
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Dissertations Electronic Theses and Dissertations

2012

Self-Time Circuit Size Optimization For An Input Data Distribution Self-Time Circuit Size Optimization For An Input Data Distribution

Evelyn Sowells
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/dissertations

Recommended Citation Recommended Citation
Sowells, Evelyn, "Self-Time Circuit Size Optimization For An Input Data Distribution" (2012). Dissertations.
31.
https://digital.library.ncat.edu/dissertations/31

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/31?utm_source=digital.library.ncat.edu%2Fdissertations%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

SELF-TIME CIRCUIT SIZE OPTIMIZATION FOR AN INPUT DATA

DISTRIBUTION

by

Evelyn R. Sowells

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department: Electrical and Computer Engineering

Major: Electrical Engineering

Major Professor: Dr. Alvernon Walker

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2012

ABSTRACT

Sowells, Evelyn R. SELF-TIME CIRCUIT SIZE OPTIMIZATION FOR AN INPUT

DATA DISTRIBUTION. (Major Professor: Dr. Alvernon Walker), North Carolina

Agricultural and Technical State University.

 New design techniques with energy-delay characteristics that are superior to that of the

synchronous timing and control approach are needed today because the throughput of

systems realized with this method is limited by the power dissipation of nanometer scale

devices and the power management strategies developed to insure that they do not exceed

device thermal constraints. A circuit timing approach that is not dependent only on the

propagation delay of the critical path is required to achieve this for a specified technology

and supply voltage. Optimized self-timed circuits have this characteristic and therefore

outperform synchronous designs for a given energy dissipation. A novel self-timed circuit

device sizing approach that is based on the circuit input data distribution and circuit

branching effort is proposed in this document. The analysis is based on the Logical Effort

(LE). The LE model used in this work was extracted from SPICE simulation for the

TMSC 0.18um process. The performance and energy dissipation of circuits implemented

with this approach is 13% and 16% respectively better than circuits designed with

previously proposed approaches.

i

School of Graduate Studies

North Carolina Agricultural and Technical State University

This is to certify that the Doctoral Dissertation of

Evelyn R. Sowells

has met the dissertation requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2012

Approved by:

_________________________________ __________________________

Dr. Alvernon Walker Dr. Albert Esterline

Major Professor Committee Member

_________________________________ __________________________

Dr. Corey Graves Dr. Clinton Lee

Committee Member Committee Member

_________________________________ __________________________

Dr. Robert Li Dr. John Kelly

Committee Member Department Chairperson

Dr. Sanjiv Sarin

Associate Vice Chancellor for Research and Graduate Dean

ii

Copyright by

EVELYN R. SOWELLS

2012

iii

DEDICATION

I dedicate my doctoral dissertation work to my loving family and friends.

Particularly to my supportive and patient husband, who set the bar for excellence and

always encourages me to pursue all of my dreams. I also dedicate this to our wonderful

daughter, Maya who inspires me and has grown into a lovely young lady despite having

to share me with my other child, research. I must also thank my loving parents Reece and

Susan whom always believed in me, even when I did not believe in myself and to my

dear friend Eureka, who has been my biggest cheerleader throughout this process.

Finally, many thanks to my advisor, Dr. Alvernon Walker, who never gave up on me.

iv

BIBLIOGRAPHY SKETCH

Evelyn R. Sowells was born on November 3, 1971, in Camden, New Jersey. She

received the Bachelor of Science degree in Computer Science from North Carolina

Agricultural and Technical State University in 2001 and a Master of Science degree from

North Carolina Agricultural and Technical State University in 2003. She is a candidate

for the Ph.D. in Electrical Engineering.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who has been a “link in my chain” to helped make

this dissertation possible. First, I would like to thank my advisor, Dr. Alvernon Walker,

who has given me countless hours of guidance and support. His brilliance and research in

Electrical Engineering has been a great inspiration for me. Additionally, I would like to

thank my doctoral co-advisor and graduate advisor, Dr. Albert Esterline for suggesting

that I pursue a doctorate degree in Electrical Engineering. That suggestion gave me the

confidence I needed to start this academic journey. I would also like to thank my

committee members Dr. Graves, Dr. Li and Dr. Lee for their helpful insight,

recommendations, and comments.

Thank you to my two favorite chairs, Dr. Gloster and Dr. Kelly for providing

invaluable support and direction whenever needed and James Griggs for sharing his

priceless electrical engineering and Cadence knowledge. Also, many thanks to Juanda

Johnson-Taylor who counseled me through my blood, sweat and tears as I climbed the

doctoral mountain. Lastly, I would like to thank Greg Hampton who’s computer

programming wizardry help me get through some really tough times.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ...x

CHAPTER 1: INTRODUCTION ...1

 1.1 Motivation ..2

 1.2 Moore’s Law ..2

 1.3 Energy Delay Product ..4

 1.4 Research Contribution ...7

CHAPTER 2: BACKGROUND ...9

 2.1 Power vs. Energy ..9

 2.2 Static Power Dissipation ..10

 2.2.1 Power management Strategies for Static Power Dissipation11

 2.3 Dynamic Power Dissipation ..12

 2.3.1 Power management Strategies for Static Power Dissipation12

 2.3.2 Short Circuit Power Dissipation ...15

 2.4 High Speed Digital System Realization ...16

 2.5 Circuit Design Methodologies ...17

 2.6 Floating Point Adder ..20

 2.7 Related Works ..21

CHAPTER 3: ASYNCHRONOUS SYSEM REALIZATION ..23

 3.1 Self-timed ...23

 3.2 Handshake Protocol ...23

vii

 3.3 Dynamic Logic...24

 3.4 Domino Logic ..26

CHAPTER 4: RESEARCH ..28

 4.1 Logic Gate Delay ..28

 4.2 Logical Effort ..29

 4.3 Self-timed Ripple Carry Adder Circuit Design ..30

 4.4 1-Bit RCA Sub-circuit Parameters..35

 4.5 Input Distributions in Self-timed Circuit ..52

 4.6 Approach ...56

 4.6.1 Circuit Device Sizing with Input Distribution Data without branching56

 4.6.2 Circuit Device Sizing with Input Distribution Data with branching 60

 4.7 Results ...66

 4.8 Conclusion ..66

REFERENCES ..69

APPENDIX ..72

viii

LIST OF FIGURES

FIGURES PAGE

 1.1 Power dissipation vs. scaling technology ...1

 1.2 Moore’s Law ...3

 1.3 Energy Delay Product ...5

 1.4 Power Dissipation with respect to year and scaling factor6

 2.1 Power Dissipation Breakdown of Circuit ...10

 2.2 Static Power Dissipation ...11

 2.3 Dynamic Power Dissipation ...13

 2.4 Short Circuit Power Dissipation ...15

 2.5 Synchronous Three Stage Pipeline ...18

 2.6 Asynchronous Three Stage Pipeline ...20

 3.1 Four Phase Handshake Protocol ...23

 3.2 Dynamic Logic Gate ...25

 3.3 Domino Logic ...26

 4.1 Delay expressed in terms of a minimal sized inverter29

 4.2 (a) Full Adder Schematic, (b) Logic diagram, and (c) 4 bit RCA31

 4.3 Domino Logic Realization of One bit Adder ..35

 4.4 High-Skew Inverter gate (a) and transistor (b) level schematic 36

 4.5 VTC of high-skew inverter [i.e. V(2)] and standard inverter [i.e. V(3)]36

 4.6 High-skew Inverter Calibration Input and Output Voltage37

ix

 4.7 Dynamic AND gate (a) and transistor (b) level schematic38

 4.8 Dynamic AND gate embedded NAND gate input and output voltage39

 4.9 Dynamic AND stick diagram ...40

 4.10 Dynamic 2-input AND gate Layout ...41

 4.11 Dynamic 2-input OR gate (a) and transistor (b) level schematic.....................42

 4.12 Dynamic 2-input OR gate input and output voltage ..42

 4.13 Dynamic 2-input OR stick diagram ...44

 4.14 Dynamic 2-input OR gate layout ...44

 4.15 Dynamic AO21 gate (a) and transistor (b) schematics45

 4.16 Dynamic AO21 gate input and output voltage ..46

 4.17 Dynamic AO21 gate stick diagram ..47

 4.18 Dynamic AO21 gate layout ...47

 4.19 Dynamic Sum gate and transistor schematics ..48

 4.20 Dynamic not Sum gate calibration circuit input and output voltage48

 4.21 Dynamic Sum gate stick diagram ..50

 4.22 Dynamic Sum gate Layout...50

 4.23 Layout of One Bit Adder ...51

 4.24 Circuit Path Activation Probability ..53

 4.25 Gaussian (Normal) and Discrete (Binomial) distribution55

 4.26 Trading delay in one path for delay in another ..62

 4.27 Left and Right circuit propagation delay for scaling factor x63

 4.28 Full Adder input Distribution...64

x

LIST OF TABLES

TABLE PAGE

 4.1 Logical effort per input of static and dynamic gates..30

 4.2 Truth table for full adder ..33

 4.3 Average Number of Logic Transitions per Addition33

 4.4 High-skew inverter Logical Effort ...37

 4.5 Embedded 2-input NAND gate Logical Effort ..39

 4.6 Embedded 2-input NAND gate input capacitance ...39

 4.7 2-input AND gate Logical Effort ..40

 4.8 Embedded 2-input NOR gate Logical Effort ...43

 4.9 Embedded 2-input NOR gate input capacitance ..43

 4.10 2-input OR gate Logical Effort ..43

 4.11 Embedded AOI21 gate logical effort ...46

 4.12 Embedded AO21 gate input capacitance ...46

 4.13 Embedded not Sum gate logical effort ...49

 4.14 Embedded Sum gate input capacitance ..49

 4.15 Sum gate logical effort ...49

 4.16 Device capacitance in terms of transistor width ...66

1

CHAPTER 1

INTRODUCTION

Power conservation without performance penalties have become an increasingly

important issue among modern digital circuit designers. As the digital technology

evolution continues to produce more complex circuits coupled with ground breaking

system performance, the power consumed by these circuits are at record highs. In fact,

power dissipation or energy loss in the form of heat is reaching levels comparable to

nuclear reactors. The negative affect associated with the power dissipation compromises

or in many cases, impair chip reliability and life expectancy.

Figure 1.1: Power dissipation vs. scaling technology [2]

2

1.1 Motivation

Over the past decade, research in this area has eased but not solved this power

issue. Many solutions involved increasing chip parameter size to ease the chips density

that has lead us to this hot spot. However, as the demand for portable electronic devices

rise, scaling technology forces us to deal with this problem. Figure 1.1 shows the power

dissipation with respect to technology generation. As illustrated in figure 1.1, scaling

technology increases, power dissipation or energy given off in the form of heat also

increases. In 1985, Intel’s i386 power dissipation was at a minimum less than 3

watts/ . However, by November 1995, the Pentium Pro was dissipating heat

comparable to a hot plate at 10 watts/ . This, of course assuming that there are no

power management techniques in place. Hibernation, a power down technique that

deactivate idle components of the chip, multiple supply voltages and clock frequencies

are the most used power management strategies.

1.2 Moore’s Law

Gordon Moore, co-founder of Intel, made an observation in 1965 that the number

of transistors per square inch on integrated circuits doubled every year since the

integrated circuit was invented. He predicted that this trend would continue for the

indefinite future. In the 21
st
 century, the pace slowed down a bit, but data density has

doubled approximately every 18 months, and this is the current definition of Moore's

Law, which Moore himself has named. Figure 1.2 gives a graphical representation of

http://www.webopedia.com/TERM/I/Intel.html
http://www.webopedia.com/TERM/T/transistor.html
http://www.webopedia.com/TERM/I/integrated_circuit_IC.html

3

Moore’s Law. Most experts agree with Gordon Moore expecting this law to hold true for

at least another two decades.

Figure 1.2: Moore’s Law [3]

 Figure 1.1 shows the power dissipation increasing in a linear fashion and future

technology generations could possibly dissipate power of that comparable to a nuclear

reactor. The consumption of heat per is increasing as device scaling increases. This

further reinforces the fact that we need more power efficient designs. Remarkably

enough, if research does not produced a technique to break through the “power wall”,

advancements in circuit technology will have reached its limits because the techniques

that are used today may not be effective ten years from now.

4

1.3 Energy Delay Product

When we consider the energy or power with respect to performance from the

prospective of a gate, there are several challenges. As Moore’s Law continues to hold, the

number of transistors on a chip will double every 18 months, the increasing clock

frequencies and chip density have allowed designer to create more desirable architectures

which run applications at ground breaking speeds. However, the micro-architecture and

logic designs are stressed as frequency has increased faster than scaling. Since clock

frequency is a linear function of power dissipation, as we increase the frequency we also

increase the power dissipation. Further reducing the number of gate delays per cycle will

also be difficult to achieve because the interconnect parasitics associated with the wires

of a circuit are starting to dominate the speed or performance of the circuit not the gate.

There are several problems that have to be resolved to build faster and more efficient

chips: better chip implementation design techniques, better clock system design strategies

and a more efficient micro-architecture.

As we increase the supply voltage, the delay of the gate decreases. However, the

power dissipation increases, as well. This is called the energy delay product. One of the

measures of efficiency for a digital system is the energy delay product, propagation delay

multiplied by energy dissipation which is measured in joules. There have been several

papers that investigate techniques that explore the possibilities of optimizing the power

delay product more in depth [24, 25, 26, 27].

5

Modern digital designers, most often use synchronous logic to build computer

systems because this logic style is more commonly accepted due largely in part to the

commercial infrastructure which has already become acclimated. Traditional

synchronous system designers often believe that the in order to boost performance one

must pay a power penalty or vice versa, which is consider power/performance tradeoff.

Figure 1.3: Energy Delay Product [4]

Gonzalez and Horowitz demonstrate that the architectural improvements contribute the

most to both performance and energy efficiency. For example, their results demonstrate

that pipelining is of fundamental importance to processor performance and energy

efficiency, but super scalar issue is a lesser contribution [8].

Figure 1.3 shows the ideal energy delay product. Our challenge here is to figure

out how to build a gate that is fast and power efficient. Can we increase performance

6

without increasing power dissipation? Is it possible to have a superior power delay

product?

Current trends suggest that we can. Let’s take a look at some Multi-processor

units (MPS) and Digital Signal Processors (DSP) which are typically the highest

performing chips.

Figure 1.4: Power Dissipation with respect to year and scaling factor [3]

In figure 1.4a, as Moore’s Law remains true, more transistors are packed into a

small chip. The initial affects on power dissipation is increasing most rapidly in the

1980’s. This is due in part to technology that was not as power efficient as today’s

technology. In the early 80’s the transistor sizes were much larger and the circuit

operated at a lower clock frequency. The Intel’s 8088 operated at 4.77 mhz as opposed to

today’s personal computers that can operate at 2 Ghz which is about 400 times faster.

Then in the early 1990’s as more power efficient architectures were introduced, (e.g.

(a) Power diss ipation vs. year.

95908580
0.01

0.1

1

10

100

Year

P
o
w

e
r

D
is

si
p
a
ti

o
n

(W

)

x4
 / 3

 y
ea

rs

MPU

DSP

x1.4 / 3 years

Scaling Factor 
（normalized by 4m design rule）

101
1

10

100

1000




3

P
o
w

e
r

D
e
n
si

ty
 (

m
W

/m
m

2
)


0.7

(b) Power density vs. scaling factor.

7

RISC, pipelining, super scalar, and branch prediction) power dissipation still increased

but at a much slower rate. This is demonstrated by the difference in the data lines in the

figure 1.4a. The first data line shows a four times increase in power dissipation every

three years. While the second data line shows a 1.4 times increase in power dissipation

every three years.

The same hold true with respect to scaling, figure 1.4b. As device sizes decrease,

the intrinsic time constant is reduced which implies that clock frequencies and power

dissipation increase. However, the more efficient architectures had the same effect on the

slope to the data line. It did not increase as rapidly. This demonstrates that by building

architectures that are more efficient, we get an energy penalty that is less. Furthermore, it

is possible to build such systems and that different design strategies can deliver a superior

energy delay product. In short, performance is constrained by power. Design choices

affect the power efficiency of a circuit and can offer something more in terms of

performance. By developing a circuit with a better energy delay product, we can achieve

better performance per joule, which gives us new possibilities. One example would be for

portable devices, the battery life can be increased and applications can run as long as

possible. My goal is to build a system that yields more performance per joule.

1.4 Research Contribution

The central focus of digital system design engineers over the past two decades

 has been on the trade-offs between the power/energy and performance of the circuits

implemented in current and emerging nanometer-scale VLSI technologies. A number of

8

techniques have been developed to address this design challenge; one approach is based

on a class of asynchronous pipelined digital circuit structures that are called self-timed

[4]. The dynamic power/energy dissipation is reduced in this realization, relative to

synchronous implementations, because all clocks are generated locally and circuit timing

and control is event driven. The performance of these circuits can exceed synchronous

realization because it is based on the average intrinsic timing of the circuit instead of its

worst case timing that is used to set the clock frequency in synchronous systems. The

circuit design process used to determine the device sizing in self-timed circuits/systems is

typically the same as that used for synchronous realizations [6, 7, 8]. However, the input

distribution is not considered in this process. A novel self-timed circuit design technique

that out performs previously proposed approaches is presented in this dissertation. The

input data distribution is used in the proposed technique to optimize the circuit

performance for the respective input data set probability distribution.

9

CHAPTER 2

BACKGROUND

2.1 Power vs. Energy

Energy is related to the total amount of work a system performs over a period of

time, while power is the rate at which the computer consumes electrical energy or

dissipates it in the form of heat while performing that work. In other words,

P = W/T (1)

E = P*T (2)

where P = power and is measured in watts, E = Energy and is measured in joules, T =

specific time interval in seconds, W= total work performed in each interval [9]. In many

cases, energy and power are used interchangeably but as pointed out earlier, they are

distinctly different. This is particularly important for system designers because

techniques that reduce power do not necessarily reduce energy. Venkatachalam gives an

example. The power consumed by a computer may be reduce by halving the clock

frequency, but if the computer takes twice as long to run the program, the total energy

consumed will be similar. He also states that in some instances, the system designers

chose which reduction is most important. For example, when designing for mobile

application, energy is more important because of the desire to increase battery life. In

other instances, like building mainframes, the temperature is more important because the

thermal properties limits, the reduction of instantaneous power is paramount.

10

 Figure 2.1: Power Dissipation Breakdown of Circuit

There are three sources of power dissipation in digital CMOS circuits which are

summarized in this equation: Pavg = P switching + P short circuit + P static , where Pavg is the

total power dissipation and P switching refers to the switched capacitance, power associated

with switching circuit gate capacitance. P short circuit is the circuit power that is due to

the direct path current, which arises when both the NMOS and PMOS transistors are

simultaneously active. Lastly, P static represents static power dissipation stemming from

the leakage current. Figure 2.1 shows the power dissipation breakdown of a circuit.

2.2 Static Power Dissipation

Keeping in mind that leakage current flow from every transistor that is powered

on, with increasing die sizes and integration; static power will become a significant part

of the total power consumption. The equation for static power dissipation is

Total Power Consumption

60%

10%

30%

Dynamic

Short circuit

Static

11

 where N is the number of transistors, Kdesign is a design

dependent feature, like the number of transistors on at any time and I leak is a technology

dependent characteristic design like threshold voltage.

Figure 2.2: Static Power Dissipation

2.2.1 Power management Strategies for Static Power Dissipation

Figure 2.2 gives an illustration of the leakage current which has several

components: Reverse biased pn junction—the diode leakage that occurs when a transistor

is turned off, and sub-threshold leakage which occurs when the gate source voltage has

exceeded the weak inversion point but is still below the threshold voltage. The

aforementioned are the most important components of leakage currents. Gate induced

drain leakage, punch through and gate tunneling are the other components of leakage

currents. Most popular techniques for reducing static power dissipation are: (1) Reduce

circuit size which decreases total power consumed by dynamically cutting power of idle

components. The major disadvantage is unpredictable, overhead for clock gating. (2)

Vout

Vdd

Sub-Threshold
Current

Drain Junction
Leakage

Sub-Threshold Current Dominant Factor

P V Nk Ileakage dd design leak

12

Reduce temperature which decreases sub-threshold leakage. The circuit is faster because

lower temperatures have less resistance. It increases the life expectancy of the chip but is

more expensive to build. (3) Increase threshold voltage which causes the sub-threshold

leakage current drops exponentially.

2.3 Dynamic Power Dissipation

The circuit power associated with switching circuit device capacitance and short-

circuit are two components of dynamic power dissipation in a digital CMOS circuit.

Figure 2.3 gives an illustration of dynamic power dissipation. Switched capacitance is the

largest component of total power consumed accounting for sixty percent of power used.

As capacitors charge and discharge at the output of the circuit, electrical energy is used

and heat is given off.

The equation for dynamic power dissipation is P CVdd fdyn l  2 where,  is

the activity factor of a system, CL is the total load capacitance, Vdd is the supply voltage,

and is the operation frequency. The reduction of one or more of the previous factors is

needed to lower power dissipation of a system.

2.3.1 Power management Strategies for Dynamic Power Dissipation

There are four methods to reduce this type of power loss. The first method is to

reduce the physical capacitance or stored electrical charge of a circuit. This can be done

by changing design parameters: reducing the size of transistors and wires, layout

optimizations where signals that have high switching activity assigned to short wires and

13

signals that have low switching activity assigned to longer wires. However, the designer

must deal with the risk of reducing system performance.

Figure 2.3: Dynamic Power Dissipation

The second method is reducing the switching activity. One approach is

Algorithmic Optimization, which includes Technology Mapping that minimizes the

number of operations by using a genetic algorithm to find an energy efficient way to

arrange gates & signals. Architecture Optimization is another approach which uses clever

glitch-free circuits which also includes transistor reordering. Logic gate restructuring

focuses on the circuit’s topology (Tree vs. Chain) and uses path balancing, shorter logic

depth, and fewer spurious transitions. Clock gating, power down or hibernation is also a

popular technique that the Pentium 4 uses to reduce switching activity which stops the

clock signal from reaching idle functional unit. This approach is advantageous because

the clock network consumes a lot of power. One disadvantage is the latency involved

Vi

n

Vout

C
L

Vd

d

14

with starting functional unit back up. However, it is inherent to self-timed logic since

power consuming transitions only occur when requested. The circuit optimization

technique examines Dynamic Logic which has fewer transistors, N + 2 as opposed to 2N

for its counterpart, faster switching speeds and no short circuit or spurious transitions,

while Static Logic has no pre-charge or power downs and low level of complexity to

build. Synchronous circuits are more commonly accepted in the computer industry and

easier the build. However, the maximum performance is not achieved since the clock

runs at worst case in critical path and larger circuits have to overcome the clock skew

problem. Asynchronous logic are low power, generally faster, has average case

performance, immunity from meta-stable states, only critical path is optimized and idle

functional units decreases dynamic power consumption, as well. On the down side, extra

overhead is needed for completion signal.

The third method for reducing power loss is reducing the clock rate. If the

frequency is reduced, less power dissipates and parallel architectures and/or pipelining is

introduced to increase performance. The tradeoff to consider is a more complex circuit,

slower performance, and larger silicon area. Reducing clock frequency will lessen the

system performance and should only be used for applications where speed is not a top

priority. The final method used to reduce power dissipation of a circuit is to reduce

voltage supply. This technique increases gate delays which are offset by a slower clock

frequency to allow the circuitry to work properly. The disadvantages are worsening

performance by increasing gate delay, which may cause erroneous data and if delay is too

long, data hazards are introduce.

15

2.3.2 Short Circuit Power Dissipation

The second source of dynamic power loss is short-circuit current which account

for about 10% of total power consumed and is illustrated in figure 2.4. It is defined as

P I Vddshort circuit SC  where I SC is short circuit current and Vdd is supply voltage. Figure

8 illustrates the short circuit current. During the switching of a transistor, there is a brief

moment when both the NMOS and PMOS are simultaneously on which creates a short

circuit for the source to the ground. This particular area of power loss has had the least

amount of progress for several reasons. The amount of power that is lost is so small that

Figure 2.4: Short Circuit Power Dissipation

 it is almost neglectible and current research has not found a way to reduce it that without

significantly reducing the performance of the transistor. One rule of thumb that keeps this

power loss at a minimum is to insure that the rise and fall time of the transistor gates are

equal.

16

2.4 High Speed Digital System Realization

There are several techniques that system designers use to boost performance.

Perhaps the most popular techniques is parallelism, operations are carried out

simultaneously or concurrently. It is the backbone of high performance computing. The

theory behind it is the more work that a system is able to do per clock cycle, the energy

consumed in not going to be as great. One type of parallelism is Multi-core architectures

which boost performance and minimizes heat output by integrating two or more

processor cores in a single processor socket. Intel has a 50-Core processor named

Knights Corner which is a super computer at University of Texas at Austin used for

research. Pipelining is the most popular performance enhancement technique that

increases the throughput of a system by processing data in stages like an assembly line.

Superscalar in very similar to pipelining but it deals with instruction level parallelism that

issues multiple instructions multiple data (MIMD). Multithreading is used to run multiple

threads on the hardware at one time.

Another performance enhancement technique is to reducing the data execution

time. This is mainly done by having a high clock frequency. Since power dissipation is a

linear function of the clock frequency, it is also increased. Clock skew can also be

introduced where the clock signal reaches different components at different times. As the

clock rate of a circuit increases, timing becomes more critical and less variation can be

tolerated if the circuit is to function properly. Single-Cycle Instruction Set Architecture

also helps to reduce the execution time of data. Reduced Instruction Set Architecture

17

(RISC) operates on a fixed length instruction and the hardware is simple, fast and uses

less energy. The truth is that modern digital system designers use a combination of all of

the aforementioned techniques to boost performance.

2.5 Circuit Design Methodologies

When building a circuit, designers must choose a methodology that compliments

the circuit’s logic and system design. For the most part, circuit designs in the industry are

built with synchronous logic; small blocks of combinatorial logic separated by

synchronously clocked registers. Figure 2.5 gives an illustration of a synchronous system.

As its name suggest, synchronous circuits use a clock to synchronize each transition. In

other words, change in the circuit happens at the same rate and occur at the same time.

The biggest advantage of this logic style is the ease in determining the maximum clock

frequency of a design by finding and calculating the longest delay path between registers

in a circuit. Another advantage of synchronous design is hazard avoidance. Static logic

can introduce hazards through spurious transitions meaning that some flip flops have

internal meta-stable transition before the settle to their final logic. If the signal is used

before the final logic state, the wrong signal may be forwarded. Synchronous logic

eliminates this hazard because the clock insures that these glitches have been worked out

before transitioning to next state. One major disadvantage of synchronous design is the

unused clock cycle time. Even if the gate has finished transitioning, the signal cannot go

to the next state until the clock signals the transition. More power is used because the

clock uses energy whether gates transition or not. Clock skew is another problem that

18

synchronous systems encounter. This is the difference in time that the clock signal arrives

throughout the circuit. It is even further exaggerated as we scale systems because wire

delay does not scale the same as transistor switching speed.

Since synchronous systems have dominated the circuit design industry, there are a

small number of available CAD tools for design, simulation and testing of asynchronous

circuits. However, as the semiconductor industry wrestle with mounting problems trying

to achieve higher performances and lower power consumption without significant

Figure 2.5: Synchronous Three Stage Pipeline [4]

increases in fabrication costs, developers are turning to asynchronous alternatives to solve

these problems. Over the past few years, universities and established asynchronous

companies have focused their research on developing Electronic Design Automation

(EDA) tools and design flows that can be integrated into the custom and semi-custom

methods now used by the industry for synchronous design. This paradigm shift has

opened the door for unprecedented advances in the circuit design industry. [20, 21, 22,

23] all investigate the possible benefits of self-timed system design. Asynchronous logic

works extremely well on power dissipation reduction. At 40% activity, an asynchronous

system will dissipate 50% less power than its synchronous counterparts [2].

19

Asynchronous circuits have several other possible benefits. No clock skew – the

difference in arrival time of clock signals to different parts of the circuit. Since

asynchronous circuits have no clock, there is no clock skew. Speed is another area where

these circuits shine. The timing of an asynchronous circuit depends on the structure of the

transistor network, the delay of its signals and the length of the signal paths. Worst case

performance of traditional synchronous systems is replaced by average case since

performance is dependent on only the current active path. Better technology migration

potential and automatic adaptation to physical properties- fabrication, temperature and

power supply voltage.

Modern synchronous digital systems are limited by power dissipation of

nanometer scaled devices and power management strategies developed to insure that they

do not exceed circuit thermal constraints. Traditional optimization techniques are base on

synchronous digital systems that use a global clock network which consume a

considerable amount of the systems power. 50% of Dynamic Power is consumed by

clock circuitry [11]. Furthermore, significant power can be wasted in transitions within

blocks, even when their output is not needed. Global clock signals are particularly

affected by scaling technology in that the long interconnect wires have increasing

different times which must be manage to produce valid output. System designers have

dealt with the power challenges by clock gating, which saves power by adding logic gates

to a circuit in order to disable, portions of the clock tree when not needed. Even though

clock gating reduces the power dissipation, it is more effectively implemented on a macro

level as opposed to the circuit level.

20

Figure 2.6: Asynchronous Three Stage Pipeline [4]

The handshake protocol shown in figure 2.6 regulates the flow of information

through the self-timed pipeline. Input arrives and a Request to F1 is raised. If F1 is

inactive, it transfers the data and acknowledges this fact to the input buffer which can

then fetch the next input. Next F1 is enabled by raising the Start signal. The Done signal

goes high after the completion of the computation. A Request is issued to F2. If it is free,

an Acknowledgement is raised and the output value is sent to R2. After which, the

process can repeat itself.

2.6 Floating Point Adder

A little known fact is that floating point arithmetic is an essential component in

computer systems for several reasons. Almost every computer language has floating point

data type and accelerators. Compilers and operating systems are capable of processing

information in the floating point format. Even more importantly, is how essential the

floating point unit is to high performance computing (HPC), mobile applications and

21

embedded systems. Computer system’s performance is measured in Floating Point

Operations per Second; more commonly known as FLOPs.

The overall performance of HPC system or any other computing system is greatly

affected by the Floating Point Unit design; thus, the architecture can affect overall

performance and power dissipation [28, 29, 30]. Within the floating point unit are several

components: Adder/Subtractor, Multiplier and Divider. As their names suggest, they each

have a specific computational roles. However, the Adder is the single most commonly

used component in this unit. According to data Pappalardo et al in [13], signal processing

algorithms require on average, 40% multiplication and 60% addition operations; once

again, reinforcing the importance of FPA.

Due to the emerging field of computational science and the widespread use of

high performance computers dealing with application such as computational fluid

dynamics, the floating point unit is now consuming more power than ever. In fact, a

major portion of the systems power is used to maintain these floating point units.

Therefore, a reduction of power usage for these unit will decrease the overall power

dissipation of the system. For these reasons, I have chosen to focus my research on

reducing the amount of power used in the Floating Point Adder. More specifically, a

Ripple Carry Adder.

2.7 Related Works

There has been a plethora of works and research geared towards improvement of

the FPA. Many of which investigate techniques that optimize the latency factors that are

22

in large part dependant on the circuit topology. The key component of this unit is the

adder type. The Ripple Carry Adder was chosen because of its simplicity in design. There

are design performance/power/area tradeoffs which must be addressed. In most cases,

system designers use architectural optimizations to develop a more efficient RCA design

[14, 15, 16]. However, since synchronous system designers are limited to constraints

associated with trading energy for performance in CMOS circuits, their designs are

application based and are not robust. The designs focus on reducing the latency of the

circuit, while paying a significant area penalty.

There have been two papers that have chosen to exploit the performance and

power reduction aspects of the dynamic circuit and use asynchronous logic. N-PMOS

logic and DRCA was implemented in [17 and 18]. While the DRCA in [18] was proven

to be a superior logic style for the application, it has not resolved the race conditions that

were created and under certain conditions, could produce erroneous data.

23

CHAPTER 3

ASYNCHRONOUS SYSTEM REALIZATION

3.1 Self-timed

Traditional synchronous optimization approaches have accepted the notion that

there must be some tradeoff between power and performance. Asynchronous systems

offer us something more in terms of speed and power dissipation which allows designers

to exploit these properties to produce a superior power delay product. In order to realize

these systems, we should examine which particular type of asynchrony we would like to

implement. There are several types of asynchronous styles. Burst-mode design begins

with a state-machine specification, somewhat like conventional synchronous state-

machine synthesis methods. However, the transitions in the machine are governed by the

inputs themselves, not by a clock. Self-timed design’s structure and behavior are very

similar to synchronous thus they are much easier to implement.

3.2 Handshake Protocol

Figure 3.1: Four Phase Handshake Protocol [4]

24

In asynchronous or self-timed systems, handshake signals, more commonly

known as Request, which initiate an action and Acknowledge which signals completion

of that action are used to regulate the flow of information in the system. [19] Shows the

fundamental building block of the handshake family. The four phase handshake protocol

or return-to-zero is illustrated in figure 3.1. This type of signaling approach requires that

all control signals be brought back to their original values before the next cycle can

begin. Both the Req and Ack are initially low. When new input is placed on bus (1), the

Req is raised high (2) and control is given to the receiver. The receiver then raises Ack

high (3). After which Req is returned to low (4) and Ack is returned as well (5).

3.3 Dynamic Logic

Now we can move from the system level to the gate level. Self-timed circuits are

sensitive to glitches, an undesired transition that occurs before the signal settles to its

intended value. Therefore self-timed systems must be realized with a glitch free logic

style that does not produce any static or dynamic hazards. A dynamic gate alleviates

these hazards because during the evaluation phase, there is at most one transition. Figure

3.2 illustrates a dynamic logic gate. It is also great for fast and complex gates. Dynamic

gates are composed of a n-type logic gate, Pull Down Network (PDN) and transistors that

regulate the mode of operation: Pre- charge and evaluate. During the pre-charge phase,

the clock = 0, and the output node is charged to Vdd by the PMOS transistor. At that

time, the NMOS is off and therefore the PDN is disabled which also eliminates the static

current. When the clock = 1, the evaluate phase, the PMOS is turned off and the NMOS

25

is turned on. If the inputs are such that the NMOS conducts, then a path between out and

ground exist and the output is discharged to ground. Since the PMOS is turned off, the

pre-charge value remains stored on the output capacitance. During this phased, the only

path that exist between output and Vdd is ground.

Figure 3.2: Dynamic Logic Gate

Therefore, once out is discharged, it can only be charged again during the next pre-charge

phase. Inputs can only make at most, one transition during the evaluation phase.

There are several advantages to the logic style. Fewer transistors are used; 2+N as

opposed to 2N for standard CMOS gates which allows for a smaller implementation area.

There is also no static current between Vdd and ground since one part of the circuit is

always turned off. Dynamic gates also have faster switching speeds. This is due in part to

the reduced load capacitance because they are driving fewer transistors; one as opposed

to two. Also, since all of the input capacitance is dedicated to the falling transitions, and

26

not the slow PMOS transistors, they require a reduced logic effort. For example: a two

input NOR gate only requires to be sized 2/3 vs. 5/3 for the static logic.

3.4 Domino Logic

 For the circuit that I am using in this dissertation, I used Domino Logic which is a

shown in figure 3.3. The structure is a N-type dynamic gate followed by a static inverter.

During the pre-charge phase, the output of the N-type dynamic gate id charged up to Vdd

and the output of the inverter is set to zero. In the evaluation phase, the dynamic gate is

conditionally discharged and the output of the inverter makes a conditional transition

from 0 -> 1. All of the inputs of domino gates are outputs of other domino gates which

ensure that all inputs are set to zero at the end of the pre-charge phase. Therefore, during

the evaluation phase, only 0 -> 1 transitions are made. The inverter is used as a buffer

which (1) increases noise immunity, (2) reduces the capacitance of the output node by

separating the internal and load capacitance, and (3) is used as a keeper to reduce the

leakage and charge redistribution.

Figure 3.3: Domino Logic

27

 On the norm, domino logic is 1.5 to 2 times faster than static CMOS logic

because dynamic gates present much lower input capacitance for the same output current

and have lower switching thresholds [12]. In static gates, much of the input capacitance is

wasted on the slower PMOS that are not even used during a falling transition. Other

reason dynamic gates are a good choice is because they have lower switching threshold.

The dynamic gate will begin to switch as soon as the inputs rise to Vt, as opposed to

Vdd/2 for the static. [1]

Only non-inverting logic structures are possible because of the presence of

inverting static buffer. For this reason, many designer stay away from this complex

logic style. However, if you are an experienced designer and performance is important,

dual rail logic may be implemented to produce the signal and its’ complement with an

area penalty.

28

CHAPTER 4

RESEARCH

4.1 Logic Gate Delay

Now that we understand how self-timed circuits are realized, let’s review how we

model the timing process. The delay in a logic gate is determined by the topology of the

gate (fan in) and the capacitive load that the logic gate drives (fan out). Logical effort is a

term coined by Ivan Sutherland and Bob Sproull in 1991 which is a method that is used

to model the delay of a single logic gate. Logical effort method provides a technique to

determine the most efficient transistor sizing on the critical path to minimize the delay, as

well as, providing an estimation of that delay. The delay of a logic gate using logical

effort is given as:

d = f + p (4)

where p is the parasitic delay which is the intrinsic delay of the gate driving no load, and

f is the stage effort. The stage effort is defined as:

f = gh (5)

 (6)

where g is logical effort which is the ratio of the input capacitance of a given gate to that

of an inverter capable of delivering the same output current and h is effective fan out

cout/cin. The dependency is demonstrated in figure 4.1.

29

Figure 4.1: Delay expressed in terms of a minimal sized inverter [1]

The delay is a function of electrical effort of and inverter for a two input NAND gate.

The slope of each line is the logical effort and the y-intercept is the parasitic delay. As

shown, we can adjust the total delay by adjusting the electrical effort or by choosing a

logic gate with a different logical effort [1].

4.2 Logical Effort

The tables 4.1a and 4.1b below are a representation of the logical effort for static

gates and dynamic gates. Clearly, the dynamic logic style allows for smaller sizing which

partially explains why dynamic gates are faster than static gates. In static gates, much of

the input capacitance is wasted on slow PMOS transistors that are not even used during a

falling transition. [4] From table 4.1 we see that the dynamic inverter has a logical effort

30

of 1/3 less than the static inverter. Since logical effort is used for sizing estimations of

each component, I have included the table below where N=number of inputs.

Table 4.1: Logical effort per input of (a) and (b)

 (a) static CMOS gate (b) dynamic CMOS gates

4.3 Self-timed Ripple Carry Adder Circuit Design

 In digital electronics, an adder is a digital circuit that performs addition and in

normally located in the arithmetic logic unit. There are many different types of adders

(Ripple Carry Adder, Carry Look ahead, Carry Select, Conditional Sum, ect.) which

designers carefully choose according to the design application. For the purpose of this

dissertation, we will examine the RCA.

31

(a)

(b)

(c)

Figure 4.2: (a) Full Adder Schematic, (b) Logic diagram, and (c) 4 bit RCA

http://upload.wikimedia.org/wikipedia/commons/4/48/1-bit_full-adder.svg
http://upload.wikimedia.org/wikipedia/commons/a/aa/Full_Adder.svg

32

The foundation of a RCA is a full adder since it is possible to create a logical

circuit using more than one full adder to add N-bit numbers. Each full adder inputs a Cin,

which is the Cout of the previous full adder. This type of adder is a ripple carry adder,

since each Cout bit "ripples" to the next full adder.

A full adder adds three one-bit binary numbers, often written as A, B, and Cin; A

and B are the operands, and Cin is a bit carried in (in theory from a past addition). The

circuit produces a two-bit output sum typically represented by the signals Cout and S. The

equations to implement the logic for figure 4.2 is:

 (7)

 (8)

which is represented in the truth table 4.2 below.

 Since, in the worst case, the carry can propagate from the least significant bit

position to the most significant bit position, the addition time of an N-bit RCA is O(X).

The RCA is typically slower than other adders; however the ease of design makes it

attractive to many.

The dynamic power dissipation depends primarily on the number of transitions

per unit area. As a result, the average number of logic transitions can serve as the basis

for comparing the efficiency of a variety of adder designs [10].

33

Table 4.2: Truth table for full adder

Inputs Outputs

A B S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Table 4.3: Average Number of Logic Transitions per Addition [10]

ADDER TYPE

ADDER SIZE (BITS)

16 32 64

Ripple Carry 90 182 366

Carry Lookahead 100 202 405

Carry Skip 108 220 437

Carry Select 161 344 711

Conditional Sum 218 543 1323

34

From table 4.3, we can see that the Ripple Carry Adder uses the least amount of

logic transitions per addition. Even though, the propagation delay is higher than the Carry

Lookahead Adder, another reason it uses less power is it has a lower transistor count. For

example, a four bit Ripple Carry Adder uses 120 transistors as opposed to 170 used by its

counterpart, the Carry Lookahead Adder. The transistor count directly affects the

capacitance stored by the circuit. Minimizing the transistor count reduces the physical

capacitance or stored electrical charge of a circuit. This in turn, reduces power

dissipation. The increased propagational delay is offset by using domino logic.

Figure 4.3 illustrates the one bit ripple carry adder that was designed to boost

performance and decrease power dissipation. The data path is designed twice for the

signal and its’ complement. Domino logic is used, the non-inverting logic followed by a

static inverter, to implement the logic. The done signal is used as a completion detection

signal which is used in the four phase handshake protocol. The geometry of the

transistors within each of these individual gates was defined using the approach defined

for “logical effort”. All components in this dissertation are implemented in an 180nm

TMSC process where lambda is 90nm and the devise dominions are based on the design

rules of this process. The figures below show the gate and transistor level realization of

all the components used to create the one bit RCA. The intrinsic time constant and

parasitic delays of the CMOS components are determined with a SPICE3 simulation for

the TSMC 180nm process with the specifications Vdd of 1.8 Volts, at a temperature of

27C.

35

Figure 4.3: Domino Logic Realization of One bit Adder

4.4 1- Bit RCA Sub-circuit Parameters

The static high skew CMOS inverters are used in this design. The circuit level

realization and associated device geometry is shown figure 4.4.

36

Figure 4.4: High-Skew Inverter gate (a) and transistor (b) level schematic

The simulated voltage transfer curve for the high skew and standard inverter is shown in

figure 4.5 below.

Figure 4.5: VTC of high-skew inverter [i.e. V(2)] and standard inverter [i.e. V(3)]

The SPICE simulation of the high-skew inverter calibration for the input and output

voltage is illustrated in figure 4.6 below.

37

Figure 4.6: High-skew Inverter Calibration Input and Output Voltage

The logical effort and parasitic delay associated with this logic function is shown in table

4.4.

Table 4.4: High-skew inverter Logical Effort

High-skew Inverter

Output transition Logical Effort Parasitic Effort

High-to-Low 1.403510 1.639791

Low-to-high 1.455118 1.303958

The AND Gate used to implement the 1-bit RCA is shown below. The gate schematic is

shown in figure 4.7 with the compound gate symbol used in the adder schematic. The

device sizing used to realize the gate is also shown in this figure. The sizing is based on

the 1x scaling in the adder schematic and 3-12 sizing used for the high skew inverter.

Dynamic AND gates are used in this design. The circuit level realization and associated

device geometry is shown figure 4.7.

38

Figure 4.7: Dynamic AND gate (a) and transistor (b) level schematic

Figure 4.8 shows the SPICE simulation that was used to compute the logical and parasitic

effort of the AND gate. The simulation was done without the output inverter in the signal

path.

39

Figure 4.8: Dynamic AND gate embedded NAND gate input and output voltage

The normalized logical and parasitic effort of this gate is shown in table 4.5.

Table 4.5: Embedded 2-input NAND gate Logical Effort

2-input dynamic NAND gate with keeper

Input Logical Effort Parasitic Effort

A 0.800326 1.02319

B 0.753106 1.40450

All of these entries are normalized with respect to the average propagation delay of a

minimum sized inverter (i.e. 17.52 picoseconds). Table 4.6 below illustrates NAND gate

input capacitance.

Table 4.6: Embedded 2-input NAND gate input capacitance

2-input dynamic NAND gate input capacitance

Input Capacitance

A 1.62fF

B 1.62fF

40

The parasitic effort of the dynamic AND is:


















 

5

1

3

5
22 invNANDNANDHightolowAND ggPPP =1.665108+1.02319+1.333876+0.3075876

Table 4.7 shows the logical effort and parasitic effort of the 2-input AND gates.

Table 4.7: 2-input AND gate Logical Effort.

2-input dynamic AND gate with keeper

Input Logical Effort Parasitic Effort

A 1.455118 3.952149

B 1.455118 4.254657

Figure 4.9: Dynamic AND stick diagram

Figure 4.9 above represent the stick diagram of a dynamic AND gate. Stick diagrams are

used by designers to determine how to layout a VLSI realization. It is used as a tool to

create a preliminary guess on how to lay the circuit out for fabrication without the worry

41

of device parameters rules. Once the stick diagram has been created, it is used as the blue

print for the layout which is illustrated in figure 4.10.

Figure 4.10: Dynamic 2-input AND gate Layout

The OR Gate used to implement the 1-bit RCA is shown below. The gate

schematic is shown in figure 4.11 with the compound gate symbol used in the adder

schematic. The device sizing used to realize the gate is also shown in this figure. The

sizing is based on the 1x scaling in the adder schematic and 3-12 sizing used for the high-

skew inverter.

42

Figure 4.11: Dynamic 2-input OR gate (a) and transistor (b) level schematic

Figure 4.12 shows the SPICE simulation that was used to compute the logical and

parasitic effort of the OR gate. The simulation was done without the output inverter in the

signal path.

Figure 4.12: Dynamic 2-input OR gate input and output voltage

43

 The normalized logical and parasitic effort of this gate is shown in table 4.8.

Table 4.8: Embedded 2-input NOR gate Logical Effort

2-input dynamic NOR gate with keeper

Input Logical Effort Parasitic Effort

A 0.851715 0.988586

B 0.851715 0.988586

All of these entries are normalized with respect to the average propagation delay of a

minimum sized inverter (i.e. 17.52 picoseconds). Table 4.9 below illustrates NOR gate

input capacitance.

Table 4.9: Embedded 2-input NOR gate input capacitance

2-input dynamic NOR gate input capacitance

Input Capacitance

A 1.08fF

B 1.08fF

Parasitic Effort of Dynamic NOR is:


















 

5

1

2

5
22 invNORNORHightolowNOR ggPPP =1.665108+0.988586+2.129287+0.3075876

The calculated logical effort for the 2-input OR gate is shown in table 4.10 below.

Table 4.10: 2-input OR gate Logical Effort

2-input dynamic OR gate with keeper

Input Logical Effort Parasitic Effort

A 1.455118 4.712854

B 1.455118 4.712854

44

Again, stick diagrams are used in figure 4.13 as a preliminary model for the layout of the

circuit in figure 4.14.

Figure 4.13: Dynamic 2-input OR stick diagram

Figure 4.14: Dynamic 2-input OR gate layout

45

The AOI21 Gate used to implement the 1-bit RCA is shown below. The gate

schematic is shown in figure 28 with the compound gate symbol used in the adder

schematic. The device sizing used to realize the gate is also shown in this figure. The

sizing is based on the 1x scaling in the adder schematic and 3-12 sizing used for the high-

skew inverter.

Figure 4.15: Dynamic AO21 gate (a) and transistor (b) schematics

Figure 4.16 shows the SPICE simulation that was used to compute the logical and

parasitic effort of the AOI21 gate. The simulation was done without the output inverter in

the signal path. The Boolean function implemented by this compound gate is F(A,B,C) =

A* B+ C.

46

The logical effort of this gate with reference to sized devices is shown in table 4.11.

These values were computed with a calibration circuit and SPICE simulation. The input

capacitance of this gate is shown in table 4.12.

Figure 4.16: Dynamic AO21 gate input and output voltage

Table 4.11: Embedded AOI21 gate logical effort

Dynamic OAI21 gate with keeper

Input Logical Effort Parasitic Effort

A 0.764290 1.23525

B 0.725933 1.82991

C 0.851006 1.12045

Table 4.12: Embedded AO21 gate input capacitance

2-input Dynamic AOI21 gate input capacitance

Input Capacitance

A 2.16fF

B 2.16fF

C 1.08fF

47

Parasitic Effort of Dynamic AOI21 is:


















 

5

1

2

5
212121 invAOAOHightolowAO ggPPP

ccc
=1.665108+1.12045+2.127515+0.3075876

 Once again, a stick diagram is used in figure 4.17 as a preliminary blue print for the

layout of the circuit in figure 4.18.

Figure 4.17: Dynamic AO21 gate stick diagram

Figure 4.18: Dynamic AO21 gate layout

48

The Sum Gate used to implement the 1-bit RCA is shown below. The gate schematic is

shown in Figure 4.19 with the compound gate symbol used in the adder schematic. The

device sizing used to realize the gate is also shown in this figure. The sizing is based on

the 1x scaling in the adder schematic and 3-12 sizing used for the high-skew inverter.

Figure 4.19: Dynamic Sum gate and transistor schematics

Figure 4.20: Dynamic not Sum gate calibration circuit input and output voltage

49

Figure 4.20 above shows the SPICE simulations used to compute the logical and parasitic

effort of the sum gate. The simulation was done without the output inverter in the signal

path. Tables 4.13, 4.14 and 4.15 show the logical effort of the not sum gate (complement

of the signal), input capacitance and logical effort of the sum gate, respectively.

Table 4.13: Embedded not Sum gate logical effort

Dynamic Majority gate with Keeper

Input Logical Effort Parasitic Effort ABCD

A 0.762905 1.47823 -110

B 0.730713 1.98016 1-10

C 0.714673 2.26256 11-0

D 0.833278 1.27067 100-

A* 0.778093 2.19541 -001

B* 0.766942 1.81375 0-01

C* 0.756949 2.12740 00-1

Table 4.14: Embedded Sum gate input capacitance

Dynamic Sum gate input capacitance

Input Capacitance

A 3.6fF

B 3.6fF

C 3.6fF

D 1.44fF

Table 4.15: Sum gate logical effort

Dynamic Majority gate with Keeper

Input Logical Effort Parasitic Effort ABCD

A 0.762905 1.47823 -110

B 0.730713 1.98016 1-10

C 0.714673 2.26256 11-0

D 0.833278 1.27067 100-

A* 0.778093 2.19541 -001

B* 0.766942 1.81375 0-01

C* 0.756949 2.122740 00-1

50

Figure 4.21: Dynamic Sum gate stick diagram

Figure 4.22: Dynamic Sum gate Layout

Again, stick diagrams are used in figure 4.21 as a preliminary model for the layout of the

circuit in figure 4.22, while figure 4.23 is the layout of the whole circuit.

51

Figure 4.23 Layout of One Bit Adder

52

4.5 Input Distribution in Self-timed Circuits

To achieve high performance and manage power loss, designers should consider

non-traditional levels of abstraction, in particularly, input data profiling. Since the

switching activity of a logic gate is a strong function of the input signal statistics, system

designers can use this knowledge to exploit power delay capabilities of a circuit. In this

dissertation, a pipelined architecture that intersects the timing function of the circuit itself

and the data that it is processing is utilized. Using input data distribution to increase self-

timed circuit performance and decrease energy dissipation is novel because the timing is

determined locally, which is a function of the circuit and the input data.

A few advantages of this proposed technique is the decreased circuit area. This is

realized when the probability of a path being used is very low then the transistors on the

path will be sized smaller. There is also an increase average circuit performance because

when you include data profiling, performance is even better than self-timed alone. The

average energy dissipation is decreased since energy is only consumed when and event

happens. The decrease circuit noise is due in part by the fact that fewer transistors are

used which decreases circuit activity. The local clock distribution alleviates the greedy

global clock network and hazards that can be introduced by clock skew. This technique is

less sensitive to changes to process variation because timing is generated locally. Figure

4.25 gives a graphical illustration of a one bit self-timed RCA circuit path activation

probability with eight different input distributions (0-7) and four different activation or

critical paths illustrated by the different colors along the path.

53

Figure 4.24: Circuit Path Activation Probability

54

There are a few disadvantages. There are very few Computer Aided Design

development tools for design a verification. Sensitive to charge sharing is another

concern that is just the nature of dynamic logic which can be offset by circuit design that

is sized to minimize the effect.

The performance and energy dissipation of synchronous and asynchronous digital

system is determined in part by the geometry of the devices used to realize the system

embedded gates. The device geometry is set in the design process to minimize the

propagation delay along all the paths in the systems. This approach maximizes the

performance of synchronous systems because the propagation delay of the circuit critical

path is also minimized. However the performance of asynchronous circuits is not

maximized because the average propagation delay is not minimized. The performance

and energy dissipation of asynchronous circuits that are optimized for the average delay

of the completion detection circuit are maximized and minimized respectively. The

proposed technique achieves this because it is based on the average completion circuit

propagation delay and the circuit input data distribution.

A novel self-timed circuit device sizing approach is presented in the dissertation.

The analysis used to develop the approach is covered in section 4.7. The performance and

energy dissipation of the proposed approach is compared to circuits that were designed

with device sizing method that are used for synchronous circuits in section 4.8. The

conclusion is presented in section 4.9.

55

Figure 4.25 Gaussian (Normal) and Discrete (Binomial) distribution

Figure 4.25 shows two distributions, Gaussian or normal and binomial which

apply to discrete numbers for digital system. We see that they a very similarity to

Gaussian which is by definition continuous. The distributions show the probability that

the input appears at the input of the ripple carry adder. If we assume the given

distribution, then three is more likely to occur at the input and zero and six are less likely

to occur. Therefore, transistors on the green path would be sized larger and transistors on

the purple and red path would be sized smaller. Let take a closer look at the fundamental

principles of this proposed approach.

56

4.6 Approach

A novel self-timed circuit device sizing approach is presented in this section that

is based on the optimization of circuit device size for a specified input distribution to

minimize circuit average completion time.

4.6.1 Circuit Device Sizing with Input Distribution Data without branching effort

The performance of the circuits realized with circuit device sizing with input

distribution data without branching effort approach outperforms previously proposed

self-timed circuits for the specified input distribution. This due in-part to the fact that the

circuit input distribution is not used to size circuit devices. The device sizing approach

presented here is based on the Newton-Raphson algorithm which is a root finding

algorithm for solving non-linear equations[11] and generally converges rapidly for a

given circuit and input distribution. A self-timed full adder is used in this section to

demonstrate the proposed device sizing approach. The adder is implemented with domino

logic and dynamic input latches. It is shown in fig. 4.24.

The time between the start signal (i.e. self-timed circuit local clock) rising

transition and the rising transition on the Done node in fig. 4.24 is defined as the

completion time of the adder. It is a function of the execution time of the self-timed

circuit/system functional block. It depends on the circuit inputs and therefore it is the

average of all the active critical path delays for the circuit input space. The active critical

path delay is the propagation delay along the longest signal path for a given circuit input

over the valid input combinations of a self-timed circuit with n primary input bits. The

57

circuit in fig. 4.24 contains four active critical paths. The circuit four active critical paths

from the primary inputs (i.e. to the output of the completion detection

circuit (i.e. node Done) are shown in fig. 4.24 with the respective inputs that activate the

paths. The bits that define the numbers in fig. 4.24 are organized as follows:

where is the MSB. The normalized propagation delay along the critical path that is

activated for input 000 is shown in equation (9). This equation is normalized with respect

to the average intrinsic time constant, i.e. τ = 17.527 pSec for TSMC process, of a CMOS

process. The propagation delay along the critical paths activated by input 001, 010 (or

100), 011 (or 101) and 110 is shown in equation (10). Finally equation (11) is the

normalized delay associated with the path activated by the input word 111. The delay

associated with this path and that activated by input 000 (i.e. and) is a piecewise

function because the active critical path propagation time is determines by the minimum

delay on the path that contains the NAND gate, high-skew inverter and AOI21 gate or

NOR gate, high-skew inverter and AOI21 gate.

Recall the formula that was used to calculate the delay, Shown

below in equations are the estimated delay associated with the four active paths for input

distributions, where,

 is input capacitance of AOI21 gate on input B, labeled 10 in fig. 4.24,

- logical effort of AOI21 gate from input C,

- NOR gate parasitic effort and

- probability circuit input is 000,

58

- probability circuit input is 001,

- probability circuit input is 010,

- probability circuit input is 011,

- probability circuit input is 100,

- probability circuit input is 101,

- probability circuit input is 110,

- probability circuit input is 111.

59

The expected completion time of the full adder is the average of the active critical path

delays , , , and . It equals equation (9). The unknown parameters

in Fig. 4.25 related to the device geometry is , ,

 , , ,

 and . The average is:

60

 (9)

completion time of the adder is minimized if these values are set such that,

The Newton-Raphson method is used to find the circuit parameters (i.e. unknown

capacitances above) when the expressions in the equation above vanish.

The primary problem encountered with this device sizing approach was the

convergence problems. This problem is due to numerical problems in the Newton-

Raphson algorithm that is used to solve the non-linear system of equations. Due to

problem, the convergence of this technique was very sensitive to the input data

distribution. An example of this is the case where it worked well the bimodal input

distribution and failed for Gaussian, binomial and uniform distributions.

4.6.2 Circuit Device Sizing with Input Distribution Data with branching effort

This is a new research approach that is based on adjusting the branching effort.

The circuit in fig. 4.24 will be used to demonstrate the proposed approach.

61

Let,

The stage effort is:

The propagation delay along the path is:

(path though NAND gate 1)

The load at the input of high-skew inverter 12 is:

The propagation delay through the NOR gate is:

  

 SCC

CCC

C

CCC
B

SCC

CCC

C

CCC
B

NORNAND

SUMANORNAND

NOR

SUMANORNAND

NORNAND

SUMANORNAND

NAND

SUMANORNAND

43

1443

4

1443'

0

43

1443

3

1443

0
1

















15

1315

1

NOR

SUMDNOR

C

CC
B




7

)(

3
1021

3

)(














ENLD

L
NORCAOIiinvhNANDenLD

C

C
BBgggggf

invhCAOINORNANDENLD PPPPPfD 37 21)()111(110 

3

1

2

3

12
f

BggC
C NORinvhL

invh




4

)(

12'

021)(

'
















ENLD

invh
BAOIinvhNORENLD

C

C
Bggggf

62

(path though NOR gate 2)

Figure 4.26: Trading delay in one path for delay in another

The inverting logic in the full adder shown in fig. 4.24 is a mirror image of the

un-inverted logic. If the input probability distribution is not symmetrically distributed

then the delay associated with each side of the adder should be different. This is achieved

in the proposed approach by adjust the input capacitance of the sum gates. The branching

effort in the circuit associated with path is:

0.0 0.2 0.4 0.6 0.8 1.0
S Scaling Factor20

21

22

23

24

25

26

Active Path Delay

D101 011

D110 111

invhBAOINORENLD PPPPffD 3243 21)(

'

)100(010 

 

NOR

SUMDNOR

NOR

SUMDNOR

NAND

SUMANORNAND

C

CsC
B

C

sCC
B

C

CCC
B










12

2

'

1

1

0

63

The stage effort of the left and right path in fig. 4.24 is:

The path delay of the left and right sides is:

The delay associate with each of these paths as x is swept from 0.1 to 0.9 is shown in fig.

4.27.

Figure 4.27: Left and Right circuit propagation delay for scaling factor x

0.4 0.6 0.8
x Scaling Factor

21.0

21.5

22.0

Active Path Delay

DRight 001

DLeft 110

7

)(

3'

021

3

7

)(

3
1021

3

1 





























ENLD

L

NORCAOIinvhNANDLDuright

ENLD

L
NORCAOIinvhNANDLDuLeft

C

C
BBgggggf

C

C
BBgggggf

invhNORCAOINANDENLDRightRight

invhNORCAOINANDENLDLeftLeft

PPPPPfD

PPPPPfD

37

37

21)()110(

21)()001(





64

Now let’s optimize the scaling factors for the circuit shown in fig. 4.24 for the following

input distribution. The input distribution is shown in fig. 4.28.

Figure 4.28: Full Adder input Distribution

Therefore, the expected completion time of the full adder is the average of the active

critical path delays , and . It equals equation (10). The unknown

parameters in fig. 4.25 related to the device geometry is:

and .

 (10)

    373511060104200011 DWWWDWDWWWDWDavg 

65

The average completion time of the adder is minimized if these values are set such that,

1

0
NAND

avg

C

D






2

0
NOR

avg

C

D






 3

0
NAND

avg

C

D






 (11)

18

0
invh

avg

C

D






The Newton-Rapson method is used to find the circuit parameters (i.e. unknown

capacitances above) when the expression in equation (11) vanishes.

66

4.7 Results

Table 4.16 below shows the results of device sizing with branching effort.

Table 4.16: Device capacitance in terms of transistor width

Full

Adder

Side

Branching

Effort
Nominal Bimodal[] Binomial[]

Left-Side B0 3.889 9.22128 2.7882

B0’ 5.8335 3.12388 14.3051

Right-

Side

B2 3.889 9.22128 2.7882

B2’ 5.8335 3.12388 14.3051

 B1 2.3335 2.3335 2.3335

B1’ 2.3335 2.3335 2.3335

Average

Propagation

Delay

21.7258

(22.9488)

21.2617

(24.0977)

Speedup 5.629% 13.39%

Energy %

Reduction
 11.567% 16.78%

4.8 Conclusions

The performance and energy dissipation of self-timed circuits/systems depend on

the circuit gate-level implementation, device sizing and input distribution. The device

sizing approach used in previously proposed self-timed circuits is identical to that used

for synchronous realizations. Therefore it is only optimized to minimize the propagation

67

delay of all circuit signal paths. The performance and energy dissipation, i.e. average

completion time and energy dissipation, of the proposed approach for a self-timed circuit

is optimized, with respect to device sizing, for a given input distribution. It is less than

realizations that do not considered this feature of the input space. This design process

causes the active critical path delay of the circuit paths with the highest probability of

being active to be less than the path delay in a realization that does not use input data. It

also generates delay paths with larger propagation delay than that in previously proposed

self-timed circuits design for path that are rarely used, i.e. paths associated with low

probability. Both the performance and energy dissipation of self-timed circuits are

reduced if the device sizing is optimized for the input distribution.

 In short, performance is restricted by power and as chip density and frequency

increase, synchronous designers try to figure out ways to deal with power/performance

tradeoff. Can we get a better Energy Delay Product? Asynchronous designers do not have

to deal with this tradeoff because of the nature of the logic design; we can use less

transistors and operate at faster speeds.

Using self-timed circuits coupled with data profiling, I can exploit the natural

properties --faster speeds, less transistors and path sizing– to optimize power dissipation

and performance. This gives us a superior Energy Delay Product. This technique is novel

because there has been no research that alters the LE formula by manipulation the

branching effort to trade delay in one part of the circuit for another. We can essentially

68

control the flow of data by allowing highly probable paths to be sized larger and vice

versa. With a 13% increase in performance and 16% decrease in power dissipation.

69

REFERENCES

1. Sutherland, I., Sproull, B. and Harris D.: “Logical Effort: Designing Fast CMOS

Circuits,” (Morgan Kaufmann Publishers, San Francisco, CA, 1999)

2. Pollack, F. 1999. New microarchitecture challenges in the coming generations of

CMOS process technologies. International Symposium on Microarchitecture.

3. Moore, Gordon. "Cramming More Components onto Integrated Circuits,"

Electronics Magazine Vol. 38, No. 8 (April 19, 1965).

4. Rabaey, J.M., Chandrakasan, A. and Borivoje N.:”Digital Integrated Circuits: A

Design Perspective, 2nd Ed.,”(Prentice Hall, Upper Saddle River, N J, 2003).

5. Gonzales, R., AND Horowitz, M. Energy dissipation in general purpose

microprocessors. IEEE Journal of Solid-State Circuits 31, 9 (September 1996),

1277-1284.

6. Balasubramanian, P.; Edwards, D.A.; Brej, C.; , "Self-timed full adder designs

based on hybrid input encoding," Design and Diagnostics of Electronic Circuits

& Systems, 2009. DDECS '09. 12th International Symposium on, vol., no., pp.56-

61, 15-17 April 2009 doi: 10.1109/DDECS.2009.5012099.

7. I-Chyn Wey; Hwang-Cherng Chow; You-Gang Chen; An-Yeu Wen; , "A fast

and power-saving self-timed Manchester carry-bypass adder for Booth multiplier-

accumulator design," Advanced System Integrated Circuits 2004. Proceedings of

2004 IEEE Asia-Pacific Conference on, vol., no., pp. 50- 53, 4-5 Aug. 2004 doi:

10.1109/APASIC.2004.1349402.

8. Brej, C.; Garside, J.D.; , "A quasi-delay-insensitive method to overcome transistor

variation," VLSI Design, 2005. 18th International Conference on , vol., no., pp.

368- 373, 3-7 Jan. 2005 doi: 10.1109/ICVD.2005.30.

9. V. Venkatachalam and M. Franz Power Reduction Techniques For

Microprocessor Systems, ACM Computing Surveys, Vol. 37, No. 3, September

2005.

10. D. Soudris, C. Piguet, C. Goutis, Designing CMOS Ciruits for low Power, Kluwer

Academic Publishers, 1995.

70

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.:”Numerical

Recipes in C: The Art of Scientific Computing, 2nd Ed.,”(Cambridge University

Press, Cambridge, UK, 1992).

12. Harris, D, and Horowitz, “Skew Tolerant Domino Circuits.” IEEE J. Solid-State

Circuits, 31(11): 1687-1697, Nov. 1997.

13. F. Pappalardo, G. Visalli, and M. Scarana, “An application-oriented analysis of

power/precision tradeoff in fixed and floating-point arithmetic units for VLSI

processors,” in Proc. IASTED Conf. Circuits, Signals, and Systems, Dec. 2004,

pp. 416–421.

14. Chang, T.-Y. and Hsiao, M.-J., “Carry-select adder using single ripple-carry

adder”. Electronics Letters. Volume: 34, Issue: 22,29 Oct. 1998, Pages: 2101 -

2103

15. Youngjoon Kim and Lee-Sup Kim. “A low power carry select adder with reduced

area”. Circuits and systems, 2001. ISCAS 2001. The 2001 IEEE International

Symposium on, Volume: 4,2001. Pages:218~221.

16. Youngjoon Kim and Lee-Sup Kim, “64-bit carry-select adder with reduced area”.

Electronics Letters, Volume: 37 Issue: 10 , 10May2001.Pages:614-61j.28.

17. J. M. Rabay, Digital Integrated Circuits, A Design perspective. 1
st
 edition

Englewood Cliffs. NI: Prentice-hall. 1996, pp. 392-393.

18. Gustavo A. Ruir, “Evaluation of three 32-bit CMOS adders in DCVS logic for

self-timed circuits”. IEEE Journal of Solid- State Circuits, Vol. 33. NO. 4, April

1998.

19. G. Birtwistle and K. S. Stevens, "The family of 4-phase latch protocols," in 14th

International Symposium on Asynchronous Circuits and Systems. IEEE, 2008, pp.

71-82.

20. C. H. Lau, “Self: Self-timed system design technique”. Electronics Letters.

Volume: 23, Issue: 6 ,12 Mar. 1987, Pages: 269 -270.

21. Y. K. Tan, Y. C. Lim, “Self-timed system design technique”. Electronics Letters.

Volume: 26, Issue: 5 ,1 Mar. 1990, Pages: 284 -286.

22. J. Yang, E. Brunvand, “Self-timed design with dynamic domino circuits”.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI

(ISVLSI’03) 2003.

71

23. N.P. Singh, “A design methodology for self-timed systems,” MIT Computer

Science Laboratory Tech. Report. TR-258, Feb. 1981.

24. V. Oklobdzija, B. Zeydel, H. Dao, S. Mathew, R. Krishnamurthy, “Energy-Delay

Estimation Technique for High-Performance Microprocessor VLSI Adders,”

Proceedings of the 16
th

 IEEE Symposium on Computer Arithmetic (ARITH’03)

2003.

25. H. Zhang, P. Mazumder, “Design of a new sense amplifier flip-flop with

improved power delay product,” IEEE International Symposium on circuits and

System, ISCAS 2005, p. 1262- 1265, Volume 2, 2005.

26. M. Ghasemzar, M. Pedram, “Power delay product minimization in high-

performance 64-bit carry-select adders,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems. Vol. 12, Issue 3, p. 235-244, 2004.

27. J. Choi, K, Lee, Design of CMOS tapered buffer for minimum power-delay

product,” IEEE Journal of Solid-State Circuits. Volume 29, Issue 9, p. 1142-1145.

1994.

28. S.F. Oberman, H. Al-Twaijry, and M.J. Flynn, ªThe SNAP Project: Design of

Floating Point Arithmetic Units, Proc. 13th IEEE Symp. Computer Arithmetic,

pp. 156-165, Asilomar, Calif., July 1997.

29. N.T. Quach and M.J. Flynn, “An Improved Floating Point Addition Algorithm,”

Technical Report CSL-TR-90-442, Stanford Univ., June 1990. (available at

http://umunhum.stanford.edu/main. html).

30. N.T. Quach and M.J. Flynn, “Design and Implementation of the SNAP Floating-

Point Adder,” Technical Report CSL-TR-91-501, Stanford Univ., Dec. 1991.

(available at http://umunhum.stanford.edu/main. html).

72

APPENDIX

5.1 C++ Code for Single Precision, Round to Even Floating Point Adder

 #include <iostream.h>

#include <fstream.h>

#include <iomanip.h>

#include <cmath>

int main()

{

float num1 = 3.99, num2 = 3.99, largest = 0.0, smallest =0.0, sum = 0.0, Num1, Num2;

 int num1_exp =1, num2_exp =1, diff =0, Larger_exp = 0, shift = 1, x=10, larger = 0,

smaller =0, sticky;

char sign;

cout.setf(ios::fixed, ios::floatfield); //set up floating point

cout.setf(ios::showpoint); //output format

Num1 = num1;

Num2 = num2;

// compare exponents

 if (num1_exp >= num2_exp)

{

73

 larger = num1_exp;

 smaller = num2_exp;

 diff = larger - smaller;

while (diff > 0)

 {

 shift = shift * x;

 diff --;

 }

 num2 = num2 / shift;

 {

 if (num1 >= num2)

 {

 largest = num1;

 smallest = num2;

 }

 else if (num1 < num2)

 {

 largest = num2;

 smallest = num1;

 }

 }

74

}

 if (num2_exp > num1_exp)

{

 larger = num2_exp;

 smaller = num1_exp;

 diff = larger - smaller;

while (diff > 0)

 {

 shift = shift * x;

 diff --;

 }

 num1 = num1 / shift;

 {

 if (num1 >= num2)

 {

 largest = num1;

 smallest = num2;

 }

 else if (num1 < num2)

 {

 largest = num2;

 smallest = num1;

75

 }

 }

}

Larger_exp = larger;

sum = largest + smallest; // add significands

if (sum < 0)

 sign = ‘-‘;

else

 sign = ‘+’;

//Exception Handling

if ((sum > 9.9999) || (sum < 1))

 sticky = 1;

 Else

 sticky = 0;

// Normalizing

while (fabs (sum) > 9.9999)

{

 sum = sum / x;

 Larger_exp ++;

 cout << "Overflow" << endl;

76

}

while (fabs(sum) < 1)

{

 sum = (sum * x);

 Larger_exp --;

 cout << "Underflow" << endl;

}

//Rounding

cout << setw(5) << setprecision(2) <<Num1 << " x 10 ^" << num1_exp << " + " <<

Num2 << " x 10^" << num2_exp << " = " << sum << " x 10^" << Larger_exp << endl;

return 0;

}

77

5.2 VHDL Code for Simple, Single Precision, Round to Even Floating Point Adder

Library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

--use 16 bits for now SEEEEEEEEMMMMMMMM

entity Thirty_Two_Bit_FP_ADD is

 Port (x : in STD_LOGIC_vector(31 downto 0);--first number

 y : in STD_LOGIC_vector(31 downto 0);--second number

 final_Man: out std_logic_vector(23 downto 0);--final sig

 Final_Exponent: out std_logic_vector(7 downto 0);--final exp

 comp: out std_logic_vector(8 downto 0);-- tester

 result : out std_logic_vector (31 downto 0);--answer

 getflag: out std_logic;

 mout: out string(32 downto 1);--message out

 afteradd4 : out std_logic_vector (27 downto 0));--tester

end Thirty_Two_Bit_FP_ADD;

architecture structural of Thirty_Two_Bit_FP_ADD is

Signal Temp,Big_Exp, twos_comp_Temp,twos_comp_y,

ShiftSmallSig,changeBigExp,changebigexp2, NewExp, original_exp,newdiff,

temp_exp1, temp_exp, tempdiff, twos_comp_tempdiff, updated_exp,

add2exp,add2exp2,final_exp1 , stky, xexp, yexp, final_exp2, stky2, tempexp,tempexp1,

tempexp2, twos_comp_grstky, final_exp_EX,

final_Exp_EX1,Small_Exp,Final_Exp_EX2: std_logic_vector (7 downto 0);

78

Signal afterAdd,twos_comp_Afteradd, grstky,

Tempsig,twos_comp_tempSig,final_man_EX: std_logic_vector(23 downto 0);

Signal prependZero, comp1,pickSmallSig,xorofsign,

temp3,BigSigSign,Temp1,temp2,temp6, temp7,temp8,temp9,temp10,temp12,

CO,ovfl,ovefl, udfl, NAN,Post_shift,updateexp2,check_exp, guard_bit, updateExp,

guard_bit1, guard_bit2, guard_bit3, guard_bit4, guard_bit5,s, Rd2n, sticky,Addl,flag,

fflag, fflag2,fflag3, setflag, dflag, nflag, inflag,underflag, underflag2, bpflag, zflag,

zflag2, getAns, gflag, getMessage: std_logic;

Signal Ready2Add, eflag : std_logic_vector(8 downto 0);

Signal Ready2Add2,Ready2add3, BigSig2,twos_comp_bigsig,temp4,

BigSigready,int_part: std_logic_vector(23 downto 0);

signal BigSig, Small_Sig,xman,yman, Final_man_EX1,final_man2,Final_Man_EX2 :

std_logic_vector(22 downto 0);

signal smallsigready,afteradd3,twos_comp_Ready2Add3,Small_Sig2,afteradd2:

std_logic_vector(26 downto 0);

signal message, message2, final_message:string (32 downto 1) ;

signal afteradd6, rounded_num,afteradd12,afteradd13: std_logic_vector(24 downto 0);

signal sel:std_logic_vector(1 downto 0);

signal afteradd1, afteradd0:std_logic_vector (27 downto 0);

component Eight_bit_subtractor is

Port(A, B: in std_logic_vector (7 downto 0);

cout: out std_logic;

Sum: out std_logic_vector(7 downto 0));

End component;

79

component Mux is

 Port (a : in STD_LOGIC_vector (7 downto 0);

 b : in STD_LOGIC_vector (7 downto 0);

 sel : in STD_LOGIC;

 e : out std_logic_vector (7 downto 0));

end component;

component Mux2 is

 Port (a2 : in STD_LOGIC;

 B2 : in STD_LOGIC;

 Sel2 : in STD_LOGIC;

 e2: out std_logic);

end component;

component Mux3 is

 Port (a : in STD_LOGIC_vector (8 downto 0);

 b : in STD_LOGIC_vector (8 downto 0);

 sel : in STD_LOGIC;

 e : out std_logic_vector (8 downto 0));

end component;

component Mux24 is

 Port (a : in STD_LOGIC_vector (23 downto 0);

 b : in STD_LOGIC_vector (23 downto 0);

80

 sel : in STD_LOGIC;

 e : out std_logic_vector (23 downto 0));

end component;

component Mux23 is

 Port (a : in STD_LOGIC_vector (22 downto 0);

 b : in STD_LOGIC_vector (22 downto 0);

 sel : in STD_LOGIC;

 e : out std_logic_vector (22 downto 0));

end component;

component Mux26 is

 Port (a : in STD_LOGIC_vector (26 downto 0);

 b : in STD_LOGIC_vector (26 downto 0);

 sel : in STD_LOGIC;

 e : out std_logic_vector (26 downto 0));

end component;

component Mux31 is

 Port (a : in STD_LOGIC_vector (31 downto 0);

 b : in STD_LOGIC_vector (31 downto 0);

 sel : in STD_LOGIC;

 e : out std_logic_vector (31 downto 0));

end component;

81

component twos_comp is

Port (B: in std_logic_vector (7 downto 0);

 AplusB1: out std_logic_vector (7 downto 0));

End component;

component twos_comp2 is

Port (B: in std_logic_vector (8 downto 0);

 AplusB1: out std_logic_vector (8 downto 0));

End component;

component twos_comp3 is

Port (B: in std_logic_vector (9 downto 0);

 AplusB1: out std_logic_vector (9 downto 0));

End component;

component twos_comp24 is

Port (B: in std_logic_vector (23 downto 0);

 AplusB1: out std_logic_vector (23 downto 0));

End component;

component twos_comp27 is

Port (B: in std_logic_vector (26 downto 0);

 AplusB1: out std_logic_vector (26 downto 0));

 End component;

82

component Eight_bit_Adder is

Port(A, B: in std_logic_vector(8 downto 0);

cout: out std_logic;

Sum: out std_logic_vector(8 downto 0));

End component;

component Twenty4_Bit_Adder is

Port(A, B: in std_logic_vector (23 downto 0);

 cout: out std_logic;

 Sum: out std_logic_vector(23 downto 0));

End component;

component Twenty5_Bit_Adder is

Port(A, B: in std_logic_vector (24 downto 0);

 cout: out std_logic;

 Sum: out std_logic_vector(24 downto 0));

End component;

component CIE is

Port(A, B: in std_logic_vector (7 downto 0);

 cout: out std_logic;

 Sum: out std_logic_vector(7 downto 0));

end component;

83

component Mux4 is

 Port (a : in STD_LOGIC_vector (9 downto 0);

 b : in STD_LOGIC_vector (9 downto 0);

 sel : in STD_LOGIC;

 e : out std_logic_vector (9 downto 0));

end component;

Begin

 xExp <= x(30 downto 23);

 yExp <= y(30 downto 23);

 xMan <= x(22 downto 0);

 yMan <= y(22 downto 0);

 Process (xexp, yexp,xman, yman,stky, flag)

 begin

 If (xExp = "00000000") then

 if (xMan = "00000000000000000000000") then stky(0) <= '1'; flag <= '1';

 else stky(1) <= '1'; setflag <= '1'; --renomalize

 end if;

 end if;

 If (xExp = "11111111") then

 if (xMan = "00000000000000000000000") then stky(6) <= '1'; flag <= '1';--INFN

 else stky(7) <= '1'; flag <= '1';--NAN

84

end if;

end if;

 If (yExp = "11111111") then

 if (yMan = "00000000000000000000000") then stky(2) <= '1';flag <= '1';--INFN

 else stky(3) <= '1'; flag <= '1';--NAN

 end if;

 end if;

 If (yExp = "00000000") then

 if (yMan = "00000000000000000000000") then stky(4) <= '1'; flag <= '1';

 else stky(5) <= '1'; setflag <= '1';--renomalize

 end if;

 end if;

end process;

TC3: twos_comp -- getting negative for addition

Port map (B(7 downto 0) => y(30 downto 23), AplusB1 (7 downto 0) => twos_comp_y(7

downto 0));

--SUB EXP X-Y= DIFF/TEMP

s0: Eight_bit_subtractor

85

Port map (A(7 downto 0) => X(30 downto 23), B(7 downto 0) => twos_comp_Y(7

downto 0), Cout => Temp2, sum(7 downto 0) => Temp(7 downto 0));

Temp1 <= not temp(7);

--Select big exponent

M0: Mux

Port map (A(7 downto 0) => X(30 downto 23), B(7 downto 0) => Y(30 downto 23), e(7

downto 0) => Big_Exp(7 downto 0), Sel => temp(7));

--Select small exponent

M11: Mux

Port map (A(7 downto 0) => X(30 downto 23), B(7 downto 0) => Y(30 downto 23), e(7

downto 0) => Small_Exp(7 downto 0), Sel => temp1);

--select Big_Sig

M1: Mux23

Port map (A(22 downto 0) => X(22 downto 0), B(22 downto 0) => Y(22 downto 0), e(22

downto 0) => BigSig(22 downto 0), Sel => temp(7));

--2'S COMP OF DIFF IN EXP

TC1: twos_comp

Port map (B(7 downto 0) => temp(7 downto 0), AplusB1 (7 downto 0) =>

twos_comp_Temp(7 downto 0));

86

--select THE DIFF OF COMPLEMENT Or DIFF FOR SHIFT AMOUNT

M4: Mux

Port map (A(7 downto 0) => temp(7 downto 0), B(7 downto 0) => twos_comp_Temp (7

downto 0), e(7 downto 0) => ShiftSmallSig(7 downto 0), Sel => temp(7));

--24 bit shift?

guard_bit1 <= (shiftsmallsig(7) or shiftsmallsig(6) or shiftsmallsig(5));

guard_bit2 <= (shiftsmallsig(4) AND shiftsmallsig(3));

guard_bit3 <= (shiftsmallsig(2) or shiftsmallsig(1) or shiftsmallsig(0));

guard_bit4 <= (guard_bit2 and guard_bit3);

guard_bit5 <= (guard_bit1 or guard_bit4);

fflag2 <= '0' when guard_bit5 = '1' else '1';

--PREPEND "1" TO BIG SIG

--prependZero <= (big_exp(6) and big_exp(5) and big_exp(4) and big_exp(3) and

big_exp(2) and big_exp(1) and big_exp(0));

BigSig2 <= '0' & bigsig when big_exp ="00000000" else '1' & BigSig;

--get sign of big sig

M26: Mux2

Port map (A2 => x(31), B2 => y(31), e2 => BigSigSign, Sel2 => temp(7));

87

--select small sig

M2: Mux23

Port map (A(22 downto 0) => X(22 downto 0), B(22 downto 0) => Y(22 downto 0), e(22

downto 0) => Small_Sig(22 downto 0), Sel => Temp1);

-- PREPEND "1" TO SMALL SIG

Ready2Add2 <= '0' & small_sig when small_exp = "00000000" else '1' & small_sig;

--SHIFT SMALL SIG

Ready2Add3 <= Ready2Add2 when ("00000000" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 24) when

("00011000" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 23) when

("00010111" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 22) when

("00010110" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 21) when

("00010101" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 20) when

("00010100" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 19) when

("00010011" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 18) when

("00010010" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 17) when

("00010001" = ShiftSmallSig) else

88

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 16) when

("00010000" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 15) when

("00001111" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 14) when

("00001110" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 13) when

("00001101" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 12) when

("00001100" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 11) when

("00001011" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 10) when

("00001010" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 9) when

("00001001" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 8) when

("00001000" = ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 7) when ("00000111" =

ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 6) when ("00000110" =

ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 5) when ("00000101" =

ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 4) when ("00000100" =

ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 3) when ("00000011" =

ShiftSmallSig) else

89

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 2) when ("00000010" =

ShiftSmallSig) else

 to_stdlogicvector(to_bitvector(Ready2Add2) srl 1) when ("00000001" =

ShiftSmallSig) else

 "000000000000000000000000";

 --Generate Guard, Round and Sticky

 --GRSTKY(23 downto 0)<= "000000000000000000000000";

 Process(Ready2add2,shiftsmallsig, GRSTKY,Ready2Add3)

 begin

 if ("00000001" = ShiftSmallSig) then GRSTKY<= Ready2add2(0) &

"00000000000000000000000";-- Ready2Add3 <=

to_stdlogicvector(to_bitvector(Ready2Add2) srl 1);

 elsif ("00000010" = ShiftSmallSig) then GRSTKY <= Ready2add2(1 downto 0) &

"0000000000000000000000";-- Ready2Add3

<=to_stdlogicvector(to_bitvector(Ready2Add2) srl 2);

 elsif ("00000011" = ShiftSmallSig) then GRSTKY<= Ready2add2(2 downto 0) &

"000000000000000000000";-- Ready2Add3

<=to_stdlogicvector(to_bitvector(Ready2Add2) srl 3);

 elsif ("00000100" = ShiftSmallSig) then GRSTKY <= Ready2add2(3 downto 0) &

"00000000000000000000";-- Ready2Add3

<=to_stdlogicvector(to_bitvector(Ready2Add2) srl 4);

 elsif ("00000101" = ShiftSmallSig) then GRSTKY<= Ready2add2(4 downto 0) &

"0000000000000000000";-- Ready2Add3

<=to_stdlogicvector(to_bitvector(Ready2Add2) srl 5);

 elsif ("00000110" = ShiftSmallSig) then GRSTKY<= Ready2add2(5 downto 0) &

"000000000000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2)

srl 6);

90

 elsif ("00000111" = ShiftSmallSig) then GRSTKY<= Ready2add2(6 downto 0) &

"00000000000000000";-- Ready2Add3 <= to_stdlogicvector(to_bitvector(Ready2Add2)

srl 7);

 elsif ("00001000" = ShiftSmallSig) then GRSTKY<= Ready2add2(7 downto 0) &

"0000000000000000";-- Ready2Add3 <= to_stdlogicvector(to_bitvector(Ready2Add2)

srl 8);

 elsif ("00001001" = ShiftSmallSig) then GRSTKY<= Ready2add2(8 downto 0) &

"000000000000000";-- Ready2Add3 <= to_stdlogicvector(to_bitvector(Ready2Add2) srl

9);

 elsif ("00001010" = ShiftSmallSig) then GRSTKY<= Ready2add2(9 downto 0) &

"00000000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl

10);

 elsif ("00001011" = ShiftSmallSig) then GRSTKY<= Ready2add2(10 downto 0) &

"0000000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl

11);

 elsif ("00001100" = ShiftSmallSig) then GRSTKY<= Ready2add2(11 downto 0) &

"000000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 12);

 elsif ("00001101" = ShiftSmallSig) then GRSTKY<= Ready2add2(12 downto 0) &

"00000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 13);

 elsif ("00001110" = ShiftSmallSig) then GRSTKY <= Ready2add2(13 downto 0) &

"0000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 14);

 elsif ("00001111" = ShiftSmallSig) then GRSTKY<= Ready2add2(14 downto 0) &

"000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 15);

 elsif ("00010000" = ShiftSmallSig) then GRSTKY<= Ready2add2(15 downto 0) &

"00000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 16);

 elsif ("00010001" = ShiftSmallSig) then GRSTKY<= Ready2add2(16 downto 0) &

"0000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 17);

 elsif ("00010010" = ShiftSmallSig) then GRSTKY<= Ready2add2(17 downto 0) &

"000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 18);

 elsif ("00010011" = ShiftSmallSig) then GRSTKY<= Ready2add2(18 downto 0) &

"00000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 19);

91

 elsif ("00010100" = ShiftSmallSig) then GRSTKY<= Ready2add2(19 downto 0) &

"0000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 20);

 elsif ("00010101" = ShiftSmallSig) then GRSTKY<= Ready2add2(20 downto 0) &

"000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 21);

 elsif ("00010110" = ShiftSmallSig) then GRSTKY<= Ready2add2(21 downto 0) &

"00";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 22);

 elsif ("00010111" = ShiftSmallSig) then GRSTKY<= Ready2add2(22 downto 0) & '0';--

Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 23);

 elsif ("00011000" = ShiftSmallSig) then GRSTKY(23 downto 0) <= Ready2add2(23

downto 0);-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 24);

 else GRSTKY<= "000000000000000000000000";-- Ready2Add3 <= Ready2Add2;

 end if;

 end process;

 -- get sticky

 S<= (grstky(21)or grstky(20)or grstky(19) or grstky(18) or grstky(17) or grstky(16) or

grstky(15) or grstky(14) or grstky(13) or grstky(12) or grstky(11) or grstky(10) or

grstky(9) or grstky(8) or grstky(7) or grstky(6) or grstky(5) or grstky(4) or grstky(3) or

grstky(2) or grstky(1) or grstky(0));

--2?s comp of small sig if it is negative

TCT0: twos_comp24

Port map (b(23 downto 0) => Ready2add3(23 downto 0), AplusB1 (23 downto 0) =>

twos_comp_Ready2Add3(23 downto 0));

92

TCT53: twos_comp

port map (b(7 downto 3) => "00000", b(2 downto 1) => grstky (23 downto 22),b(0) => s,

AplusB1(7 downto 0) => twos_comp_grstky(7 downto 0));

--get sign of small sig

picksmallsig <= x(31) xor y(31);

smallsigready <= Ready2add3(23 downto 0) & GRSTKY(23 downto 22) & S;

--SELECTS SMALL SIG OR 2'S COMP OF SMALL SIG

M57: Mux26

Port map (A(26 downto 3) => Ready2add3(23 downto 0), A(2 downto 1) =>

GRSTKY(23 downto 22), A(0) => S, B(26 downto 3) => twos_comp_Ready2Add3(23

downto 0), B(2 downto 0) => twos_comp_grstky(2 downto 0), e(26 downto 0) =>

Small_Sig2(26 downto 0), Sel => PickSmallSig);

--ADD BIG SIG TO SMALL SIG

FA11: Twenty4_Bit_Adder

Port map (A(23 downto 0) => BigSig2(23 downto 0), B(23 downto 0) => Small_Sig2(26

downto 3), Cout => ovfl, sum(23 downto 0) => Tempsig(23 downto 0));

--twos comp of big&small sig addition

TCT10: twos_comp24

Port map (b(23 downto 0) => tempsig(23 downto 0), AplusB1 (23 downto 0) =>

twos_comp_tempSig(23 downto 0));

Co <= not ovfl;

93

comp1 <= (picksmallsig and (tempsig(23)) and Co);

--select tempsig or twos comp to tempsig

M15: Mux24

Port map (A(23 downto 0) => tempsig(23 downto 0), B(23 downto 0) =>

twos_comp_tempSig(23 downto 0), e(23 downto 0) => afteradd(23 downto 0), Sel =>

comp1);

--shift afteradd to normalize?

updateExp<= ovfl when picksmallsig = '0' else

 '0';

afteradd0<= updateExp & afteradd & small_sig2(2 downto 0);

--afteradd1<= afteradd0 (27 downto 0) when picksmallsig = '1' else

 --ovfl & afteradd0 (26 downto 0);

 afteradd1 <= to_stdlogicvector(to_bitvector (Afteradd0) srl 1) when afteradd0(27) = '1'

else afteradd0;

afteradd2 <= afteradd1 (26 downto 0);

--increment exp?

s5: Eight_bit_subtractor

Port map (A(7 downto 0) => Big_exp(7 downto 0), B(7 downto 1) => "0000000", B(0)

=> updateExp, Cout => Temp2, sum(7 downto 0) => TempExp(7 downto 0));

94

--Overflow?

Eflag(0) <= '1' when temp2 = '1' else '0';

Eflag(1) <= '1' when tempExp= "11111111" else '0';

--Underflow?

Eflag(2) <= '1' when tempExp = "00000000" else '0';

 --afteradd2 <= afteradd1 & small_sig2(2 downto 0)

 --Normalize

process(afteradd2,afteradd3, changeBigExp, underflag,TempExp1)

 begin

 if afteradd2(26)= '1' then afteradd3 <= afteradd2; changeBigExp <=

"00000000";underflag <= '0';

 elsif afteradd2(25)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

1);changeBigExp <= "11111111"; underflag <= '0';

 elsif afteradd2(24)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

2);changeBigExp <= "11111110"; underflag <= '0';

 elsif afteradd2(23)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

3);changeBigExp <= "11111101"; underflag <= '0';

 elsif afteradd2(22)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

4);changeBigExp <= "11111100"; underflag <= '0';

95

 elsif afteradd2(21)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

5);changeBigExp <= "11111011"; underflag <= '0';

 elsif afteradd2(20)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

6);changeBigExp <= "11111010"; underflag <= '0';

 elsif afteradd2 (19)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

7);changeBigExp <= "11111001"; underflag <= '0';

 elsif afteradd2 (18) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 8);changeBigExp <= "11111000"; underflag <= '0';

 elsif afteradd2 (17) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 9);changeBigExp <= "11110111"; underflag <= '0';

 elsif afteradd2 (16) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 10);changeBigExp <= "11110110"; underflag <= '0';

 elsif afteradd2 (15) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 11);changeBigExp <= "11110101"; underflag <= '0';

 elsif afteradd2 (14) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 12);changeBigExp <= "11110100"; underflag <= '0';

 elsif afteradd2 (13) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 13);changeBigExp <= "11110011"; underflag <= '0';

 elsif afteradd2 (12) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 14);changeBigExp <= "11110010"; underflag <= '0';

 elsif afteradd2 (11) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 15);changeBigExp <= "11110001"; underflag <= '0';

 elsif afteradd2 (10) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2)

sll 16);changeBigExp <= "11110000"; underflag <= '0';

 elsif afteradd2 (9) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

17);changeBigExp <= "11101111"; underflag <= '0';

 elsif afteradd2 (8) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

18);changeBigExp <= "11101110"; underflag <= '0';

96

 elsif afteradd2 (7) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

19);changeBigExp <= "11101101"; underflag <= '0';

 elsif afteradd2 (6) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

20);changeBigExp <= "11101100"; underflag <= '0';

 elsif afteradd2 (5) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

21);changeBigExp <= "11101011"; underflag <= '0';

 elsif afteradd2 (4) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

22);changeBigExp <= "11101010"; underflag <= '0';

 elsif afteradd2 (3) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

23);changeBigExp <= "11101001"; underflag <= '0';

 elsif afteradd2 (2) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

24);changeBigExp <= "11101000"; underflag <= '0';

 elsif afteradd2 (1) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

25);changeBigExp <= "11100111"; underflag <= '0';

 elsif afteradd2 (0) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll

26);changeBigExp <= "11100110"; underflag <= '0';

 else underflag <= '1'; afteradd3 <= "000000000000000000000000000"; TempExp1 <=

"00000000"; changeBigExp <= "00000000";

 end if;

 end process;

--inflag <= '0' when nflag = '1' else '1';

fflag <= '0' when flag ='1' else '1';

dflag <= '1' when setflag = '1' else '0';

underflag2 <= '1' when underflag = '1' else '0';

tempexp2 <= tempexp1 when underflag2 = '1' else tempexp;

bpflag <= '0' when (stky(4) or stky(0)) = '1' else '1';

97

fflag3 <= not fflag2;

zflag <= underflag2 or fflag3;

zflag2 <= '0' when zflag = '1' else '1';

 C1: CIE

 Port map (A(7 downto 0) => TempExp2(7 downto 0), B(7 downto 0) =>

ChangeBigExp(7 downto 0), Cout => Temp6, sum(7 downto 0) => Temp_Exp(7 downto

0));

 --Overflow?

 Eflag(3) <= '1' when temp6 = '1' else '0';

 Eflag(4) <= '1' when temp_Exp= "11111111" else '0';

 --Underflow?

 Eflag(5) <= '1' when temp_Exp = "00000000" else '0';

 --Rounding logic

 Sticky <= ((afteradd3(1)) or (afteradd3(0)));

 Rd2N <= ((afteradd3(3)) or (sticky));

 Addl <= ((Rd2N) and (afteradd3(2)));

 --RNI Rd2N <= ((afteradd3(2)) or (sticky));

 --RNI Addl <= ((Rd2N) and (not(BigSigSign)));

--Add one to odd sig

98

--C3: CIE

--ADD ulp

 afteradd6 <="000000000000000000000000" & ADDl;

FA3: Twenty5_Bit_Adder

Port map (A(24 downto 0) => afteradd3(26 downto 2), B(24 downto 0) => afteradd6(24

downto 0), Cout => Post_shift, sum(24 downto 0) => rounded_num (24 downto 0));

updateExp2<= '0' when Post_shift = '0' else

 '1';

--increment exp?

s22: Eight_bit_subtractor

Port map (A(7 downto 0) => Temp_Exp(7 downto 0), B(7 downto 1) => "0000000", B(0)

=> updateExp2, Cout => Temp12, sum(7 downto 0) => Final_Exp1(7 downto 0));

--Overflow?

eflag(6) <= '1' when temp12 = '1' else '0';

eflag(7) <= '1' when Final_Exp1= "11111111" else '0';

--Underflow?

eflag(8) <= '1' when Final_Exp1 = "00000000" else '0';

 process(stky, stky2)

 begin

99

 if stky(0) = '1' then stky2(0) <= '1'; else stky2 (0) <='0'; end if;

 if stky(1) = '1' then stky2(1) <= '1'; else stky2 (1)<='0'; end if;

 if stky(2) = '1' then stky2(2) <= '1'; else stky2 (2)<='0'; end if;

 if stky(3) = '1' then stky2(3) <= '1'; else stky2 (3)<='0'; end if;

 if stky(4) = '1' then stky2(4) <= '1'; else stky2 (4)<='0'; end if;

 if stky(5) = '1' then stky2(5) <= '1'; else stky2 (5)<='0'; end if;

 if stky(6) = '1' then stky2(6) <= '1'; else stky2 (6)<='0'; end if;

 if stky(7) = '1' then stky2(7) <= '1'; else stky2 (7)<='0'; end if;

 end process;

 process (stky2, final_exp2, final_man2, message)

 begin

 Case stky2 is

 when "00000001" => final_exp2 <= y(30 downto 23);final_man2 <= y(22 downto 0);

 when "00000010" => message <= "first number is subnormal ";

 when "00000100" => message <= "Second Num/Result equal Infinity";

 when "00001000" => message <= "Second Number/Result equals NAN-";

 when "00010000" => final_exp2 <= x(30 downto 23);final_man2 <= x(22 downto 0);

 when "00100000" => message <= "Second number must be normalized";

 when "01000000" => message <= "First Num/Result equals Infinity";

 when "10000000" => message <= "First Number/Result equals NAN- ";

 when "01000100" => message <= "Result equals Infinity -";

 when "01000001" => message <= "Result equals Infinity -";

100

 when "00010100" => message <= "Result equals Infinity -";

 when "00010001" => message <= "Result equals NAN ";

 when "00000101" => message <= "Second Num/Result equal Infinity";

 when "01010000" => message <= "First Num/Result equals Infinity";

 when "01001000" => message <= "Result equals NAN ";

 when "10000100" => message <= "Result equals NAN ";

 when "00001001" => message <= "Result equals NAN ";

 when "10010000" => message <= "Result equals NAN ";

 when others => message <= " " ;

 end case;

 end process;

 process (eflag, message2)

 begin

 Case eflag is

 when "000000001" => message2 <= "Result equals NAN - Overflow ";

 when "000000010" => message2 <= "Result equals NAN - Overflow ";

 when "000000100" => message2 <= "Result equals NAN - Underflow 1 ";

 when "000001000" => message2 <= "Result equals NAN - Overflow ";

 when "000010000" => message2 <= "Result equals NAN - Overflow ";

 when "000100000" => message2 <= "Result equals NAN - Underflow 2 ";

 when "001000000" => message2 <= "Result equals NAN - Overflow ";

101

 when "010000000" => message2 <= "Result equals NAN - Overflow ";

 when "100000000" => message2 <= "Result equals NAN - Underflow 3 ";

 when "010010000" => message2 <= "Result equals NAN - Overflow ";

 when "000100100" => message2 <= "Result equals NAN - Underflow 4 ";

 when "100100100" => message2 <= "Result equals NAN - Underflow 5 ";

 when "000000011" => message2 <= "Result equals NAN - Overflow ";

 when "000001011" => message2 <= "Result equals NAN - Overflow ";

 when "000011011" => message2 <= "Result equals NAN - Overflow ";

 when "001011011" => message2 <= "Result equals NAN - Overflow ";

 when "010010010" => message2 <= "Result equals NAN - Overflow ";

 when others => message2 <= " ";

 end case;

 end process;

M299: Mux23

Port map (A(22 downto 0) => final_man2(22 downto 0), B(22 downto 0) => y (22

downto 0), e(22 downto 0) => Final_man_EX(22 downto 0), Sel => fflag);

M298: Mux

Port map (A(7 downto 0) => final_exp2(7 downto 0), B(7 downto 0) => y(30 downto

23), e(7 downto 0) => final_exp_EX(7 downto 0), Sel => fflag);

getAns <= (bpflag and fflag);

M279:Mux23

102

Port map (A(22 downto 0) => final_man_EX(22 downto 0), B(22 downto 0) =>

rounded_num(23 downto 1), e(22 downto 0) => Final_man_EX1(22 downto 0), Sel =>

getans);

M278: Mux

Port map (A(7 downto 0) => final_exp_EX(7 downto 0), B(7 downto 0) => Final_Exp1(7

downto 0), e(7 downto 0) => final_exp_EX1(7 downto 0), Sel => getans);

--M289: Mux23

--Port map (A(22 downto 0) => final_man_EX(22 downto 0), B(22 downto 0) =>

Final_man_EX2(22 downto 0), e(22 downto 0) => Final_man_EX1(22 downto 0), Sel

=> getAns);

--M288: Mux

--Port map (A(7 downto 0) => final_exp_EX(7 downto 0), B(7 downto 0) =>

Final_Exp_EX2(7 downto 0), e(7 downto 0) => final_exp_EX1(7 downto 0), Sel =>

getAns);

getMessage <= (eflag(8) or eflag(7) or eflag(6) or eflag(5) or eflag(4) or eflag(3) or

eflag(2) or eflag(1) or eflag(0));

final_message <= message when (fflag ='0' or dflag ='1') else message2;

final_Man <= '1' & Final_man_EX1;

Final_Exponent <= final_Exp_EX1;

--tmpcomp <= final_exp1;

comp <= Eflag;

afteradd4 <= afteradd2 & '0';

103

getflag <= getmessage;

mout <= final_message;

result <= BigSigSign & final_Exp_EX1 & Final_man_EX1;

--z<= New_binout;

end structural;

	Self-Time Circuit Size Optimization For An Input Data Distribution
	Recommended Citation

	tmp.1588277308.pdf.ifiz8

