf(:,k4),1); 

                for k42=1:round(members_per_group(1,k4)/2) 

                    

child=mutation2(pop(wtpm(k42),:),mean_perf(k4)/max(tolerance,abs(nmaxes(1,j)))); 

                    NbrOidx=NbrOidx+1; 

                    pop(NbrOidx,:)=child; 

                    %Mutation requires 1 parent (think OR, fuzzy OR) 
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                    %child_membership=max([membership(wtpm(k42),:);rand(1,nc)]); 

                    %membership(NbrOidx,:)= child_membership; 

                    membership(NbrOidx,:)= max([membership(wtpm(k42),:);rand(1,nc)]); 

                end 

            end             

            %keeps population size constant 

            %First, remove duplicates if any 

            [pop idxs]=unique(pop(1:NbrOidx,:),'rows'); 

            %remove corresponding rows 

            NbrOidx=size(pop,1); 

            membrs=zeros(NbrOidx,size(membership,2)); 

            for cr=1:NbrOidx 

                membrs(cr,:)=membership(idxs(cr),:); 

            end 

            %%%%%%%%%%%%%%%%%%% 

            %split population by environment -- to maintain ratio 

            popA = pop(pop(1:NbrOidx,nbrAlleles)==envStart,:); 

            popB = pop(pop(1:NbrOidx,nbrAlleles)==envEnd,:); 

            lenA=length(popA); 

            lenB=length(popB); 

            nbr_popA_to_remove =lenA-envAtot; 

            nbr_popB_to_remove = lenB-envBtot; 

   mbr_vectorA=zeros(lenA,nc); 

            mbr_vectorB=zeros(lenB,nc); 

   idx=ones(1,2); 

            for h = 1:NbrOidx 

                if pop(h,nbrAlleles)==envStart;%environment A 
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                    mbr_vectorA(idx(1),:)=membrs(h,:); 

     idx(1)=idx(1)+1; 

                else %environment B 

                    mbr_vectorB(idx(2),:)=membrs(h,:); 

                    idx(2)=idx(2)+1; 

                end 

            end 

    

            if nbr_popA_to_remove>0 

                %create the perf vector 

                perf_vectorA=popA(:,nbrAlleles+1); 

                %select indexes to remove 

                idx_to_remove=selection(1,nbr_popA_to_remove,perf_vectorA,0); 

                i2r=sort(idx_to_remove); 

                for k6=1:nbr_popA_to_remove 

                    popA(i2r(k6)-k6+1,:)=[]; 

                    perf_vectorA(i2r(k6)-k6+1,:)=[]; 

                    mbr_vectorA(i2r(k6)-k6+1,:)=[]; 

                end 

            end 

            if nbr_popB_to_remove>0 

                %create the perf vector 

                perf_vectorB=popB(:,nbrAlleles+1); 

                %select indexes to remove 

                idx_to_remove=selection(1,nbr_popB_to_remove,perf_vectorB,0); 

                i2r=sort(idx_to_remove); 

                for k6=1:nbr_popB_to_remove 
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                    popB(i2r(k6)-k6+1,:)=[]; 

                    perf_vectorB(i2r(k6)-k6+1,:)=[]; 

                    mbr_vectorB(i2r(k6)-k6+1,:)=[]; 

                end 

            end 

             

            pop_size=size(popA,1)+size(popB,1); 

            pop=zeros(pop_size+2*nbr_children,nbrAlleles+1);%1 - |fit| 

            membership=zeros(pop_size+2*nbr_children,nc); 

            NbrOidx=pop_size; 

            pop(1:NbrOidx,:)=vertcat(popA,popB); 

            membership(1:NbrOidx,:)=vertcat(mbr_vectorA,mbr_vectorB); 

            %%%%%%%%%%%%%%%%%%%% 

            clf(gsnfig,'reset');%deletes from the current figure all graphics objects 

            %record cputime it took 

            NbrIter_AvgFitness_tConvg_nGroups_reptNbr(j,2,i)= cputime-t; 

            NbrIter_AvgFitness_tConvg_nGroups_reptNbr(j,1,i)=mean_groups; 

            fprintf('Done with iteration %d.\n',j); 

            %prep data for next iteration 

            %[Zp minZp maxZp] = performance(pop(:,1),pop(:,2),pop(:,3)); 

        end 

        disp('time to upgrade community themes and re-elect leaders ;-)\n'); 

        %%Upgrade community themes for new leaders --> dynamic themes 

        for m=1:nbr_themes 

            for t_col=1:nbrAlleles-1 

                

new_val=themes(m,t_col)+sum(perf(1:NbrOidx,m).*pop(1:NbrOidx,t_col))/sum(perf(1:NbrOid

x,m)); 
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                themes(m,t_col)=new_val-domainRange*round(new_val/domainRange); 

            end 

            themes(m,nbrAlleles+1)=performance(themes(m,1:nbrAlleles)); 

        end 

    end 

     

    %update value of max_iterations if convergence caused by 'stop == 1' 

    if stop == 1 

        max_iterations = exactIterCount; 

%         if tabuLen > exactIterCount 

%             tabu=tabu(1:exactIterCount,nbrAlleles); 

%         end 

    end 

 

    %nmeans=zeros(1,max_iterations); 

    nmeans=NbrIter_AvgFitness_tConvg_nGroups_reptNbr(1:j,1,i); 

    % Plots the GSN Results 

    gsnres=figure('Name','TEST_GSN | Results','Numbertitle','off'); 

     subplot(2,1,1); 

     iter_vect=linspace(1,j,j); 

     plot(iter_vect,nmeans,'mv-'); 

     title('Group Average Fitness per Generation'); 

     subplot(2,1,2); 

    plot(iter_vect,nmaxes(1,1:j),'cd-'); 

    title(sprintf('Max fitness per Generation with best = %1.4f',max(nmaxes))); 

    filename=strcat('results',num2str(i)); 

    saveas(gsnres,filename,'png');% exports figure to JPEG 
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    %Compute TPI index of all parameters 

%     [tpi pd] = impactOnPerformance(tabu,nDp,nOp,nEp,limits);%lce_extremes); 

%     disp('TPI values are:'); 

%     disp(tpi); 

%     disp('PD values are:'); 

%     disp(pd); 

end  
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Appendix C 

This appendix contains the main algorithm for IGA. All the files that are referenced 

follow starting with Appendix E. to run the code for all 5 sets of experiments that were carried 

for the dissertation, some minor changes need to be made to this file and all the supporting files. 

Just follow the comments left within each file. The name of the following file is “iga.m.” 

%reset workspace and memory 

clear global variables; 

clear all; 

clc; 

global iSize envEnd envStart nbrAlleles migrationInterval tolerance islands popSize 

domainRange limits nbrIslands migrationSize pop; 

%initialize variables 

nbrAlleles=3;%gen1|gen2|evmt|perf 

nbrIslands=5; 

popSize=120; 

migrationInterval=30; 

migrationSize=5; 

tolerance=1e-11; 

iSize=round(popSize/nbrIslands);%popSize should be a multiple of nbrIslands 

ext=500; 

%generate field 

%[X,Y] = meshgrid(-ext:1:ext); 

envAtot=round(0.65*popSize);%65% of tot pop 

envBtot=popSize-envAtot; 

center=[0 0]; 

envStart=0; 
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envEnd=6; 

domainStart=-ext; 

domainEnd=+ext; 

offset=ext+1; 

domainRange=domainEnd-domainStart+1; 

limits=[domainStart domainEnd; domainStart domainEnd; envStart envEnd];%we are in dim=3 

sigma=domainRange/6; 

nbr_replications=1; 

max_iterations=1020; 

xVal=1:1:max_iterations; 

for i=1:nbr_replications 

    %For summary data plotting 

    %to record all bests from each island 

    bests=zeros(max_iterations,nbrAlleles+1,nbrIslands); 

    averages=zeros(max_iterations,1,nbrIslands); 

    %initializes population 

    pop=zeros(popSize,nbrAlleles+1);%%gen1|gen2|evmt|perf 

    array1=normrnd(center(1,1),sigma,[1,popSize]); 

    array2=normrnd(center(1,2),sigma,[1,popSize]); 

    array3=zeros(1,popSize); 

    envID=randperm(popSize); 

    %makes sure we start with feasible solutions, and correct the offset 

    for h=1:popSize 

        pop(h,1)=array1(h)-domainRange*round(array1(h)/domainRange); 

        pop(h,2)=array2(h)-domainRange*round(array2(h)/domainRange); 

        %randomly assign population to environments 

        if envID(h)<= envAtot 
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            pop(h,nbrAlleles)=envStart;%environment A 

        else 

            pop(h,nbrAlleles)=envEnd;%environment B 

        end 

        %Add performance values 

        pop(h,nbrAlleles+1)=performance(pop(h,1:nbrAlleles)); 

    end 

     

    %initializes islands structure and populates it 

    islands=zeros(iSize,nbrAlleles+1,nbrIslands); 

    create_islands(); 

    j=0; 

    nbrOffspring=round(0.50*popSize)/nbrIslands;% 50% of pop size 

    while j<round(max_iterations/migrationInterval); 

        allBests=zeros(migrationInterval,nbrAlleles+1,nbrIslands); 

        allAverages=zeros(migrationInterval,1,nbrIslands); 

         

        j=j+1; 

        %Go through all islands, run them all in parallel 

        parfor k = 1:nbrIslands 

            [allAverages(:,1,k) allBests(:,:,k)]=ga(k,nbrOffspring); 

        end 

        %Store bests 

        for k=1:nbrIslands 

            bests((j-1)*migrationInterval+1:j*migrationInterval,:,k)=allBests(:,:,k); 

            averages((j-1)*migrationInterval+1:j*migrationInterval,1,k)=allAverages(:,1,k); 

        end 
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        %Proceeds with migration to add diversity within each subpopulation 

        migrate();         

    end 

     

    %plot all bests for each subpopulation 

    % Plots the IGA Results 

    igares=figure('Name','TEST_IGA | Results','Numbertitle','off'); 

    subplot(2,3,1); 

    plot(xVal,bests(:,nbrAlleles+1,1),'k*-'); 

    title('Bests/Gen. for Isl.#1'); 

    subplot(2,3,2); 

    plot(xVal,bests(:,nbrAlleles+1,2),'b.-'); 

    title('Bests/Gen. for Isl.#2'); 

    subplot(2,3,3); 

    plot(xVal,bests(:,nbrAlleles+1,3),'r.-'); 

    title('Bests/Gen. for Isl.#3'); 

    subplot(2,3,4); 

    plot(xVal,bests(:,nbrAlleles+1,4),'g.-'); 

    title('Bests/Gen. for Isl.#4'); 

    subplot(2,3,5); 

    plot(xVal,bests(:,nbrAlleles+1,5),'m*-'); 

    title('Bests/Gen. for Isl.#5'); 

     

    filename=strcat('allBests',num2str(i)); 

    saveas(igares,filename,'png');% exports figure to PNG 
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    igares2=figure('Name','TEST_IGA | Results','Numbertitle','off'); 

    subplot(2,3,1); 

    plot(xVal,averages(:,1,1),'k*-'); 

    title('Avg/Gen. for Isl.#1'); 

    subplot(2,3,2); 

    plot(xVal,averages(:,1,2),'b.-'); 

    title('Avg/Gen. for Isl.#2'); 

    subplot(2,3,3); 

    plot(xVal,averages(:,1,3),'r.-'); 

    title('Avg/Gen. for Isl.#3'); 

    subplot(2,3,4); 

    plot(xVal,averages(:,1,4),'g.-'); 

    title('Avg/Gen. for Isl.#4'); 

    subplot(2,3,5); 

    plot(xVal,averages(:,1,5),'m*-'); 

    title('Avg/Gen. for Isl.#5'); 

     

    filename=strcat('allAverages',num2str(i)); 

    saveas(igares2,filename,'png');% exports figure to PNG 

    %waits for a key press (any key) before continuing 

    %pause 

endj 

  



210 
 

Appendix D 

This appendix contains the main algorithm for PGA. All the files that are referenced 

follow starting with Appendix E. to run the code for all 5 sets of experiments that were carried 

for the dissertation, some minor changes need to be made to this file and all the supporting files. 

Just follow the comments left within each file. The name of the following file is “pga.m.” 

%reset workspace and memory 

clear global variables; 

clear all; 

clc; 

global iSize envEnd envStart nbrAlleles migrationInterval tolerance islands popSize 

domainRange limits nbrIslands migrationSize pop; 

%initialize variables 

nbrAlleles=5;%gen1|gen2|evmt|perf 

nbrIslands=4; 

popSize=120; 

migrationInterval=30; 

migrationSize=2; 

tolerance=1e-11; 

iSize=round(popSize/nbrIslands);%popSize should be a multiple of nbrIslands 

ext=500; 

%generate field 

%[X,Y] = meshgrid(-ext:1:ext); 

envAtot=round(0.55*popSize);%65% of tot pop 

envBtot=popSize-envAtot; 

center=[0 0]; 

envStart=0; 
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envEnd=6; 

domainStart=-ext; 

domainEnd=+ext; 

offset=ext+1; 

domainRange=domainEnd-domainStart+1; 

limits=[domainStart domainEnd; domainStart domainEnd; envStart envEnd];%we are in dim=3 

sigma=domainRange/6; 

 

nbr_replications=1; 

max_iterations=1020; 

xVal=1:1:max_iterations; 

 

for i=1:nbr_replications 

    %For summary data plotting 

    %to record all bests from each island 

    bests=zeros(max_iterations,nbrAlleles+1,nbrIslands); 

     

    averages=zeros(max_iterations,1,nbrIslands); 

 

    %initializes population 

    pop=zeros(popSize,nbrAlleles+1);%%gen1|gen2|gen3|gen4|evmt|perf 

    array1=normrnd(center(1,1),sigma,[1,popSize]); 

    array2=normrnd(center(1,2),sigma,[1,popSize]); 

    array3=zeros(1,popSize); 

    envID=randperm(popSize); 

    %makes sure we start with feasible solutions, and correct the offset 

    for h=1:popSize 
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        pop(h,1)=array1(h)-domainRange*round(array1(h)/domainRange); 

        pop(h,2)=array2(h)-domainRange*round(array2(h)/domainRange); 

        %randomly assign population to environments 

        if envID(h)<= envAtot 

            pop(h,nbrAlleles)=envStart;%environment A 

        else 

            pop(h,nbrAlleles)=envEnd;%environment B 

        end 

        %Add performance values 

        pop(h,nbrAlleles+1)=performance(pop(h,1:nbrAlleles)); 

    end 

     

    %initializes islands structure and populates it 

    islands=zeros(iSize,nbrAlleles+1,nbrIslands); 

    create_islands(); 

    j=0; 

    nbrOffspring=round(0.50*popSize)/nbrIslands;% 50% of pop size 

    while j<round(max_iterations/migrationInterval); 

        allBests=zeros(migrationInterval,nbrAlleles+1,nbrIslands); 

        allAverages=zeros(migrationInterval,1,nbrIslands); 

         

        j=j+1; 

        %Go through all islands, run them all in parallel 

        parfor k = 1:nbrIslands 

            [allAverages(:,1,k) allBests(:,:,k)]=ga(k,nbrOffspring); 

        end 

        %Store bests 
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        for k=1:nbrIslands 

            bests((j-1)*migrationInterval+1:j*migrationInterval,:,k)=allBests(:,:,k); 

            averages((j-1)*migrationInterval+1:j*migrationInterval,1,k)=allAverages(:,1,k); 

        end 

        %No migration this time 

    end 

     

    %plot all bests for each subpopulation 

    % Plots the PGA Results 

    pgares=figure('Name','TEST_PGA | Results','Numbertitle','off'); 

    subplot(2,3,1); 

    plot(xVal,bests(:,nbrAlleles+1,1),'k*-'); 

    title('Bests/Gen. for Subpop#1'); 

    subplot(2,3,2); 

    plot(xVal,bests(:,nbrAlleles+1,2),'b.-'); 

    title('Bests/Gen. for Subpop#2'); 

    subplot(2,3,3); 

    plot(xVal,bests(:,nbrAlleles+1,3),'r.-'); 

    title('Bests/Gen. for Subpop#3'); 

    subplot(2,3,4); 

    plot(xVal,bests(:,nbrAlleles+1,4),'g.-'); 

    title('Bests/Gen. for Subpop#4'); 

    subplot(2,3,5); 

    plot(xVal,bests(:,nbrAlleles+1,5),'m*-'); 

    title('Bests/Gen. for Subpop#5'); 

     

    filename=strcat('results',num2str(i)); 
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    saveas(pgares,filename,'png');% exports figure to PNG 

      

    pgares2=figure('Name','TEST_PGA | Results','Numbertitle','off'); 

    subplot(2,3,1); 

    plot(xVal,averages(:,1,1),'k*-'); 

    title('Avg/Gen. for Subpop#1'); 

    subplot(2,3,2); 

    plot(xVal,averages(:,1,2),'b.-'); 

    title('Avg/Gen. for Subpop#2'); 

    subplot(2,3,3); 

    plot(xVal,averages(:,1,3),'r.-'); 

    title('Avg/Gen. for Subpop#3'); 

    subplot(2,3,4); 

    plot(xVal,averages(:,1,4),'g.-'); 

    title('Avg/Gen. for Subpop#4'); 

    subplot(2,3,5); 

    plot(xVal,averages(:,1,5),'m*-'); 

    title('Avg/Gen. for Subpop#5'); 

     

    filename=strcat('allAverages',num2str(i)); 

    saveas(pgares2,filename,'png');% exports figure to PNG 

    %waits for a key press (any key) before continuing 

    %pause 

end  
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Appendix E 

This appendix contains the support files for SGA, GSN, IGA, and PGA implementations. 

In all cases, the name of the file is given prior the listing of its contents. 

************************************”gemac.m”******************************** 

function varargout = gemac() 

%   Geometrically Expanded Membership for Automated Clustering--> GEMAC 

global pop NbrOidx nbrAlleles; 

f=2.7;%1.97;%2.7;%2.7183;%power of proximity 

distances=zeros(NbrOidx,NbrOidx); 

for i1=1:NbrOidx-1 

    for j1=i1+1:NbrOidx 

        %working with integers is always faster than with reals 

        distances(i1,j1)=round(similarity('cityblock',pop(i1,1:nbrAlleles),pop(j1,1:nbrAlleles))); 

        distances(j1,i1)=distances(i1,j1); 

    end 

end 

distances2=distances; 

mode_node_proxy=zeros(1,NbrOidx); 

ppop=0.12;%12% of the population will be sampled 

s2=round(ppop*NbrOidx); 

rsamples=randint(NbrOidx,s2,[1 NbrOidx]); 

for ik=1:NbrOidx 

    for ij=1:s2 

        mode_node_proxy(ik)=mode_node_proxy(ik)+distances(ik,rsamples(ik,ij)); 

    end 

    mode_node_proxy(ik)=mode_node_proxy(ik)/s2; 
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end 

plp=NbrOidx; 

k=10000;%must be a value that does not occur within data 

e2nc=[(1/f^1) (1/f^2) (1/f^3) (1/f^4) (1/f^5)]; 

%max_level=5; 

k_used=0; 

distances(1,1)=k; 

distances(2:plp,1)=Inf;%no fuzzy membership allowed. 

%level0  

%everything was working fine till I substituted i2 with level0(1,i2) in 

%following for-loop. I also changed level0=linspace(1,NbrOidx,NbrOidx) to 

%level0=randperm(NbrOidx) 

level0=linspace(1,NbrOidx,NbrOidx);%randperm(NbrOidx);% 

%level1         

for i2=1:plp%-1 

    if level0(i2)==0; continue; end%no double usage at level0 

    %level1conn=[]; 

    level1conn=zeros(1,NbrOidx);%pre-allocate for speed 

    idx1=1; 

    for j2=1:plp 

        if distances(i2,j2)<=mode_node_proxy(i2)*e2nc(1) 

            distances(i2,j2)=k; 

            %level1conn=[level1conn j2]; 

            level1conn(1,idx1)=j2; 

            idx1=idx1+1; 

            level0(1,j2)=0; 

            k_used=1; 
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            distances(i2+1:plp,j2)=Inf;%no fuzzy membership allowed. 

            distances(1:i2-1,j2)=Inf;%no fuzzy membership allowed. 

        end 

    end 

    %level2             

    for j3=1:length(level1conn) 

        %level2conn=[]; 

        level2conn=zeros(1,NbrOidx);%pre-allocate for speed 

        idx2=1; 

        if level1conn(1,j3)==0; break; end%no double usage for level1 

        for j4=1:plp             

            if distances(level1conn(1,j3),j4)<=mode_node_proxy(i2)*e2nc(2) 

                %level2conn=[level2conn j4]; 

                level2conn(1,idx2)=j4; 

                idx2=idx2+1; 

                level0(1,j4)=0; 

                distances(level1conn(1,j3),j4)=k; 

                distances(level1conn(1,j3)+1:plp,j4)=Inf;%no fuzzy membership allowed. 

                distances(1:level1conn(1,j3)-1,j4)=Inf;%no fuzzy membership allowed. 

            end 

        end 

        %level3 

        for j5=1:length(level2conn) 

            %level3 --we stop here for now 

            %level3conn=[]; 

            level3conn=zeros(1,NbrOidx);%pre-allocate for speed 

            idx3=1; 
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            if level2conn(1,j5)==0; break; end%no double usage for level2 

            for j6=1:plp 

                if distances(level2conn(1,j5),j6)<=mode_node_proxy(i2)*e2nc(3) 

                    %level3conn=[level3conn j6]; 

                    level3conn(1,idx2)=j6; 

                    idx3=idx3+1; 

                    level0(1,j6)=0; 

                    distances(level2conn(1,j5),j6)=k; 

                    distances(level2conn(1,j5)+1:NbrOidx,j6)=Inf;%no fuzzy membership allowed. 

                    distances(1:level2conn(1,j5)-1,j6)=Inf;%no fuzzy membership allowed. 

                end 

            end 

            %level4 --will start here 

        end 

    end  

    if k_used 

        k=k+1; 

        k_used=0; 

    end 

end  

for i2=1:plp 

    if not(isinf(max(distances(:,i2)))) 

        distances(1,i2)=k; 

        k=k+1; 

    end 

end 
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%finish the partitioning 

CIX=min(distances)-9999; 

NC=max(CIX);%returns the number of clusters 

% Return Outputs 

if nargout 

    varargout{1} = CIX; 

    varargout{2} = NC; 

    varargout{3} = distances2; 

    varargout{4} = mode_node_proxy; 

end 

end 

************************************”ga.m”************************************ 

%GA Simple GA Algorithm with performance that is environment dependent 

function varargout = ga(islIdx, nbrOffspring) 

global nbrAlleles migrationInterval islands iSize domainRange; 

%sets the population--(gen1|gen2|evmt|perf) 

%iSize=round(popSize/nbrIslands);%popSize should be a multiple of iSize 

lpop=zeros(iSize+2*nbrOffspring,nbrAlleles+1); 

lpop(1:iSize,:)=islands(:,:,islIdx); 

best=zeros(migrationInterval,nbrAlleles+1); 

average=zeros(migrationInterval,1); 

NbrOidx=iSize; 

%determine ratio for each environment 

envAtot=sum(lpop(:,nbrAlleles)==1); 

envBtot=iSize-envAtot; 

% Run the GA 

for iter = 1:1:migrationInterval 
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    %execute GA operators - 50% XER, 50% uTION 

    wtpc=selection(0,round(nbrOffspring/2),lpop(1:iSize,nbrAlleles+1),0); 

    for k42=1:2:round(nbrOffspring/2) 

        child=crossOver2(lpop(wtpc(k42),:),lpop(wtpc(k42+1),:)); 

        NbrOidx=NbrOidx+1; 

        lpop(NbrOidx,:)=child; 

    end 

    %Use the same population as the XER operator 

    wtpm=selection(0,round(nbrOffspring/2),lpop(1:iSize,nbrAlleles+1),1); 

    for k42=1:round(nbrOffspring/2) 

        child=mutation2(lpop(wtpm(k42),:),max(rand(1,3))*domainRange); 

        NbrOidx=NbrOidx+1; 

        lpop(NbrOidx,:)=child; 

    end 

     

    %Finds the best and the average and record them both 

    [v iBest]=max(lpop(1:NbrOidx,nbrAlleles+1)); 

    best(iter,:)=lpop(iBest,:); 

    average(iter,1)=mean(lpop(:,nbrAlleles+1)); 

    %Reduction/culling process - preserve environment ratios 

    %First, remove duplicates if any 

    lpop=unique(lpop,'rows'); 

    pSize=length(lpop); 

    lpopA = lpop(lpop(1:pSize,nbrAlleles)==1,:); 

    lpopB = lpop(lpop(1:pSize,nbrAlleles)==2,:); 

    nbr_lpopA=size(lpopA,1); 

    nbr_lpopB=size(lpopB,1); 
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    nbr_lpopA_to_remove = nbr_lpopA-envAtot; 

    nbr_lpopB_to_remove = nbr_lpopB-envBtot; 

    idxA_to_remove=selection(1,nbr_lpopA_to_remove,lpopA(1:nbr_lpopA,nbrAlleles+1),0); 

    i2r=sort(idxA_to_remove); 

    for k6=1:nbr_lpopA_to_remove 

        lpopA(i2r(k6)-k6+1,:)=[]; 

    end 

    idxB_to_remove=selection(1,nbr_lpopB_to_remove,lpopB(1:nbr_lpopB,nbrAlleles+1),0); 

    i2r=sort(idxB_to_remove); 

    for k6=1:nbr_lpopB_to_remove 

        lpopB(i2r(k6)-k6+1,:)=[]; 

    end 

     

    %Resets population 

    lpop=zeros(iSize+2*nbrOffspring,nbrAlleles+1); 

    lpop(1:size(lpopA,1)+size(lpopB,1),:)=vertcat(lpopA,lpopB); 

    NbrOidx=size(lpopA,1)+size(lpopB,1);%ideally, should be: iSize 

end 

% Return Outputs 

if nargout 

    varargout{1} = average; 

    varargout{2} = best; 

end 

 

**********************************”similarity.m”******************************** 

% Similarity measure of numerical data% 

function measure = similarity(type,X,Y) 
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lx=length(X); 

ly=length(Y); 

if lx ~= ly, error('genes''length must match'); end 

Z=[X;Y]; 

switch lower(type) 

    case {'euclidean','default','dist'} 

        %disp('Computing Euclidean distance') 

        measure=pdist(Z,'euclidean'); 

    case 'seuclidean' 

        %disp('Computing the Standardized Euclidean distance') 

        measure=pdist(Z,'seuclidean'); 

    case 'mahalanobis' 

        %disp('Computing the Standardized Euclidean distance') 

        measure=pdist(Z,'mahalanobis'); 

    case {'cityblock','manhattan', 'taxicab'} 

        %disp('computing the manhattan distance') 

        measure=pdist(Z,'cityblock'); 

 case 'minkowski' 

        %disp('computing the minkowski distance') 

        measure=pdist(Z,'minkowski'); 

    case 'cosine' 

        %disp('Computing cosine distance') 

        measure=pdist(Z,'cosine'); 

    case 'correlation' 

        %disp('Computing the correlation distance') 

        measure=pdist(Z,'correlation'); 

    case 'spearman' 
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        %disp('Computing the spearman distance') 

        measure=pdist(Z,'spearman'); 

    case 'hamming' 

        %disp('computing the hamming distance') 

        measure=pdist(Z,'hamming'); 

 case 'jaccard' 

        %disp('Computing the jaccard distance') 

        measure=pdist(Z,'jaccard'); 

    case {'chebychev', 'chessboard', 'sup norm'} 

        %disp('computing the chebychev distance') 

        measure=pdist(Z,'chebychev'); 

    case 'canberra' 

        %disp('computing the canberra distance') 

        measure=sum(abs(X-Y)./abs(X+Y)); 

 case {'bray-curtis', 'sørensen', 'braycurtisdistance'} 

        %disp('Computing the Bray-Curtis distance') 

        measure=(sum(abs(X-Y))/sum(abs(X+Y))); 

    case {'matching'} 

        %disp('Computing the matching distance') 

        measure=sum(X==Y); 

    otherwise 

        error('Similarity measure requested is Unknown. Nothing is done') 

end 

end 

 

**********************************”similarity.m”******************************** 
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function [TPI PD] = impactOnPerformance( bests, nDp, nOp, nEp, lce_min_max) 

%Outputs: 

%- Trait Performance Indicator (TPI) -- Class-wise (Dsg, Opr, Evm)  

%    vector whose values indicates how significant (0 1.0) the given values 

%    of a parameter are to the performance 

%- Parameter Delta (PD) -- range of parameters for the given performance 

%Inputs: 

%- nDp/nOp/nEp -- number of Design/Operational/Environmental parameters 

%- bests -- best solutions returned by the metaheuristic 

%- lce_min_max -- min and max of all considered LCE parameters 

%Assumptions: 

%- lce_min_max has each allele [min max] values defined row-wise 

%- the order (row-wise) of parameters within lce_min_max is Dp|Op|Ep  

%- the order (column-wise) of parameters within bests is Dp|Op|Ep  

[nBests nAlleles]=size(bests); 

 

if (nDp+nOp+nEp ~= nAlleles) 

    error('# of alleles does not equal the sum (nOp+nDp+nEp)'); 

end 

 

% lce_sizes=[0,nDp,nOp+nDp,nOp+nDp+nEp]; 

 

%Use Tanimoto-like distance to compute metric 

%We only have 3 classes of LCE parameters 

%But each class can be encoded on multiple dimensions 

 

num=zeros(1,nAlleles);% 
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dem=zeros(1,nAlleles);%  

 

%Works with values passed within bests and lce_mins_maxs 

% for j=1:nAlleles 

%     for i=lce_sizes(j)+1:lce_sizes(j+1) 

%         num(j)=num(j)+max(bests(:,i))-min(bests(:,i)); 

%         dem(j)=dem(j)+lce_min_max(i,2)-lce_min_max(i,1); 

%     end 

% end 

 

for j=1:nAlleles 

    num(j)=max(bests(:,j))-min(bests(:,j)); 

    dem(j)=lce_min_max(j,2)-lce_min_max(j,1); 

end 

 

%Outputs MUST always be a 1xnAlleles points 

PD=num; 

TPI=num./dem; 

end 

 

**********************************”isClear.m”******************************** 

function varargout=isClear(schoolCM) 

%Check whether a value belongs to a tabu list 

%the tabu list implements a recency list 

global tabu tabuDistance tabuIdx tabuLen; 

for i=1:min(tabuLen,tabuIdx+1) 



226 
 

    if similarity('cityblock',schoolCM,tabu(i,:))<=tabuDistance 

        % Return Outputs 

        if nargout 

            varargout{1} = -5; 

            varargout{2} = i; 

        end 

        return; 

    end     

end 

%new CM does not belong to the list 

if nargout 

    varargout{1} = 5; 

    varargout{2} = 0; 

end 

end 

 

**********************************”mutation.m”******************************** 

function child=mutation(parent, range) 

%Mutates a parent to create a new solution 

    %to be used to select parents for mutation process 

global nbrAlleles limits nc domainRange envStart envEnd; 

    %limits contains the limits accross each dimension 

    %along dim i, limits(i,1)-->min, limits(i,2)-->max 

child=zeros(1,size(parent,2)); 

hm2m=randint(1,1,[1 (nbrAlleles-1)*2]);%Sets the number of alleles or allele to mutate 

if hm2m <= nbrAlleles-1 
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    for i=1:nbrAlleles-1 

        if i == hm2m 

            r=rand; 

            child(1,i)=parent(1,i)+(range*r)*limits(i,2)-

domainRange*round((parent(1,i)+(range*r)*limits(i,2))/domainRange); 

            %child(1,i)=parent(1,i)+r*limits(i,2)-

domainRange*round((parent(1,i)+r*limits(i,2))/domainRange); 

        else 

            child(1,i)=parent(1,i); 

        end 

    end 

    r=rand; 

    child(1,hm2m)=parent(1,hm2m)+(range*r)*limits(hm2m,2)-

domainRange*round((parent(1,hm2m)+(range*r)*limits(hm2m,2))/domainRange); 

    %child(1,i)=parent(1,i)+r*limits(i,2)-domainRange*round((parent(1,i)+r* 

    %limits(i,2))/domainRange); 

else 

    for i=1:nbrAlleles-1 

        r=rand; 

        child(1,i)=parent(1,i)+(range*r)*limits(i,2)-

domainRange*round((parent(1,i)+(range*r)*limits(i,2))/domainRange); 

        %child(1,i)=parent(1,i)+r*limits(i,2)-

domainRange*round((parent(1,i)+r*limits(i,2))/domainRange); 

    end 

end 

%environment and school ID might change 

if rand>0.5 

    child(1,nbrAlleles-1:nbrAlleles+1)=parent(1,nbrAlleles-1:nbrAlleles+1); 

else 
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    env=randint(1,1,[limits(nbrAlleles,1) limits(nbrAlleles,2)]); 

    if env<0.5*(envEnd+envStart) 

        child(1,nbrAlleles-1)=envStart; 

        child(1,nbrAlleles)=envStart; 

    else 

        child(1,nbrAlleles-1)=envEnd; 

        child(1,nbrAlleles)=envEnd; 

    end 

    child(1,nbrAlleles+1)=randint(1,1,[1 nc]); 

end 

 

%perf=performance(child(1:nbrAlleles)); 

% if perf > 1.0 

%     child(1:nbrAlleles) 

%     error('Performance value should never exceed 1.0'); 

% else 

    child(1,nbrAlleles+2)=performance(child(1,1:nbrAlleles));%perf; 

% end 

end 

 

**********************************”mutation2.m”******************************** 

function child=mutation2(parent, range) 

%Mutates a parent to create a new solution 

    %to be used to select parents for mutation process 

global nbrAlleles limits domainRange envStart envEnd; 

    %limits contains the limits accross each dimension 

    %along dim i, limits(i,1)-->min, limits(i,2)-->max 
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child=zeros(1,size(parent,2)); 

for i=1:nbrAlleles-1 

    r=rand; 

    child(1,i)=parent(1,i)+(range+r)*limits(i,2)-

domainRange*round((parent(1,i)+(range+r)*limits(i,2))/domainRange); 

end 

 

%environment might change 

if rand>0.5 

    child(1,nbrAlleles:nbrAlleles+1)=parent(1,nbrAlleles:nbrAlleles+1); 

else 

    child(1,nbrAlleles)=randint(1,1,[limits(nbrAlleles,1) limits(nbrAlleles,2)]); 

    if child(1,nbrAlleles)<0.5*(envEnd+envStart) 

        child(1,nbrAlleles)=envStart; 

    else 

        child(1,nbrAlleles)=envEnd; 

    end 

end 

child(1,nbrAlleles+1)=performance(child(1,1:nbrAlleles)); 

end 

 

*********************************”performance.m”******************************* 

function varargout = performance( varargin ) 

%PERFORMANCE Summary of this function goes here 

%   Detailed explanation goes here 

global envStart tolerance ext;%envEnd 
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maxV=ext; 

% persistent perf; 

% global offset; 

if nargin == 1; %assuming solution was passed in     

    soln=varargin{1};%+offset; 

%     X=[soln(1), soln(2)]; 

%     Y=[soln(3), soln(4)]; 

%     E=[soln(5), soln(6)]; 

%     X=[soln(1), soln(2)]; 

%     Y=[soln(3), soln(4)]; 

%     E=soln(5); 

%     X=[soln(1)+rand, soln(2)+rand]; 

%     Y=[soln(3)+rand, soln(4)+rand]; 

%     E=[soln(5)+rand, soln(6)+rand]; 

     X=soln(1); 

     Y=soln(2); 

     E=soln(3); 

elseif nargin==3%assuming X,Y,E were passed in 

    X=varargin{1}; 

    Y=varargin{2}; 

    E=varargin{3}; 

else  %assuming (nargin==2) X and Y were passed in (Very Special Case) 

    X=varargin{1}; 

    Y=varargin{2}; 

    Z=-X.*sin(sqrt(abs(X)))-Y.*sin(sqrt(abs(Y))); 

    %maxZ=max(max(Z));minZ=min(min(Z)); 

    if nargout; %assumes nargout value of 3 
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        varargout{1} = Z; 

        varargout{2} = min(min(Z)); 

        varargout{3} = max(max(Z)); 

        return; 

    end 

end 

sizeZ=size(X,1); 

Z=zeros(sizeZ,1); 

   %performance is Dp and Op dependent 

for i=1:sizeZ 

    %Linear 

%        if X(i) == 50 

%            Z(i)=1; 

%        else 

%            Z(i)=tolerance; 

%        end 

%     if E(i)==envStart; %environment A 

%        Z(i)=abs(1-abs((X(i)/maxV)-0.7)); 

%     else    %environment B ==> E(i)==2 

%        Z(i)=abs(1-abs((X(i)/maxV)-0.3)); 

%     end 

%     if E(i)==envStart; %environment A 

%          Z(i)=1-abs(abs(X(i)/maxV)-0.7)*abs(abs(Y(i)/maxV)-0.3); 

%     else    %environment B ==> E(i)==2 

%          Z(i)=1-abs(abs(X(i)/maxV)-0.3)*abs(abs(Y(i)/maxV)-0.7); 

%     end 

%     if E(i)==envStart; %environment A 
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%         if X(i)< 0 

%             Z(i)=1-abs(abs(Y(i)/maxV)-0.7); 

%         else 

%             Z(i)=1-abs(abs(Y(i)/maxV)-0.3); 

%         end 

%     else    %environment B 

%         if X(i)< 0 

%             Z(i)=1-abs(abs(Y(i)/maxV)-0.9); 

%         else 

%             Z(i)=1-abs(abs(Y(i)/maxV)-0.1); 

%         end 

%     end 

    %Griewank OpX1, EvX1 

    Z(i)=-1*griewank([X(i) E(i)]); 

    %Ackley OPX2, DsX2 

%     Z(i)=-1*ackley([X(1) X(2) Y(1) Y(2)]); 

    %Schwefel OPX2, DsX2, EnvX1 

    %Z(i)=-1*schw([X(1) X(2) Y(1) Y(2) E]); 

%     Z(i)=-1*schw([X Y E]); 

    %Schwefel OPX2, DsX2, EnvX2 

%     Z(i)=-1*schw([X(1) X(2) Y(1) Y(2) E(1) E(2)]); 

end 

    %performance is Dp and Ep dependent 

%   for i=1:size(X,1) 

%     if E(i)==1; %environment A 

%        Z(i)=(pi-abs(X(i)/maxV+0.75)); 

%     else    %environment B ==> E==2 
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%        Z(i)=(1-abs(X(i)/maxV-0.25)); 

%     end 

%   end 

    %performance is Dp, Op, and Ep dependent 

%     if E(i)==1; %environment A 

%        Z(i)=(pi-abs(X(i)/maxV+0.33))+(pi-abs(Y(i)/maxV-0.65)); 

%     else    %environment B ==> E==2 

%        Z(i)=(1-abs(X(i)/maxV-0.85))+(1-abs(Y(i)/maxV+0.55)); 

%     end 

    %performance is Op and Ep dependent 

%     if E(i)==1; %environment A 

%        Z(i)=(pi-abs(Y(i)/maxV-0.5)); 

%     else    %environment B ==> E==2 

%        Z(i)=(1-abs(Y(i)/maxV+0.5)); 

%     end 

    %performance is neither Dp, Op, or Ep dependent 

%     Z(i)=perf(X(i)+offset, Y(i)+offset);     

 

% Schwefel function 

%Z(i)=-X(i)*sin(sqrt(abs(X(i))))-Y(i)*sin(sqrt(abs(Y(i)))); 

% Schwefel function 

%Z=-X.*sin(sqrt(abs(X)))-Y.*sin(sqrt(abs(Y))); 

% Griewank function 

%S(i)=X(i)^2+Y(i)^2; 

%P(i)=(cos(X(i)))*(cos(Y(i))/sqrt(2)); 

%Z(i)=S(i)/4000-P(i)+1; 

% Griewank function 



234 
 

%S=X.^2+Y.^2; 

%P=(cos(X)./1).*(cos(Y)./sqrt(2)); 

%Z=S./4000-P+1; 

% Ackley function 

%S(i)=X(i)^2+Y(i)^2; 

%P(i)=(cos(X(i)))*(cos(Y(i))/sqrt(2)); 

%Z(i)=S(i)/4000-P(i)+1; 

% Ackley function 

%S=X.^2+Y.^2; 

%P=(cos(X)./1).*(cos(Y)./sqrt(2)); 

%Z=S./4000-P+1; 

%maxZ=max(max(Z));minZ=min(min(Z)); 

if nargout; %assumes nargout value of 3 

    varargout{1} = Z;%Z'; 

    varargout{2} = min(min(Z));%minZ; 

    varargout{3} = max(max(Z));%maxZ; 

end 

end 

 

*********************************”selection.m”******************************* 

function varargout = selection(isCulling, number, perf_vect, isMutation) 

%SELECTION Summary of this function goes here 

%   Detailed explanation goes here 

%1. isCulling determines the direction (strong vs. weak) of the bias 

%2. number determines either: 

%       - the number of solutions to flag for removal 
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%       - or the number of parents to be selected for GA operations 

%3. perf_vect is the performance vector of a (sub)population 

global tolerance; 

ssize=size(perf_vect,1); 

%perf_vect=abs(perf_vect);%perf_vect must always contains positive values 

[max_perf_vect loc]=max(perf_vect); 

min_perf_vect=min(perf_vect); 

if or(max_perf_vect==min_perf_vect,abs(max_perf_vect)<=tolerance) %All numbers are equal 

    probs=cumsum((1/ssize)*ones(1,ssize)); 

else 

    %Assumes perf_vect is a column vector 

    if isCulling %bias toward strongest 

        probs=cumsum(max_perf_vect-perf_vect); 

    else 

        probs=cumsum(perf_vect-min_perf_vect); 

    end 

end 

 

probs=probs/max(probs);%makes the actual cumulative probabilities 

% cprobs=zeros(1,ssize); 

% cprobs(1)=probs(1); 

% for r=ssize:-1:2 

%     cprobs(r)=probs(r)-probs(r-1); 

% end 

%if everything was right then this MUST be true: probs=cumsum(cprobs) 

if isCulling 

    %if isCulling or is set, we want to return the indexes of the solutions to remove 
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    %fprintf('isCulling=%d, number=%d, isMutation=%d, 

length(perf_vect)=%d.\n',isCulling,number,isMutation,length(perf_vect)); 

    indexes=zeros(1,number); 

    for j=1:number 

        picked=rand; 

        for i=1:ssize 

            if picked<=probs(i)%u2b picked<=probs(i) 

                indexes(j)=i; 

                %Adjust probs(i) value b4 passing ctrl back 

                perf_vect(i,1) = max_perf_vect; 

                if (max_perf_vect-min(perf_vect)<=tolerance) %All numbers are equal 

                    perf_vect = .5*(ssize-j-1)*ones(ssize,1); 

                    max_perf_vect=ssize-j-1;                     

                    %just in case this happens during a generation, we need 

                    %to make sure all selected idxs can no longer be 

                    %selected since they must all be unique 

                    for k=1:j 

                        perf_vect(indexes(1,k),1) = max_perf_vect; 

                    end 

                    perf_vect(loc,1) = max_perf_vect; 

                     

%                     disp('perf_vect values are all equal now'); 

%                     perf_vect=perf_vect 

%                     j=j 

%                     loc=loc 

                     

                    probs=cumsum(max_perf_vect-perf_vect); 

                else 
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                    probs=cumsum(max_perf_vect-perf_vect);%probs=cumsum(max(perf_vect)-

perf_vect); 

                end 

                probs=probs/max(probs); 

                %perf_vect=perf_vect 

%                 probs=cumsum(cprobs); 

%                 probs=probs/max(probs); 

                break; 

            end 

        end 

    end 

elseif isMutation 

    %if isMutation is set, we want to return he indexes of the solutions to mutate 

    if ssize==1 

        indexes =ones(1,number); %special case 

    else 

        indexes=zeros(1,number); 

        for j=1:number 

            picked=rand; 

            for i=1:length(perf_vect) 

                if picked<=probs(i) 

                    indexes(j)=i; 

                    break; 

                end 

            end 

        end 

    end 

elseif not(isMutation)    %crossover case 
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    indexes=zeros(1,2*number);%doubles since a child requires 2 parents 

    first=zeros(1,number); 

    count=0; 

    not_tired=1; 

    not_tired_max=10; 

    j=1; 

    while j<2*number        

        found=0; 

        while not(found) 

            picked=rand; 

            for i=1:ssize 

                if picked<=probs(i) 

                    if not(any(abs(first-i)==0)) 

                        not_tired=1;%resets value 

                        indexes(j)=i; 

                        count = count + 1; 

                        first(count)=i; 

                        indexes(j+1)=mod(i,ssize)+1;%speeds up process 

                        j=j+2; 

                        found=1; 

                        break; 

                    else 

                        not_tired=not_tired+1; 

                        if not_tired == not_tired_max 

                            not_tired=1;%resets value 

                            indexes(j)=i; 

                            count = count + 1; 
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                            first(count)=i; 

                            indexes(j+1)=mod(i+1,ssize)+1;%speeds up process 

                            j=j+2; 

                            found=1; 

                        end 

                        break; 

                    end 

                end 

            end 

        end 

    end 

end 

%Return Results 

if nargout 

    varargout{1}=indexes; 

end 

end 

 

*********************************”schw.m”******************************* 

function y = schw(x) 

% Schwefel function 

% Matlab Code by A. Hedar (Nov. 23, 2005). 

% The number of variables n should be adjusted below. 

% The default value of n = 2. 

% Global minimum achieved at x*=(s,s,...,s) where s=420.9687 

n = 6; 
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s = sum(-abs(x).*sin(sqrt(abs(x)))); 

y = 418.9829*n+s; 

 

*********************************” ackley.m”******************************* 

function y = ackley(x) 

%  

% Ackley function. 

% Matlab Code by A. Hedar (Sep. 29, 2005). 

% The number of variables n should be adjusted below. 

% The default value of n =2. 

%  

n = 4; 

a = 20; b = 0.2; c = 2*pi; 

s1 = 0; s2 = 0; 

for i=1:n; 

   s1 = s1+x(i)^2; 

   s2 = s2+cos(c*x(i)); 

end 

y = -a*exp(-b*sqrt(1/n*s1))-exp(1/n*s2)+a+exp(1); 

 

******************************” createSocialGroups.m”**************************** 

function varargout = createSocialGroups() 

%CLUSTER Summary of this function goes here 

%   Detailed explanation goes here 

%   themes     --> Matrix (nthemes x ncols) representing the list of themes 
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%   pop        --> Matrix (NbrOidx x ncols) representing the pop 

%   fitnesses  --> Column/Row vector containing fitnesses values for the 

%                   pop 

global pop NbrOidx nbrAlleles themes MinKnowledge tolerance memberships; 

 

%max_schewfel=3353.8140; 

nthemes=size(themes,1);%used to be length(themes); 

fitnesses=pop(1:NbrOidx,nbrAlleles+1); 

%adjusting fitness values if necessary 

if abs(min(pop(1:NbrOidx,nbrAlleles+1)))<tolerance 

    fitnesses(1:NbrOidx,1)=fitnesses(1:NbrOidx,1)-min(pop(1:NbrOidx,nbrAlleles+1))+tolerance; 

end 

%fitnesses=fitnesses+max_schewfel; 

%Step#1: Find topic affinities using 'sørensen' similarity 

affinities=zeros(NbrOidx, nthemes); 

for i2=1:nthemes 

    for i1=1:NbrOidx 

        affinities(i1,i2)=similarity('sørensen',themes(i2,:),pop(i1,:)); 

    end 

    %normalize affinities or set values to 1.0 if all null 

 if abs(max(affinities(:,i2))) > tolerance 

  affinities(:,i2)=affinities(:,i2)/max(affinities(:,i2)); 

 else 

  affinities(1:NbrOidx,i2)=ones(NbrOidx,1); 

    end 

end 

%Step#2: Find leaders (most knowledgeable person on their topic) 
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[m_v l_i]=max(affinities,[],1); 

%enforce minimum knowledge 

i3=1; 

while i3<=length(m_v) 

    if (m_v(i3)<MinKnowledge) 

        l_i(i3)=[]; 

        %themes(:,i3)=[]; 

        m_v(i3)=[]; 

    else 

        i3=i3+1; 

    end 

end 

%Step#3: Compute influence matrix (memberships) values, scales and normalizes them 

memberships=zeros(NbrOidx,length(l_i)); 

for j2=1:length(l_i) 

    for j1=1:NbrOidx 

        if (affinities(j1,j2)~=affinities(l_i(j2),j2))%no div by 0 

            memberships(j1,j2)=fitnesses(j1)*fitnesses(l_i(j2))/(tolerance+ 

similarity('cityblock',pop(l_i(j2),:),pop(j1,:))); 

        else 

            memberships(j1,j2)=1.0;%since affinities will be normalized 

        end 

    end 

    [val idx]=max(memberships(:,j2)); 

    if max([abs(affinities(idx,j2)) tolerance])==tolerance 

        scaled_max = val*(1+sqrt(5))/2;%scale randomly set to golden ratio 

    else 

        scaled_max = val/affinities(idx,j2); 
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    end 

    for j1=1:NbrOidx 

        if (affinities(j1,j2)~=affinities(l_i(j2),j2))%no div by 0 

            %normalize all influence values 

            memberships(j1,j2)=memberships(j1,j2)/scaled_max; 

        end 

    end 

end 

%Step#4: Return Outputs 

if nargout 

    %varargout{1} = GroupInterest; 

    varargout{1} = l_i; 

    varargout{2} = affinities; 

end 

end 

 

******************************” crossOver.m”**************************** 

function childA=crossOver(parent1, parent2) 

 %Assumptions:  

    %A1. Parents are of the same size 

    %A2. Parents are passed along with fitness as last column 

%   Performs cross-over with more fit pulling less fit 

%       We can afford that since we know our domain to be convex 

global nbrAlleles tolerance; 

%this coefficient guarantees a convex solution 

if parent1(nbrAlleles+2)+parent2(nbrAlleles+2)<tolerance % division by zero yields NaN 
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    coeff=[0.5 0.5]; 

else 

    

coeff=[parent1(nbrAlleles+2)/(parent1(nbrAlleles+2)+parent2(nbrAlleles+2)),parent2(nbrAlleles

+2)/(parent1(nbrAlleles+2)+parent2(nbrAlleles+2))]; 

end 

%Change this for GSN as GSN would only require: psize-1; 

%childA_=round(coeff(1)*parent1(1:psize-2)+coeff(2)*parent2(1:psize-2)); 

%childA_=round(coeff(1)*parent1+coeff(2)*parent2); 

childA=coeff(1)*parent1+coeff(2)*parent2; 

 

%Both parents should come from same envmt and belong to the same school 

%If it is not the case then stronger parent pulls child to its environment 

if coeff(1)>=coeff(2) 

    childA(1,nbrAlleles:nbrAlleles+1)=parent1(nbrAlleles:nbrAlleles+1); 

else 

    childA(1,nbrAlleles:nbrAlleles+1)=parent2(nbrAlleles:nbrAlleles+1); 

end 

childA(1,nbrAlleles+2)=performance(childA(1,1:nbrAlleles)); 

% if perfA > 1.0 

%     childA(1:nbrAlleles) 

%     error('Performance value should not exceed 1.0'); 

% else 

%     childA(psize)=perfA; 

% end 

end 
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******************************” crossOver2.m”**************************** 

function childA=crossOver2(parent1, parent2) 

 %Assumptions:  

    %A1. Parents are of the same size 

    %A2. Parents are passed along with fitness as last column 

%   Performs cross-over with more fit pulling less fit 

%       We can afford that since we know our domain to be convex 

global nbrAlleles tolerance; 

%this coefficient guarantees a convex solution 

if parent1(nbrAlleles+1)+parent2(nbrAlleles+1)<tolerance % division by zero yields NaN 

    coeff=[0.5 0.5]; 

else 

    

coeff=[parent1(nbrAlleles+1)/(parent1(nbrAlleles+1)+parent2(nbrAlleles+1)),parent2(nbrAlleles

+1)/(parent1(nbrAlleles+1)+parent2(nbrAlleles+1))]; 

end 

%Change this for GSN as GSN would only require: psize-1; 

%childA_=round(coeff(1)*parent1(1:psize-2)+coeff(2)*parent2(1:psize-2)); 

%childA_=round(coeff(1)*parent1+coeff(2)*parent2); 

childA=coeff(1)*parent1+coeff(2)*parent2; 

 

%Both parents should come from same envmt and belong to the same school 

%If it is not the case then stronger parent pulls child to its environment 

if coeff(1)>=coeff(2) 

    childA(1,nbrAlleles)=parent1(nbrAlleles); 

else 

    childA(1,nbrAlleles)=parent2(nbrAlleles); 
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end 

childA(1,nbrAlleles+1)=performance(childA(1,1:nbrAlleles)); 

% if perfA > 1.0 

%     childA(1:nbrAlleles) 

%     error('Performance value should not exceed 1.0'); 

% else 

%     childA(psize)=perfA; 

% end 

end 

******************************” griewank.m”**************************** 

function y = griewank(x) 

%  

% Griewank function 

% Matlab Code by A. Hedar (Sep. 29, 2005). 

% The number of variables n should be adjusted below. 

% The default value of n =2. 

%  

n = 2; 

fr = 4000; 

s = 0; 

p = 1; 

for j = 1:n; s = s+x(j)^2; end 

for j = 1:n; p = p*cos(x(j)/sqrt(j)); end 

y = s/fr-p+1; 

 

******************************” crossOver2.m”**************************** 
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function migrate() 

global nbrIslands nbrAlleles migrationSize islands;%5 islands of 8 people each encoded with 3 

genes: gen1|gen2|evmt|perf 

val_idx=zeros(migrationSize,nbrIslands); 

%who will move? 

who_move=zeros(nbrIslands*migrationSize,nbrAlleles+1); 

gIdx=0; 

for i=1:nbrIslands 

 [val idx]=sort(islands(:,nbrAlleles+1,i),'descend'); 

 val_idx(:,i) = idx(1:migrationSize,1); 

    for j=1:migrationSize 

        gIdx=gIdx+1; 

        who_move(gIdx,:)=islands(idx(j,1),:,i); 

    end 

end 

gIdx=0; 

%effective migrations occurs according to a ring topology 

for i=1:nbrIslands 

    for j=1:migrationSize 

        gIdx=gIdx+1; 

        islands(val_idx(j,i),:,i) = who_move(mod(i-2,nbrIslands)+1,:); 

    end 

end 

end 
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