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Abstract 

The primary goal of this research is to determine the strategic system integration opportunities 

for a segmented healthcare system with cost minimization and efficacy maximization objectives.  

This research is inspired in part by the Defense Logistics Agency, which is trying to assess the 

impact of integrating treatment selection processes across service clinicians.  Specifically, 

physician bias, patient volumes, leveraging economies of scale or costing structures, and 

complex treatment efficacy calculations are considered by mathematically modeling three forms 

of integration.   

Multiple objective optimization problems are used to define efficient frontiers based on cost and 

treatment efficacy.  A novel comparative analysis method is applied to measure improvements in 

efficient frontiers and a customized genetic algorithm solution is applied for the more complex 

treatment selection problem.  Results indicate that more integrated treatment selection protocols 

lead to decreases in cost alongside increases in efficacy.  Complex healthcare systems or systems 

with higher variability in performance factors are found to have the greatest opportunity for 

performance improvement.   

The three studies in this research apply systems engineering concepts to flexibly characterize and 

parameterize systems; inform policy including characteristics of attractive treatments; and 

capture system dynamics and insights.  However, this research is not intended to dictate 

treatments to health professionals; set policy or give practitioners optimal allocations; fully 

capture all of the intricacies of the treatment design process; or constrain research processes 

associated with treatment design.
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CHAPTER 1 

Introduction 

The United States has the highest per capita healthcare costs in the world, yet lags behind 

many developed countries in terms of population health and other system quality measures.  Pate 

(2008) estimates that the healthcare industry spends up to 54 percent of cost in waste each year.  

Within the next ten years, healthcare costs are expected to double to 4.5 trillion dollars, 

approximately one-fifth of the country’s gross domestic product (Terry, 2010).  This ratio 

implies that the United States will spend over 2.5 trillion dollars per year in preventable costs or 

system inefficiencies by the year 2020.  

In recent years, a significant portion of domestic public policy has focused on healthcare. 

Concentrated policy debate seeking to address this issue has been ongoing since the early 1990’s.  

Elected officials and system administrators have focused on healthcare accessibility and funding, 

with limited attempts toward optimizing cost reduction or healthcare quality.  The most well-

known and significant legislation came with the 2010 passage of the Patient Protection and 

Affordable Care Act.  This act, like other policy efforts, seeks to encourage health system 

integration to decrease costs and improve effectiveness.  Implementation of policy-based 

integration efforts is complicated by a variety of issues including patient privacy, technology, 

and patient and physician choice.   

Much of the integration effort to date is heavily influenced by the fields of public policy 

and healthcare economics.  Yet, much of the integration potential involves medical supply chain 

and information technology integration.  Consequently, this dissertation provides a quantitative 

approach to influencing healthcare policy with emphasis on supply chain and information system 

integration. 
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1.1 Healthcare System Integration  

 Specifically, this research is motivated by the system segmentation challenges, and the 

associated integration opportunities, faced by the U.S. Department of Defense (DoD) Defense 

Logistics Agency (DLA).  These challenges and opportunities are reflective of those within the 

broader healthcare system. 

 1.1.1 Defense Logistics Agency integration trends.  The DLA is the Medical Material 

Executive agent for the DoD and is responsible for end-to-end DoD supply chain logistics.   

Though separated from other categories of DLA-managed products, the healthcare mission is 

consistent with the broader DLA mission of consolidating and optimizing supply chains across 

the defense enterprise.  This mission is expressed in its National Inventory Management Strategy 

(NIMS) to integrate DLA and service (e.g. Army, Navy, or Air Force) inventories into a single 

system to take advantage of asset pooling and other supply chain best practices. 

To facilitate integration, the DLA utilizes an electronic information system for medical 

purchases.  The system is referred to as the Theater Enterprise Wide Logistics System (TEWLS).  

Using DLA funds, military services purchase medical supplies via TEWLS.  The system is 

capable of managing supply catalogs, orders, and invoices, as well as, the financial accounting 

required for procurement in the enterprise business system.    

1.1.2 Defense Logistics Agency segmentation challenges.  Despite the intent of the 

NIMS and the function of the TEWLS, significant segmentation remains.  Individual services are 

responsible for determining treatment protocols and managing associated order payments. DLA 

has determined that different treatment protocols are used across different services for the same 

patient condition.  Service process managers may use different carrier services for the same set 

of supplies with similar destinations.   
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When investigated, the DLA finds these non-standardized treatment protocols have no 

underlying explicit rational.  The creation and persistence of such protocols is driven by two 

factors: disparate views of treatment efficacy and limited view by treatment designers (note: 

treatment designer is synonymous with physician in this research) of cost / supply chain impact.  

Additionally, the service medical organization is increasingly being divided into specialists with 

a sub-discipline biased view of a patient.  The physician treats the patient according to the 

disease associated with the specialty. 

This segmentation leads to increased uncertainty, increased costs, and, likely, decreased 

treatment efficacy.  The impact of integration is further undermined as users make use of legacy 

manual operations instead of exploiting the automation of TEWLS. 

1.1.3 US Healthcare System integration trends.  Many of the integration trends and 

segmentation challenges found in DLA are mirrored and magnified in the US system.  

Independent hospitals have united into regional healthcare systems to take advantage of 

economies of scale.  Group purchasing organizations (GPOs) have been created to translate 

volume discount purchases into lower costs. 

As with the DLA, much of the integration potential for the US healthcare system is 

related to information systems.   During early years, healthcare systems deployed information 

systems as basic data storage systems to maintain schedules, patient treatment records, and 

financial information.  As technologies and analytics have evolved, systems are able to leverage 

healthcare data to inform patient treatments, optimize logistics, and provide better coordination 

for patient care.   

Studies suggest that the adoption of emerging technologies for healthcare supply chain 

management can mitigate healthcare concerns with coordination and communication (Zhenga  et 
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al., 2006).  Many healthcare systems have implemented enterprise planning systems intended to 

facilitate cost reduction and improve work process to improve patient care.  Going forward, 

systems like the National Health Information Network (NHIN) are being developed to improve 

the quality and efficiency of public hospitals through establishing a mechanism for nationwide 

health information exchange. 

1.1.4 US Healthcare System segmentation challenges.  The same segmentation issues 

exist within the US system as in the DLA.  Cost and efficacy is heavily influenced by treatment 

selection at the individual or regional healthcare system level.  Physicians (as treatment 

designers) are shielded from a clear understanding of cost structure.  Physicians have few 

mechanisms to facilitate a collaborative process which might yield a system’s views of efficacy 

and enable opportunities for standardization. As with DLA, the impact of increased physician 

specialization also is a major source of segmentation in the US system. 

The impact of information system integration is still limited.  For example, providers are 

reluctant to utilize shared information systems such as NHIN at the risk of compromising patient 

confidentially, competitive advantages, or exposing system failures.   

Segmentation also exists among healthcare providers abroad.  Blendon et al. (2003) 

survey issues in healthcare across five countries and discover high levels of patient 

dissatisfaction with medical errors, communication, and coordination.  As many U.S. providers 

have implemented coordinated healthcare delivery practices to mitigate Medicare expenditures, 

Peikes (2009) concluded that viable coordination programs do not yield significant Medicare 

savings or improvements in quality. 
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1.2 Problem Statement 

Based on the challenges listed above, three forms of segmentation may be identified: (1) 

separation of the physician / treatment designer from a systemic view of efficacy, (2) separation 

of the physician / treatment designer from an understanding of supply chain cost structure, and 

(3) separation of a patient condition according to specialization.  Information system integration 

efforts might assist in overcoming issues associated with the segmentation.  However, integration 

can be expensive and complex.  As a result, this dissertation seeks to solve the problem: how 

might one model and analyze pre- and post-integration system performance in a manner that 

enables understanding of key system dynamics and prioritization of effort? 

1.3 Research Objective 

The primary goal of this research is to determine the strategic opportunities of system 

integration for a segmented healthcare system seeking to balance cost and efficacy.  Specifically, 

the research serves to achieve five objectives: 

1. Characterize forms of segmentation and associated integration opportunities.  Three 

different forms of segmentation are defined and considered associated with physician/system 

efficacy valuation, supply chain behavior, and specialized medicine (to include efficacy 

structure). 

2. Represent pre- and post-integration policies in general quantitative models facilitating 

optimization solution. Mathematical models build upon the proven systems engineering 

principle that supply chain costs are best influenced during the design stage.  Treatment 

protocol determination provides the analog with product design.  The intent of these models 

is not to solve for implementable treatment protocols, but to represent the function of rational 

systems given the associated integration policy.  Four such models are developed. 
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3. Develop solution approaches which enable the discovery of characteristics of “good 

solutions.”  For the different models developed in objective two, solution methods are 

created, ranging from enumerative to heuristic to meta-heuristic.  The solution methods yield 

further understanding between the relationships of “good solutions.” 

4. Recognize situations which present key integration opportunities. Based on factors exposed 

during the model formation, experiments are designed and conducted to demonstrate 

situations where integration might provide the most value. 

5. Suggest specific policy adjustments based on the research insights.   Throughout the 

research, inferences are made from experimental results to determine the managerial, 

technical, and social implications of treatment designs.  

The issue of treatment design to promote cost effectiveness is highly sensitive due to its 

potentially critical impact on a quality of life.   As a result, the limitations of this research are 

explicitly stated.  This research does not intend to do the following: 

1. Dictate treatments to health professionals.  The key relationship in healthcare is that between 

the physician (or other healthcare professionals) and the patient.  The physician should retain 

the choice of treatment, not be replaced by some automated optimization approach. 

2. Fully capture all the intricacies of the treatment design process.  The models in this 

dissertation depict general situations relative to cost/efficacy tradeoff and associated 

dynamics.  The models are not intended to capture all of the relevant information needed for 

treatment design of a specific set of diagnoses. 

3. Set policy or give optimal treatment allocations.  Due, in part to items one and two above, the 

models are never expected to be used to suggest a treatment for a specific set of patient types.   
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4. Constrain research process associated with treatment design.  Treatment design is an 

expensive and sophisticated process including much investment in research and 

development.  The impact of these costs and associated strategic decisions are not the main 

considerations in model development (though fixed costs are included). 

1.4 Research Significance 

This research is innovative in that it borrows from core concepts found in systems 

engineering, specifically in product design to explore opportunities in medical treatment protocol 

design.  Similar to the objectives in product design, this research seeks to determine the policies 

for treatment design that minimize costs while maximizing efficacy for patients.  System 

transparency, process standardization, and resource consolidation are shown to lead to efficiency. 

The research proposes a novel systems engineering approach to considering system 

integration opportunities.   Quantitative models are built as generalized representations of pre- 

and post-integration systems and used to emulate rational system behavior.  The models are 

solved under a variety of situational factors to better understand the nature of the integration 

opportunity. 

 For optimization modeling and simulation, modification to the traditional multi-objective 

optimization problem (MOOP) are proposed.  Extensions to multi-objective representation, 

solution, and performance management are noted as progressively complex models are formed.  

The models incorporate the idea that patients may seek care for multiple health problems through 

varying physicians and that treatments can affect more than one diagnosis for a patient.  The idea 

the supply chain cost and treatment efficacies are nonlinear and vary by volume of system usage 

makes the research model more robust. 
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1.5 Dissertation Outline 

 The remainder of the dissertation is organized as follows.  Chapter 2 includes a 

description of the integration process, treatment selection concept, modeling, experimentation, 

and analysis consistent across the three chapters that follow it.   

In Chapters 3 through 5, each of three different forms of integration are considered.   

Figure 1.1 illustrates these forms of integration along with the models and characteristics 

associated with the system before or after integration.  The figure also shows the associated 

forms of segmentation.  Although the integration is shown as progressive, the integration need 

not occur in this same sequence. 

 

Figure 1.1.  Three forms of healthcare system integration. 

Chapter 3 investigates limited information visibility or bias in physician efficacy 

valuation influences system performance.  A review of physician tendencies in assessing efficacy 

and cost is provided.  Supply chain cost impact is evaluated using efficient frontiers of total 

treatment cost versus total treatment efficacy.  Techniques to mitigate physician (or institutional) 

bias are proposed along with strategies to make practitioners informed participants of medical 

supply chain management. 
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Chapter 4 investigates physician understanding of supply chain cost structure and its 

impact in designing medical treatment protocols.  An optimization model is used to help 

determine treatment selection strategies change under varying costing structures.   

Chapter 5 builds on the preceding chapters to examine whole patient consideration and 

more detailed efficacy models might impact system cost effectiveness.  A modified multi-

objective optimization problem is modeled to recognize synergies in treatment efficacies and 

patient populations to achieve economies of scale.   

Chapter 6 concludes this dissertation with an overview of the research methodology and a 

discussion of possible extensions of this research.  This chapter provides a consensus of the 

conclusions found in the three research studies.  Key findings are highlighted and presented with 

strategic implications. 

Throughout the document, associated literature is reviewed and described as an integral 

part of the text.  This approach is taken due to the multi-disciplinary nature of the research. 
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CHAPTER 2 

Research Foundation and Method 

This dissertation provides a study of the impact of three forms of healthcare system 

integration that might positively influence healthcare system cost (with emphasis on supply 

costs) and quality.  The three forms are considered progressively and associated with three forms 

of segmentation introduced in Chapter 1. For each form of integration, a consistent process is 

undertaken to enable modeling and analysis of pre- and post-integration system performance in a 

manner that enables understanding of key dynamics and prioritization of integration effort.  The 

process includes the following steps: 

1. Review literature relevant to the identified form of segmentation to characterize its impact 

and develop an associated integration concept. 

2. Create generalized quantitative models which might be solved to mimic rational system 

behavior for pre- and post-integration policies.  Again, the intent of these models is not to 

solve for implementable treatment protocols.  Four such models are developed.  The models 

use treatment design as the decision variable with a multi-objective goal to minimize cost and 

maximize efficacy. 

3. For each model developed, a solution method(s) is created, ranging from enumerative to 

heuristic to meta-heuristic.  The solution methods yield further understanding between the 

relationships of “good solutions.”  As a result, solution methods are constructed to produce 

“efficient frontiers.” 

4. Based on the characterization in step one, key environmental factors are identified and an 

associated experimental design constructed and executed. 
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5. Experimental output is compared and analyzed in order to determine the characteristics of 

high leverage integration opportunities. 

6. Inferences are made from experimental results to determine the managerial, technical, and 

social implications of treatment designs.  

This process is generalizable for a number of policy areas where system integration might be 

considered and forms a key part of the contribution of this research. 

 The three forms of integration are addressed in Chapters 3 through 5 respectively.  The 

remainder of this chapter provides an overview of the common foundation across all the research 

organized according to the process above. 

2.1 System Segmentation and Integration Opportunities 

  Each chapter begins with a review of literature relevant to identified form of 

segmentation.  This review is used to characterize segmentation impact and develop an 

associated integration concept. 

2.1.1 Segmentation types. The three forms of segmentation were revealed in the case of 

the Defense Logistics Agency and reflected in the US healthcare system as a whole.  These 

forms of segmentation are: 

1. Those making treatment decisions are often separated from a system understanding of the 

effectiveness of the treatment for the given patient condition.   Treatment decisions may be 

based on past experience often limited in frequency.   Additionally, pharmaceutical 

companies spend significant marketing dollars to influence physician views and, more 

recently, to influence patient views.  Deviations in efficacy evaluation for an individual 

physician (or healthcare system) from a comprehensive system view, is termed treatment 
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bias.  The existence of such bias, even when unintentional on the part of the physician, can 

undermine system performance. 

2. Those making treatment decisions are often separated from an understanding of supply chain 

cost structure.  Doctors are often unaware of the costs associated with the treatments they are 

designing.  Even when cost is a consideration, variable unit costs are considered.   This view 

might not lead to cost efficient solutions given common supply chain cost structures.   

3. Patient treatment is separated according to physician specialization.  This approach tends to 

drive a reactive approach to healthcare.  It leads to different treatment designs being 

administered to the same patient.  Problems associated with this include limited proactive 

actions, missed opportunities for treatment synergy, and potentially harmful side effects from 

treatment mixing.  Resolving this form of segmentation uses a novel form of efficacy 

representation with enables consideration of the sensitive subject of healthcare rationing. 

These forms of segmentation are described in more detail in Chapters 3 through 5. 

2.1.2 Integration opportunities. For each case of segmentation, the mechanism 

suggested to facilitate integration is information systems.  For a number of years, healthcare 

information systems have been used to automate business processes and in clinical applications 

such as diagnoses, therapy, and surgery (Kulkarni, 2006; Mantas, 1992; Sneider, 1987).  More 

recently, healthcare reforms and alliances are prompting greater focus on integrating and 

coordination throughout healthcare delivery systems worldwide (Kodner and Spreeuwenberg, 

2002).  Regulations such as HIPAA and requirements for cost reductions and quality 

improvement are prompting greater use of shared information systems (Fadlalla & 

Wickramasinghe, 2004).   
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Despite the availability of healthcare information systems, enterprise integration has 

always been problematic and slow in healthcare organizations (Khoumbati et al., 2006).  Over 

time, the implementation of healthcare information systems has become more complex due to 

concerns for quality and integrity; the growth and evolution of the clinical services; hardwired 

legacy systems; and the competitive nature of the healthcare industry (Berger & Ciotti, 1993; 

Mandke, Bariff, & Nayar, 2002; Teisberg & Harvard Business Review, 1994).  Adding to these 

concerns, clinician awareness and acceptance is often regarded as a leading barrier to successful 

adoption of healthcare innovations (Omachonu and Einspruch, 2010; Birken et al., 2012; and 

Holden and Karsh, 2010).  These difficulties provide the justification for this research, which 

serves to identify integration opportunities with good value. 

2.2 Policy Modeling 

For this research, policies are modeled with treatment design as the decision variables 

and dual objectives of cost minimization and efficacy (measure of healthcare system quality) 

maximization.  The model constraints are created to mimic rational behavior under the associated 

policy.   

Four policy models are needed to provide pre- and post-integration models for each of the 

three integration forms.   Policies in the system increase in terms of complication and integration 

as one moves from the top to the bottom of Figure 2.1.  Also note that the policy models are 

titled according to the state of the segmentation factors related to efficacy, supply chain cost, and 

patient view.  
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Figure 2.1.  Policy models developed in the research.  

2.2.1 Treatment selection. Many cost efforts in healthcare attempt to reduce costs for an 

already established mix of supply.  This research builds on the system engineering concept that 

the key opportunity for impact on supply chains is at the product design stage.  The analogous 

decision in the healthcare realm is the selection of treatment protocol by the physician or 

healthcare provider.  The term “treatment designer” is used for this role in the research. 

Specifically, most healthcare expenditures in the U.S. are based on physician or 

healthcare system decisions.  Therefore, it is important to consider clinician perspectives when 

examining treatment selection strategies.  Studies suggest that many “decisions regarding 

medical tests and treatments are influenced by factors other than the expected benefit to the 

patient, including the doctor's demographic characteristics and concerns about cost and income” 

(Bovier et al., 2005).  Fortunately, recent studies are proving that healthcare integration systems 

have significant, positive impacts on prescribing behaviors (Fortuna et al., 2009).   

Note that a treatment protocol may consist of a single medicine or a combination of 

medicine.  Additionally, a treatment protocol might consist of a mix of proactive and reactive 

treatment or a decision to “do nothing”.  This generalization of treatment protocol provides much 



17 
 

flexibility and enables more focus on the policy aspect of this research (rather than on solving 

specific treatment design problems). 

2.2.1.1 Patient condition / disease.  The selection of treatment protocol is made in 

response to the condition of the healthcare client – the “patient.”  In the systems engineering 

analogy, design decisions are made in an effort to provide good value in meeting customer 

needs.  Similarly, in healthcare, treatment designs should be made in a manner to address health 

concerns, proactively and reactively, in a cost efficient manner.   

 The view of the patient in light of specialization influences the understanding of the 

condition.  For instance, a healthcare provider with an emphasis on reactive care might see the 

patient as a specific disease or illness.  This “disease” view is consistent with the majority of 

current practice and is taken in Chapters 3 and 4.  Chapter 5 addresses systems that enable 

“whole patient” views. 

2.2.1.2 Assignment problem.  Establishing the connection between a patient type or 

disease and a treatment protocol is a form of the classic assignment problem.  For this situation, 

operations researchers often make use of assignment models to determine the most appropriate 

allocation of resources (Winston & Goldberg, 2004).   A brief review of assignment problem 

approaches follows. 

The goal of any assignment problem is to determine the best solution for assigning some 

set of items to another set of items.  There are several different techniques or assignment 

problem formulations designed to reach this goal according to vary system constraints.  The 

main difference between assignment problems is the use of cost / distance matrices for sites, 

resources allocated to those sites, and the criteria or restrictions given in addition to the 

requirements of the basic assignment problem (Levin, 2004).  Figure 2.2 exhibits this taxonomy. 
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Figure 2.2.  Evolution of the basic assignment problem adapted from Levin (2004). 

Assignment problem differences can be denoted by the terms quadratic, generalized, and 

multi-criteria.  Any quadratic assignment problem is given added dimensionality to account for 

the value of distances between sites that will be important in allocating assignments.  When 

resources are to be constrained to different positions, the problem becomes generalized to 

account for the requirements of subsystems.  As additional system constraints are added, the 

problem is considered to have multi-criteria.   

There are many specific assignment problems that fit within the categories outlined in 

Figure 2.2.  The following sections of this chapter discuss the formulation and implications of 

four common assignment problems and describe how they may be used to allocate resources.  
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Specifically, the properties of the mapping problem, general assignment problem, quadratic 

assignment problem, and weapon-target assignment problem are explained.   

2.2.1.2.1 Matching problem. The matching problem is fundamental in graph theory as it 

seeks to find the optimal pairwise relationships for a set (Goemans, 2009).  The focus of this 

section is the minimum weight perfect matching problem for a bipartite graph.  Consider the 

graph shown in Figure 2.3.  The set of elements in the graph are partitioned into two parts, thus 

the name bipartite graph.   

The goal of this type of matching problem is to find the minimal number of connections 

called “edges” between the partitioned sets such that the total cost of said connections is 

minimal.  Additionally, the problem is said to be a perfect matching problem if none of the nodes 

remain exposed, that is, there exist a connection across the partition for each node.  A perfect 

matching problem for a bipartite graph is also referred to as an assignment problem.   

 

Figure 2.3.  Illustration of bipartite graph matching problem. 

Partition

Feasible Connection

Optimal Connection

Exposed Node

Matched Node



20 
 

2.2.1.2.2 General assignment problem.  Assignment models have been used commonly in 

healthcare for scheduling staff members (Day, 1985; Ozkarahan, 1991).  These models have 

been used to find solutions for more efficient treatment processes as well (Wang-Rodriguez, 

Mannino, Liu, & Lane, 1996).  On a larger scale, scientists have long argued that the use of 

assignment models can be instrumental in quantifying performance and provide an effective tool 

for selecting operational priorities, or strategic planning (Hannan, O'Donnell, & Freedland, 1981; 

Lusk, 1979).   

 Consider a system in which a finite set of resources may be used to complete a number of 

tasks.  Some cost is incurred whenever a resource is assigned to a task.  All tasks must but 

completed and each task is assigned exclusively to one resource.  For this scenario, the general 

assignment problem may be used to determine the impact of various assignment strategies or the 

structure of the most optimal resource assignment strategy (Eiselt & Sandblom, 2000). 

 First, let the decision to assign resource i to task j be represented by xij.  Decision variable 

xij will equal one if resource i is assigned to task j and zero otherwise.  Second, assume that a 

cost cij will be incurred if resource i is assigned to task j.   Then, the nonlinear integer 

programming model to solve the general assignment problem is formulated as follows: 

min ij iji j
c x    (2.1) 

s.t.  1 iji
x j   (2.2) 

 1 iji
x i   (2.3) 

 or    and 0 1ijx i j   (2.4) 

The objective function for this model ensures that the lowest cost strategy is chosen for 

assignments.  Equation 2.2 ensures that each task is assigned exactly once.  Equation 2.3 ensures 
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that each resource is assigned to complete exactly one task. Equation 2.4 is a binary constraint 

for the decision variable. 

 Goemans (2009) provides insight on the characteristics of the general assignment 

problem.  If the integrality constraints of the general assignment problem are relaxed the problem 

takes on an infinite number of fractional solutions.  With the relaxation, the problem linear 

program is polynomially solvable.  However, with integrality constraints the problem becomes 

nonlinear and more constrained than the linear program.  Integrality constraints imply that the 

minimizing solution for the integer program no less than the minimizing solution for the linear 

program.     

 Of all assignment problems discussed in this chapter, the model for general assignment 

problem is the most common as it may be adapted and applied for many scenarios.  In healthcare 

decision making, this model may be used to determine which tools to use during surgery, how to 

assign patients to rooms, or the best treatment to prescribe for specified diagnoses.  The latter 

will be explored in following sections. 

 Unfortunately, most assignment problems are not a simple as assigning one resource to 

one task for one cost.  There are instances in which resources or tasks may require sequencing as 

seen in an assembly line.  Resource may be incapable of completing certain tasks as is seen in a 

system with novice workers.  It may also be the case that the cost of assigning a task is not 

constant; it may be a function of time, quality, or depend or other assignments.  Whatever the 

case may be, the general assignment problem is commonly referenced due to its adaptability.  A 

few adaptations of the assignment model follow. 

2.2.1.2.3 Quadratic assignment problem.  The quadratic assignment problem has been 

adapted to solve problems in many fields and applications including scheduling and location 
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problems (Carlson & Nemhauser, 1966; Geoffrion & Graves, 1976; Koopmans & Beckmann, 

1957) as well as in healthcare engineering (Elshafei, 1977). Commander (2005) provides a 

detailed survey of various applications of the quadratic assignment problem.  Similar to the 

general assignment problem, the quadratic assignment problem seeks to determine the most cost 

efficient way to assign resources to complete tasks.  The key difference between the quadratic 

assignment problem and the general assignment problem is that its cost function is a second 

degree polynomial or quadratic because resources are not assigned independently (Koopmans & 

Beckmann, 1957).   

 The quadratic assignment problem assumes a distance associated with completing a task 

in addition to a cost.  For example, consider a group of resources k and group of tasks l.  

Resource i belongs to group k and task j belongs to group l.  The decision in the quadratic 

assignment problem is xab; whether object a of group b be assigned to an object from another 

group.  This decision is based primarily on the cost cij of assigning resource i to task j and the 

distance dkl between resource group k and task group l.  The mathematical model for the 0-1 

quadratic assignment problem as defined by Commander (2005) is as follows: 

min ij kl ik jli j k l
c d x x     (2.5) 

s.t.  1 iji
x j   (2.6) 

 1 ijj
x i   (2.7) 

 or    and 0 1ijx i j   (2.8) 

The objective function in the formulation shows that associated costs and distance values 

are incurred only when xik is assigned to xjl.  The objective function ensures that the low cost, 
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short distance strategy is chosen for assignments.  Additionally, for the 0-1 assignment problem, 

there is a one-to-one relationship between tasks and resources secured by model constraints. 

 Sahni and Gonzalez (1976) proved that the quadratic assignment problem is NP-complete 

and also proved that ε-approximate solution for the problem is also NP-complete, making the 

quadratic assignment problem among the "hardest of the hard" of all combinatorial optimization 

problems.  These characteristics suggest that finding optimality in polynomial time is unlikely 

(Finke, Burkard, & Rendl, 1987).  

2.2.1.2.4 Weapon target assignment problem.  The weapon target assignment problem is 

named such for its use in warfare (Eckler & Burr, 1972).  This problem is concerned with 

assigning weapons to hit a set of targets so the expected survival value of a target, more 

commonly that of an enemy, is minimized (Ahuja, Kumar, Jha, & Orlin, 2003).   

 In this problem, the decision variable xij is the number of weapon type i to engage with 

target j.  Assume there are Wi weapons of type i available.  Let cj be the value of target j.  Let pij 

be the probability of target j surviving a hit from one of weapon type i.  Then pij xij is the 

probability of target j surviving.  The nonlinear integer programming model to solve the general 

assignment problem is formulated as follows: 

min ijx

ij ijj i
c p    (2.9) 

s.t.   ij ij
x W i   (2.10) 

 and integer  0  and ijx i j   (2.11) 

 The objective function for this model also ensures that the lowest expected value of 

survival is chosen for assignments.  Equation 2.10 ensures that the assignment of weapons does 

not exceed the number of weapons available.  Equation 2.1 ensures that a positive, whole number 

of weapons is assigned.  
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 The weapon-target assignment problem becomes complex due to the nature of 

information required to develop the model and its implied dimensionality.  Consider that there 

are two categories of data for this problem: target data and weapon data.  The target data must 

provide accurate information about the worth, strength, and two dimensions (a third may be 

added for altitude) of location of each target.  Only the location information is truly capable of 

being quantified.  Secondly, weapon data must provide insight on the chances that weapons will 

hit a target and the gain of each hit.   

 Beyond data definition, much of the complexity of the weapon target assignment problem 

is due to the dimensionality of the problem.  For example, let there be t targets of interest for a 

scenario that allows the use of p weapon types with ni being the number of weapons of type i.  

This problem would require 4t items of target data and ii
t n p items of weapon data.  Totally, 

( 4)ii
t n p  items of data would be required to solve this problem.   

Day (1985) confirms the complexity of data requirements in an example where 600 

individual targets, ten weapon types and 100 weapons of each type, result in a required 602,410 

items of data to account for in assigning values and for the 3000 choice variables.  Additionally, 

the model for the weapon target assignment problem is nonlinear, so the problem grows more 

unsolvable as dimensions are expanded.  Targeting specialists commonly subdivided a set of 

enemy targets into complexes to circumvent the complexity of large scale target assignment 

problems.  Concepts from the weapon target model are used in this research. 

2.2.2 Solution representation. Three notions have been commonly applied to drive 

solution of multi-objective optimization problems: utility theory (Keeney and Raiffa, 1976.), 

weighted sum method (Kim and de Weck, 2006), and Pareto or efficient frontier optimization.  

Konak et al. (2006) justifies the use of efficient frontier optimization over other methods.  
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Figueira et al. (2005) provides a detailed discussion on this topic.  As this research serves to 

inform policy and not suggest specific cost-efficacy solutions, the efficient frontier method is 

used for all models.  An overview of efficient frontiers is provided below. 

The concept of the efficient frontier was developed by economists to help select the most 

optimal investment portfolio, the most efficient being that with the highest expected return for a 

level of risk (Markowitz, 1959).  Since inception, efficient frontiers have been a tool for defining 

operational efficiencies across industries.  Hollingsworth (2003) provides a review of the wide 

use of efficient frontiers in private and public healthcare systems, including the Defense and 

Veterans’ Administration hospitals.   

Figure 2.4 is an adaptation of an efficient frontier for a healthcare system that defines 

operational efficiency as the highest expected value of efficacy for a given cost (Kerno, 2008).  

The frontier is the upper bound of the region of feasible operational strategies.  The set of all 

points that compose this boundary is the efficient set.  Any physician that operates according to 

an efficient point is utilizing best practices.  In this diagram, physicians “A” and “B” are noted as 

utilizing best practices. 

In the case of in individual physician decision, physician “C”, the investment for current 

operations could be used for more effective processes as with physician “A” or the current level 

of efficacy could be reached at a lower cost as with physician “B”.  For this reason, physicians 

operating outside of the efficient set, such as physician “C”, are termed inefficient.  This 

information can be aggregated to produce system efficient frontiers.  

Using efficiency frontiers, healthcare decision makers can better evaluate the cost 

structure required to meet a given level of efficacy.   The efficiency frontier provides a range of 

optimality.  Compared to using frameworks that output a single optimal solution for operation, 
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the efficiency frontier allows flexibility for decision makers to determine how to align 

operational goals with practices (Marler and Arora, 2004).  Additionally, the relationships 

between optimal and suboptimal solutions are easy to visualize. 

 

Figure 2.4.  Efficient frontier for providers evaluating cost versus efficacy. 
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For each model developed, a solution method(s) is created.  The solution methods are 
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desired use of the model output, the value of including time is minimal relative to its cost. 

2.3.1 Multi-objective solution.  The generic form of the multi-objective optimization 
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  0ih i x  (2.14) 

Equation 2.12 represents k objective functions, equation 2.13 represents m inequality constraints, 

and equation 2.14 represents e equality constraints. The vector x is the set of decision or design 

variables. 

Use of the MOOP stems from concepts in economics and mathematics such as 

equilibrium and game theories.  Concepts have been adapted to solve various engineering design 

problems (Jendo et al. 1985; Psarras et al. 1990; Tseng and Lu 1990).   Stadler (1988) provides 

an extensive historical account and tutorial for the application of these problems.  For the 

problems in this research, multi-objective optimization is applied to manage the minimization of 

total costs and maximization of efficacies simultaneously.  

2.3.2 Solution methods.  A wide variety of techniques exist for producing solutions to 

optimization / search problems.  A partial taxonomy of such methods is shown in Figure 2.5.  

These research seeks to develop a variety of such methods with the additional requirement of 

creating an efficient frontier rather than a single solution.  Three general solution methods are 

used for one or more of the models. 

1. Complete Enumeration.  This approach identifies all different combinations of decision 

variables.  Once evaluated, the set of solutions is processed to produce an efficient 

frontier.  That frontier is the known optimal frontier for the model.  

2. Heuristic Search.  This approach uses problem specific information in an attempt to 

improve and broaden the perceived efficient frontier.  Heuristic search is the fastest of the 

three solution methods. 

3. Genetic Algorithm.  Evolutionary algorithms are unique among the listed meta-heuristic 

methods because they maintain a set of solutions.  That set might be improved and 
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broadened and then processed to produce an efficient solution.  The evolutionary 

algorithm provides a balance of solution search breadth and speed and handles the final 

non-binary representation of decision variables. 

 

Figure 2.5.  Problem solving methods. 

However, due to its role of mimicking rational behavior under a given policy to find good 

solutions, the exact efficient frontier is not critical.     

2.4 Integration Assessment 
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experimental design constructed and executed in order to compare policies.  Factor definitions, 

Problem Solving Methods

Exact Heuristic

Complete 

Enumeration

Branch and 

Bound

Dynamic 

Programming Local Search and 

Meta-Heuristics

Random 

Search

Hill 

Climbing

Evolutionary 

Algorithms

Tabu 

Search

Simulated 

Annealing

Evolution 

Strategies

Genetic 

Algorithms

Evolutionary 

Programming

Knowledge-

Based

Heuristic 

Search

Expert 

Systems

Machine 

Learning

Neural 

Networks
HybridFuzzy 

Logic



29 
 

levels, and variable generation processes are described in the chapters.  Relevant factors 

considered in the dissertation include: 

1. Variance in perceived treatment efficacy among treatment designers 

2. Variance in fixed costs between treatments 

3. Variance in variable costs between treatments 

4. Variance in disease/patient condition severity 

5. Variance in patient volumes / proportions 

6. Opportunity for decreasing unit costs / volume discounts 

7. Treatment efficacy as a function of dosage 

2.4.1 Problem generation.  Each of these seven factors is listed in the following table 

with the levels used in the design of experiments. The combination of factors and factor levels 

varies across policies.  At most, when all factor levels are studied, total of 26 × 4 = 256 blocks of 

experiments are implemented.  Each block of experiments consists of ten replications for all 

studies.  This implies are maximum of 2560 observations. 

Table 2.1 

All possible experimental problem factors and levels. 

Factor Factor Description Factor Levels 
1 Variance in provider’s perceived efficacy  1-High,   2-Low  
2 Variance in fixed cost  1-High,   2-Low  
3 Variance in variable cost coefficient  1-High,   2-Low  
4 Variance in disease severity  1-High,   2-Low  
5 Variance in provider’s patient volumes  1-High,   2-Low  
6 Degree of volume discounts  1-Concave,   2-Linear  
7  Degree of efficacy curvature  1-Concave, 2-Linear, 3-Convex, 4-Random  
 

For each form of integration examined in this research, an observation consist of the 

same set of generated values.  These values are shared between the pre- and post- integration 

models and aggregated according to model formulation criteria.  The manner in which the values 
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are shared, along with solution transformation (see section 2.5.1), ensures that solution 

comparisons are fair. 

The levels for factors 6 and 7 are set to determine the curvature of costs functions and 

efficacy functions, respectively.  It is assumed that costs may have a linear relationship with 

volume or a non-linear such that unit costs decrease as demands increase.  Two levels are 

included for this factor in the design of experiments to study the impact of these two 

relationships.  It is also assumed that efficacy may have a linear or non-linear relationships with 

treatment volumes.  Three levels are included in the design of experiments to study the impact of 

three relationships.  The first relationship, factor level 1, assumes that efficacies initially have 

rapid growth utilization increases and eventually, the growth diminishes until virtually no gains 

are possible.  The second relationship, factor level 2, assumes that the growth in efficacies is 

constant for each added unit of utilization.  The third relationship, factor level 3, assumes that 

efficacies initially have slow growth utilization increases and eventually, the growth increases 

rapidly until virtually no gains are possible.   

2.4.2 Random variable generation.  The variables for factors 1 through 5 must be 

generated to fit within a given interval and maintain a given level of variance.  A beta 

distribution Beta(α, β) is used to generate these random variables because its parameters can 

implicate the mean, variance, and skewness of random variables on intervals of finite length.  

The beta distribution is a continuous probability distribution defined on interval [0, 1].  Its 

parameters, α and β dictate the shape of the distribution.  The probability distribution function of 

the beta distribution for 0 ≤ x ≤ 1 and the parameters α and β is as follows: 
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In equation 2.15, B is a normalization function to ensure that the total probability integrates to 

unity.  The mean µ(X) and variance σ2(X) of a beta distribution random variable X with 

parameters α and β are explained algebraically in equations 2.16 and 2.17, respectively. 

 X



 




  (2.16) 
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Notice that when α = β, the mean µ(X) = 0.5 and is at the center of the distribution. In the event 

that α ≠ β, the distribution is skewed.  Based on these relationship between the distribution 

parameters and the mean, if a factor of the experimental design requires values that are low, 

centered, or high, the parameters of the distribution will be set such that α < β, α = β, or α > β, 

respectively. As an example, Figure 2.6 illustrates relationship to the center for three different 

beta distributions where α = 2, β = 5; α = 2, β = 2; and α = 5, β = 2.   

 
Figure 2.6.  Example PDFs from beta distribution. 
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Figure 2.6 also illustrates how variance increases as the parameters for the beta 

distribution approach zero.  This can be proved by taking the limit as α and β approach zero of 

equation 2.17.  In general, variance increases as α and β are closer in value and/or closer to zero.  

An exceptional feature of the beta distribution is that α = β = 1.  Therefore, if an experimental 

design requires high variance between randomly generated variables, α = β = 1.  If an 

experimental design requires low variance between randomly generated variables, α = β = 6.  

The latter structures a beta distribution that is closer to a normal distribution that is truncated to 

fit within a finite interval whereas the normal distribution lies on an infinite interval and, 

therefore, is not reasonable the variables used in this research. 

When a high level of variance is required for a variable in an experiment, a beta 

distribution of high variance is used to generate random numbers and an accept/reject algorithm 

is used to ensure that a sample variance no less than the population variance.  Likewise, when a 

low level of variance is required for a variable in an experiment, a beta distribution of low 

variance is used to generate random numbers and an accept/reject algorithm is used to ensure 

that a sample variance is no higher than the population variance.  For example, the following is 

an example of an accept/reject algorithm to generate random number set R having high variance. 

Step 1:  Generate x1, x2, …, xn i.i.d. from Beta(1,1) 

Step 2:  Compute the variance of the generated x1, x2, …, xn as S2 

Step 3:  If S2 < σ2, return to step 1.  Otherwise, R = x1, x2, …, xn. 

Now that the mean, variance, and skewness of randomly generated variables of the 

experiments have been explained, the method to ensure a given interval for a random variable is 

provided.  Given constants a and b, expected value E(X), and variance V(X), the random 

variables are translated that fundamental properties are maintained as follows:  
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  (X) bE aX b aE     (2.17) 

  2 V(X)V aX b a   (2.18) 

Recall the accept/reject algorithm and parameters for the beta distributions used in this 

research.  The values for α and β (i.e. α = β = 1 and α = β = 6) dictate that low variance 

corresponds to Var(X) ≤ 0.0192 and high variance corresponds to Var(X) ≥ 0.0833.   Consider a 

simple example for generating fixed cost di on an interval of [0, 100].  Matlab is used to generate 

instances of low variance and high variance of fixed cost between three treatments.  The instance 

of low variance in fixed cost between treatments results in di = 61.50, 48.79, and 53.42 which 

has a variance of 41.38 ≤ 1002 × 0.0192.  The instance of high variance in fixed cost between 

treatment results in di = 78.31, 18.04, and 9.87 which has a variance of 1397.10 ≥ 1002× 0.0833.   

2.5 Integration Analysis 

Experimental output from the prior step is compared and analyzed in order to determine 

the characteristics of high leverage integration opportunities.  This comparison consists of three 

steps: solution transformation, solution comparison, and analysis of results. 

2.5.1 Solution transformation.  First, the solutions generated by both policies may need 

transformation to a form for consistent evaluation.  Evaluation is based on the more realistic 

assessment of cost and efficacy given the form of integration under consideration.  Specific 

transformation details are described in the relevant chapters.  In general, the efficient solutions 

for a pre-integration model are transformed so that they may be evaluated under the objective 

functions of the post-integration model formulation.  This implies that solutions from the pre-

integration model cannot dominate solutions of the post-integration model as the transformed 

solutions must fit within the post-integration model’s feasible solution set.  The transformation 

allows for fair comparison of the pre- and post- integration policies. 
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2.5.2 Solution comparison.  Second, efficient frontiers for the same experiment 

produced by the two policies are compared. These efficient frontier analyses are used to compare 

the performance of the problems generated and help characterize some properties of optimal 

treatment protocols.  Three measures were used to assess the relative performance of the models: 

average improvement in efficacy, average improvement in cost, and average error rate.  The 

average improvement in efficacy and average improvement in cost are based on the “area of 

opportunity” between the frontier of the pre- and post-integration policies.   

This study employs a novel efficient frontier comparison method.  Prior to developing 

this analysis method a few existing metrics are explored.  Namely, the methods employed by 

Veldhuizen (1999), Veldhuizen & Lamont (1998), Zitzler & Thiele (1999), Srinivas & Deb 

(1994).  These strategies are described in Table 2.1.  For example, Veldhuizen (1999) defines 

error rate as the percentage of solutions from the pre-integration policy that are not on (inferior 

to) the post-integration policy.  Whereas, Veldhuizen & Lamont (1998) defines the general 

distance between two problems as the average Euclidean distance between the closest members 

from the pre-integration policy and the post-integration policy.   

Table 2.2 

Classic comparative metrics for multi-objective optimization problems. 

Reference Metric Description 
Veldhuizen  
(1999) 

Error rate Percentage of solutions from EFpre that are not 
members of EFpost 

Veldhuizen & Lamont  
(1998) 

General distance Average Euclidean distance from EFpre to closest 
members of EFpost 

Zitzler & Thiele 
(1999) 

Space covered Size of the global dominated set in objective 
space  

Srinivas & Deb  
(1994) 

Spread Distribution of individuals in EFpre over the non-
dominated region. 
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For some experiments in this research, the global efficient frontier EFpost is known 

through enumeration approaches.  The efficient frontier EFpre is compared against EFpost to test 

the performance based on measures of error.    To improve on existing strategies, the comparison 

used in this study allows for fair, scalable comparison under varying factors.  The “area of 

opportunity” is a practical measure used for error assessment.  Figures 2.6 and 2.7 illustrate the 

area for opportunity for efficacy and cost as A2x and A2y, respectively.  These areas of 

opportunity are calculated by integrating the difference between EFpost and EFpre for ranges 

intersecting costs or efficacy.  Once the area of opportunity is determined, the average percent 

efficacy and cost improvement of transitioning from EFpre to EFpost is calculated as

2 1 100%A x A x  and 2 1 100%A y A y , respectively.  A high percent increase indicates poor 

performance of the solutions for EFpre in comparison to the solutions for EFpost.   

 
Figure 2.7.  Regions of integration to assess efficacy improvement given cost range. 
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Figure 2.8.  Regions of integration to assess cost improvement given efficacy range. 

In instances where the ranges of cost (or efficacy) for two compared models do not 

intersect, the area of opportunity for efficacy (or cost) is classified as undefined.  This provides 

two additional metrics which can be reported. 

1. Efficacy undefined.  The entire pre-integration frontier lies to the right of the post-integration 

frontier.  

2. Cost undefined.  The entire pre-integration frontier lies to the below of the post-integration 

frontier. 

Both improvement metrics are presented as percentage and are easily interpreted. 

2.5.3 Analysis of results.  The third step of solution analysis involved the comparison of 

pre- and post-integration policies, both holistically and according to experimental factors.  The 

five metrics are reported for each dimension of comparison.  Underlying reasons for the results 

are listed and unexpected results explained. 
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2.6 Integration Implications 

Finally, any policy suggestions that result from the research study are given along with a 

summative description of that integration analysis.   Chapters 3 to 5 follow addressing efficacy 

integration and visibility; supply chain cost structure; and whole patient integration respectively.
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CHAPTER 3 

The Impact of Efficacy Visibility 

This chapter addresses the strategic implications of providing a system view of treatment 

efficacy in a healthcare system where minimized cost and maximized efficacy are desired.   Two 

quantitative policy models are created to imitate pre- and post- integration and compared using 

an experimental design assessing the performance impact of provider perspective variance, 

varying costs, and demand volumes.  System efficacy visibility is shown to help mitigate cost 

and improve efficacy.  Recommendations are made to leverage provider expertise and integrate 

systems for shared treatment decision making. 

3.1 Segmentation Challenge and Integration Opportunity 

3.1.1 Background.  Treatment design might be generalized as providing a high efficacy 

treatment at a low cost.  The understanding of the designer of treatment efficacy and cost is 

critical for healthcare quality and supply costs.  The clarity of design might be negatively 

influenced by lack of visibility in terms of efficacy and cost, as well as issues of medical liability 

and associated cost apathy, limited designer experience, and pharmaceutical/medical industry 

marketing.  A summary of efficacy and cost visibility follows. 

Deviations in efficacy evaluation for an individual physician (or healthcare system) from 

a comprehensive system view, is termed treatment bias.  The existence of such bias, even when 

unintentional on the part of the physician, can undermine system performance.  Clinician bias in 

patient treatment has been studied for years; mostly to help interpret variance in patient 

outcomes.  There is minimal study regarding the impact of clinician bias on supply cost of large 

scale healthcare systems.  Isbister et al. (2007) recommend that more emphasis be placed on the 

issues of clinicians and patients rather than the vendor side of healthcare supply chain 
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management. Clinician bias might also be institutional in the form of high intra-organization 

variance in treatment protocol.   

The idea of cost awareness (or lack of) among clinicians was presented as early as 1993 

by Blum and Miller.  The Blum and Miller (1993) research concluded that a large majority of 

observed physicians could not accurately estimate treatment costs.   Several other studies 

followed with similar results.  In 2000, Ernst et al. reported that a majority of physicians tend to 

underestimate the cost of expensive treatments and overestimate the cost of less expensive 

treatments.  Reichert, Simon, and Halm (2000) concluded that most physicians have inadequate 

access to drug cost data but stated that cost was an important factor.  McGuire et al. (2009) 

argues that cost should be of equal, if not more important, consideration in cases where 

treatments are cost prohibitive.  So why aren’t treatment costs weighed more heavily in 

physician decision making?   It may be because cost information is not as readily available 

during treatment decision processes (Walzak et al., 1994; Fortuna et al., 2008; and Tseng et al., 

2006).  This is due in large part by procurement and charging policies.   

In addition to provider awareness, patient cost awareness also plays a role in cost 

containment for healthcare and supply chain management.  Many patients are concerned about 

the cost of healthcare but few are fully informed about the costs included in healthcare 

expenditures.  It is also noted that patients are not likely to voice their cost concerns with 

providers while treatment decisions are being made.  Providers and patients often have the desire 

to discuss out-of-pocket costs but can be dissuaded by perceived time constraints or because they 

believe clinicians cannot offer solutions to out-of-pocket cost (Bovier, 2005).   

In addition to enabling patient-clinician discussions for cost, public awareness campaigns 

may also aid in reducing treatment costs.  Studies show that affective public education 
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campaigns can decrease prescription cost by almost $3 billion per year (Donohue et al., 2008).  

Unfortunately, effectively public education campaigns are rare.   

Instead of relying on uninformed clinician and patient decisions, decision support 

systems can be integrated to improve awareness, decrease costs, and improve the quality of care.  

Simple methods can be used to improve cost awareness and containment in healthcare (Roth et 

al., 2001).  Providing cost “cheat sheets” can lead to better awareness and less expensive 

treatment decisions. Korn, Reichert, Simon, and Halm (2003) illustrate that information 

pamphlets and basic cost education interventions improve physician knowledge and willingness 

to consider costs in prescribing.  The British Columbia has enacted healthcare cost containment 

policies implementing generic substitution and a reference drug program.  Polinski et al. (2008) 

survey B.C. providers to determine that a majority believes that these policies are economically 

and clinically appropriate.  However, the study infers the government legislation has more 

impact on acceptance than standalone physician training programs and controversy will ensue.  

Andersson et al. (2009) conduct an extensive study of Swedish physicians and witness stronger 

adherence to prescribing indicators over three years when decentralized budgets are presented to 

providers, with greater buy-in from clinics in the public sector and from younger, residency-

trained physicians.  Sweden has also established a medication guide book that has been widely 

accepted by physicians to inform medical decision making (Axelsson, 2008).   

More advanced and computerized decision support systems also have a positive effect on 

prescribing behaviors.  In a clinical trial, Fortuna et al. (2009) experience 88% of clinicians 

endorsing a medication alert system with 70% reporting that the system does not interfere with 

work flow across 14 provider sites.   
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Based on results from literature, it can be concluded that cost education programs and 

decision support systems allow physicians to make more economic treatment decisions.  

Additionally, more consolidated or standardized processes for treatment formulary lead to lower 

system costs.  Although, previous researchers have concluded that clinician awareness of costs is 

an important factor in patient treatments, they have not modeled or conducted detailed 

quantitative analyses on the impact of awareness.  Additionally, they have not considered 

strategies for obtaining or maintaining efficient treatment policies based on the trade-off between 

cost and efficacy as established in this research. 

3.1.2 Characterization.  This chapter focuses on the integration opportunity for efficacy 

visibility for treatment designers.  Quantitative measures for treatment efficacy are numerous.  A 

common example is the disability-adjusted life year (DALY).  This research keeps the measure 

general due to its policy emphasis. 

3.1.2.1 Patient volumes and treatment efficacies.  Given a set of treatment designers and 

their associated perceived treatment efficacy, a system view of efficacy needs to be derived.  

Large healthcare organizations, such as the Veterans Affairs Health Administration, implement 

incentive policies that encourage patient treatment based on expertise.  Providers with expertise 

in managing a given diagnosis are given incentives for serving high volumes of patients with the 

diagnosis.  Providers that serve low volumes of patients for given diagnoses are encouraged to 

refer patients to providers with greater expertise.  It is assumed that such a system will 

experience treatment efficacies that are mostly impacted by such experts.  Thus, system efficacy 

is computed so that treatment efficacies are based on an average of volume-weighted provider 

efficacies. 
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3.1.2.2 Patient treatment unit costs.  Several studies have concluded that providers 

generally lack awareness of treatment cost.  This lack of knowledge is assumed to increase 

healthcare costs and, in turn, decrease the overall quality of care.  Three views considered to 

incorporate cost are as follows: 

1. Designer is cost indifferent, seeking just to maximize efficacy. 

2. Designer is cost considerate, trying to choose lower cost options for high similar levels of 

efficacy. 

3. Designer is cost educated, with some understanding of product price and its associated 

variable and fixed costs. 

In this study, models assume the third view in the form of a unit treatment cost, independent of 

treatment volumes, or other procurement factors.  This is the most generous view for designers 

and most conservative in terms of making conclusions.  Details of cost structures are considered 

in Chapter 3.  Basic characteristics of treatment cost variance are assessed to aid solution 

strategies for more complex costing structures in future research studies. 

3.2 Policy Model Formulation 

Two policy models are developed.  The first models a pre-integration policy of treatment 

design based on individual efficacy perceptions, unit cost consideration, and disease specific / 

specialization (IUD model).  The second models a post-integration policy of treatment design 

based on system efficacy, unit cost consideration, and disease specific / specialization (SUD 

model). 

3.2.1 IUD model (pre-provider integration).  For the IUD, treatment efficacy values 

are decided on a more independent basis by individual providers as opposed to a system with 

more shared decision making.  Supply costs are considered per unit.  As previously mentioned, 
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the cost factor assumed in this problem does not consider leveraging economies of scale from 

combined treatment selection volumes or discount cost.  Entry costs are not legitimately 

accounted for either.  The patients in this problem are viewed according to the providers’ 

specialties or per diagnosis as opposed to a system with capability to view and treatment the 

whole of a patient’s complications. The main goal of treatment selection decision makers at the 

clinical theatre level is to find the optimal values of the decision variables xijk: the binary decision 

of provider k to select treatment i for diagnosis j to maximize the total perceived value of 

efficacy while minimizing total cost.   

The efficacy coefficient for this problem is ẽijk, provider k’s perceived efficacy value of 

treatment i when applied to diagnosis j.  The cost factor for treatment i is ci, the perceived unit 

cost which is the sum of fixed cost di and variable cost si.   

The optimization problem of selecting the xijk decision variables are formally expressed in 

the IUD model as follows: 

max ijk ijki j
e x    (3.1)  

min i ijki j
c x   (3.2)  

s.t.      1  ijki
x j and k   (3.3)  

 or 1     ,  and0  ,ijkx ji k   (3.4)  

Note that this model emphasizes the disease and designer independence of the decision-making 

process.  This approach has the physicians assign a single treatment to each diagnosis with 

binary representation.  Patient volume is not considered.  Recall that a treatment might be a 

combination of proactive and reactive or a “do nothing” option.  Unit cost information is 

considered visible by the designer (which is generous based on the research indicating much cost 

indifference).  An alternative model might be including some representation of cost utility and 
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visibility.  Including this would further promote the attractiveness of integration. A key modeling 

desire was to have a simple model of the most segmented policy in order to accommodate the 

increasing complexity of modeling the integration impact. 

3.2.2 SUD model (post-provider integration).  With a system view of efficacy (given a 

system view of unit cost), then treatment decisions are made on a system level.   The decision 

variable xijk is replaced by xij, the binary decision of for the system to select treatment i for 

diagnosis j.  The efficacy coefficient for this problem is ẽij, the system assessment of efficacy for 

treatment i when applied to diagnosis j.  Note that this research estimates ẽij =

(∑ Vjkẽijk ) (∑ Vjkk )⁄  where Vjk is volume of patient with disease j treated by physician k. 

Again, this estimate is conservative in terms of revealing the impact of integration.  The 

optimization problem of selecting the xij decision variables are formally expressed in 

SUD model as follows: 

max ij iji j
e x    (3.6) 

min i iji j
c x    (3.7) 

s.t.     1iji
x j    (3.8)  

 or 1     and 0ijx i j    (3.9) 

Note that this model emphasizes the disease independence of the decision-making 

process.  This approach has the system assign a single treatment to each diagnosis with binary 

representation.  Patient volume is not considered.  Unit cost information is considered visible by 

the designer (which is generous based on the research indicating much cost indifference). 
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3.3 Policy Model Solution 

For this research, problems are sized and generated to enable solution through 

enumeration.  This approach is taken so that the entire set of feasible solutions might be 

compared to the efficient frontier as in Figure 3.1.  In practice when seeking the efficient 

frontier, treatments might be ordered by cost or by efficacy.  Treatments which are cost-efficacy 

dominated might be eliminated on a disease by disease basis.  Only disease cost efficient 

solutions need be considered when constructing the system efficient frontier. 

 

Figure 3.1.  Feasible solutions with highlighted efficient frontier. 

3.4 Integration Assessment 

In the event that your figure caption is longer than one line, be sure that the subsequent 

line is flushed to the left margin. See figure 2 for visual confirmation. 
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3.4.1.1 Patient volume factors.  For each problem, the demand volume of patients with 

disease j serviced by each provider k, Vlk, must be known.  The variability in Vlk is one factor 

considered in the model.  High variability indicates presence of treatment design by both experts 

and inexperienced providers.  Low variability indicates that patient volumes are balanced across 

designers. 

3.4.1.2 Efficacy factors.  The parameters used to evaluate efficacy values in this study 

are eijk, and Vlk.  The basis for evaluating total efficacy between problems is that the perceived 

efficacy may differ between providers and true efficacy may be estimated based on provider 

expertise.  Values of efficacy are normalized to range from 0 to 1 with 0 being ineffective and 1 

being completely effective.  Given that provider k’s perceived efficacy of treatment i for 

diagnosis j is eijk, the system calculated efficacy according to ẽij = (∑ Vjkẽijk ) (∑ Vjkk )⁄ .  The 

variability in perceived efficacy is a factor in the design of experiments.  High variability 

indicates many different perceptions regarding treatment efficacy.  Low variability indicates 

some consensus in terms of efficacy. 

3.4.1.3 Cost factors.  The parameters used to generate cost values in this research are di 

and ai.  The parameters for fixed costs and variable cost coefficients are varied from 0 to 100 and 

then added to form a unit cost.  It is assumed that the variable cost of treatment i tends to be 

directly related to the relative efficacy of treatment i.  Understanding that not all variable cost are 

correlated to treatment efficacies, a “noise” factor is added such that the variable cost of 

treatment i is si = ai( ∑ ẽijj )/( ∑ ẽijj ) ± σi.  The cost of selecting treatment i is calculated as di + si.  

Variability in fixed costs and variability in variable costs are factors in the design of experiments. 

3.4.2 Design of experiments.  The objective of the experimental design is to understand 

the relationship between parameters (variance in provider’s patient volumes, variance in 
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provider’s perceived efficacy, variance in fixed cost, and variance in variable cost coefficient) on 

the performance of treatment selection protocols of the IUD in comparison to the SUD. 

Parameters are set in a manner that allows for inferences to be made relative to a system 

progressing through the four policies of treatment protocols selection.    

3.4.2.1 Generation of problem instances.  In this study, a problem with three treatments, 

three providers, and three diagnoses is examined.  These parameters are generated using custom 

programs in Matlab 7.12.0 (R2011a).  This section discusses the design of experiments for 

comparing solutions of the two formulated models.  First, the methods used to generate their 

values for the design of experiments are provided. 

3.4.2.2 Random value generation.  The values for di, eijk, ai, and Vlk, are randomly 

generated from beta distributions. The parameters are translated using fundamental properties of 

expected value and variance so that the expected ranges and variances for problem parameters 

are maintained.  For parameters di, eijk, ai, and Vlk, low variance corresponds to Var(X) ≤ 0.0192 

and high variance corresponds to Var(X) ≥ 0.0833.   Accept and reject logic is used to ensure 

that the desired level of variance is maintained in the generation of the four factors with different 

levels of variance.  The purpose of using the beta distribution is to ensure that values lie within a 

desired range (avoiding the disadvantages of truncation), maintain the desired level of variance, 

and may be skewed from the central value of parameter’s range (Fox, 1963).   

The Matlab code for each of the random number generators is found in the APPENDIX.  

The problem parameters varied as a part of this research are summarized in Table 3.1.  Ten 

replications are executed for each factor level combination in the design for a total of 160 

observations. 
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Table 3.1 

Study 1 experimental problem factors and levels. 

Factor Factor Description Factor Levels 
1 Variance in Perceived Efficacy between Providers 1-High,   2-Low  
2 Variance in Patient Volumes between Providers 1-High,   2-Low  
3  Variance in Fixed Costs between Treatments 1-High,   2-Low  
4  Variance in Variable Costs between Treatments 1-High,   2-Low  

 

3.5 Integration Analysis 

Based on the design of experiments, a total of 160 observations were used to assess 

model performances.  Enumeration was used to find optimal efficient frontiers.  Efficient 

solutions of the IUD and SUD models are evaluated using the system efficacy.  Note that given 

the model solutions, only the decision variables, unit cost, and system efficacy are used in this 

evaluation.  Patient volume, supply chain cost structure, and efficacy utility are not considered 

(though these factors are considered in subsequent chapters).   

3.5.1 IUD-SUD Comparison.  Table 3.2 lists the performance results of the IUD relative 

to the SUD by experimental factor.  Note that in this study, there were no instances of undefined 

solutions (either efficacy or cost).  As expected, the SUD outperforms the IUD across all 

performance measures. Also, the IUD tends to perform closer to the SUD when there is low 

variance in problem factors.  Overall, the average improvement in cost, improvement in efficacy, 

and error rate are 10%, 5%, and 42%, respectively.  The following sections provide details of 

performance based on each experimental factor.  

3.5.1.1 Provider variances.  The average improvement in efficacy is a consistent 5% for 

high and low levels of variance in perceived efficacy.  It is expected that this result occurs as 

variance in perceived efficacy between providers can be mitigated through system integration 
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and share treatment protocol selections.  However, the corresponding cost of solutions made 

based on perceived efficacies results in decreased performance.  This decreased performance is 

amplified as the variance in perceived efficacy between providers is increased.  According to the 

average changes in cost and error rate, the IUD performs better when the variance in perceived 

efficacy between providers is classified as low.  The average change in cost is increased from 6% 

to 12% and the average error rate is increased slightly from 41% to 43% as variance in this factor 

is changed from low to high. 

Table 3.2  

Average improvement of the SUD relative to the IUD. 

Factor Levels Improvement in 
Cost 

Improvement in 
Efficacy 

Average Error 
Rate 

Variance in Perceived Efficacy 
between Providers    
High 12% 5% 43% 
Low 6% 5% 41% 
Variance in Patient Volumes between 
Providers    
High 11% 6% 42% 
Low 6% 5% 43% 
Variance in Fixed Costs between 
Treatments    
High 11% 8% 51% 
Low 7% 2% 33% 
Variance in Variable Costs between 
Treatments    
High 9% 6% 42% 
Low 8% 5% 43% 

 

3.5.1.2 Patient volumes.  Patient volumes were also used in the formulation of total cost 

and total efficacy values.  Accordingly, this factor does show an impact on performance that is 

similar to the trends in variance in perceive efficacy between providers.   The average change in 

cost is increased from 6% to 11% as variance in patient volumes between providers is increased.  
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The average change in efficacy is relatively unchanged, increasing from 5% to 6%.  The average 

error rate is decreased slightly from 43% to 42% as the variance in this factor is changed from 

high to low. 

 3.5.1.3 Fixed costs.  All performance values are increased as the variance in fixed cost 

between treatments is increased.  The average change in cost is increased from 7% to 11%, the 

average change in efficacy is increased from 2% to 8%, and the average error rate is increased 

from 33% to 51% as variance in this factor is changed from low to high.  Improvements due to 

this factor provide the most support for providers to share treatment selection protocols.  Over all 

factor levels, the lowest improvement in efficacy (2%) occurs when the variance in fixed cost 

between treatments is classified as low.  Efficacy is not directly implied in the calculation of 

fixed costs as in the case of variable cost (refer to cost factors).  Fixed costs are random or 

unbiased to treatment efficacies.  Without making decisions for treatment selection in lieu of 

fixed cost, performance in decreased. 

 3.5.1.4 Variable costs.  Unlike fixed costs, variable costs are assumed to be related to 

treatment efficacies in this research.  Therefore, if the efficacy of a treatment increases, the 

variable cost of the treatment is also expected to increase.  The efficient frontiers for the IUD and 

SUD will make proportionate shifts.  Study results show relatively little change for all 

performance measures as levels for variance in variable costs between treatments change.   The 

average improvement in cost changes from 8% to 9%, improvement in efficacy changes from 

5% to 6%, and error rate changes from 43% to 42% as the variance in this factor is changed from 

low to high. 
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3.6 Integration Impact 

 3.6.1 Solution characterization.  All solutions that satisfy the inequalities of the SUD 

model are basic feasible solutions.   These solutions can be elements of the efficient frontier or 

inefficient solutions.  Recall that the design of experiments employed three treatments and three 

diagnosis.  Therefore, 27 basic feasible solutions were generated for each of the 160 observations 

of the SUD.  This advantage was exploited to explore characteristics of basic feasible solutions 

that are more difficult to observe in the following studies.  The solution sets of models in the 

following chapters will have more complex dimensions and contain non-integer elements 

making these models exponentially more difficult to solve.  Before developing the studies in 

chapters 3 and 4, key characteristics were observed to provide insight for solution heuristics. 

3.6.1.1 Frontier navigation.  Given a solution on the efficient frontier, one need only 

consider changes in the treatment mix that increase efficacy in moving toward a higher efficacy 

solution (and vice versa for lowering cost).  A heuristic that proved effective was a one treatment 

swap.  The treatment with the highest change in efficacy relative to change in cost is attractive 

when a higher efficacy point on the frontier is desired.  The treatment with the highest change in 

cost relative to change in efficacy is attractive when a lower cost point on the frontier is desired.  

When using such a one swap heuristic, one can check for any options where the incremental 

impact in favorable in terms of efficacy and cost (in case the swap has taken the procedure away 

from the efficient frontier). 

3.6.1.2 Concave efficient frontier. Occasionally, two points on the efficient frontier 

might be endpoints on a line segment that dominates another point on the efficient frontier.  The 

concave efficient frontier eliminates all such points.  That line might represent a gradual shift 
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between the solutions associated with the endpoints.  That shift could lead to better performance 

than with the dominated efficient frontier point. This concept is used in future chapters. 

3.6.1.3 High efficacy/low cost regions.  An interesting trend was noticed when adjusting 

efficacy variances or cost variances.  In particular, as the variances between treatment efficacies 

increase, the frontier solutions within regions of high efficacy tend to remain as frontier solutions 

in the high efficacy region as other parameters remain unchanged.  As the variances between 

treatment unit costs increase, the frontier solutions within regions of low cost tend to remain as 

frontier solutions in the low cost region as other parameters remain unchanged.   

Figure 3.2 illustrates the change in frontier solution locations as variances in treatment 

cost and efficacy are increased.  Frontier solutions in the high efficacy or low costs regions are 

highlighted.  In order for provider “C” to perform as well as provider “A” or “B”, provider “C” 

must increase total efficacy without sacrificing cost or decrease total cost without sacrificing 

efficacy.  A similar concept was exhibited when exploring the basic feasible solutions of the 

SUD.  When moving from the more inefficient solutions toward solutions of the efficient 

frontier, it is shown that there are as many as three paths to improve the performance inefficient 

solution toward the efficient frontier: 

1. Decrease costs at a faster rate than decreasing efficacies. 

2. Increase efficacy while decreasing costs. 

3. Increase costs and increase efficacy. 

Referring to Figure 2.4, these types of transitions can lead to efficient solutions to the 

right of provider “B”, efficient solutions between providers “A” and “B”, or efficient solutions to 

the left of provider “A”.  Thus heuristic solutions much focus on the breadth and quality of the 

produced efficient frontier. 
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Figure 3.2.  High efficacy and low cost regions along the efficient frontier. 

3.7 Chapter Summary 

The study discussed in this chapter models and assesses provider integration for 

healthcare supply chain management.  The study examined considers the implications of 

information visibility in informing treatment efficacy.   A unique performance assessment 

method is proposed so that system performance may be evaluated in a more practical manner.  

Using this assessment method, it is determined that informing provider decisions in treatment 

selection protocols has a positive impact on overall system cost and efficacy.  Subsequent studies 

will explore the intricacies of treatment interactions, patient severity levels, and complex 

treatment costing structures.  The observed system characteristics are further explored in 

chapters 3 and 4 to develop solution techniques for more complex models. 
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CHAPTER 4 

The Impact of Supply Chain Visibility 

The primary goal of this study is to determine the strategic implications of considering 

supply chain cost structure in creating treatment designs.  A full design of experiments is 

conducted to determine the performance impact that order-volume discounts, provider variance, 

varying costs, and demand volumes have on treatment selection protocols.  A heuristic solution 

technique is employed to help comprehend processes involved in efficient treatment protocol 

selection.  Recommendations are made to integrate treatment selection protocols, improve cost 

awareness among providers, and leverage economies of scale through shared and standardized 

procurement and allocation policies. 

4.1 Segmentation Challenge and Integration Opportunity   

A substantial benefit of new healthcare enterprise integration systems is that they may be 

used to exploit and improve supply chain logistics.  Best practices can be observed and used to 

improve procurement policies.  Here, the impact of treatment selection protocols in an 

integrating healthcare supply chain is explored. 

4.1.1 Background.  To date, healthcare supply chain operations account for 30 to 40 

percent of healthcare cost, second only to personnel costs ("The Integration of Innovation and 

Clinical Need: ROI - the Mercy Supply Chain Story," 2002).  Gupta and Orbe (2009) discuss a 

report from Arizona State University, labeling United States healthcare inefficient and expensive 

as providers spend 31 to 67 percent of operating budgets on supply chain processes.  Since costs 

are assumed by patients, physicians are less concerned with cost and equity when prescribing 

treatment designs.  Most hospitals allocate patients’ fees according to charges made in 

perioperative services (i.e. the period around patient operations), pharmaceuticals, and materials.  
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Likewise, their view of supplies is distributed into these three categories of patient fees.  

However, in a more transparent supply chain, hospitals have more access to the details in supply 

costs and are better able to pinpoint and mitigate costs attributed from 3PL, wholesalers, and 

consignment (Darling & Wise, 2010).  Costs from shrinkage and stock-outs are also better 

understood and easy to avoid.   

A few researchers have investigated the impact of consolidating and standardizing 

treatment selection decisions of clinicians in relation to supply chain management.  Kelle et al. 

(2012) address the conflict of formulary or product variety (preferred by physicians) and 

economies of scale (preferred by pharmacy directors) for a local hospital.  Pre-intervention, the 

hospital employed an inventory ordering policy, which resulted in high frequency of shortages 

and emergency refills based on user “experience” instead of statistical predictive modeling 

solutions.  The hospital transitioned to using drug depots that automate orders based on a (s, S) 

policy.  Mathematical models were used to determined that the hospital’s previous inventory 

policies were suboptimal, increased formulary, resulted in increased refills, and, thus, higher 

order costs and labor requirements.  

4.1.2 Characterization.  The model in this chapter assumes that treatment efficacies 

have been defined at a system level based on disease.  The volumes of patients with each type of 

diagnosis are known.   This level of characterization is consistent with Chapter 3. 

The key difference in this chapter is that supply chain costs are known at the structural 

level.  For the purpose of the research, this is characterized by three measures.  

Supply chain fixed cost (entry cost) is the cost associated with operating the supply chain 

independent of the volume required.  If the treatment volume is zero, then there is $0 fixed cost.  

Supply chain variable cost is some measure of the rise in cost as a function of the rise in 
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treatment volume.  Cost/volume shape indicates the change in supply chain variable cost as a 

function of treatment volume.  A linear shape means that variable cost is volume indifferent.  

More common shapes are sublinear based on economies of scale and volume discounts. In the 

IUD and SUD models from Chapter 3, fixed costs as defined here was $0, variable costs were 

based on unit costs, and the associated shape was linear. 

A graph showing a supply chain with fixed costs and a sublinear shape is shown in Figure 

4.1.  Note that for a given increase in volume, the associated cost is much higher when the 

treatment volumes are lower. The assumptions for how each of these known parameters is 

manipulated to formulate models are provided in the following section.  

 

Figure 4.1.  Supply chain cost structure. 

4.2 Policy Model Formulation   

Two policy models are considered.  The first models a pre-integration policy of treatment 

design based on system efficacy perceptions, unit cost consideration, and disease specific / 

specialization (SUD model from Chapter 3).  The second models a post-integration policy of 
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treatment design based on system efficacy, system cost consideration, and disease specific / 

specialization (SSD model).  

4.2.1 SUD model (pre-cost integration).  With a system view of treatment efficacy 

values, the goal of treatment selection decision makers at the system level is to find the optimal 

values of the decision variables xij:, the binary decision for all providers in the system to select 

treatment i for diagnosis j to maximize the total system efficacy while minimizing total cost.  

The MOOP model can be modified and simplified into the following form.  Maximize the 

system’s total (or volume-weighted) efficacy value and minimize the total cost, subject to 

equality constraints to imply that: 

 One treatment must be selected for each diagnosis. 

 Treatment selection decisions are binary. 

The optimization problem of selecting the xij decision variables are formally expressed in 

the same SUD model from Chapter 3 as follows:  

max ij iji j
e x   (4.1) 

min i iji j
c x    (4.2) 

s.t.     1iji
x j    (4.3) 

 or 1     and 0ijx i j    (4.4) 

Note that this model emphasizes the disease independence of the decision-making process.  

Patient volume is not considered.  Unit cost information is considered visible by the designer 

(which is generous based on the research indicating much cost indifference). 

4.2.2 SSD model (post-cost integration).  The decision variables for this model assume 

the same form as in the SUD.  However, the values of this vector are assessed with a different 

cost structure.  In this model, the cost constants for treatment i are variable cost coefficient si, 
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entry cost coefficient di, the degree of volume order discounts ui where 0 < ui < 1, and the 

volume of demand for diagnosis j Vj.  These factors are used to drive the assessment of cost 

associated with treatment i in the SSD as ci= diyi
+si( ∑ Vjxijj )

ui where xij is defined as with the 

SUD model and yi is a binary variable set to 0 if no treatment i is used and 1 otherwise.  

However, in the SUD, ci= di+si as explained in Chapter 3. 

The SSD model can be modified into the following form.  Maximize the system’s total 

efficacy value and minimize the total entry cost plus variable volume-based cost of treatments, 

subject to the each of the following constraints: 

 One treatment must be selected for each diagnosis. 

 A one-time entry cost is incurred when at least one unit of a treatment is supplied. 

 Treatment selection decisions are binary. 

The optimization problem of selecting the xij decision variables for this problem is 

formally expressed in the SSD model as follows: 

max ij iji j
e x    (4.5)  

 min
iu

i i i j iji j
d y s V x
 


  

    (4.6) 

s.t.     1iji
x j    (4.7) 

0    ij ij
x My i      (4.8) 

 or 1     and 0ijx i j    (4.9)  

 or 1    0iy i      (4.10) 

Equation 4.8 is used to set the value of yi to drive the inclusion of entry costs in the total cost 

computation.  In this equation, yi is one if any xij is one for any j and zero otherwise.  This 

formulation requires the M must be as large as any reasonable value for ∑ xijj ∀ i. 
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4.3 Policy Model Solution   

For this research, problems are sized and generated to enable solution through 

enumeration.  This approach is taken so that the entire set of feasible solutions might be 

compared to the efficient frontier.   However, for larger more complex problems, the non-linear 

objective function and fixed cost inclusion complicated traditional optimization methods.  A 

heuristic solution technique is proposed to estimate the frontier of efficient treatment protocols.  

4.3.1 Heuristic solution.  The heuristic is established in the section based on the 

following: 

 Adjacent points on the efficient frontier tend to have similar solutions. 

 Entry costs have a higher impact on unit cost when treatment volumes are low. 

 Transitions between efficient points tend to avoid incurring entry costs. 

 As costs increase, the increase in efficacy tends to diminish creating points that appear to be 

on a concave front. 

For this heuristic, the fixed cost di, the standard value of efficacy eij, the discount cost 

coefficient si, the degree of the volume discount ui, and the demand population Vj must be 

known.  A current operational strategy or feasible solution xij must be established such that 

exactly one treatment is selected for each diagnosis.  Considering that few decision swaps tend to 

occur between adjacent efficient solutions, the heuristic estimates the change in total efficacy and 

total cost incurred from swapping one treatment at a time.   

4.3.1.1 Efficacy and cost tradeoff estimation.  A strategy to estimate alternative 

treatment costs and efficacies is proposed from observing that very few decision swaps occur 

between efficient solutions and that entry costs have a higher impact on unit cost when treatment 

volumes are low.  For this strategy, it is assumed that swaps are evaluated one at a time.  When 
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considering alternative treatment decisions in this problem, it is relatively easy to capture the 

change is efficacy.  The change in efficacy E  is the difference in the dot product of efficacy 

and the new decision and the dot product of efficacy and the initial decision. The nonlinear 

relationship between costs and treatment volumes makes the treatment selection problem more 

complex than if there were a linear relationship between costs and treatment volumes.   

A rapid estimate for the increase in cost due to one treatment swap is proposed.  Consider 

that a swap is made in an initial solution xo resulting in solution xf.  The initial volume of a 

treatment Vo, becomes Vf after the swap.  Decision makers may decide to consider the average 

unit cost for treatment to evaluate the change in cost.  In this problem, the average unit cost for a 

treatment with volume v is as follows: 

  

            otherwi

0(

0, s

)

e

,
ud sv

vAC v v

   


  (4.11) 

The cost AC incorporates the fixed cost of d, variable cost s, and some degree of 

curvature u which implies a nonlinear relationship between cost and volume when u ≠ 1.  

Decision makers may decide to consider the instantaneous change in cost for treatment i to 

evaluate the change in cost.  In this problem, the instantaneous change in cost is the derivate of 

the cost function with respect to u at a given volume v or  
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   (4.12) 

The iterative solution technique for this research considers a weighted combination of the 

values AC and SC.  When there is a small change in treatment volumes, AC is given more weight 

so that fixed costs will have a greater impact of total cost.  When there is a large change in 

treatment volumes, SC is given more weight because the impact of fixed costs begins to 

diminish.  The weighted estimate for the change in cost is evaluated as ∆𝐶 = 𝛼𝐴𝐶 + (1 − 𝛼)𝑆𝐶   
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where  
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  (4.13) 

Figure 4.2 illustrates the relationships between AC and SC along a cost curve where Vo < 

Vf and when Vf > Vo.  Notice from this figure that the average unit cost for a treatment AC is 

always based on the initial volume of a treatment.  This reflects the idea that decision makers use 

the baseline average to predict opportunity cost.   

 

Figure 4.2.  AC and SC evaluation based on shifts in treatment volumes. 

The instantaneous change in cost SC is always based on the large treatment volume.  This 

reflects the idea that decision makers are most interested in the rise or fall in cost based on the 

highest volume of use.  At this volume, the incremental cost per unit is relatively low.  This 

strategy to estimate alternative treatment costs is used in the heuristic proposed in the following 

section.   

4.3.1.2 Locating improved solutions.  After estimating for alternative treatment costs and 

efficacies have been determined, it is possible to evaluate which alternative improves upon 
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current operations.  The observations discussed in Chapter 3 help to determine these alternatives.  

Specifically, if it is possible to improve upon the current operations, it is done by in one of three 

ways: (1) finding a solution with lower cost and lower efficacy that has equal or higher efficacy 

per cost, (2) finding a solution with lower cost and higher efficacy that has equal or higher 

efficacy per cost, or (3) finding a solution with higher cost and higher efficacy that has equal or 

higher efficacy per cost.  Based on these three criteria, a search routine is proposed to find 

improve frontier points within three regions.  The relationship between an efficient frontier, these 

regions and a feasible solution is exhibited in Figure 4.3.    

 

Figure 4.3.  Regions of improvement for candidate swap decisions. 

In Region 1, a swap will have a lower cost and lower efficacy than the current solution 

values, Po.  The swap in this region will result in the lowest possible change in efficacy per 

change in cost.  In Region 2, a swap will have a lower or equal cost and an efficacy greater than 

or equal to the current solution values, Po.  The swap in this region will be furthest away from 

the current decision.  In Region 3, a swap will have a higher cost and a higher efficacy.  The 

swap will have the highest possible change in efficacy per change in cost.  Any solution that 

results in a higher cost for a lower efficacy is less efficient than current solution values, Po, and, 

therefore, is not considered as a candidate for swapping.   
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Based on the searches for swaps in each of these regions, as many as three new solutions 

can replace the current operational solution.  Searches for improvements beyond found solutions 

may continue until consecutive searches are equal or close enough or the allotted number of 

iterations for a search is reached.  The following heuristic algorithm details this search process 

for efficient treatment protocols. 

4.3.1.3 Heuristic process.  Based on the solution characteristics of the SSD, a six step 

heuristic is used to provide a close estimate for the efficient frontier.  The six steps are as 

follows:  

1. Problem initiation.  It is assumed the current feasible solution for operations or that a feasible 

solution of interest is known.  The problem is initiated with this solution being a candidate 

member of the solution set and its objective function values being candidates for the efficient 

frontier. 

2. Decision swap.  One swap is made for an element of the solution set.  The resulting solution 

is considered a candidate for the efficient solution set and must be compared to alternative 

solutions prior to being declared efficient. 

3. Swap comparison.  The proposed technique for estimating an alternative treatment cost and 

efficacy are used to determine possible improvements from a swap.  The estimated changes 

in cost and efficacy are vetted for improvement upon solutions present in Region 1, 2, or 3 of 

the basic feasible region. 

4. Solution and efficient frontier update.  When candidates for efficiency are found to improve 

upon a compared solution, the compared solution is replaced the by the candidate solutions.  

The corresponding objective function values of the compared solutions are replaced as well.  
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Up to three candidate solutions may be selected to replace the compared solution based in 

searches in Regions 1, 2, and 3. 

5. Efficient frontier concavity check.  As a solution set is developed, it is important to ensure 

that the efficient frontier set maintains concavity.  This check is done periodically, in 

declared intervals, during the heuristic search.  Points that violate the requirement for 

concavity are removed along with the corresponding solutions. 

6. Stopping criteria evaluation.  The heuristic may be stopped based on at least one of two 

criterions: The distance between the efficient frontiers of consecutive searches is less than a 

desired epsilon or the maximum number of iterations is reached.  If these criterions are not 

violated, the search for the efficient frontier continues. 

A figure depicting the algorithm in detail is shown in Figure 4.4. 

 

Figure 4.4.  SSD heuristic procedure. 
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4.4 Integration Assessment   

4.4.1 Selected factors. Based on the characterization in Section 4.1, the following factors 

are considered in developing a design of experiments. 

4.4.1.1 Patient volume factors.  For each problem, the demand volume of patients with 

disease j serviced by each provider k, Vlk, must be known.  The variability in Vlk is one factor 

considered in the model.  High variability indicates presence of treatment design by both experts 

and inexperienced providers.  Low variability indicates that patient volumes are balanced across 

designers. 

4.4.1.2 Efficacy factors.  The parameters used to evaluate efficacy values in this study 

are eijk, and Vlk.  The basis for evaluating total efficacy between problems is that the perceived 

efficacy may differ between providers and true efficacy may be estimated based on provider 

expertise.  Values of efficacy are normalized to range from 0 to 1 with 0 being ineffective and 1 

being completely effective.  Given that provider k’s perceived efficacy of treatment i for 

diagnosis j is eijk, the system calculated efficacy according to ẽij = (∑ Vjkẽijk ) (∑ Vjkk )⁄ .  The 

variability in perceived efficacy is a factor in the design of experiments.  High variability 

indicates many different perceptions regarding treatment efficacy.  Low variability indicates 

some consensus in terms of efficacy. 

4.4.1.3 Cost factors.  The parameters used to generate cost values in this research are di 

and ai.  The parameters for fixed costs and variable cost coefficients are varied from 0 to 100 and 

then added to form a unit cost.  It is assumed that the variable cost of treatment i tends to be 

directly related to the relative efficacy of treatment i.  Understanding that not all variable cost are 

correlated to treatment efficacies, a “noise” factor is added such that the variable cost of 

treatment i is si = ai( ∑ ẽijj )/( ∑ ẽijj ) ± σi.  The cost of selecting treatment i is calculated as
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iu

i i i i j ijj
c d y s V x   .  Variability in fixed costs and variability in variable costs are factors in the 

design of experiments. 

4.4.2 Design of experiments.  The objective of the experimental design is to understand 

the relationship between parameters (variance in provider’s patient volumes, variance in 

provider’s perceived efficacy, variance in entry cost, variance in variable cost, and different 

shapes) on the performance of treatment selection protocols of the SUD in comparison to the 

SSD. Parameters are set in a manner that allows for inferences to be made relative to a system 

progressing through the four policies of treatment protocols selection. 

4.4.2.1 Generation of problem instances.  In this study, a problem with three treatments, 

three providers, and three diagnoses is examined.  There are five parameters used to generate the 

two problems in this research.  The List of Symbols defines these parameters.  These parameters 

are generated using custom programs in Matlab 7.12.0 (R2011a).  This section discusses the 

design of experiments for comparing solutions of the two models.  First, the methods used to 

generate their values for the design of experiments are provided. 

4.4.2.2 Random variable generation.  The values for di, eijk, ai, and Vlk, are randomly 

generated from beta distributions as described in Chapter 3.  The Matlab code for each of the 

random number generators is found in the APPENDIX.  The problem parameters varied as a part 

of this research are summarized in Table 4.1.  Ten replications are executed for each factor level 

combination in the design for a total of 320 observations. 

Table 4.1  

Study 2 experimental problem factors and levels. 

Factor Factor Description Factor Levels 
1 Variance in Fixed Costs between Treatments  1-High,   2-Low  
2 Variance in Variable Costs between Treatments  1-High,   2-Low  
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Table 4.1.   

Cont. 

3  Degree of Volume Discounts 1-High,   2-Low  
4  Variance in Patient Volumes between Providers 1-High,   2-Low  
5 Variance in Perceived Efficacy between Providers 1-High,   2-Low 

 

4.5 Integration Analysis   

A total of 320 observations were used to assess model performances under varied 

experimental factors.  In this section, efficient solutions of the SUD and SSD models are 

compared to the optimal treatment protocol solutions generated from total enumeration.  First, a 

brief discussion of the SSD Heuristic is provided. 

4.5.1 SSD heuristic performance.  Objective function values of heuristic solutions and 

total enumeration solutions are compared to assess the effectiveness of the SSD Heuristic based 

on the stated design of experiments. The average execution time for the heuristic was 0.76 

seconds.  The solutions found using the heuristic were efficient solutions with an average change 

in cost of 19% and an average change in efficacy of 3%.  Tuning of the heuristic is an 

opportunity for future research. 

4.5.2 SUD-SSD comparison.  Efficient frontier analyses help characterize some 

properties of optimal treatment protocols.  The efficient frontiers compared used the decision 

variable output of each model and assessed it using the supply chain structure.   Three measures 

were used to assess the performance of the SUD model relative to the SSD: average 

improvement in efficacy, average improvement in cost, and average error rate.  The average 

improvement in efficacy and average improvement in cost are based on the area of opportunity 

between the frontier of the SUD and the SSD.  No instances of “undefined” behavior were 

observed. 
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Table 4.2 lists the average performance results of the SUD relative to the SSD by 

experimental factor.  The most outstanding property shown in comparing model solutions is that 

the SSD outperforms the SUD across all performance measures. Also, the SUD tends to perform 

closer to the SSD when there is low variance in problem factors.  Improvements in efficacy from 

the SUD are minimal and appear to have no sensitivity with regard to changes in factor levels.  

However, improvements in cost are relatively substantial and do show sensitivity to study 

factors.  Most of the error in the performance of the SUD is attributed to the difference in total 

cost calculations. 

Table 4.2 

SUD-SSD performance by experimental factor. 

Factor Levels Improvement in 
Cost 

Improvement in 
Efficacy 

Average Error 
Rate 

Variance in Fixed Costs between 
Treatments    

High 17% 2% 34% 
Low 7% 1% 24% 

Variance in Variable Costs between 
Treatments    

High 15% 1% 25% 
Low 9% 2% 33% 

Degree of Volume Discounts    
High 14% 2% 33% 
Low 10% 1% 25% 

Variance in Patient Volumes between 
Providers    

High 12% 2% 31% 
Low 11% 2% 27% 

Variance in Perceived Efficacy 
between Providers    

High 11% 2% 27% 
Low 12% 1% 31% 
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Overall, the average improvement in cost, improvement in efficacy, and error rate are 12%, 2%, 

and 29%, respectively.  The following sections provide details of performance based on each 

experimental factor. 

4.5.2.1 Provider variances. The total efficacies for both problems are calculated using the 

same factors.  Therefore, it can be expected that there is little sensitivity to changes in provider 

variances when comparing the SUD and SSD.  The average improvement in cost changes 

slightly from 12% to 11%, the average improvement in efficacy changes slightly from 1% to 2%, 

and the average error rate changes from 31% to 27% as the variance in perceived efficacy 

between providers is changed from low to high. 

4.5.2.2 Patient volumes. Patient volumes were also used in the formulation of total cost 

and total efficacy values.  Accordingly, this factor does show an impact on performance that is 

similar to the trends in variance in perceived efficacy between providers.   The average 

improvement in cost is slightly increased from 11% to 12% as variance in patient volumes 

between providers is increased.  The average improvement in efficacy is unchanged, 2%.  

However, the average error rate is increased from 27% to 31% as the variance in this factor is 

changed from low to high. 

4.5.2.3 Fixed costs. All performance values are increased as the variance in fixed cost 

between treatments increased.  The average change in cost is increased from 7% to 17%, the 

average change in efficacy is increased from 1% to 2%, and the average error rate is increased 

from 24% to 34% as variance in this factor is changed from low to high.  Analyses of this factor 

provide the most support for heightened transparency of treatment costs.  Over all factor levels, 

the greatest improvement in cost (17%) occurs when the variance in fixed cost between 

treatments is classified as high.  Efficacy is not directly implied in the calculation of fixed costs 
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as in the case of variable cost (refer to cost factors).  Fixed costs are random or unbiased to 

treatment efficacies.  Without making decisions for treatment selection in lieu of fixed cost, 

performance in decreased. 

4.5.2.4 Variable costs. Unlike fixed costs, variable costs are related to treatment 

efficacies.  Therefore, if the efficacy of a treatment increases, the variable cost of the treatment is 

also expected to increase.  When patient volumes are constant, the efficient frontiers for the SUD 

and SSD will make proportionate shifts as shown the first study of this research project.  

However, study results show greater improvements in cost (by 6 percentage points) when the 

variance in variable costs between treatments is classified as high.  Contrarily, the error rate 

decreases from 33% to 25% when the factor level is changed from low to high.  

4.5.2.5 Volume discounts. The SUD shows better performance across all measures when 

the degree of volume discounts is classified as low.  The average improvement in cost is 

increased from 10% to 14%, the average improvement in efficacy is slightly increased from 1% 

to 2%, and the average error rate is increased from 25% to 33% when the system incorporates a 

higher level of volume discounts.  For this study, a low level to volume discounts corresponds to 

a linear relationship between treatment cost and treatment volumes.  For a system that desires to 

leverage economies of scale, this assumption is impractical.  Such a system should expect to see 

greater improvements in performance after successful integration for supply chain management. 

4.6 Integration Impact   

4.6.1 Impact of cost variability.  Small SSDs were assessed in preliminary studies to 

explore the impact of variable costs, fixed costs, and cost-volume relationships.  This section 

discusses characteristics in formulary found in a sensitivity analysis of variable cost.  The 

preliminary study considered a model with three treatments for the six diseases in the 
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preliminary model, a total of 729 feasible solutions were generated.  The values of si were set at 

extremes 0.05 and 10.00 to assess the impact of unit costs as other variables were unchanged.   

As a representation of economies of scale, it was assumed that the unit costs were a 

function of the square root of the sum of each treatment type times the supply chain cost 

coefficient to imply sublinear cost to volume relationships.  That is, ui = 0.5 for all i.   The 

feasible solutions were derived using enumeration.  The associated values for total efficacy and 

total cost per treatment design solution were then calculated using Microsoft Office Excel 2007. 

Figure 4.5 (a) and (b) exhibit the cost versus efficacy of feasible solutions for a system with high 

variable costs and low variable costs, respectively.   

 

Figure 4.5. Total cost versus efficacy for (a) high variable cost and (b) low variable cost 

solutions. 

Upon visual inspection of feasible points, it is possible to notice that solutions with high 

variable costs are more segregated.  Intuitively, it was assumed that this occurred because the 

variances between total costs were higher when unit costs were higher.  Another explanation was 

provided after viewing the structure of efficient solutions for each cost.  As total costs increase, 

the product mixes of efficient points in this problem become increasingly diverse.  As an 

example, consider the three feasible points in the lowest cost region (the far right) of Figure 
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4.5(a).  Each of these points corresponds to solutions that select only one treatment for each of 

the diagnosis in this sample problem. Moving to the next region of points where total costs are an 

estimated 33 units, points correspond to selecting one treatment for five diagnoses and another 

for the sixth. This pattern of increasing treatment diversity continues through to the region where 

total costs are estimated at 44 units.  In this final region, each treatment is assigned to exactly 

two diagnoses.  This pattern in treatment diversity by total costs was not recognized for the low 

unit cost solutions or in the case of the SUD where treatment cost have a linear relationship to 

treatment volumes.   

  After observing the pattern in segregation for solutions with high variable costs, the 

efficient points for these solutions were further examined.  The points forming the efficient 

frontier of Figure 4.5 (a) are black and filled to help discern these points from other feasible 

solutions.  Figure 4.5 (b) illustrates that these points do not form the efficient frontier when 

variable costs are low.  It is inferred that efficient solutions may not remain efficient as variable 

costs are changed.  Most of the efficient solutions for the case with high variable cost are not 

efficient solutions when variable costs are low and vice versa.  However, it is observed that the 

efficient solutions in the high efficacy region do remain the same as proposed in the first study of 

this research project.  It is also observed that the number of solutions changes.  

4.7 Chapter Summary 

  The study discussed in this chapter is unique in modeling and assessing a second study 

of integration for healthcare supply chain management.  The study examined considers the 

implications of supply chain integration in informing treatment cost evaluations.   A heuristic is 

proposed as a means of understanding system behaviors and the composition of efficient 
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treatment selection protocols.  It is shown that heightened awareness of treatment costs leads to 

better overall system performance.   

The final study of integration for this research project will explore the intricacies of 

treatment interactions and diagnosis severity levels.  In the following study, a genetic algorithm 

(GA) is introduced as a solution method for treatment selection protocols of a complex problem.  

Properties of SSD efficient solutions are used to develop the GA. 
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CHAPTER 5 

The Impact of Whole Patient Integration 

The primary goal of this chapter is to determine the strategic implications of healthcare 

supply chain integration for a decentralized healthcare system that desires minimized cost and 

maximized efficacy.  A genetic algorithm and a unique comparative analysis technique are also 

provided as a means to achieve the primary goal.  The study examines a healthcare system before 

and after a decision support system enables holistic patient care.  A complete design of 

experiments is conducted to determine the performance impact of provider variance, varying cost 

and efficacy structures, patient severity levels, and demand volumes on treatment selection 

protocols.  It is determined that low variance between system providers, leveraging economies of 

scale, and full patient views (as opposed to per diagnosis) are among factors that lead to greater 

system efficiency.  Recommendations are made to integrate treatment selection protocols in 

order to create more visibility and provide improved, holistic patient care. 

5.1 System Segmentation and Integration Opportunity 

The final segmentation challenge addressed is that created by the treatment of a patient 

by different physicians according to specialty.  In considering the impact of integration in this 

case, a new representation of efficacy is needed. 

5.1.1 Background.  Strech et al. (2009) survey studies of physician acceptance of 

treatment rationing and find acceptance ranging from 9% to 94%.  The study infers that previous 

researchers have conducted studies about healthcare coordination in in order to promote 

institutional agendas.  Strech et al. (2010) discuss the ethics involved in evidence-based 

allocation and rationing policies and encourage training, reinforced consistency in decision 

making, and increasing transparency as a means to dispel adverse effects on healthcare delivery. 
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5.1.2 Characterization.  With the whole patient view, treatment design is based on the 

patient type rather than a specific disease (where a patient may have one or more).  Opportunities 

for synergy exist where a treatment might address multiple disease conditions.  Risk may occur 

when separate physicians suggest treatments which in combination have negative side effects.   

As a result, a generalized view of efficacy as a function of treatment amount is constructed.  A 

generalized view of the relationship between efficacy and utilization for a treatment under the 

three forms is given in Figure 5.1.   

 

Figure 5.1.  Superlinear, linear, and sublinear treatment and efficacies. 

One form the treatment and efficacy relationship is assumed to result in a concave shape 

between efficacy and utilization as indicated by curve l1.  Efficacy has diminishing returns as 

treatment increases.  In the second form, there is a direct relationship between treatment efficacy 

and utilization, implying linearity.  In the third and final form, a treatment may provide minimal 

efficacy at low levels of utilization but show tremendous gains when approximating full 

“dosage”.  This form is implied when wil > 1 as indicated by curve l3.  (Variable wil is further 

defined in section 5.2.2 as a degree of efficacy function curvature.)  This representation allows 
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consideration of issues of “rationing.”  This topic is highly sensitive in the public policy context, 

but a key consideration when balancing cost/efficacy impacting policies.  When considering the 

efficacy assessment for a patient, the severity of their condition should also be considered.  

Two policy models are considered.  The first models a pre-integration policy of treatment design 

based on system efficacy perceptions, system cost consideration, and disease specific / 

specialization (SSD model from Chapter 4).  The second models a post-integration policy of 

treatment design based on system efficacy, system cost consideration, and whole patient 

consideration (SSW model).  The second model includes representation of treatment volume to 

efficacy relationships and consideration of patient type risk/severity.  

5.2 Policy Model Formulation 

Two policy models are considered.  The first models a pre-integration policy of treatment 

design based on system efficacy perceptions, system cost consideration, and disease specific / 

specialization (SSD model from Chapter 4).  The second models a post-integration policy of 

treatment design based on system efficacy, system cost consideration, and whole patient 

consideration (SSW model).  The second model includes representation of treatment volume to 

efficacy relationships and consideration of patient type risk/severity.  

5.2.1 SSD model (pre-patient integration).  With a consensus of treatment efficacy 

values, the goal of treatment selection decision makers at the system level is to find the optimal 

values of the decision variables xij, the binary decision for all providers in the system to select 

treatment i for diagnosis j to maximize the total system efficacy while minimizing total cost.  

The cost factors for treatment i are variable cost coefficient si, entry cost coefficient di, the 

degree of volume order discounts ui where 0 < ui < 1, and the volume of demand for diagnosis j 

Vj.   
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Using the same decision variables from Chapter 4, xij, the problem is formally expressed 

in SSD model as follows: 

max ij iji j
e x    (5.1)  

 min
iu

i i i j iji j
d y s V x
 


  

    (5.2) 

s.t.     1iji
x j    (5.3) 

0    ij ij
x My i      (5.4) 

 or 1     and 0ijx i j    (5.5)  

 or 1    0iy i      (5.6) 

Note that this model emphasizes the disease independence of the decision-making process.  

Decision variables are binary.  Patient volume is considered.  System cost information is 

considered visible by the designer.   

5.2.2 SSW model (post-efficacy integration).  With consideration for patient types, the 

goal of treatment selection decision makers at the system level is to find the optimal values of the 

decision variables xil as selected portion of treatment i for patient type l to maximize the total 

system efficacy while minimizing total cost.  The cost factors for treatment i are the same as in 

the SSD.  The efficacy factors for this problem are the severity of disease/diagnosis gj, the 

severity for patient type Gl, the volume of demand Vl, and the degree of efficacy function 

curvature wil.  

The SSD model can be modified and simplified into the following form.  Maximize the 

total system efficacy value and minimize the cost of treatments, subject to the each of the 

following constraints: 
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 A portion of at least one treatment must be utilized for each diagnosis – recall, do nothing 

can be a treatment option. 

 The sum of utilization for treatments must not exceed the capacity (maximum dosage) for a 

patient type. 

 Treatment utilization decisions are normalized to be between zero and one. 

Using the decision variables xil, the problem are formally expressed in SSW model as 

follows: 

      max 1 1
ilw

l l l l ij ili l l j l i
G G V V e x



 
 

  
      (5.7) 

 min
iu

i i i j iji j
d y s V x
 


  

   (5.8) 

s.t. 0    ij ij
x My i     (5.9) 

    il li
x Cap l    (5.10) 

     and il ili
x x i l    (5.11) 

0      and1  ilx i l     (5.12) 

 or 1    0iy i    (5.13) 

Equation 5.7 is the efficacy objective function.  The equation is weighed by the relative patient 

type severity and volume in addition to the weight of the individual diagnosis.  These weights are 

calculated such that the severity of a patient type with multiple diagnoses will be higher than if 

the patient were to have a single diagnosis.  Additionally, equation 5.7 considers that efficacy 

may be nonlinear with respect to a selected treatment volume.  A capacity constraint is placed in 

the allotted treatment volume to ensure that treatments are not assigned beyond a tolerable 

threshold in equation 5.10. 
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5.3 Policy Model Solution 

SSD policy model solution is shown in Chapter 4.  SSW solution is performed by an 

enhanced genetic algorithm. 

5.3.1 Integrated treatment selection genetic algorithm.  The exact solution for SSW is 

infeasible due to the complexity and dimensionality of the problem.  Therefore, previous models 

are studied to capture the essence of practical decision problems that are used to effectively solve 

the SSW using the integrated treatment selection genetic algorithm (ITSGA), an iterative 

solution procedure.  This section discusses the formulation the ITSGA.  The discussion is 

preceded with an overview of genetic algorithms (GAs) including important terminology and the 

use of GAs in efficient frontier analyses. 

5.3.1.1 Genetic algorithm overview.  The concept of genetic algorithms (GAs) was 

developed by Holland in the 1970s.  The use of GAs is inspired by Darwin’s theory of evolution 

and natural selection.  According to natural selection, weaker members of a species will face 

extinction.  Stronger members are more likely to be selected for reproduction and pass their 

genes on to future generations.  As the population reproduces, random mutations may occur so 

that new genetic traits are presented.  If these mutations are advantages, the species evolves to 

maintain the new genetic traits.   

In artificial systems, a GA is an iterative procedure that uses a current population to 

create “children” that make up the next generation for the population.  The algorithm selects 

“parents” as members from the current population that will contribute their “genes” or 

“chromosomes” to their children.  According to natural selection, the algorithm usually selects 

parents that are strong or have the best “fitness value” among the population.  The reproduction 

in a GA creates three different types of children for the next generation.  “elite children” are the 
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members of the current generation that have the best “fitness value” among the population and, 

consequently, automatically survive to the next generation.  “Crossover children” are created by 

combining the genes of a pair of parents.  “Mutant children” are created by mutating a single 

parent.   

The first multi-objective GA was not proposed until 1985 by Schaffer (1985), although 

the concept of GAs (Holland, 1975) and Pareto front analyses (Markowitz, 1959) were well 

developed beforehand.  Since that time, evolutionary algorithms (GAs or derivatives) have 

become the most popular heuristic approach to multi-objective optimization problems (Jones, 

2002).  Konak et al. (2006) provide a thorough tutorial on multi-objective optimization using 

optimization and point out the benefits of using GAs in Pareto front analyses.   

There are many other studies that introduce or compare performance of varying multi-

objective optimization GAs (Coello, 1999; Fonseca and Fleming, 1998; Jensen, 2003; Xiujuan 

and Zhongke, 2004; Zitler and Thiele, 1999).  Parameter tuning for GAs has been given 

extensive research (Villegas et al., 2006; Medaglia et al., 2009; Zandieh and  Karimi, 2011).  The 

Niched Pareto Genetic Algorithm (Horn and Goldberg, 1994), Nondominated Sorting Genetic 

Algorithm (NSGA) (Srinivas, N. and Deb, 1994),  Fast Non-dominated Sorting Genetic 

Algorithm (NSGA-II) (Deb et al., 2002), Strength Pareto Evolutionary Algorithm (SPEA) 

(Zitzler, E. and Thiele, 1999), Pareto-Archived Evolution Strategy (PAES) (Knowles and Corne, 

2000) are among the more common GAs for multi-objective optimization.   

Early versions of multi-objective GAs do not include considerations for problem 

constraints.  Anagnostopoulos and Mamanis (2009) conclude that the SPEA, PAES, and NSGAII 

all perform well for multi-objective portfolio selection problems with or without constraints.  
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The aim of this research is not to provide a comparison of varying GAs or to develop a 

methodology for GA parameter tuning.  However, this study does survey the structures of 

popular multi-objective, multi-constraint optimization GAs that have been applied to Pareto front 

analyses in order to establish parameters for the ITSGA discussed in Section  

Table 5.1 summarizes a survey of GA parameters used in ten relevant studies.  Each of 

the listed studies applies a GA to a multi-objective optimization problem that has multiple 

constraints.   The majority of the studies are for bi-objective problems.  With the exception of 

Prakash et al. (2012), Anagnostopoulos and Mamanis (2011), Bowman et al. (2010) and Ko and 

Wang (2010), the studies have binary decision variables.  Bowman et al. (2010), Goyal (2011), 

and Vlah Jeric and Figueria (2012) have 5, 24, and 4 objectives, respectively.   

A variation of schemes is used to set population sizes.  Many aim at setting the 

population size relative to the number of decisions or objectives.  Prakash et al. (2012) propose a 

knowledge-based genetic algorithm (KBGA) that selects alternates between various crossover 

and mutation operators as the system acquires knew knowledge.   

Single point crossover operators are used where gene member represent a set of resources 

such as surgical suites or time shifts for labor (Bowman et al., 2010; Medaglia et al. ,2009, and 

Gul et al., 2011).  Single point crossover operators swap portions of parent genes at a single 

point.  Other studies apply uniform operators that all the combination or switching of gene 

members among parents with equal probability in order to form crossover children  

Anagnostopoulos and Mamanis (2011), Goyal (2011), Alves, M. Almeida (2007), Ko and Wang 

(2010). 

  



 

Table 5.1 

GA parameters in applied multi-objective, multi-criteria optimization problems. 

Reference Number of 
objectives 

Population 
size 

Selection 
strategy 

Crossover operator 
(rate) 

Mutation 
rate 

Elite 
children 

Generations 

 Alves, M. Almeida (2007) 2,3,4 150, 350 Tournament Uniform (80%) 10% N/A 20× (2×#Objs+1) 
Anagnostopoulos and Mamanis (2011) 2 500 Tournament Uniform (100%) 10% N/A 500 
Bowman et al. (2010) 5 64×#Objs Tournament Single point (70%) 1/N 50% 100 
Goyal (2011) 24 200 Tournament Uniform (70%) 5% N/A 500 
*Gul et al. (2011) 2 40 Tournament Single point (90%) 1/N 25% 50 
Ko and Wang (2010) 2 20,  70 Roulette Uniform (90%) 1/N N/A 200,500 
*Medaglia et al. (2009) 2 50 Tournament Single point (70%) 5% N/A 100 
*Pato and Moz (2000) 2 400 Tournament PMX (60%) 0.10% 2 ≤ 2000 
ǂPrakash et al. (2012) 2 Custom Custom Custom Custom N/A Custom 
*Vlah Jeric and Figueira (2012) 4 50 Tournament XVRA (90%) 10% N/A N/A 
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Mutation rates are set low across all studies in the literature, varying between 5% of the 

population size, 10% of the population size, and 1/N where N is the number of variables in a 

problem.  More recently, multi-objective GAs have employed elitism strategies and proven to 

outperform traditional GAs that neglect elitism.  Three of the listed studies employ elitism using 

one of two strategies: (1) maintaining elite children in the population throughout the generations 

(Pato and Moz, 2000) or (2) storing elite solutions in an external archive and reintroducing the 

elites to the population (Bowman et al., 2010 and Gul et al. 2011).  The second strategy 

maintains a population that is usually 25 – 50% of the desired population size and therefore 

requires more memory and execution time.  The number of generations range from 50 to 2000. 

5.3.1.2 ITSGA methodology.  The ITSGA is implemented using the multi-objective 

optimization functionality of the Matlab 7.12.0 (R2001a) GA toolbox.  The following outline 

summarizes how the ITSGA works: 

0. A user inputs population size P, termination condition X, and GA parameters e%, c%, and 

p%.   

1. The algorithm begins by creating an initial population.  Each gene in a population henceforth 

is the length of the number of variables in the SSW.  Position T×(l - 1) + i, in a gene takes the 

value of xil where T is the number of treatments in the SSW.  The initial population is often 

created at random in GAs.  The specific initial population generation used in this study is 

detailed later in this section. 

2. The algorithm creates a sequence of new populations.  At each step, the algorithm uses the 

individuals of the current generation to create the next population.  The create the new 

population, the algorithm performs the following steps: 

a. Scores each member of the population by computing its fitness value. 
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b. Scales the raw fitness scores to convert them into a more usable range of values. 

c. Selects members called “parents” based on their fitness values. 

d. Performs an elitist reproduction strategy on P×e% members where e% of the best 

individuals (individuals with the best fitness values) in the current population are passed 

on to the next generation. 

e. Produces (100% - e%)×P×c% crossover children by tournament selection.  The 

tournament selection method is used to select parents for crossover children.  The 

scattered crossover operator is used in this study and detailed in the next section 

f. Produces (100% - c%)×(100% - e%)×P mutant children.  In mutation, a child is produced 

by making random changes to a single parent.  The specific mutation operator used in this 

study is detailed in the next section. 

g. Replaces current population with the next generation.   

3. The algorithm stops when termination condition X is met. 

To generate the initial population, the concept of low cost and high efficacy regions as 

discussed in Chapter 3 is applied to help ensure that GA generates a frontier that covers the full 

range of the actual frontier and possibly contains 0-1 solutions where they are desired.  With 

regard to the properties of efficient solutions in the low cost region of the efficient frontier, The 

ITSGA considers PC individuals of the initial population as solutions in the low cost region of 

the feasible solution set.  The GA estimates the cost of treatment i as 

Ci= (di+si(∑ Vil )ui) (∑ Vil )⁄ .  The value of mini( Ci ∑ Cii⁄ ) decreases as the range of treatment 

costs increases.  Additionally, efficient points tend to be more segregated with fewer points 

within the low cost region as the range in treatment costs increases.  Based on this tendency, the 
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ITSGA sets xal = 1 and xi≠a,l = 0 for all l where Ca ∑ Cii⁄ = mini( Ci ∑ Cii⁄ ).  The value 

PC=⌊mini(𝐶𝑖 ∑ 𝐶𝑖𝑖⁄ )⌋×P. 

With regard to the properties of efficient solutions in the low cost region of the efficient 

frontier, The ITSGA considers PE individuals of the initial population as solutions in the low cost 

region of the feasible solution set.  The GA estimates the efficacy of treatment i as Ei =

maxi( ∑ eijj ∑ ∑ eijji⁄ ).  The value of maxi( Ei ∑ Eii⁄ ) increases as the range of treatment efficacy 

increases.  Additionally, efficient points tend to be more segregated, with fewer points within the 

high efficacy region, as the range in treatment efficacies increases.  To avoid overlap with the 

members assigned to the low cost region, the number of candidates accepted as initial solutions 

in the high efficacy region is as follows: 

   min / ,    min /

,                   otherwise.

i i i C i i ii i
E

C

E E P P E E P P
P

P P

          


    (5.14) 

Based on this tendencies of efficient solutions of the high efficacy region, the ITSGA sets 

xbl = 1 and xi≠b,l = 0 for all l where Eb ∑ Eii⁄ = maxi( Ei ∑ Eii⁄ ) for PE members of the initial 

population.  For the genes of any individual not assigned as a solution in the low cost region or 

high efficacy region of the initial feasible solution set, the ITSGA randomly assign values such 

that ∑ xili = 1 and xil = [0, 1]. 

As suggested, crossover children are created using the tournament selection strategy.  The 

tournament proportion is p%.  Therefore, P×p% genes are selected at random from the 

population and the individual with the best fitness value is selected as a parent.  The scattered 

crossover strategy is used.  For scatter crossover, a random binary vector is created.  The vector 

is used to select genes from the first parent where 1s are present.  Otherwise, genes are selected 

from the second parent.   
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A custom mutation operator is used to ensure diversity and discourage convergence to a 

small region.  For 50% of mutant children, gene elements are randomly set to 0 for each l.  For 

another 25% of mutant children, genes are unchanged.  For the remaining mutant children, gene 

elements are set to Σj∈l (gleij)/Σj∈lgl for each element corresponding to xil  so that greater utility is 

assigned to a diagnosis with high efficacy and high severity values. 

5.3.1.3 ITSGA parameters.  The GA parameters used in this study are set according to 

suggestions made in literature in order to ensure the quality and timeliness of the ITSGA.  In 

accordance to the Bowman et al. (2010) study, the population size for this study is set to 64 times 

the number of objectives.  Stall generation limit is 100 to ensure that the GA terminates when 

there is no improvement in the objective function for a sequence of consecutive generations of 

length stall generations.  This study also employs the more common tournament selection 

strategy.  The crossover rate is set to 0.8 and the Matlab crossover heuristic operator is used with 

a weight of 1.2. The remainder of the population undergoes the custom mutation operator.  

Mutation occurs at a low rate as suggested in most literature.  This study employs a 0.2 mutation 

rate (1 – crossover rate) using a custom mutation operator.   For more detail on the Matlab 

crossover heuristic or other default values and operators, the reader is referred to the Genetic 

Algorithm and Direct Search Toolbox (2004).  The parameters used for the ITSGA in this study 

are summarized as follows: 

 Population Size = 128 

 Initial Population = Custom 

 Elite Count = 2 

 Selection = Tournament 

 Crossover Fraction = 0.8 
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 Crossover Operator = Matlab crossoverheuristic 

 Mutation Operator = Custom  

 Stall Generation Limit = 500 

5.4 Integration Assessment 

5.4.1 Selected factors.  Based on the characterization in Section 4.1, the following 

factors are considered in developing a design of experiments. 

5.4.1.1 Patient volume factors.  For each problem, the demand volume of patients with 

disease j serviced by each provider k, Vjk, must be known.  The variability in Vjk is one factor 

considered in the model.  High variability indicates presence of treatment design by both experts 

and inexperienced providers.  Low variability indicates that patient volumes are balanced across 

designers.  As patient types are defined by disease combinations, the demand volume of patient 

type l is defined as Vlk= ∑ Vjkj∈l . 

5.4.1.2 Efficacy factors.  The parameters used to evaluate efficacy values in this study 

are eijk, and Vlk.  The basis for evaluating total efficacy between problems is that the perceived 

efficacy may differ between providers and true efficacy may be estimated based on provider 

expertise.  Values of efficacy are normalized to range from 0 to 1 with 0 being ineffective and 1 

being completely effective.  Given that provider k’s perceived efficacy of treatment i for 

diagnosis j is eijk, the system calculated efficacy according to ẽij = (∑ Vjkẽijk ) (∑ Vjkk )⁄ .  The 

variability in perceived efficacy is a factor in the design of experiments.  High variability 

indicates many different perceptions regarding treatment efficacy.  Low variability indicates 

some consensus in terms of efficacy.  Four levels are used for the efficacy curve shape: 

superlinear where wil = 2, linear where wil = 1 and sublinear where wil = 0.5.  The fourth level 

includes a random mix of shapes.  
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There are two variables considered for severity, the severity of an independent diagnosis, 

gj, and the severity of a patient group, Gl.  The value of gj ranges from 1 to 10 with 1 being the 

lowest and 10 being the highest level of severity.  The severity values of Gl follow the same 

ranking scale and have the following relationship to gj: 
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10 10
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  (5.15) 

The factor has two levels based on the variability in patient condition severity. 

5.4.1.3 Cost factors.  The parameters used to generate cost values in this research are di 

and ai.  The parameters for fixed costs and variable cost coefficients are varied from 0 to 100 and 

then added to form a unit cost.  It is assumed that the variable cost of treatment i tends to be 

directly related to the relative efficacy of treatment i.  Understanding that not all variable cost are 

correlated to treatment efficacies, a “noise” factor is added such that the variable cost of 

treatment i is si = ai( ∑ ẽijj )/( ∑ ẽijj ) ± σi.  The cost of selecting treatment i is calculated as ci= 

diyi
+si( ∑ Vjxijj )

ui.  Variability in fixed costs and variability in variable costs are factors in the 

design of experiments. 

 5.4.2 Design of experiments.  The objective of the experimental design is to understand 

the relationship between parameters (variance in fixed cost, variance in provider’s perceived 

efficacy, variance in disease severity, variance in variable cost coefficient, degree of volume 

discounts, variance in provider’s patient volumes, and degree of efficacy curvature) on the 

performance of treatment selection protocols of the SSD in comparison to the SSW.  This study 

does not intend to conduct an exhaustive study for parameter tuning.  Parameters are set in a 

manner that allows for broad yet critical inferences to be made relative to a system evolving 

through the four policies of treatment protocols selection. 
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5.4.2.1 Generation of problem instances.  In this study, a problem with three treatments, 

three providers, and three diagnoses (which implies seven patient types) is examined.  There are 

seven parameters used to generate the four problems in this research.  These parameters are 

generated using custom programs in Matlab 7.12.0 (R2011a).   

5.4.2.2 Random value generation.  The values for di, eijk, gj, ai, and Vlk, are randomly 

generated from beta distributions as described in Chapter 3.  The Matlab code for each of the 

random number generators is found in the APPENDIX.  The problem parameters varied as a part 

of this research are summarized in Table 5.2.  Ten replications are executed for each factor level 

combination in the design for a total of 2560 observations. 

Table 5.2  

Study 3 experimental problem factors and levels. 

Factor Factor Description Factor Levels 
1  Variance in fixed cost  1-High,   2-Low  
2  Variance in provider’s perceived efficacy  1-High,   2-Low  
3  Variance in disease severity  1-High,   2-Low  
4  Variance in variable cost coefficient  1-High,   2-Low  
5  Degree of volume discounts  1-Concave,   2-Linear  
6  Variance in provider’s patient volumes  1-High,   2-Low  
7  Degree of efficacy curvature  1-Concave, 2-Linear, 3-Convex, 4-Random  
 

5.5 Integration Analysis   

A total of 2560 experiments were used to assess model performances under varied 

experimental factors.  In this section, efficient solutions SSD models are compared to the optimal 

treatment protocol solutions generated from the ITSGA for the SSW model.  First, a brief 

discussion of the performance of the ITSGA is provided.   

5.5.1 ITSGA performance.  The performance of the ITSGA is assessed based on the 

average distance between generational fitness values, termination condition, number of efficient 

solutions determined, number of generations required to terminate, spread, and run time.  The 
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ITSGA always terminated due to a convergence to a relatively low difference between fitness 

values.  The number of generations required to terminate ranged from 502 to 865 with a median 

of 502.  The median run time was 69 seconds with a maximum of 118 seconds.  The median 

distance and spread were 0.01 and 0.44, respectively.  The median number of efficient solutions 

found by the ITSGA is 4 with the highest value of 120. 

5.5.2 SSD-SSW comparison.  Efficient frontier analyses are used to compare the 

performance of the problems generated help characterize some properties of optimal treatment 

protocols.  For this analysis, solutions of the SSD were found using total enumeration and 

solutions of the SSW were estimated using the ITSGA.   

 A few steps were taken to transform the solutions of the SSD for comparison to the SSW.  

Recall that SSD solutions are represented as xij and take on binary values.  In the instance where 

a patient group l contained diagnosis j and xij equaled one, the corresponding xil was set to one 

for treatment i.  Otherwise, xil was set to zero for treatment i.  Afterwards, the transformed 

variable was substituted into the objective function for the SSW to find the comparable objective 

function value. 

Three measures were used to assess the performance of the SSD model relative to the 

SSW: average improvement in efficacy, average improvement in cost, and average error rate.  

The average improvement in efficacy and average improvement in cost are based on the area of 

opportunity between the frontier of the SSD and the SSW.   

Table 5.3 lists the average performance results of the SSD relative to the SSW by 

experimental factor.  The most outstanding property shown in comparing model solutions the 

SSW outperforms the SUD across all performance measures. Also, the SUD tends to perform 

closer to the SSD when there is low variance in problem factors, with the exception variable cost 
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between treatments.  Improvements in efficacy from the SUD are minimal and appear to have 

little sensitivity with regard to changes in factor levels.  However, improvements in cost are 

relatively substantial and do show sensitivity to most study factors.  Most of the error in the 

performance of the SUD is attributed to the difference in total cost evaluation.  Overall, the 

average improvement in cost, improvement in efficacy, and error rate are 17%, 3%, and 47%, 

respectively.   

Table 5.3 

Average performance results of the SSD relative to the SSW by experimental factor. 

Factor Levels Improvement 
in Cost 

Improvement 
in Efficacy 

Average Error 
Rate 

Undefined for 
Cost 

Undefined for 
Efficacy 

Variance in Perceived 
Efficacy between Providers 

     High 17% 3% 47% 3.2% 3.1% 
Low 17% 3% 47% 5.2% 4.7% 

Variance in Patient Volumes 
between Providers 

     High 17% 3% 47% 4.7% 4.5% 
Low 17% 3% 47% 3.8% 3.3% 

Variance in Fixed Costs 
between Treatments 

     High 17% 3% 47% 4.2% 3.8% 
Low 17% 3% 47% 4.2% 4.1% 

Variance in Variable Costs 
between Treatments 

     High 19% 2% 48% 2.1% 1.6% 
Low 15% 4% 46% 6.3% 6.2% 

Volume Discounts 
     High 13% 2% 43% 5.5% 4.8% 

Low 21% 4% 51% 3.0% 3.0% 
Variance in Severity Between 
Diseases 

     High 18% 4% 48% 4.3% 4.0% 
Low 16% 3% 46% 4.1% 3.8% 

Efficacy Curvature 
     Concave 20% 3% 62% 3.6% 3.6% 

Linear 10% 1% 35% 4.2% 4.2% 
Convex 10% 2% 33% 4.7% 4.7% 
Random 27% 6% 59% 4.4% 3.1% 
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5.5.2.1 Provider variances. The results indicate that the performance of the SSD is not 

sensitive to the variance in perceived efficacy between providers. This outcome is intuitive 

because the efficacy variable for both problems is the same.  However, the methods to evaluate 

the total efficacy for each problem differ.  It is expected that performance will be sensitive to 

variables that differ between the two problems (i.e. variance in severity between diseases and 

degree of efficacy curvature).  Across both levels of this factor, the average improvement in cost, 

improvement in efficacy, and error rate are the same as the overall values: 17%, 3%, and 47%.   

5.5.2.2 Patient volumes.   It was expected that there would be sensitivity to this factor, 

based on study 2 of cost integration.  In the second study, there is a negligible increase for the 

average improvement in cost, average improvement in efficacy, and average error rate.  The 

same is shown in this study.  The average improvement in cost, improvement in efficacy, and 

error rate are 17%, 3%, and 47%, respectively, regardless of the factor level. 

5.5.2.3 Fixed costs. The total fixed costs for both problems are calculated using the same 

factors.  Therefore, it can be expected that there is little sensitivity to changes in fixed cost when 

comparing the SSD and SSW.  The average improvement in cost, improvement in efficacy, and 

error rate are 17%, 3%, and 47% respectively. 

5.5.2.4 Variable costs. Unlike fixed costs, variable costs are related to treatment 

efficacies.  Therefore, if the efficacy of a treatment increases, the variable cost of the treatment is 

also expected to increase.  When patient volumes are constant, the efficient frontiers for the SSD 

and SSW will make proportionate shifts as shown the first study of this research project.  

However, study results show greater improvements in cost (by 4 percentage points) when the 

variance in variable costs between treatments is classified as high.  The average error rate 

increases slightly from 46% to 48% when variance in variable cost changes from low to high.  
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Contrarily, the average improvement in efficacy decreases slightly by 2 percentage points.  To 

determine the cause for this decreased performance, the number of qualifying comparisons was 

evaluated.  In the instances where the efficient frontiers for cost or efficacy do not lie within the 

same regions for integration frontiers are not compared improvements in cost or efficacy are 

considered undefined.  The percentage in undefined comparisons for cost and efficacy is 6% and 

2%, respectively, when the variance in the variable cost is low and high, a difference of 4 

percentage points.  This phenomenon implies that the ranges of cost and efficacy for the SSW 

are so far improved over the SSD that to two problems are more often incompatible when the 

variance in variable costs is low.  Across all other factors, the average difference in the lowest 

and highest percentage of undefined comparisons is only 0.4 percentage points. 

5.5.2.5 Volume discounts. The SSW outperforms the SSD across all measures and factor 

levels for volume discounts but the greatest improvement occurs when the degree of volume 

discounts is classified as low.  The average improvement in cost is increased from 13% to 21%, 

the average improvement in efficacy is slightly increased from 2% to 4%, and the average error 

rate is increased from 43% to 51% when the system incorporates a lower level of volume 

discounts.   

As discuss with variable costs, it was initially expected that the improvement at lower 

levels of discounts occurred because of undefined comparisons.  However, for this factor, the 

number of undefined comparisons is higher when volume discounts are high, by 2.5 and 1.8 

percentage points for cost and efficacy, respectively.  Upon further exploration of this factor, it 

was found that 192 of 1210 defined comparisons (16%) with high volume discounts have one-

point solutions where only 70 of 1242 defined comparisons (6%) with low volume discounts 

result in one-point solutions.  This phenomenon indicates that there are more instances where the 
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system will select only one efficient treatment protocol when volume discounts are high.  This 

conclusion confirms concepts presented in Section 3.3.1.  As variable costs are increased due to 

volume discounts, the number of efficient points along an efficient frontier are decreased.  Since 

there are fewer efficient solutions to pick from when volume discounts are high, it is more likely 

that efficient solutions are matched between the SSD and SSW.  

5.5.2.6 Disease severity.  The SSW shows greater improvement over the SSD for all 

measures when the variance in severity between diseases is classified as high.  The average 

improvement in cost increases from 16% to 18%, the average improvement in efficacy increases 

from 3% to 4%, and the average error rate increases from 46% to 48% as the variance in severity 

between diseases changes from low to high.  As previously mentioned, the SSD does not account 

for this factor.  The SSW model is better informed and, therefore, can better manage system 

variance for this factor.   

5.5.2.7 Efficacy curvature. Recall that concave efficacy curvature indicates that a 

treatment provides the greatest improvement in efficacy at low utility values.  Therefore, minor 

changes for from low treatment utilities can result in larger changes in efficacy than otherwise.  

The results from this study indicate that the SSW has high improvement over the SSD when the 

efficacy curvature is classified as concave.  The performance of the SSW is even higher when 

the curvature is random or a mixture of concave, linear, and convex.  Over all of the factors in 

this analysis, improvements in cost efficacy are more prevalent in the SSW when efficacy 

curvature is random.  

5.6 Integration Impact   

There are many practical implications granted from the outcomes of this research.  From 

the onset of this research, there were no assumptions about how a random relationship between 
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efficacy and volume may impact performance.  It is understood that the relationship between 

treatment efficacy and treatment volumes can be more random than linear, concave, or convex 

and definitely vary between patient types in practice.  The results support integration regardless 

of efficacy and volume relationships.  However, it is shown that high performance gains exists 

for a system that experiences this type of random efficacy relationship.  This outcome has 

promising implications for integration where treatment efficacies are more complex. 

Studies in Chapters 3 and 4 show how the impact of integration can change with varying 

levels of perceived efficacy, patient volume, and fixed costs.  Although the factor level impact is 

not shown here, given the progressive development of integration policies, previous outcomes 

are still implied here.  This study advances those findings to exhibit integration advantages in a 

system that is much more complex than the IUD and SUD, as well as the SSD.   

 Here the use of evidence-based policies reinforces consistency in decision making such 

that cost and efficacy become more optimal.  Strech et al. (2010) supports this finding.  In 

general, regardless of factor levels, this study supports integration toward having a full view of 

patients across the system.  It is further illustrated in the instances of high variance in variable 

costs as well as disease severities; consolidated and data-driven decision making processes lead 

to better performance than otherwise.  This is particularly insightful and useful to an agency like 

the DLA that supports a system where the diagnoses of patients can range from minimal to fatal 

requiring supplies as inexpensive as a small bandage to capital expenditures like CT scan 

machines.  Given the complexities of the defense healthcare system, study outcomes support 

efficacy integration. 
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5.7 Chapter Summary 

The study discussed in this chapter is unique in modeling and assessing a third study of 

integration for healthcare supply chain management.  The study examined considers the 

implications of a more holistic approach to patient care where visibility can inform cost and 

efficacy.   A custom GA is proposed as a solution technique to the more complex problem of 

treatment protocol selection.  Many of the premises noted in previous chapters are confirmed, 

illustrating that integration can improve of overall efficiency for simple and complex system 

structures.  
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CHAPTER 6 

Conclusions and Future Research 

6.1 Research Summary 

Based on existing gaps in healthcare treatment selection protocols or the lack of, it was 

expected from the onset of this dissertation research that decision support system integration can 

improve healthcare systems performance.  This research accessed various systems factors that 

can impact treatment selection performance in order to determine how modifying behaviors can 

improve efficiency.  Specifically, physician bias, patient volumes, leveraging economies of scale 

or costing structures, and complex treatment efficacy calculations were evaluated by modeling 

three studies of integration.  The results indicate that more integrated treatment selection 

protocols lead to decreases in cost alongside increases in efficacy.  Additionally, this dissertation 

explained how more complex healthcare systems or systems with higher variability in 

performance factors have the highest opportunity for improvement. 

Chapter 2 of this research explains provider integration where shared decision making is 

enabled among physicians to mitigate physician bias and exploit physician expertise.  This form 

of integration can lead to greater cost improvements for systems with higher variance in perceive 

treatment efficacies between physicians.   It has been previously determined that evidence based 

treatment selection protocols lead to improved efficacies but this study extends to illustrate how 

evidence based treatment selection also improves costs.  Enabling cost awareness and consensus 

among providers on best practices can ensure that the most effective treatments are selected for a 

given cost.   

Cost improvements are also greater in instances of high variance in patient volumes 

between providers.  There are a few factors that influenced this outcome.  The first study of 
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integration models system costs without regard for entry costs.  Therefore, the system is less 

likely to avoid incurring entry costs in selecting treatments.  This behavior led to lower 

performance where the variances in fixed costs between treatments were highest.  In determining 

system efficacy values, there is also value added in weighing provider opinions based on the 

volume of patients treated for a particular diagnosis or diagnoses.  Providers with relatively little 

experience in treating a diagnosis will have less influence on system efficiency as they encounter 

fewer patients.  This aligns with practices of the Veterans Affairs (VA) Health Care system that 

incentivizes specialized care.  Counter to this VA practice, newer legislation from the Affordable 

Care Act encourages civilian healthcare providers to become more inclusive and provide more 

generalized patient treatment.  It is expected that generalized patient care will centralize practices 

so that patients can avoid transferring and issues associated with transferring between providers 

(such as incomplete transfers of patient medical history, returns, and travel cost).  In either 

system, with specialized or generalized care, providing consensus for treatment efficacy can 

improve overall efficacy as well as cost.   

Chapter 3 discusses cost integration.  The study in this chapter extends on observations 

in Chapter 2 to explore the impact of leveraging economies of scale or exploiting opportunities 

for volume discounts.  It is found that sub linear relationships between volume and cost (such 

that incremental costs decrease as patient demand volumes increase) encourage decision makers 

to avoid entry costs.  As higher entry costs are most avoided, integration allows greatest cost 

improvements where the variance in fixed costs between treatments is high.  Cost are also greatly 

improved in instances with high variance in variable cost between treatments.  In systems with 

limited visibility, providers are not fully capable of recognizing opportunities for discounted cost 

where treatments have higher patient demands.  Whereas, an integrated system can aid providers 
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in trending patient volumes and negotiating costs with suppliers.  Overall, cost and efficacy is 

improved when treatment selection protocols consider volume discounts. 

For the final study, discussed in Chapter 4, treatment selection behaviors of 

aforementioned chapters were incorporated in customized a genetic algorithm to solve the more 

complex treatment selection problem.  Namely, the observation that providers with greater 

treatment volumes will have more influence on selection and that efficient treatment selections 

tend to avoid entry costs.  The final model observed in this study extends on the previously 

studies MOOPs to account for a more complex treatment efficacy calculation.  The observed 

treatment efficacy structures encourage the use of decision support systems with advance 

analytics especially where treatment efficacy and volumes random or super linear.   The random 

relationship led to the highest improvements in cost and efficacy upon enhanced integration as 

treatment efficacies where now selected in a more informed manner.  The super linear 

relationship led to the second highest improvements in cost and also had an impact on how 

selection decisions change with volume discounts.  Treatment selection in instances with low 

volume discounts outperformed systems with high volume discounts for cost and efficacy (by 

eight and two percentage points, respectively).  This phenomenon occurs according to a concept 

presented in Section 3.3.1.  As variable costs are increased due to volume discounts, the number 

of efficient points along an efficient frontier are decreased.  Since there are fewer efficient 

solutions to pick from when volume discounts are high, it is more likely that efficient solutions 

are matched.     

6.2 Research Contributions 

In all, this research provides contributions to industrial and systems engineering that can 

be adapted for various applications although the research focuses on healthcare and the design of 
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treatment selection protocols.  Strategies for efficient treatment selection protocols and system 

evolution are investigated.  Definition is provided for key parameters to model treatment 

protocols under varying operational strategies along with defining three key types of integration 

for holistic patient care.  A novel comparative analysis method is employed to measure the 

impact of multi-objective decision making.  Custom heuristics, including a genetic algorithm, are 

developed to solve for complex treatment selection problems.  

6.3 Future Research 

The three studies explored through chapters 2, 3, and 4 of this dissertation provide 

evidence in support of centralized or shared decision making in medical treatment protocol 

selection.  Future research will provide evidence of system behaviors based on supply chain 

operations outside of the healthcare industry.  In addition to applying real data, future studies 

will attempt to improve optimization routines and survey integration teams for best practices.  

The results of this study will be extended to create a requirements analysis for a supporting 

information technology infrastructure. 
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Appendix 

Procedures to Generate Problem Parameters 

function [eijk,eij,ci] = ... 
    study1_Coefficients(number_of_treatments, number_of_diseases,... 
    number_of_providers, design) 
 
% The number of all possible patient types is generated  
number_of_patient_types = 0; 
for j=1:number_of_diseases 
    number_of_patient_types = number_of_patient_types + ... 
        factorial(number_of_diseases)/(factorial(number_of_diseases-j)... 
        *factorial(j)); 
end 
 
%% --------------------------- Parameters --------------------------------- 
% This section of code defines and initiates values of all parameters. The 
% following functions generate appropriate random values for parameters 
% based on parameter indices and level in the design of the experiment. 
% ------------------------------------------------------------------------- 
 
% di    fixed cost for selecting treatment i 
di = generate_di(number_of_treatments, design(2)); 
 
% eijk the perceived value of efficacy for treatment i for diagnosis j... 
        % by provider k 
eijk = generate_eijk(number_of_treatments, number_of_diseases,... 
    number_of_providers, design(3)); 
 
% vlk volume of patients group l by provider k 
vlk = generate_vlk(number_of_patient_types,... 
    number_of_providers, design(5)); 
 
%% ------------------------ End Parameters -------------------------------- 
 
%% ---------------------- Dependent Variables ----------------------------- 
% This section of code defines and initiates values that are dependent on 
% the problem parameters based on parameter indices. 
% ------------------------------------------------------------------------- 
 
%Volume of patient groups 
    % vjk volume of patient with disease j for provider k 
    vjk = zeros(number_of_diseases, number_of_providers); 
    for k = 1:number_of_providers 
        vjk(:,k)=diseasecombos(number_of_diseases,vlk(:,k)); 
    end 
     
    %vk volume of patients per provider 
    vk = sum(vjk,1); 
     
%Evidence based efficacy 
    % eij estimated efficacy for treatment i and diagnosis j 
    eij=zeros(number_of_treatments,number_of_diseases); 
    for i = 1: number_of_treatments 
        for j = 1:number_of_diseases 
            for k = 1:number_of_providers 
                eij(i,j)=eij(i,j)+vjk(j,k)*eijk(i,j,k); 
            end 
            x=sum(vjk,2); 
            eij(i,j)=eij(i,j)/x(j); 
        end 
    end 
     
%Efficacy related cost coefficient 
    % si efficacy related variable cost coefficient for treatment i 
si = generate_si(eij,number_of_treatments, design(4)); 
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%Unit cost coefficient without consideration for volume or discounts 
    ci = di + si; 
%% -------------------- End Dependent Variables --------------------------- 
 
function [ui,vj,eij,di,si] = ... 
    study2_Coefficients(number_of_treatments, number_of_diseases,... 
    number_of_providers, design) 
 
 
number_of_patient_types = 0; 
for j=1:number_of_diseases 
    number_of_patient_types = number_of_patient_types + ... 
        factorial(number_of_diseases)/(factorial(number_of_diseases-j)... 
        *factorial(j)); 
end 
 
%% --------------------------- Parameters --------------------------------- 
% This section of code defines and initiates values of all parameters 
% ------------------------------------------------------------------------- 
 
% di    fixed cost for selecting treatment i 
di = generate_di(number_of_treatments, design(2)); 
 
% eijk the perceived value of efficacy for treatment i for diagnosis j... 
        % by provider k 
eijk = generate_eijk(number_of_treatments, number_of_diseases,... 
    number_of_providers, design(3)); 
 
% ui degree of volume discount for the cost of treatment i 
ui = generate_ui(number_of_treatments, design(5)); 
 
% vlk volume of patients group l by provider k 
vlk = generate_vlk(number_of_patient_types,... 
    number_of_providers, design(6)); 
 
%% ------------------------ End Parameters -------------------------------- 
 
%% ---------------------- Dependent Variables ----------------------------- 
% This section of code defines and initiates values that are dependent on 
% the problem parameters 
% ------------------------------------------------------------------------- 
 
%Volume of patient groups 
    % vjk volume of patient with disease j for provider k 
    vjk = zeros(number_of_diseases, number_of_providers); 
    for k = 1:number_of_providers 
        vjk(:,k)=diseasecombos(number_of_diseases,vlk(:,k)); 
    end 
     
    vj = sum(vjk,2); 
     
%Evidence based efficacy 
    % eij estimated efficacy for treatment i and diagnosis j 
    eij=zeros(number_of_treatments,number_of_diseases); 
    for i = 1: number_of_treatments 
        for j = 1:number_of_diseases 
            for k = 1:number_of_providers 
                eij(i,j)=eij(i,j)+vjk(j,k)*eijk(i,j,k); 
            end 
            x=sum(vjk,2); 
            eij(i,j)=eij(i,j)/x(j); 
        end 
    end 
 
%Efficacy related cost coefficient 
    % si efficacy related variable cost coefficient for treatment i 
    si = generate_si(eij,number_of_treatments, design(4)); 
 
%% -------------------- End Dependent Variables --------------------------- 
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function [eijk,gj,ui,vlk,wil,vjk,eij,ci,di,si,Gl,d] = ... 
    study3_Coefficients(number_of_treatments, number_of_diseases,... 
    number_of_providers, design) 
 
number_of_patient_types = 0; 
for j=1:number_of_diseases 
    number_of_patient_types = number_of_patient_types + ... 
        factorial(number_of_diseases)/(factorial(number_of_diseases-j)... 
        *factorial(j)); 
end 
 
%% --------------------------- Parameters --------------------------------- 
% This section of code defines and initiates values of all parameters 
% ------------------------------------------------------------------------- 
 
% di    fixed cost for selecting treatment i 
di = generate_di(number_of_treatments, design(2)); 
 
% eijk the perceived value of efficacy for treatment i for diagnosis j... 
        % by provider k 
eijk = generate_eijk(number_of_treatments, number_of_diseases,... 
    number_of_providers, design(3)); 
 
% gj severity diagnosis j for patient group 
gj = generate_gj(number_of_diseases, design(4)); 
 
% ui degree of supply chain cost function for treatment i 
ui = generate_ui(number_of_treatments, design(6)); 
 
% vlk volume of patients group l by provider k 
vlk = generate_vlk(number_of_patient_types,... 
    number_of_providers, design(7)); 
 
% wil degree of efficacy function treatment i for patient group l 
wil = generate_wil(number_of_treatments,... 
    number_of_patient_types, design(8)); 
%% ------------------------ End Parameters -------------------------------- 
 
%% ---------------------- Dependent Variables ----------------------------- 
% This section of code defines and initiates values that are dependent on 
% the problem parameters 
% ------------------------------------------------------------------------- 
 
%Volume of patient groups 
    % vjk volume of patient with disease j for provider k 
    vjk = zeros(number_of_diseases, number_of_providers); 
    for k = 1:number_of_providers 
        vjk(:,k)=diseasecombos(number_of_diseases,vlk(:,k)); 
    end 
     
%Evidence based efficacy 
    % eij estimated efficacy for treatment i and diagnosis j 
    eij=zeros(number_of_treatments,number_of_diseases); 
    for i = 1: number_of_treatments 
        for j = 1:number_of_diseases 
            for k = 1:number_of_providers 
                eij(i,j)=eij(i,j)+vjk(j,k)*eijk(i,j,k); 
            end 
            x=sum(vjk,2); 
            eij(i,j)=eij(i,j)/x(j); 
        end 
    end 
     
 
%Efficacy related cost coefficient 
    % si efficacy related variable cost coefficient for treatment i 
    si = generate_si(eij,number_of_treatments, design(5)); 
     
    ci = di + si; 
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%Patient groups and severity 
    Gl=ones(number_of_patient_types,1); 
    d=zeros(number_of_patient_types,number_of_diseases); 
    r=0; 
    for j=1:number_of_diseases 
        A=combinator(number_of_diseases,j,'c'); 
        [rows,columns]=size(A); 
        for l=1:factorial(number_of_diseases)/... 
                (factorial(number_of_diseases-j)*factorial(j)) 
            for m=1:rows 
                for k=1:columns 
                    d(r+m,k)=A(m,k); 
                end 
            end 
        end 
        A=[];     
        r=r+rows; 
    end 
 
    countjl=zeros(number_of_diseases,number_of_patient_types); 
    for l=1:number_of_patient_types 
        for j=1:number_of_diseases 
            if find(d(l,:)==j)>0 
                Gl(l) = Gl(l)*(10-gj(j)); 
                countjl(j,l)=1; 
            end 
        end 
        x=sum(countjl,1); 
        Gl(l) = (10^x(l)-Gl(l))/(10^(x(l)-1)); 
    end 
%% -------------------- End Dependent Variables --------------------------- 
 
function di = generate_di(number_of_treatments, factor_level) 
 
di = zeros(number_of_treatments,1); 
 
if factor_level == 1 
    A = 1; 
    B = 1; 
    [M,V] = betastat(A,B); 
    for r = 1:1000 
        x =  betarnd(A,B,number_of_treatments,1); 
        if var(100*x) >= V*100^2 
            di(:) = 100*x; 
            break 
        end 
    end 
else 
    A = 6; 
    B = 6; 
    [M,V] = betastat(A,B); 
    for r = 1:1000 
        x =  betarnd(A,B,number_of_treatments,1); 
        if var(100*x) <= V*100^2 
            di(:) = 100*x; 
            break 
        end 
    end 
end 
 
function eijk = generate_eijk(number_of_treatments, number_of_diseases,... 
    number_of_providers, factor_level) 
 
eijk = zeros(number_of_treatments, number_of_diseases,... 
    number_of_providers); 
 
for i = 1:number_of_treatments 
    for j = 1:number_of_diseases 
        if factor_level == 1 
            A = 1; 
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            B = 1; 
            [M,V] = betastat(A,B); 
            for r = 1:1000 
                x = betarnd(A,B,1,number_of_providers); 
                if var(x) >= V 
                    eijk(i,j,:) = x; 
                    break 
                end 
            end 
        else 
            A = 6; 
            B = 6; 
            [M,V] = betastat(A,B); 
            for r = 1:1000 
                x = betarnd(A,B,1,number_of_providers); 
                if var(x) <= V 
                    eijk(i,j,:) = x; 
                    break 
                end 
            end 
        end 
    end 
end 
 
function gj = generate_gj(number_of_diseases, factor_level) 
 
gj = zeros(1,number_of_diseases); 
 
if factor_level == 1 
    A = 1; 
    B = 1; 
    [M,V] = betastat(A,B); 
    for r = 1:1000 
        x =  betarnd(A,B,1,number_of_diseases); 
        if var(10*x) >= V*10^2 
            gj(:) = 10*x; 
            break 
        end 
    end 
else 
    A = 6; 
    B = 6; 
    [M,V] = betastat(A,B); 
    for r = 1:1000 
        x =  betarnd(A,B,1,number_of_diseases); 
        if var(10*x) <= V*10^2 
            gj(:) = 10*x; 
            break 
        end 
    end 
end 
 
function si = generate_si(eij,number_of_treatments, factor_level) 
 
si = zeros(number_of_treatments,1); 
rgn = zeros(number_of_treatments,1); 
ei = sum(eij,2); 
 
if factor_level == 1 
    A = 1; 
    B = 1; 
    [M,V] = betastat(A,B); 
    for r = 1:1000 
        x =  betarnd(A,B,number_of_treatments,1); 
        for i = 1:number_of_treatments 
            rgn(i) = 200*x(i)*ei(i)/sum(ei)... 
         +(-25+50.*rand())*x(i)*ei(i)/sum(ei); 
        end 
        if var(rgn) > V*(100)^2 
            si = rgn; 
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            break 
        end 
    end 
else 
    A = 6; 
    B = 6; 
    [M,V] = betastat(A,B); 
    for r = 1:1000 
        x =  betarnd(A,B,number_of_treatments,1); 
        for i = 1:number_of_treatments 
            rgn(i) = 200*x(i)*ei(i)/sum(ei)... 
         +(-10+20.*rand())*x(i)*ei(i)/sum(ei); 
        end 
        if var(rgn) <= V*(100)^2 
            si = rgn; 
            break 
        end 
    end 
end 
 
function ui = generate_ui(number_of_treatments, factor_level) 
 
if factor_level == 2 
    ui = ones(number_of_treatments,1); 
else 
    ui = 0.5*ones(number_of_treatments,1); 
end 
 
function vlk = generate_vlk(number_of_patient_types,... 
    number_of_providers, factor_level) 
 
vlk = zeros(number_of_patient_types,number_of_providers); 
 
for j = 1:number_of_patient_types 
    if factor_level == 1 
        A = 1; 
        B = 1; 
        [M,V] = betastat(A,B); 
        for r = 1:1000 
            x = betarnd(A,B,1,number_of_providers); 
            if var(100*x) >= V*100^2 
                vlk(j,:) = 100*x; 
                break 
            end 
        end 
    else 
        A = 6; 
        B = 6; 
        [M,V] = betastat(A,B); 
        for r = 1:1000 
            x = betarnd(A,B,1,number_of_providers); 
            if var(100*x) <= V*100^2 
                vlk(j,:) = 100*x; 
                break 
            end 
        end 
    end 
end 
 
function wil = generate_wil(number_of_treatments,... 
    number_of_patient_types, factor_level) 
 
for l = 1:number_of_patient_types 
    if factor_level == 1 
        wil = 0.5*ones(number_of_treatments,number_of_patient_types); 
    elseif factor_level == 2 
        wil = ones(number_of_treatments,number_of_patient_types); 
    elseif factor_level == 3 
        wil = 2*ones(number_of_treatments,number_of_patient_types); 
    else 



112 
 

 

        wil = 2*rand(number_of_treatments,number_of_patient_types); 
    end 
end  
 
 

Procedures to generate A matrix for binary problems 

function A = generateA(Number_of_treatments, Number_of_diseases) 
 
A = zeros(Number_of_diseases, Number_of_diseases*Number_of_treatments); 
r=0; 
 
for j = 1:Number_of_diseases 
    for i = 1:Number_of_treatments 
        A(j,i+r)=1; 
    end 
    r=r+Number_of_treatments; 
end 

 
Procedures to generate Objective Function Value of Model 1 
function z = ofv_Model1(xijk, eijk, ci) 
%This function calculations the objective function value (ofv) for a given 
%feasible solutions of Model 1 based on eijk and ci.  
 
[Number_of_treatments,Number_of_diseases, Number_of_providers]=size(eijk); 
 
% Initialize for two objectives 
z = zeros(Number_of_providers,2); 
 
for k = 1:Number_of_providers 
    for i = 1:Number_of_treatments 
        for j = 1:Number_of_diseases 
            z(k,1) = z(k,1) + ci(i)*xijk(i,j,k);        %total cost 
            z(k,2) = z(k,2) + eijk(i,j,k)*xijk(i,j,k);  %total efficacy 
        end 
    end 
end 

 

Procedures to generate Objective Function Value of Model 2 

function z = ofv_Model2(xij, eij, ci) 
%This function calculations the objective function value (ofv) for a given 
%feasible solutions of Model 2 based on eij and ci.  
 
% Initialize for two objectives 
z = zeros(1,2); 
 
[Number_of_treatments,Number_of_diseases]=size(eij); 
 
for i = 1:Number_of_treatments 
    for j = 1:Number_of_diseases 
        z(1) = z(1) + ci(i)*xij(i,j);     %total cost 
        z(2) = z(2) + eij(i,j)*xij(i,j);  %total efficacy 
    end 
end 

 

Procedures to generate Objective Function Value of Model 3 

function z = ofv_Model3(xij, di, eij, si, ui, vj) 
%This function calculates the objective function value of Model one as 
%cost z(1) and efficacy z(2) for decision xij given coefficients ci and eij 
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%Determing the number of treatments, diseases, and volume per treatment 
Number_of_treatments = size(eij,1); 
vi = xij*vj; 
 
%Initialize objective function value as 1x2 vector 
z=zeros(1,2); 
 
%Sum total cost  
for i = 1:Number_of_treatments 
    if vi(i) > 0 
        z(1) = z(1) + di(i) + si(i)*(vi(i))^ui(i); 
    end 
end 
 
%Sum total efficacy 
z(2) = sum(dot(eij,xij)); 

 

Procedures to generate Objective Function Value of Model 4 

function y = ofv_Model4(xij, eij, di, si, ui, Vl, Gl, wil, d, gj) 
 
[number_of_treatments, number_of_diseases] = size(eij); 
number_of_patient_types = size(Gl); 
 
% Initialize for two objectives  
y = zeros(2,1); 
% Convert xij to xil 
xil = zeros(number_of_treatments,number_of_patient_types); 
for l=1:number_of_patient_types 
    for j=1:number_of_diseases 
        if find(d(l,:)==j)>0 
            for i=1:number_of_treatments 
                if xij(i,j) == 1 
                    xil(i,l) = 1; 
                end 
            end 
        end 
    end 
end 
 
% Compute efficacy 
trtinefficacy = ones(number_of_diseases,number_of_patient_types); 
group_efficacy = zeros(1,number_of_patient_types); 
Total_Efficacy = 0; 
for l=1:number_of_patient_types 
        for j=1:number_of_diseases 
            if find(d(l,:)==j)>0 
                for i=1:number_of_treatments 
                    trtinefficacy(j,l)=trtinefficacy(j,l)... 
                        *(1-(eij(i,j)*xil(i,l))^wil(i,l)); 
                end 
            group_efficacy(l)=group_efficacy(l)+gj(j)*(1-trtinefficacy(j,l))/sum(gj); 
            end 
        end 
        Total_Efficacy = Total_Efficacy +(Gl(l)/sum(Gl))*(Vl(l)/sum(Vl))*group_efficacy(l); 
end 
y(2) = Total_Efficacy; 
 
% Compute cost objective to minimize 
FC = 0; 
VC = 0; 
trtvolume = zeros(1,number_of_treatments); 
for i=1:number_of_treatments 
    for l = 1:number_of_patient_types 
        trtvolume(i) = trtvolume(i) + Vl(l)*xil(i,l); 
    end      
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    if trtvolume(i) > 0 
        FC = FC + di(i); 
    end 
    VC = VC + si(i)*(trtvolume(i)^ui(i)); 
end 
y(1) = FC + VC; 

 

Procedures to generate Study 1 

function [dx,dy,ndomStartx,ndomEndx,domStartx,domEndx,... 
    ndomStarty,ndomEndy,domStarty,domEndy,hits, misses, nglobalpts] = ... 
    dissertation_Study1v2(number_of_treatments, number_of_diseases,... 
    number_of_providers, number_of_replications) 
%This program is designed to conduct a full factor experiment comparing the 
%efficient frontier of model 1 to model 2 given the number of treatments, 
%number of diseases, number of providers, and number of replications. 
 
%Declare no. of levels for the four factors used in the experimental design 
Factor1Levels = 2; %No. of levels for fixed cost variance  
Factor2Levels = 2; %No. of levels for variance in percieved efficacy 
Factor3Levels = 2; %No. of levels for variable cost variance 
Factor4Levels = 2; %No. of levels for variance in provider patient volume 
 
%Generate full factorial design matrix 
dFF = fullfact([number_of_replications,Factor1Levels,Factor2Levels,... 
    Factor3Levels,Factor4Levels]); 
 
%Count the number of experiments included in design for loop performance 
%measurements 
number_of_experiments = size(dFF,1); 
 
%Initialize output variable eMargin to store the errors of each 
%provider's perceived efficient frontier. 
dx = zeros(number_of_experiments,number_of_providers); 
dy = zeros(number_of_experiments,number_of_providers); 
ndomStartx = zeros(number_of_experiments,number_of_providers,2); 
ndomEndx = zeros(number_of_experiments,number_of_providers,2); 
domStartx = zeros(number_of_experiments,number_of_providers,2); 
domEndx = zeros(number_of_experiments,number_of_providers,2); 
ndomStarty = zeros(number_of_experiments,number_of_providers,2); 
ndomEndy = zeros(number_of_experiments,number_of_providers,2); 
domStarty = zeros(number_of_experiments,number_of_providers,2); 
domEndy = zeros(number_of_experiments,number_of_providers,2); 
hits = zeros(number_of_experiments,number_of_providers); 
misses  = zeros(number_of_experiments,number_of_providers); 
nglobalpts = zeros(number_of_experiments,1); 
 
%Loop is used to determine providers' performance in each experiment 
for experiment_number = 1:number_of_experiments 
     
    %Generate coefficients for model 1/2 based on parameters and designID  
    [eijk,eij,ci] = ... 
        study1_Coefficients(number_of_treatments, number_of_diseases,... 
        number_of_providers, dFF(experiment_number,:)); 
 
    %Generate all feasible solutions for model 2 
    A = generateA(number_of_treatments, number_of_diseases); 
    b = ones(1,number_of_diseases); 
    model2BFSs = feassol(A,b); 
     
    %Initialize decision variable 
    xij = zeros(number_of_treatments, number_of_diseases); 
     
    %Loop to determine objective function values of all feasible solutions 
    number_of_BFSs = size(model2BFSs,2); %Number of basic feasible solns 
     
    objectiveValue_Model1 = zeros(number_of_BFSs,2,number_of_providers); 
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    objectiveValue_Model2 = zeros(number_of_BFSs,2); 
     
    for n = 1:number_of_BFSs 
         
        for j = 1:number_of_diseases 
            for i = 1:number_of_treatments 
                xij(i,j) = model2BFSs(number_of_diseases*(j-1)+i,n); 
            end 
        end 
         
        %Calculate the objective function value of an indexed solution for 
        %model 2 
        objectiveValue_Model2(n,:) = ofv_Model2(xij,eij,ci); 
 
         
        %Calculate the objective function value of an indexed solution 
        %using model 2 as if model 1 is a submodel for each provider.        
        for k = 1:number_of_providers 
            objectiveValue_Model1(n,:,k) = ofv_Model2(xij,eijk(:,:,k),ci); 
        end 
         
    end 
     
    %Use objective funtion values of all feasible solutions to determine 
    %efficient frontiers of providers in model 1 and model 2 
    efficient_frontier1 = concaveFront(objectiveValue_Model2); 
 
    for k = 1:number_of_providers 
 
            [sval,solutionID] = concaveFront(objectiveValue_Model1(:,:,k)); 
            number_of_solutions = size(solutionID,1); 
            provider_frontier = zeros(number_of_solutions,2); 
 
            %determine provider k frontier in model 2 
            for r = 1:number_of_solutions 
                for j = 1:number_of_diseases 
                    for i = 1:number_of_treatments 
                        xij(i,j) = model2BFSs(number_of_diseases*(j-1)+i,solutionID(r)); 
                    end 
                end 
                provider_frontier(r,:) = ofv_Model2(xij,eij,ci); 
            end 
             
            %sort the provider frontier 
            [d1,d2] = sort(provider_frontier(:,1)); 
            provider_frontier = provider_frontier(d2,:); 
 
            [dx(experiment_number,k),... 
            dy(experiment_number,k),... 
            ndomStartx(experiment_number,k,:),... 
            ndomEndx(experiment_number,k,:),... 
            domStartx(experiment_number,k,:),... 
            domEndx(experiment_number,k,:),... 
            ndomStarty(experiment_number,k,:),... 
            ndomEndy(experiment_number,k,:),... 
            domStarty(experiment_number,k,:),... 
            domEndy(experiment_number,k,:),... 
            hits(experiment_number,k),... 
            misses(experiment_number,k)]... 
            = measure3(provider_frontier,efficient_frontier1); 
    end 
    nglobalpts(experiment_number) = size(efficient_frontier1,1); 
end 

 

Procedures to generate Study 2 

function [dx,dy,ndomStartx,ndomEndx,domStartx,domEndx,... 
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    ndomStarty,ndomEndy,domStarty,domEndy,hits, misses, nglobalpts,... 
    runtimes, enum_runtimes] = ... 
    dissertation_Study2a_v2(number_of_treatments, number_of_diseases,... 
    number_of_providers, number_of_replications) 
% error = dissertation_Study2(number_of_treatments, number_of_diseases,... 
%     number_of_providers, number_of_replications) 
%This program is designed to conduct a full factor experiment comparing the 
%efficient frontier from the heuristic of model 3 to the actual 
%efficient frontier of model 3 given the number of treatments, 
%number of diseases, number of providers, and number of replications. 
format long g 
%Declare no. of levels for the five factors used in the experimental design 
Factor1Levels = 2; %No. of levels for fixed cost variance 
Factor2Levels = 2; %No. of levels for variance in percieved efficacy 
Factor3Levels = 2;  %No. of levels for variable cost variance 
Factor4Levels = 2; %No. of levels for degree of volume discounts 
Factor5Levels = 2; %No. of levels for variance in provider patient volume 
 
%Generate full factorial design matrix 
dFF = fullfact([number_of_replications,Factor1Levels,Factor2Levels,... 
    Factor3Levels,Factor4Levels,Factor5Levels]); 
 
%Count the number of experiments included in design for loop performance 
%measurements 
number_of_experiments = size(dFF,1); 
 
%Initialize output variable eMargin to store the error in the heuristic  
%efficient frontier. 
% error = zeros(number_of_experiments,2); 
dx = zeros(number_of_experiments,1); 
dy = zeros(number_of_experiments,1); 
ndomStartx = zeros(number_of_experiments,2); 
ndomEndx = zeros(number_of_experiments,2); 
domStartx = zeros(number_of_experiments,2); 
domEndx = zeros(number_of_experiments,2); 
ndomStarty = zeros(number_of_experiments,2); 
ndomEndy = zeros(number_of_experiments,2); 
domStarty = zeros(number_of_experiments,2); 
domEndy = zeros(number_of_experiments,2); 
hits = zeros(number_of_experiments,1); 
misses  = zeros(number_of_experiments,1); 
nglobalpts = zeros(number_of_experiments,1); 
runtimes = zeros(number_of_experiments,1); 
enum_runtimes = zeros(number_of_experiments,1); 
% %Additional programming for scatterplot of Frontier 
% figure('Name', 'HOLD ON approach'); 
% hold on 
 
%Loop is used to determine heuristic performance in each experiment 
for experiment_number = 1:number_of_experiments 
     
    efficient_frontier3 = []; 
    heuristic_frontier = []; 
     
    %Generate coefficients for model 3 based on parameters and designID  
    [ui,vj,eij,di,si] = ... 
        study2_Coefficients(number_of_treatments, number_of_diseases,... 
        number_of_providers, dFF(experiment_number,:)); 
    tic 
    %Generate all feasible solutions for model 2 
    A=generateA(number_of_treatments, number_of_diseases); 
    b=ones(1,number_of_diseases); 
    model3BFSs=feassol(A,b); 
     
    %Initialize decision variable 
    xij = zeros(number_of_treatments, number_of_diseases); 
     
    %Loop to determine objective function values of all feasible solutions 
    objectiveValue_Model3 = zeros(size(model3BFSs,2),2);   
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    for n = 1:size(model3BFSs,2) 
        for j = 1:number_of_diseases 
            for i = 1:number_of_treatments 
                xij(i,j) = model3BFSs(number_of_diseases*(j-1)+i,n); 
            end 
        end 
         
        %Calculate the objective function value of an indexed solution for 
        %model 3 
        objectiveValue_Model3(n,:) = ofv_Model3(xij, di, eij, si, ui, vj); 
 
    end 
     
    %Use objective funtion values of all feasible solutions to determine 
    %efficient frontier of model 3 
    efficient_frontier3 = concaveFront(objectiveValue_Model3); 
    enum_runtimes(experiment_number) = toc; 
 
    %Use heuristic to estimate the efficient frontier of model 3 
    tic 
    [heuristic3_frontier,heuristic3_solution] = ... 
        model3_Hueristic(di, eij, si, ui, vj); 
    runtimes(experiment_number) = toc; 
     
    front1 = zeros(size(heuristic3_solution,1),2); 
    for n = 1:size(heuristic3_solution,1) 
        xij = xijStrtoMatrix(heuristic3_solution(n,:),number_of_treatments, number_of_diseases); 
        front1(n,:)=ofv_Model3(xij, di, eij, si, ui, vj); 
    end 
    [d1,d2] = sort(front1(:,1)); 
    front1 = front1(d2,:); 
     
    %Compare model 1 to model 2 and store error per provider 
%     error(experiment_number,:) = eMargin(front1,efficient_frontier3); 
    [dx(experiment_number),... 
    dy(experiment_number),... 
    ndomStartx(experiment_number,:),... 
    ndomEndx(experiment_number,:),... 
    domStartx(experiment_number,:),... 
    domEndx(experiment_number,:),... 
    ndomStarty(experiment_number,:),... 
    ndomEndy(experiment_number,:),... 
    domStarty(experiment_number,:),... 
    domEndy(experiment_number,:),... 
    hits(experiment_number),... 
    misses(experiment_number)]... 
    = measure3(front1,efficient_frontier3); 
    nglobalpts(experiment_number) = size(efficient_frontier3,1); 
 
end 

 

Procedures to generate Model 3 Heuristic 

function [Front, Solution, Distance, iteration] = ... 
    model3_Hueristic(di, eij, si, ui, vj) 
 
%STEP 0: Initialize heuristic parameters and solution 
[number_of_treatments, number_of_diseases] = size(eij); 
xijString0 = initializeXij(number_of_treatments, number_of_diseases); 
Solution = xijString0; 
 
%STEP 3: Repeat STEP 1-2 until the number of iterations is 100, previous 
%solutions are the same a solutions of current iteration, or the distance 
%between the previous front and the current front is less than epsilon. 
iteration = 1; 
Distance = 0; 
N = number_of_treatments*number_of_diseases; 
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nVars = N; 
interval = 0; 
 
while iteration < 100 
    %STEP 1: Find one-swap solutions with furthest distance from each 
    %point in the current set of solutions that fit in regions 1, 2, and 3. 
    swapFront = []; 
    swapSolution = []; 
    swapDistance = 0; 
     
    for r = 1:size(Solution,1) 
        [swapFront0, swapSolution0, swapDistance0] = ... 
            model3_findSwaps(Solution(r,:), di, eij, si, ui, vj); 
        swapFront = [swapFront; swapFront0]; 
        swapSolution = [swapSolution; swapSolution0]; 
        swapDistance = swapDistance + swapDistance0; 
    end 
         
    Front = swapFront; 
    Solution = swapSolution; 
    Distance = swapDistance; 
     
    %Condition for stopping based on solution or distance 
    if swapDistance > .5 
        iteration = iteration + 1; 
    else 
        iteration = 100; 
    end 
     
    %STEP 2: Ensure that front is concave after N solutions have been 
    %evaluated 
    interval = interval + r; 
 
    if interval >= nVars*5     
        [concaveFront, concaveSolns] = evalFrontSlope(Front, Solution); 
        interval = 0; 
%         Front = []; 
%         Solution = []; 
        Front = concaveFront; 
        Solution = concaveSolns; 
    end 
 
end 
 
%STEP 4: Ensure that the final front is concave then STOP 
if isempty(Front)== 0 
    [concaveFront, concaveSolns] = evalFrontSlope(Front, Solution); 
%            Front = []; 
%         Solution = []; 
    Front = concaveFront; 
    Solution = concaveSolns; 
end 
 
function [swapFront, swapSolution, swapDistance] = ... 
    model3_findSwaps(xijString, di, eij, si, ui, vj) 
%The program determines if more optimal points exists for the objective 
%function value of xijString or P0 and returns these points in swapFront 
%and their solutions in swapSolution. Scalar swapDistance totals distances 
%from P0 to the most optimal points. 
 
%STEP 0: Initialize the objective function value of xijString and other 
%code variables 
[Number_of_treatments, Number_of_diseases] = size(eij); 
swapFront = []; %Front for more improving swap decisions 
swapSolution = []; %Solutions for more improving swap decisions 
N = size(xijString,2);  %Number of solutions evaluated 
xij0 = xijStrtoMatrix(xijString, Number_of_treatments, Number_of_diseases); 
P0 = ofv_Model3(xij0, di, eij, si, ui, vj); 
V0 = xij0*vj; 
point = zeros(N,2); %Matrix to store ofv for the solutions being evaluated 
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trialXij = zeros(N); 
for r = 1:N 
    trialXij(r,:) = xijString ;%Matrix to store solutions being evaluated 
end 
 
%STEP1: Determine all possible swaps from P0 
for i = 1:Number_of_treatments 
    for j = 1:Number_of_diseases 
        r = Number_of_diseases*(i-1)+j; 
        xij = xijStrtoMatrix(trialXij(r,:),... 
            Number_of_treatments, Number_of_diseases); 
        xij(:,j) = 0; 
        xij(i,j) = 1; 
        trialXij(r,:) = xijMatrixtoStr(xij); 
        Vi = xij*vj; 
        P1 = swapIncrement(xij0, xij, di, eij, ... 
            si, ui, V0, Vi); 
        point(r,:)= P0 + P1; 
    end 
end 
 
%STEP 2: Calculate the distances from P0 to all possible swaps from P0 
alldistances = pdist([P0; point]); %Distances between all points 
d = alldistances(1:N); %Distances from P0 to all possible swaps from P0 
 
%STEP 3: Define points of furthest distance for swaps in regions one, two, 
%and three 
dtemp1 = 0; %Stores previous best distance evaluated in region 1, R1 
dtemp2 = 0; %Stores previous best distance evaluated in region 2, R2 
dtemp3 = 0; %Stores previous best distance evaluated in region 3, R3 
mtemp1 = inf; %Stores previous best distance evaluated in region 1, R1 
mtemp3 = 0; %Stores previous best distance evaluated in region 3, R3 
region1Front = []; 
region2Front = []; 
region3Front = []; 
for index = 1:N 
    if P0(1) > point(index,1) && P0(2) > point(index,2) %R1 criteria 
        m1 = (P0(2) - point(index,2))/(P0(1) - point(index,1)); 
        if m1 < mtemp1 
            mtemp1 = m1; 
            dtemp1 = d(index); 
            region1Front = point(index,:); 
            region1Solution = trialXij(index,:); 
        end 
    elseif  P0(1) >= point(index,1) && P0(2) <= point(index,2) %R2 criteria 
        if d(index)> dtemp2 
            dtemp2 = d(index); 
            region2Front = point(index,:); 
            region2Solution = trialXij(index,:); 
        end 
    elseif P0(1) < point(index,1) && P0(2) < point(index,2) %R3 criteria 
        m3 = (point(index,2) - P0(2))/(point(index,1) - P0(1)); 
        if m3 > mtemp3 
            mtemp3 = m3; 
            dtemp3 = d(index); 
            region3Front = point(index,:); 
            region3Solution = trialXij(index,:); 
        end 
    end 
end 
% dtemp1 = 0; %Stores previous best distance evaluated in region 1, R1 
% dtemp2 = 0; %Stores previous best distance evaluated in region 2, R2 
% dtemp3 = 0; %Stores previous best distance evaluated in region 3, R3 
% region1Front = []; 
% region2Front = []; 
% region3Front = []; 
% for index = 1:N 
%     if P0(1) > point(index,1) && P0(2) > point(index,2) %R1 criteria 
%         if d(index)> dtemp1 



120 
 

 

%             dtemp1 = d(index); 
%             region1Front = point(index,:); 
%             region1Solution = trialXij(index,:); 
%         end 
%     elseif  P0(1) >= point(index,1) && P0(2) <= point(index,2) %R2 criteria 
%         if d(index)> dtemp2 
%             dtemp2 = d(index); 
%             region2Front = point(index,:); 
%             region2Solution = trialXij(index,:); 
%         end 
%     elseif P0(1) < point(index,1) && P0(2) < point(index,2) %R3 criteria 
%         if d(index)> dtemp3 
%             dtemp3 = d(index); 
%             region3Front = point(index,:); 
%             region3Solution = trialXij(index,:); 
%         end 
%     end 
% end 
 
%STEP 4: Define swapFront as best points that may exist in region one, two, 
%and three which correspond to the points in swapSolution and sum their 
%distances to P0. 
if isempty(region1Front) == 0 
    swapFront = [swapFront; region1Front]; 
    swapSolution = [swapSolution; region1Solution]; 
end 
 
if isempty(region2Front) == 0 
    swapFront = [swapFront; region2Front]; 
    swapSolution = [swapSolution; region2Solution]; 
end 
 
if isempty(region3Front) == 0 
    swapFront = [swapFront; region3Front]; 
    swapSolution = [swapSolution; region3Solution]; 
end 
 
swapDistance = dtemp1 + dtemp2 + dtemp3; %Sums furthest distances 
 

 

Procedures to generate Study 3 

function [dx,dy,ndomStartx,ndomEndx,domStartx,domEndx,... 
    ndomStarty,ndomEndy,domStarty,domEndy,run_time,... 
    run_gens, run_exit, run_avgdist, run_spread, run_frontsize] =... 
    dissertation_Study3(number_of_treatments, number_of_diseases,... 
    number_of_providers, number_of_replications) 
%This program is designed to conduct a full factor experiment comparing the 
%efficient frontier of model 3 to model 4 given the number of  
%treatments, number of diseases, number of providers, and number of  
%replications.  measure3 is used to assess performance. Initial population 
%of the GA is solution set from Model 3. 
 
number_of_patient_types = 0; 
for j=1:number_of_diseases 
    number_of_patient_types = number_of_patient_types + ... 
        factorial(number_of_diseases)/(factorial(number_of_diseases-j)... 
        *factorial(j)); 
end 
 
%Declare no. of levels for the five factors used in the experimental design 
Factor1Levels = 2; %No. of levels for fixed cost variance 
Factor2Levels = 2; %No. of levels for variance in percieved efficacy 
Factor3Levels = 2; %No. of levels for variance disease severity 
Factor4Levels = 2; %No. of levels for variable cost variance 
Factor5Levels = 2; %No. of levels for degree of volume discounts 
Factor6Levels = 2; %No. of levels for variance in provider patient volume 
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Factor7Levels = 4; %No. of levels for efficacy curvature 
 
dFF = fullfact([number_of_replications,Factor1Levels,Factor2Levels,... 
    Factor3Levels,Factor4Levels,Factor5Levels,Factor6Levels,... 
    Factor7Levels]); 
 
number_of_experiments = size(dFF,1); 
 
%Initialize output variables to store the model distance measures 
dx = zeros(number_of_experiments,number_of_providers,3); 
dy = zeros(number_of_experiments,number_of_providers,3); 
ndomStartx = zeros(number_of_experiments,number_of_providers,2,3); 
ndomEndx = zeros(number_of_experiments,number_of_providers,2,3); 
domStartx = zeros(number_of_experiments,number_of_providers,2,3); 
domEndx = zeros(number_of_experiments,number_of_providers,2,3); 
ndomStarty = zeros(number_of_experiments,number_of_providers,2,3); 
ndomEndy = zeros(number_of_experiments,number_of_providers,2,3); 
domStarty = zeros(number_of_experiments,number_of_providers,2,3); 
domEndy = zeros(number_of_experiments,number_of_providers,2,3); 
 
%Initialize output variables to store GA performance measures 
run_time = zeros(number_of_experiments,1); 
run_gens = zeros(number_of_experiments,1); 
run_exit = zeros(number_of_experiments,1); 
run_avgdist = zeros(number_of_experiments,1); 
run_spread = zeros(number_of_experiments,1); 
run_frontsize = zeros(number_of_experiments,1); 
run_frontPA = zeros(number_of_experiments,2); 
run_frontPB = zeros(number_of_experiments,2); 
     
for experiment_number = 1:number_of_experiments 
    efficient_frontier =[]; 
    [eijk,gj,ui,vlk,wil,vjk,eij,ci,di,si,Gl,d] = ... 
        study4_Coefficients(number_of_treatments, number_of_diseases,... 
        number_of_providers, dFF(experiment_number,:)); 
    Vl = sum(vlk,2); 
    Vj = sum(vjk,2); 
     
    %Generate all feasible solutions for model 2 
    A=generateA(number_of_treatments, number_of_diseases); 
    b=ones(1,number_of_diseases); 
    model2BFSs=feassol(A,b); 
     
    %Initialize decision variable 
    xij = zeros(number_of_treatments, number_of_diseases); 
     
    %Loop to determine objective function values of all feasible solutions 
    objectiveValue_Model1 = zeros(size(model2BFSs,2),2,number_of_providers); 
    objectiveValue_Model2 = zeros(size(model2BFSs,2),2);     
    objectiveValue_Model3 = zeros(size(model2BFSs,2),2);  
     
    for n = 1:size(model2BFSs,2) 
        for i = 1:number_of_diseases 
            for j = 1:number_of_treatments 
                xij(i,j) = model2BFSs(number_of_treatments*(j-1)+i,n); 
            end 
        end 
 
        %Calculate the objective function value of an indexed solution for 
        %model 2 
        objectiveValue_Model2(n,:) = ofv_Model2(xij,eij,ci); 
         
        %Calculate the objective function value of an indexed solution 
        %using model 2 as if model 1 is a submodel for each provider.        
        for k = 1:number_of_providers 
            objectiveValue_Model1(n,:,k) = ofv_Model2(xij,eijk(:,:,k),ci); 
        end 
         
        %Calculate the objective function value of an indexed solution for 
        %model 3 
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        objectiveValue_Model3(n,:) = ofv_Model3(xij, di, eij, si, ui, sum(vjk,2));         
    end 
     
    %Use objective funtion values of all feasible solutions to determine 
    %efficient frontiers model 1 to 3 
    [~, solutionID2] = concaveFront(objectiveValue_Model2);     
    [~, solutionID3] = concaveFront(objectiveValue_Model3); 
     
    tic; 
     
    % Genetic Algorithm for model4 returns Fval4 as the efficient frontier 
%Code to estimate percentiles of members in low cost and high efficacy 
%regions 
avgCi = zeros(number_of_treatments,1); %average cost of i 
avgEi = ones(number_of_treatments,1); %average efficacy of i 
for i = 1:number_of_treatments 
    avgCi(i)=(di(i)+si(i)*sum(Vl)^ui(i))/(sum(Vl)); 
    for j = 1:number_of_diseases 
        avgEi(i) = avgEi(i)*(1-eij(i,j)); 
    end 
    avgEi(i) = 1 - avgEi(i); 
end 
 
[minCRatio,minCIndex] = min(avgCi/sum(avgCi)); 
[maxCRatio,~] = max(avgCi/sum(avgCi)); 
[minERatio,minEIndex] = min(avgEi/sum(avgEi)); 
[maxERatio,maxEIndex] = max(avgEi/sum(avgEi)); 
 
% Genetic Algorithm for model4 returns Fval4 as the efficient frontier 
NVARS4 = number_of_treatments*number_of_patient_types; %number of independent variables for the fitness function  
popSize= 64*2; 
popRand = randperm(popSize); 
mypop = zeros(popSize,NVARS4); 
M3frontSize = size(solutionID3,1); 
 
for p = 1:popSize 
    if popRand(p) <= round(popSize*(minCRatio)) 
        for l = 1:number_of_patient_types %original used mypop(p,...).. 
            mypop(popRand(p), number_of_treatments*(l-1)+minCIndex) = 1; 
        end 
    elseif popRand(p) >= min(round(popSize*minERatio),popSize-round(popSize*(minCRatio))) 
        for l = 1:number_of_patient_types 
            mypop(popRand(p), number_of_treatments*(l-1)+maxEIndex) = 1; 
        end 
    else 
        index = randi([1 M3frontSize]); 
        %index = popRand(p) - divisor*(floor((popRand(p) - 1)/divisor)); 
        for j = 1:number_of_diseases 
            for i = 1:number_of_treatments 
                xij(i,j) = model2BFSs(number_of_diseases*(j-1)+i,... 
                    solutionID3(index)); 
            end 
        end 
        for l=1:number_of_patient_types 
            for j=1:number_of_diseases 
                if find(d(l,:)==j)>0 
                    for i=1:number_of_treatments 
                        if xij(i,j) == 1 
                            mypop(popRand(p), number_of_treatments*(l-1)+i) = 1; 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
%     mypop = CreationFcn1(popSize, solutionID3, model2BFSs, d, ... 
%     number_of_treatments, number_of_diseases, number_of_patient_types); 
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    LB4 = zeros(1, NVARS4); 
    UB4 = ones(1, NVARS4); 
    A4top = generateA(number_of_treatments, number_of_patient_types); 
    A4bottom = 0*A4top; 
    b4top = ones(number_of_patient_types,1); 
    b4bottom = zeros(number_of_patient_types,1); 
    Aeq4 = []; 
    beq4 = []; 
    options = gaoptimset(... 
        'InitialPopulation',mypop,... 
        'EliteCount', round(popSize*0.10), ... 
        'CrossoverFraction', .80,... 
        'CrossoverFcn',{@crossoverheuristic,1.2},... 
        'PopulationSize', popSize, ... 
        'StallGenLimit',100,... 
        'MutationFcn',{@mutationbyDerivatives,d, eij, ci, gj, si, ui, Vl, Gl, wil},... 
        'PlotFcns',@gaplotpareto); 
        %'PlotFcns',@gaplotpareto 
 
    A4 = [A4top;A4bottom]; 
    b4 = [b4top;b4bottom]; 
     
    % Genetic Algorithm for model4 returns Fval4 as the efficient frontier 
    FITNESSFCN4 = @(x)m4_multiobjective(x,eij, di, si, ui, Vl, Gl, wil, d, gj); 
    [x, Fval4, exitflag, output, population] = gamultiobj(FITNESSFCN4,NVARS4,A4,b4,... 
        Aeq4,beq4,LB4,UB4,options); 
    Fval4(:,2)=-1*Fval4(:,2); 
    concaveefficient_frontier = concaveFront(Fval4); 
         
    run_time(experiment_number) = toc; 
    run_gens(experiment_number) = output.generations; 
    run_exit(experiment_number) = exitflag; 
    run_avgdist(experiment_number) = output.averagedistance; 
    run_spread(experiment_number) = output.spread; 
    run_frontsize(experiment_number) = size(concaveefficient_frontier,1); 
    run_frontPA(experiment_number,:) = concaveefficient_frontier(1,:); 
    run_frontPB(experiment_number,:) = concaveefficient_frontier(size(concaveefficient_frontier,1),:); 
 
       
     %determine provider k frontier in model 4    
     for k = 1:number_of_providers 
 
        [~,solutionID1] = concaveFront(objectiveValue_Model1(:,:,k)); 
        number_of_solutions = size(solutionID1,1); 
        provider_frontier = []; 
        provider_frontier = zeros(number_of_solutions,2); 
 
 
        for r = 1:number_of_solutions 
            for j = 1:number_of_diseases 
                for i = 1:number_of_treatments 
                    xij(i,j) = model2BFSs(number_of_diseases*(j-1)+i,solutionID1(r)); 
                end 
            end 
        provider_frontier(r,:) = ofv_Model4(xij, eij, di, si, ui, Vl, Gl, wil, d, gj); 
        end 
        %sort the provider frontier 
        [~,d2] = sort(provider_frontier(:,1)); 
        provider_frontier = provider_frontier(d2,:); 
 
        [dx(experiment_number,k,1),... 
            dy(experiment_number,k,1),... 
            ndomStartx(experiment_number,k,:,1),... 
            ndomEndx(experiment_number,k,:,1),... 
            domStartx(experiment_number,k,:,1),... 
            domEndx(experiment_number,k,:,1),... 
            ndomStarty(experiment_number,k,:,1),... 
            ndomEndy(experiment_number,k,:,1),... 
            domStarty(experiment_number,k,:,1),... 
            domEndy(experiment_number,k,:,1)]... 



124 
 

 

            = measure3(provider_frontier,concaveefficient_frontier); 
     end 
      
    %determine model2 frontier in model 4 
    number_of_solutions = size(solutionID2,1); 
    model2_frontier = []; 
    model2_frontier = zeros(number_of_solutions,2); 
 
    for r = 1:number_of_solutions 
        for j = 1:number_of_diseases 
            for i = 1:number_of_treatments 
                xij(i,j) = model2BFSs(number_of_diseases*(j-1)+i,solutionID2(r)); 
            end 
        end 
    model2_frontier(r,:) = ofv_Model4(xij, eij, di, si, ui, Vl, Gl, wil, d, gj); 
    end 
 
    %sort model2frontier 
    [~,d2] = sort(model2_frontier(:,1)); 
    model2_frontier = model2_frontier(d2,:); 
 
    [dx(experiment_number,1,2),... 
        dy(experiment_number,1,2),... 
        ndomStartx(experiment_number,1,:,2),... 
        ndomEndx(experiment_number,1,:,2),... 
        domStartx(experiment_number,1,:,2),... 
        domEndx(experiment_number,1,:,2),... 
        ndomStarty(experiment_number,1,:,2),... 
        ndomEndy(experiment_number,1,:,2),... 
        domStarty(experiment_number,1,:,2),... 
        domEndy(experiment_number,1,:,2)]... 
        = measure3(model2_frontier,concaveefficient_frontier); 
     
    %determine model3 frontier in model 4 
    number_of_solutions = size(solutionID3,1); 
    model3_frontier = []; 
    model3_frontier = zeros(number_of_solutions,2); 
 
    for r = 1:number_of_solutions 
        for j = 1:number_of_diseases 
            for i = 1:number_of_treatments 
                xij(i,j) = model2BFSs(number_of_diseases*(j-1)+i,solutionID3(r)); 
            end 
        end 
    model3_frontier(r,:) = ofv_Model4(xij, eij, di, si, ui, Vl, Gl, wil, d, gj); 
    end 
 
    %sort model3frontier 
    [~,d2] = sort(model3_frontier(:,1)); 
    model3_frontier = model3_frontier(d2,:); 
 
    [dx(experiment_number,1,3),... 
        dy(experiment_number,1,3),... 
        ndomStartx(experiment_number,1,:,3),... 
        ndomEndx(experiment_number,1,:,3),... 
        domStartx(experiment_number,1,:,3),... 
        domEndx(experiment_number,1,:,3),... 
        ndomStarty(experiment_number,1,:,3),... 
        ndomEndy(experiment_number,1,:,3),... 
        domStarty(experiment_number,1,:,3),... 
        domEndy(experiment_number,1,:,3)]... 
        = measure3(model3_frontier,concaveefficient_frontier); 
end 
 
function [EfficientFront,FrontIndex] = concaveFront(f) 
format long 
 
[w,d2] = sort(f(:,1)); 
P = f(d2,:); 
Q = d2; 
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N = length(P); 
mab = ones(1,N); 
keep = ones(1,N); 
for a = 1:(N - 1) 
    for b = (a + 1):N 
        if (P(a,1) == P(b,1))*(P(a,2) <= P(b,2))*keep(b) == 1 
            keep(a) = 0; 
            break 
        end 
        mab(b) = (P(b,2) - P(a,2)) / (P(b,1) - P(a,1)); 
    end 
    if keep(a) == 1 
        for b = (a + 1):N 
            if b < N 
                if (mab(b) > max(mab((b + 1):N)))*(mab(b) > 0) == 0 
                    keep(b) = 0; 
                end 
            else 
                 if (mab(b) > 0) == 0 
                    keep(b) = 0; 
                end                
            end 
        end 
    end 
end 
 
EfficientFront = zeros(sum(keep),2); 
FrontIndex = zeros(sum(keep),1); 
c = 1; 
for i = 1:N 
    if keep(i) == 1 
    EfficientFront(c,:) = P(i,:); 
    FrontIndex(c,:) = Q(i); 
    c = c + 1; 
    end 
end 
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