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ABSTRACT 

 

 

Sowells, Evelyn R.  SELF-TIME CIRCUIT SIZE OPTIMIZATION FOR AN INPUT 

DATA DISTRIBUTION.  (Major Professor: Dr. Alvernon Walker), North Carolina 

Agricultural and Technical State University. 

 
 New design techniques with energy-delay characteristics that are superior to that of the 

synchronous timing and control approach are needed today because the throughput of 

systems realized with this method is limited by the power dissipation of nanometer scale 

devices and the power management strategies developed to insure that they do not exceed 

device thermal constraints. A circuit timing approach that is not dependent only on the 

propagation delay of the critical path is required to achieve this for a specified technology 

and supply voltage. Optimized self-timed circuits have this characteristic and therefore 

outperform synchronous designs for a given energy dissipation. A novel self-timed circuit 

device sizing approach that is based on the circuit input data distribution and circuit 

branching effort is proposed in this document. The analysis is based on the Logical Effort 

(LE). The LE model used in this work was extracted from SPICE simulation for the 

TMSC 0.18um process. The performance and energy dissipation of circuits implemented 

with this approach is 13% and 16% respectively better than circuits designed with 

previously proposed approaches. 
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CHAPTER 1 

INTRODUCTION 

Power conservation without performance penalties have become an increasingly 

important issue among modern digital circuit designers. As the digital technology 

evolution continues to produce more complex circuits coupled with ground breaking 

system performance, the power consumed by these circuits are at record highs. In fact, 

power dissipation or energy loss in the form of heat is reaching levels comparable to 

nuclear reactors. The negative affect associated with the power dissipation compromises 

or in many cases, impair chip reliability and life expectancy.   

 

Figure 1.1: Power dissipation vs. scaling technology [2] 
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1.1  Motivation 

Over the past decade, research in this area has eased but not solved this power 

issue. Many solutions involved increasing chip parameter size to ease the chips density 

that has lead us to this hot spot. However, as the demand for portable electronic devices 

rise, scaling technology forces us to deal with this problem. Figure 1.1 shows the power 

dissipation with respect to technology generation. As illustrated in figure 1.1, scaling 

technology increases, power dissipation or energy given off in the form of heat also 

increases. In 1985, Intel’s i386 power dissipation was at a minimum less than 3 

watts/ . However, by November 1995, the Pentium Pro was dissipating heat 

comparable to a hot plate at 10 watts/ . This, of course assuming that there are no 

power management techniques in place. Hibernation, a power down technique that 

deactivate idle components of the chip, multiple supply voltages and clock frequencies 

are the most used power management strategies.  

1.2  Moore’s Law 

Gordon Moore, co-founder of Intel, made an observation in 1965 that the number 

of transistors per square inch on integrated circuits doubled every year since the 

integrated circuit was invented. He predicted that this trend would continue for the 

indefinite future. In the 21
st
 century, the pace slowed down a bit, but data density has 

doubled approximately every 18 months, and this is the current definition of Moore's 

Law, which Moore himself has named. Figure 1.2 gives a graphical representation of 

http://www.webopedia.com/TERM/I/Intel.html
http://www.webopedia.com/TERM/T/transistor.html
http://www.webopedia.com/TERM/I/integrated_circuit_IC.html
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Moore’s Law. Most experts agree with Gordon Moore expecting this law to hold true for 

at least another two decades. 

 

Figure 1.2: Moore’s Law [3] 

 Figure 1.1 shows the power dissipation increasing in a linear fashion and future 

technology generations could possibly dissipate power of that comparable to a nuclear 

reactor. The consumption of heat per  is increasing as device scaling increases. This 

further reinforces the fact that we need more power efficient designs. Remarkably 

enough, if research does not produced a technique to break through the “power wall”, 

advancements in circuit technology will have reached its limits because the techniques 

that are used today may not be effective ten years from now. 
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1.3  Energy Delay Product 

When we consider the energy or power with respect to performance from the 

prospective of a gate, there are several challenges. As Moore’s Law continues to hold, the 

number of transistors on a chip will double every 18 months, the increasing clock 

frequencies and chip density have allowed designer to create more desirable architectures 

which run applications at ground breaking speeds. However, the micro-architecture and 

logic designs are stressed as frequency has increased faster than scaling. Since clock 

frequency is a linear function of power dissipation, as we increase the frequency we also 

increase the power dissipation. Further reducing the number of gate delays per cycle will 

also be difficult to achieve because the interconnect parasitics associated with the wires 

of a circuit are starting to dominate the speed or performance of the circuit not the gate.  

There are several problems that have to be resolved to build faster and more efficient 

chips: better chip implementation design techniques, better clock system design strategies 

and a more efficient micro-architecture. 

As we increase the supply voltage, the delay of the gate decreases. However, the 

power dissipation increases, as well. This is called the energy delay product. One of the 

measures of efficiency for a digital system is the energy delay product, propagation delay 

multiplied by energy dissipation which is measured in joules. There have been several 

papers that investigate techniques that explore the possibilities of optimizing the power 

delay product more in depth [24, 25, 26, 27]. 
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Modern digital designers, most often use synchronous logic to build computer 

systems because this logic style is more commonly accepted due largely in part to the 

commercial infrastructure which has already become acclimated. Traditional 

synchronous system designers often believe that the in order to boost performance one 

must pay a power penalty or vice versa, which is consider power/performance tradeoff. 

 

Figure 1.3: Energy Delay Product [4] 

Gonzalez and Horowitz demonstrate that the architectural improvements contribute the 

most to both performance and energy efficiency. For example, their results demonstrate 

that pipelining is of fundamental importance to processor performance and energy 

efficiency, but super scalar issue is a lesser contribution [8]. 

Figure 1.3 shows the ideal energy delay product. Our challenge here is to figure 

out how to build a gate that is fast and power efficient. Can we increase performance 
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without increasing power dissipation? Is it possible to have a superior power delay 

product?   

Current trends suggest that we can. Let’s take a look at some Multi-processor 

units (MPS) and Digital Signal Processors (DSP) which are typically the highest 

performing chips. 

 

Figure 1.4: Power Dissipation with respect to year and scaling factor [3] 

In figure 1.4a, as Moore’s Law remains true, more transistors are packed into a 

small chip. The initial affects on power dissipation is increasing most rapidly in the 

1980’s. This is due in part to technology that was not as power efficient as today’s 

technology. In the early 80’s the transistor sizes were much larger and the circuit 

operated at a lower clock frequency. The Intel’s 8088 operated at 4.77 mhz as opposed to 

today’s personal computers that can operate at 2 Ghz which is about 400 times faster. 

Then in the early 1990’s as more power efficient architectures were introduced, (e.g. 

(a) Power diss ipation vs. year.
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RISC, pipelining, super scalar, and branch prediction) power dissipation still increased 

but at a much slower rate. This is demonstrated by the difference in the data lines in the 

figure 1.4a. The first data line shows a four times increase in power dissipation every 

three years. While the second data line shows a 1.4 times increase in power dissipation 

every three years.  

The same hold true with respect to scaling, figure 1.4b. As device sizes decrease, 

the intrinsic time constant is reduced which implies that clock frequencies and power 

dissipation increase. However, the more efficient architectures had the same effect on the 

slope to the data line. It did not increase as rapidly. This demonstrates that by building 

architectures that are more efficient, we get an energy penalty that is less. Furthermore, it 

is possible to build such systems and that different design strategies can deliver a superior 

energy delay product. In short, performance is constrained by power. Design choices 

affect the power efficiency of a circuit and can offer something more in terms of 

performance. By developing a circuit with a better energy delay product, we can achieve 

better performance per joule, which gives us new possibilities. One example would be for 

portable devices, the battery life can be increased and applications can run as long as 

possible. My goal is to build a system that yields more performance per joule.  

1.4  Research Contribution 

The central focus of digital system design engineers over the past two decades 

 has been on the trade-offs between the power/energy and performance of the circuits 

implemented in current and emerging nanometer-scale VLSI technologies. A number of 
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techniques have been developed to address this design challenge; one approach is based 

on a class of asynchronous pipelined digital circuit structures that are called self-timed 

[4]. The dynamic power/energy dissipation is reduced in this realization, relative to 

synchronous implementations, because all clocks are generated locally and circuit timing 

and control is event driven. The performance of these circuits can exceed synchronous 

realization because it is based on the average intrinsic timing of the circuit instead of its 

worst case timing that is used to set the clock frequency in synchronous systems. The 

circuit design process used to determine the device sizing in self-timed circuits/systems is 

typically the same as that used for synchronous realizations [6, 7, 8]. However, the input 

distribution is not considered in this process. A novel self-timed circuit design technique 

that out performs previously proposed approaches is presented in this dissertation. The 

input data distribution is used in the proposed technique to optimize the circuit 

performance for the respective input data set probability distribution. 
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CHAPTER 2 

BACKGROUND 

2.1  Power vs. Energy 

Energy is related to the total amount of work a system performs over a period of 

time, while power is the rate at which the computer consumes electrical energy or 

dissipates it in the form of heat while performing that work.  In other words,  

P = W/T                              (1) 

E = P*T                               (2) 

where P = power and is measured in watts, E = Energy and is measured in joules, T = 

specific time interval in seconds, W= total work performed in each interval [9].  In many 

cases, energy and power are used interchangeably but as pointed out earlier, they are 

distinctly different. This is particularly important for system designers because 

techniques that reduce power do not necessarily reduce energy.  Venkatachalam gives an 

example. The power consumed by a computer may be reduce by halving the clock 

frequency, but if the computer takes twice as long to run the program, the total energy 

consumed will be similar. He also states that in some instances, the system designers 

chose which reduction is most important. For example, when designing for mobile 

application, energy is more important because of the desire to increase battery life. In 

other instances, like building mainframes, the temperature is more important because the 

thermal properties limits, the reduction of instantaneous power is paramount.  
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                             Figure 2.1: Power Dissipation Breakdown of Circuit 

There are three sources of power dissipation in digital CMOS circuits which are 

summarized in this equation: Pavg  = P switching + P short circuit + P static , where Pavg  is the 

total power dissipation and P switching  refers to the switched capacitance, power associated 

with switching circuit gate capacitance. P short circuit  is the circuit power that is due to 

the direct path current, which arises when both the NMOS and PMOS transistors are 

simultaneously active. Lastly, P static represents static power dissipation stemming from 

the leakage current. Figure 2.1 shows the power dissipation breakdown of a circuit. 

2.2  Static Power Dissipation 

Keeping in mind that leakage current flow from every transistor that is powered 

on, with increasing die sizes and integration; static power will become a significant part 

of the total power consumption. The equation for static power dissipation is  

Total Power Consumption

60%

10%

30%

Dynamic 

Short circuit

Static
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                                       where N is the number of transistors, Kdesign  is a design 

dependent feature, like the number of transistors on at any time and I leak  is a technology 

dependent characteristic design like threshold voltage. 

 

Figure 2.2: Static Power Dissipation 

2.2.1  Power management Strategies for Static Power Dissipation 

Figure 2.2 gives an illustration of the leakage current which has several 

components: Reverse biased pn junction—the diode leakage that occurs when a transistor 

is turned off, and sub-threshold leakage which occurs when the gate source voltage has 

exceeded the weak inversion point but is still below the threshold voltage. The 

aforementioned are the most important components of leakage currents. Gate induced 

drain leakage, punch through and gate tunneling are the other components of leakage 

currents. Most popular techniques for reducing static power dissipation are: (1) Reduce 

circuit size which decreases total power consumed by dynamically cutting power of idle 

components. The major disadvantage is unpredictable, overhead for clock gating. (2) 

Vout

Vdd

Sub-Threshold
Current

Drain Junction
Leakage

Sub-Threshold Current Dominant Factor

P V Nk Ileakage dd design leak
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Reduce temperature which decreases sub-threshold leakage. The circuit is faster because 

lower temperatures have less resistance. It increases the life expectancy of the chip but is 

more expensive to build. (3) Increase threshold voltage which causes the sub-threshold 

leakage current drops exponentially.  

2.3 Dynamic Power Dissipation 

The circuit power associated with switching circuit device capacitance and short-

circuit are two components of dynamic power dissipation in a digital CMOS circuit. 

Figure 2.3 gives an illustration of dynamic power dissipation. Switched capacitance is the 

largest component of total power consumed accounting for sixty percent of power used. 

As capacitors charge and discharge at the output of the circuit, electrical energy is used 

and heat is given off. 

The equation for dynamic power dissipation is P CVdd fdyn l  2   where,    is 

the activity factor of a system, CL  is the total load capacitance, Vdd is the supply voltage, 

and  is the operation frequency. The reduction of one or more of the previous factors is 

needed to lower power dissipation of a system.      

2.3.1   Power management Strategies for Dynamic Power Dissipation 

There are four methods to reduce this type of power loss. The first method is to 

reduce the physical capacitance or stored electrical charge of a circuit. This can be done 

by changing design parameters: reducing the size of transistors and wires, layout 

optimizations where signals that have high switching activity assigned to short wires and 
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signals that have low switching activity assigned to longer wires. However, the designer 

must deal with the risk of reducing system performance.  

 

 

Figure 2.3: Dynamic Power Dissipation 

The second method is reducing the switching activity.  One approach is 

Algorithmic Optimization, which includes Technology Mapping that minimizes the 

number of operations by using a genetic algorithm to find an energy efficient way to 

arrange gates & signals. Architecture Optimization is another approach which uses clever 

glitch-free circuits which also includes transistor reordering. Logic gate restructuring 

focuses on the circuit’s topology (Tree vs. Chain) and uses path balancing, shorter logic 

depth, and fewer spurious transitions. Clock gating, power down or hibernation is also a 

popular technique that the Pentium 4 uses to reduce switching activity which stops the 

clock signal from reaching idle functional unit. This approach is advantageous because 

the clock network consumes a lot of power. One disadvantage is the latency involved 
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with starting functional unit back up. However, it is inherent to self-timed logic since 

power consuming transitions only occur when requested. The circuit optimization 

technique examines Dynamic Logic which has fewer transistors, N + 2 as opposed to 2N 

for its counterpart, faster switching speeds and no short circuit or spurious transitions, 

while Static Logic has no pre-charge or power downs and low level of complexity to 

build. Synchronous circuits are more commonly accepted in the computer industry and 

easier the build. However, the maximum performance is not achieved since the clock 

runs at worst case in critical path and larger circuits have to overcome the clock skew 

problem. Asynchronous logic are low power, generally faster, has average case 

performance, immunity from meta-stable states, only critical path is optimized and idle 

functional units decreases dynamic power consumption, as well. On the down side, extra 

overhead is needed for completion signal.  

The third method for reducing power loss is reducing the clock rate. If the 

frequency is reduced, less power dissipates and parallel architectures and/or pipelining is 

introduced to increase performance. The tradeoff to consider is a more complex circuit, 

slower performance, and larger silicon area. Reducing clock frequency will lessen the 

system performance and should only be used for applications where speed is not a top 

priority. The final method used to reduce power dissipation of a circuit is to reduce 

voltage supply. This technique increases gate delays which are offset by a slower clock 

frequency to allow the circuitry to work properly. The disadvantages are worsening 

performance by increasing gate delay, which may cause erroneous data and if delay is too 

long, data hazards are introduce. 
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2.3.2  Short Circuit Power Dissipation 

The second source of dynamic power loss is short-circuit current which account 

for about 10% of total power consumed and is illustrated in figure 2.4. It is defined as 

P I Vddshort circuit SC   where I SC  is short circuit current and Vdd is supply voltage. Figure 

8 illustrates the short circuit current. During the switching of a transistor, there is a brief 

moment when both the NMOS and PMOS are simultaneously on which creates a short 

circuit for the source to the ground. This particular area of power loss has had the least 

amount of progress for several reasons. The amount of power that is lost is so small that 

 

Figure 2.4: Short Circuit Power Dissipation 

 it is almost neglectible and current research has not found a way to reduce it that without 

significantly reducing the performance of the transistor. One rule of thumb that keeps this 

power loss at a minimum is to insure that the rise and fall time of the transistor gates are 

equal.   
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2.4  High Speed Digital System Realization 

There are several techniques that system designers use to boost performance. 

Perhaps the most popular techniques is parallelism, operations are carried out 

simultaneously or concurrently. It is the backbone of high performance computing. The 

theory behind it is the more work that a system is able to do per clock cycle, the energy 

consumed in not going to be as great. One type of parallelism is Multi-core architectures 

which boost performance and minimizes heat output by integrating two or more 

processor cores in a single processor socket.  Intel has a 50-Core processor named 

Knights Corner which is a super computer at University of Texas at Austin used for 

research. Pipelining is the most popular performance enhancement technique that 

increases the throughput of a system by processing data in stages like an assembly line. 

Superscalar in very similar to pipelining but it deals with instruction level parallelism that 

issues multiple instructions multiple data (MIMD). Multithreading is used to run multiple 

threads on the hardware at one time. 

Another performance enhancement technique is to reducing the data execution 

time. This is mainly done by having a high clock frequency. Since power dissipation is a 

linear function of the clock frequency, it is also increased. Clock skew can also be 

introduced where the clock signal reaches different components at different times. As the 

clock rate of a circuit increases, timing becomes more critical and less variation can be 

tolerated if the circuit is to function properly. Single-Cycle Instruction Set Architecture 

also helps to reduce the execution time of data. Reduced Instruction Set Architecture 
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(RISC) operates on a fixed length instruction and the hardware is simple, fast and uses 

less energy. The truth is that modern digital system designers use a combination of all of 

the aforementioned techniques to boost performance. 

2.5   Circuit Design Methodologies 

When building a circuit, designers must choose a methodology that compliments 

the circuit’s logic and system design. For the most part, circuit designs in the industry are 

built with synchronous logic; small blocks of combinatorial logic separated by 

synchronously clocked registers. Figure 2.5 gives an illustration of a synchronous system. 

As its name suggest, synchronous circuits use a clock to synchronize each transition. In 

other words, change in the circuit happens at the same rate and occur at the same time. 

The biggest advantage of this logic style is the ease in determining the maximum clock 

frequency of a design by finding and calculating the longest delay path between registers 

in a circuit. Another advantage of synchronous design is hazard avoidance. Static logic 

can introduce hazards through spurious transitions meaning that some flip flops have 

internal meta-stable transition before the settle to their final logic. If the signal is used 

before the final logic state, the wrong signal may be forwarded. Synchronous logic 

eliminates this hazard because the clock insures that these glitches have been worked out 

before transitioning to next state. One major disadvantage of synchronous design is the 

unused clock cycle time. Even if the gate has finished transitioning, the signal cannot go 

to the next state until the clock signals the transition. More power is used because the 

clock uses energy whether gates transition or not. Clock skew is another problem that 
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synchronous systems encounter. This is the difference in time that the clock signal arrives 

throughout the circuit. It is even further exaggerated as we scale systems because wire 

delay does not scale the same as transistor switching speed. 

Since synchronous systems have dominated the circuit design industry, there are a 

small number of available CAD tools for design, simulation and testing of asynchronous 

circuits. However, as the semiconductor industry wrestle with mounting problems trying 

to achieve higher performances and lower power consumption without significant 

 

Figure 2.5: Synchronous Three Stage Pipeline [4] 

increases in fabrication costs, developers are turning to asynchronous alternatives to solve 

these problems. Over the past few years, universities and established asynchronous 

companies have focused their research on developing Electronic Design Automation 

(EDA) tools and design flows that can be integrated into the custom and semi-custom 

methods now used by the industry for synchronous design. This paradigm shift has 

opened the door for unprecedented advances in the circuit design industry. [20, 21, 22, 

23] all investigate the possible benefits of self-timed system design. Asynchronous logic 

works extremely well on power dissipation reduction. At 40% activity, an asynchronous 

system will dissipate 50% less power than its synchronous counterparts [2]. 
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Asynchronous circuits have several other possible benefits. No clock skew – the 

difference in arrival time of clock signals to different parts of the circuit. Since 

asynchronous circuits have no clock, there is no clock skew. Speed is another area where 

these circuits shine. The timing of an asynchronous circuit depends on the structure of the 

transistor network, the delay of its signals and the length of the signal paths. Worst case 

performance of traditional synchronous systems is replaced by average case since 

performance is dependent on only the current active path. Better technology migration 

potential and automatic adaptation to physical properties- fabrication, temperature and 

power supply voltage.  

Modern synchronous digital systems are limited by power dissipation of 

nanometer scaled devices and power management strategies developed to insure that they 

do not exceed circuit thermal constraints. Traditional optimization techniques are base on 

synchronous digital systems that use a global clock network which consume a 

considerable amount of the systems power. 50% of Dynamic Power is consumed by 

clock circuitry [11]. Furthermore, significant power can be wasted in transitions within 

blocks, even when their output is not needed. Global clock signals are particularly 

affected by scaling technology in that the long interconnect wires have increasing 

different times which must be manage to produce valid output. System designers have 

dealt with the power challenges by clock gating, which saves power by adding logic gates 

to a circuit in order to disable, portions of the clock tree when not needed. Even though 

clock gating reduces the power dissipation, it is more effectively implemented on a macro 

level as opposed to the circuit level. 
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Figure 2.6: Asynchronous Three Stage Pipeline [4]  

The handshake protocol shown in figure 2.6 regulates the flow of information 

through the self-timed pipeline. Input arrives and a Request to F1 is raised. If F1 is 

inactive, it transfers the data and acknowledges this fact to the input buffer which can 

then fetch the next input. Next F1 is enabled by raising the Start signal. The Done signal 

goes high after the completion of the computation. A Request is issued to F2. If it is free, 

an Acknowledgement is raised and the output value is sent to R2. After which, the 

process can repeat itself.  

2.6  Floating Point Adder 

A little known fact is that floating point arithmetic is an essential component in 

computer systems for several reasons. Almost every computer language has floating point 

data type and accelerators. Compilers and operating systems are capable of processing 

information in the floating point format. Even more importantly, is how essential the 

floating point unit is to high performance computing (HPC), mobile applications and 
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embedded systems. Computer system’s performance is measured in Floating Point 

Operations per Second; more commonly known as FLOPs. 

The overall performance of HPC system or any other computing system is greatly 

affected by the Floating Point Unit design; thus, the architecture can affect overall 

performance and power dissipation [28, 29, 30]. Within the floating point unit are several 

components: Adder/Subtractor, Multiplier and Divider. As their names suggest, they each 

have a specific computational roles. However, the Adder is the single most commonly 

used component in this unit. According to data Pappalardo et al in [13], signal processing 

algorithms require on average, 40% multiplication and 60% addition operations; once 

again, reinforcing the importance of FPA.  

Due to the emerging field of computational science and the widespread use of 

high performance computers dealing with application such as computational fluid 

dynamics, the floating point unit is now consuming more power than ever. In fact, a 

major portion of the systems power is used to maintain these floating point units. 

Therefore, a reduction of power usage for these unit will decrease the overall power 

dissipation of the system. For these reasons, I have chosen to focus my research on 

reducing the amount of power used in the Floating Point Adder. More specifically, a 

Ripple Carry Adder. 

2.7  Related Works 

There has been a plethora of works and research geared towards improvement of 

the FPA. Many of which investigate techniques that optimize the latency factors that are 
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in large part dependant on the circuit topology. The key component of this unit is the 

adder type. The Ripple Carry Adder was chosen because of its simplicity in design. There 

are design performance/power/area tradeoffs which must be addressed. In most cases, 

system designers use architectural optimizations to develop a more efficient RCA design 

[14, 15, 16]. However, since synchronous system designers are limited to constraints 

associated with trading energy for performance in CMOS circuits, their designs are 

application based and are not robust. The designs focus on reducing the latency of the 

circuit, while paying a significant area penalty. 

There have been two papers that have chosen to exploit the performance and 

power reduction aspects of the dynamic circuit and use asynchronous logic. N-PMOS 

logic and DRCA was implemented in [17 and 18]. While the DRCA in [18] was proven 

to be a superior logic style for the application, it has not resolved the race conditions that 

were created and under certain conditions, could produce erroneous data. 
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CHAPTER 3 

ASYNCHRONOUS SYSTEM REALIZATION  

3.1 Self-timed 

Traditional synchronous optimization approaches have accepted the notion that 

there must be some tradeoff between power and performance. Asynchronous systems 

offer us something more in terms of speed and power dissipation which allows designers 

to exploit these properties to produce a superior power delay product. In order to realize 

these systems, we should examine which particular type of asynchrony we would like to 

implement. There are several types of asynchronous styles. Burst-mode design begins 

with a state-machine specification, somewhat like conventional synchronous state-

machine synthesis methods. However, the transitions in the machine are governed by the 

inputs themselves, not by a clock. Self-timed design’s structure and behavior are very 

similar to synchronous thus they are much easier to implement.  

3.2 Handshake Protocol 

 

Figure 3.1: Four Phase Handshake Protocol [4] 
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In asynchronous or self-timed systems, handshake signals, more commonly 

known as Request, which initiate an action and Acknowledge which signals completion 

of that action are used to regulate the flow of information in the system. [19] Shows the 

fundamental building block of the handshake family. The four phase handshake protocol 

or return-to-zero is illustrated in figure 3.1. This type of signaling approach requires that 

all control signals be brought back to their original values before the next cycle can 

begin. Both the Req and Ack are initially low. When new input is placed on bus (1), the 

Req is raised high (2) and control is given to the receiver. The receiver then raises Ack 

high (3). After which Req is returned to low (4) and Ack is returned as well (5). 

3.3 Dynamic Logic 

Now we can move from the system level to the gate level. Self-timed circuits are 

sensitive to glitches, an undesired transition that occurs before the signal settles to its 

intended value. Therefore self-timed systems must be realized with a glitch free logic 

style that does not produce any static or dynamic hazards. A dynamic gate alleviates 

these hazards because during the evaluation phase, there is at most one transition. Figure 

3.2 illustrates a dynamic logic gate. It is also great for fast and complex gates. Dynamic 

gates are composed of a n-type logic gate, Pull Down Network (PDN) and transistors that 

regulate the mode of operation: Pre- charge and evaluate. During the pre-charge phase, 

the clock = 0, and the output node is charged to Vdd by the PMOS transistor. At that 

time, the NMOS is off and therefore the PDN is disabled which also eliminates the static 

current. When the clock = 1, the evaluate phase, the PMOS is turned off and the NMOS 
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is turned on. If the inputs are such that the NMOS conducts, then a path between out and 

ground exist and the output is discharged to ground. Since the PMOS is turned off, the 

pre-charge value remains stored on the output capacitance. During this phased, the only 

path that exist between output and Vdd is ground. 

 

Figure 3.2: Dynamic Logic Gate 

Therefore, once out is discharged, it can only be charged again during the next pre-charge 

phase. Inputs can only make at most, one transition during the evaluation phase.  

There are several advantages to the logic style. Fewer transistors are used; 2+N as 

opposed to 2N for standard CMOS gates which allows for a smaller implementation area. 

There is also no static current between Vdd and ground since one part of the circuit is 

always turned off. Dynamic gates also have faster switching speeds. This is due in part to 

the reduced load capacitance because they are driving fewer transistors; one as opposed 

to two. Also, since all of the input capacitance is dedicated to the falling transitions, and 
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not the slow PMOS transistors, they require a reduced logic effort. For example: a two 

input NOR gate only requires to be sized 2/3 vs. 5/3 for the static logic. 

3.4 Domino Logic 

 For the circuit that I am using in this dissertation, I used Domino Logic which is a 

shown in figure 3.3. The structure is a N-type dynamic gate followed by a static inverter. 

During the pre-charge phase, the output of the N-type dynamic gate id charged up to Vdd 

and the output of the inverter is set to zero. In the evaluation phase, the dynamic gate is 

conditionally discharged and the output of the inverter makes a conditional transition 

from 0 -> 1. All of the inputs of domino gates are outputs of other domino gates which 

ensure that all inputs are set to zero at the end of the pre-charge phase. Therefore, during 

the evaluation phase, only 0 -> 1 transitions are made. The inverter is used as a buffer 

which (1) increases noise immunity, (2) reduces the capacitance of the output node by 

separating the internal and load capacitance, and (3) is used as a keeper to reduce the 

leakage and charge redistribution.  

 

Figure 3.3: Domino Logic 
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 On the norm, domino logic is 1.5 to 2 times faster than static CMOS logic 

because dynamic gates present much lower input capacitance for the same output current 

and have lower switching thresholds [12]. In static gates, much of the input capacitance is 

wasted on the slower PMOS that are not even used during a falling transition. Other 

reason dynamic gates are a good choice is because they have lower switching threshold. 

The dynamic gate will begin to switch as soon as the inputs rise to Vt, as opposed to 

Vdd/2 for the static. [1] 

Only non-inverting logic structures are possible because of the presence of 

inverting static buffer.   For this reason, many designer stay away from this complex 

logic style. However, if you are an experienced designer and performance is important, 

dual rail logic may be implemented to produce the signal and its’ complement with an 

area penalty.  
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CHAPTER 4 

RESEARCH 

4.1 Logic Gate Delay 

Now that we understand how self-timed circuits are realized, let’s review how we 

model the timing process. The delay in a logic gate is determined by the topology of the 

gate (fan in) and the capacitive load that the logic gate drives (fan out). Logical effort is a 

term coined by Ivan Sutherland and Bob Sproull in 1991 which is a method that is used 

to model the delay of a single logic gate.  Logical effort method provides a technique to 

determine the most efficient transistor sizing on the critical path to minimize the delay, as 

well as, providing an estimation of that delay. The delay of a logic gate using logical 

effort is given as:   

d = f + p            (4) 

where p is the parasitic delay which is the intrinsic delay of the gate driving no load,  and 

f is the stage effort. The stage effort is defined as: 

f = gh                (5) 

       (6) 

where g is logical effort which is the ratio of the input capacitance of a given gate to that 

of an inverter capable of delivering the same output current and h is effective fan out 

cout/cin. The dependency is demonstrated in figure 4.1.  
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Figure 4.1: Delay expressed in terms of a minimal sized inverter [1] 

The delay is a function of electrical effort of and inverter for a two input NAND gate. 

The slope of each line is the logical effort and the y-intercept is the parasitic delay. As 

shown, we can adjust the total delay by adjusting the electrical effort or by choosing a 

logic gate with a different logical effort [1].  

4.2 Logical Effort 

The tables 4.1a and 4.1b below are a representation of the logical effort for static 

gates and dynamic gates. Clearly, the dynamic logic style allows for smaller sizing which 

partially explains why dynamic gates are faster than static gates. In static gates, much of 

the input capacitance is wasted on slow PMOS transistors that are not even used during a 

falling transition. [4] From table 4.1 we see that the dynamic inverter has a logical effort 
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of 1/3 less than the static inverter. Since logical effort is used for sizing estimations of 

each component, I have included the table below where N=number of inputs. 

Table 4.1: Logical effort per input of (a) and (b) 

 

                    (a) static CMOS gate                          (b) dynamic CMOS gates  

4.3 Self-timed Ripple Carry Adder Circuit Design 

 In digital electronics, an adder is a digital circuit that performs addition and in 

normally located in the arithmetic logic unit. There are many different types of adders 

(Ripple Carry Adder, Carry Look ahead, Carry Select, Conditional Sum, ect.) which 

designers carefully choose according to the design application. For the purpose of this 

dissertation, we will examine the RCA.  
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(a)  

 

(b)  

 

(c) 

Figure 4.2: (a) Full Adder Schematic, (b) Logic diagram, and (c) 4 bit RCA  

http://upload.wikimedia.org/wikipedia/commons/4/48/1-bit_full-adder.svg
http://upload.wikimedia.org/wikipedia/commons/a/aa/Full_Adder.svg
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The foundation of a RCA is a full adder since it is possible to create a logical 

circuit using more than one full adder to add N-bit numbers. Each full adder inputs a Cin, 

which is the Cout of the previous full adder. This type of adder is a ripple carry adder, 

since each Cout bit "ripples" to the next full adder. 

A full adder adds three one-bit binary numbers, often written as A, B, and Cin; A 

and B are the operands, and Cin is a bit carried in (in theory from a past addition). The 

circuit produces a two-bit output sum typically represented by the signals Cout and S. The 

equations to implement the logic for figure 4.2 is: 

                                                      (7) 

                       (8) 

which is represented in the truth table 4.2 below.  

 Since, in the worst case, the carry can propagate from the least significant bit 

position to the most significant bit position, the addition time of an N-bit RCA is O(X). 

The RCA is typically slower than other adders; however the ease of design makes it 

attractive to many. 

The dynamic power dissipation depends primarily on the number of transitions 

per unit area. As a result, the average number of logic transitions can serve as the basis 

for comparing the efficiency of a variety of adder designs [10]. 
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Table 4.2: Truth table for full adder 

Inputs Outputs 

A B   S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 

 

Table 4.3: Average Number of Logic Transitions per Addition [10] 

 

ADDER TYPE 

ADDER SIZE (BITS) 

16 32 64 

Ripple Carry 90 182 366 

Carry Lookahead 100 202 405 

Carry Skip 108 220 437 

Carry Select 161 344 711 

Conditional Sum 218 543 1323 
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From table 4.3, we can see that the Ripple Carry Adder uses the least amount of 

logic transitions per addition. Even though, the propagation delay is higher than the Carry 

Lookahead Adder, another reason it uses less power is it has a lower transistor count. For 

example, a four bit Ripple Carry Adder uses 120 transistors as opposed to 170 used by its 

counterpart, the Carry Lookahead Adder. The transistor count directly affects the 

capacitance stored by the circuit. Minimizing the transistor count reduces the physical 

capacitance or stored electrical charge of a circuit. This in turn, reduces power 

dissipation. The increased propagational delay is offset by using domino logic.  

Figure 4.3 illustrates the one bit ripple carry adder that was designed to boost 

performance and decrease power dissipation. The data path is designed twice for the 

signal and its’ complement. Domino logic is used, the non-inverting logic followed by a 

static inverter, to implement the logic. The done signal is used as a completion detection 

signal which is used in the four phase handshake protocol. The geometry of the 

transistors within each of these individual gates was defined using the approach defined 

for “logical effort”. All components in this dissertation are implemented in an 180nm 

TMSC process where lambda is 90nm and the devise dominions are based on the design 

rules of this process. The figures below show the gate and transistor level realization of 

all the components used to create the one bit RCA. The intrinsic time constant and 

parasitic delays of the CMOS components are determined with a SPICE3 simulation for 

the TSMC 180nm process with the specifications Vdd of 1.8 Volts, at a temperature of 

27C. 
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Figure 4.3: Domino Logic Realization of One bit Adder 

4.4  1- Bit RCA Sub-circuit Parameters 

The static high skew CMOS inverters are used in this design. The circuit level 

realization and associated device geometry is shown figure 4.4. 
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Figure 4.4: High-Skew Inverter gate (a) and transistor (b) level schematic 

The simulated voltage transfer curve for the high skew and standard inverter is shown in 

figure 4.5 below. 

 

Figure 4.5: VTC of high-skew inverter [i.e. V(2)] and standard inverter [i.e. V(3)] 

The SPICE simulation of the high-skew inverter calibration for the input and output 

voltage is illustrated in figure 4.6 below. 
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Figure 4.6: High-skew Inverter Calibration Input and Output Voltage 

The logical effort and parasitic delay associated with this logic function is shown in table 

4.4. 

Table 4.4: High-skew inverter Logical Effort 

High-skew Inverter 

Output transition Logical Effort Parasitic Effort 

High-to-Low 1.403510 1.639791 

Low-to-high 1.455118 1.303958 

 

The AND Gate used to implement the 1-bit RCA is shown below. The gate schematic is 

shown in figure 4.7 with the compound gate symbol used in the adder schematic. The 

device sizing used to realize the gate is also shown in this figure. The sizing is based on 

the 1x scaling in the adder schematic and 3-12 sizing used for the high skew inverter. 

Dynamic AND gates are used in this design. The circuit level realization and associated 

device geometry is shown figure 4.7. 
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Figure 4.7: Dynamic AND gate (a) and transistor (b) level schematic
 

Figure 4.8 shows the SPICE simulation that was used to compute the logical and parasitic 

effort of the AND gate. The simulation was done without the output inverter in the signal 

path. 
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Figure 4.8: Dynamic AND gate embedded NAND gate input and output voltage 

The normalized logical and parasitic effort of this gate is shown in table 4.5. 

Table 4.5: Embedded 2-input NAND gate Logical Effort  

2-input dynamic NAND gate with keeper 

Input Logical Effort Parasitic Effort 

A 0.800326 1.02319 

B 0.753106 1.40450 

  

All of these entries are normalized with respect to the average propagation delay of a 

minimum sized inverter (i.e. 17.52 picoseconds). Table 4.6 below illustrates NAND gate 

input capacitance.  

Table 4.6: Embedded 2-input NAND gate input capacitance 

2-input dynamic NAND gate input capacitance 

Input Capacitance 

A 1.62fF 

B 1.62fF 
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The parasitic effort of the dynamic AND is: 


















 

5

1

3

5
22 invNANDNANDHightolowAND ggPPP =1.665108+1.02319+1.333876+0.3075876 

Table 4.7 shows the logical effort and parasitic effort of the 2-input AND gates. 

Table 4.7:  2-input AND gate Logical Effort. 

2-input dynamic AND gate with keeper 

Input Logical Effort Parasitic Effort 

A 1.455118 3.952149 

B 1.455118 4.254657 

 

 

 

Figure 4.9: Dynamic AND stick diagram 

Figure 4.9 above represent the stick diagram of a dynamic AND gate. Stick diagrams are 

used by designers to determine how to layout a VLSI realization. It is used as a tool to 

create a preliminary guess on how to lay the circuit out for fabrication without the worry 
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of device parameters rules. Once the stick diagram has been created, it is used as the blue 

print for the layout which is illustrated in figure 4.10. 

 

Figure 4.10: Dynamic 2-input AND gate Layout 

The OR Gate used to implement the 1-bit RCA is shown below. The gate 

schematic is shown in figure 4.11 with the compound gate symbol used in the adder 

schematic. The device sizing used to realize the gate is also shown in this figure. The 

sizing is based on the 1x scaling in the adder schematic and 3-12 sizing used for the high-

skew inverter. 
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Figure 4.11: Dynamic 2-input OR gate (a) and transistor (b) level schematic 

 

Figure 4.12 shows the SPICE simulation that was used to compute the logical and 

parasitic effort of the OR gate. The simulation was done without the output inverter in the 

signal path. 

 

Figure 4.12: Dynamic 2-input OR gate input and output voltage 
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 The normalized logical and parasitic effort of this gate is shown in table 4.8. 

Table 4.8: Embedded 2-input NOR gate Logical Effort 

2-input dynamic NOR gate with keeper 

Input Logical Effort Parasitic Effort 

A 0.851715 0.988586 

B 0.851715 0.988586 

 

All of these entries are normalized with respect to the average propagation delay of a 

minimum sized inverter (i.e. 17.52 picoseconds). Table 4.9 below illustrates NOR gate 

input capacitance.  

Table 4.9: Embedded 2-input NOR gate input capacitance 

2-input dynamic NOR gate input capacitance 

Input Capacitance 

A 1.08fF 

B 1.08fF 

 

Parasitic Effort of Dynamic NOR is: 


















 

5

1

2

5
22 invNORNORHightolowNOR ggPPP =1.665108+0.988586+2.129287+0.3075876 

The calculated logical effort for the 2-input OR gate is shown in table 4.10 below. 

Table 4.10:  2-input OR gate Logical Effort  

2-input dynamic OR gate with keeper 

Input Logical Effort Parasitic Effort 

A 1.455118 4.712854 

B 1.455118 4.712854 
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Again, stick diagrams are used in figure 4.13 as a preliminary model for the layout of the 

circuit in figure 4.14. 

 

Figure 4.13: Dynamic 2-input OR stick diagram 

 

 

Figure 4.14: Dynamic 2-input OR gate layout 
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The AOI21 Gate used to implement the 1-bit RCA is shown below. The gate 

schematic is shown in figure 28 with the compound gate symbol used in the adder 

schematic. The device sizing used to realize the gate is also shown in this figure. The 

sizing is based on the 1x scaling in the adder schematic and 3-12 sizing used for the high-

skew inverter. 

 

 

Figure 4.15: Dynamic AO21 gate (a) and transistor (b) schematics 

 

Figure 4.16 shows the SPICE simulation that was used to compute the logical and 

parasitic effort of the AOI21 gate. The simulation was done without the output inverter in 

the signal path. The Boolean function implemented by this compound gate is F(A,B,C) = 

A* B+ C.  
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The logical effort of this gate with reference to sized devices is shown in table 4.11. 

These values were computed with a calibration circuit and SPICE simulation. The input 

capacitance of this gate is shown in table 4.12.  

 

Figure 4.16: Dynamic AO21 gate input and output voltage 

 

Table 4.11: Embedded AOI21 gate logical effort 

Dynamic OAI21 gate with keeper 

Input Logical Effort Parasitic Effort 

A 0.764290 1.23525 

B 0.725933 1.82991 

C 0.851006 1.12045 

 

Table 4.12: Embedded AO21 gate input capacitance 

2-input Dynamic AOI21 gate input capacitance 

Input Capacitance 

A 2.16fF 

B 2.16fF 

C 1.08fF 
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Parasitic Effort of Dynamic AOI21 is: 


















 

5

1

2

5
212121 invAOAOHightolowAO ggPPP

ccc
=1.665108+1.12045+2.127515+0.3075876 

 Once again, a stick diagram is used in figure 4.17 as a preliminary blue print for the 

layout of the circuit in figure 4.18. 

 

Figure 4.17: Dynamic AO21 gate stick diagram 

 

 

 

Figure 4.18: Dynamic AO21 gate layout 
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The Sum Gate used to implement the 1-bit RCA is shown below. The gate schematic is 

shown in Figure 4.19 with the compound gate symbol used in the adder schematic. The 

device sizing used to realize the gate is also shown in this figure. The sizing is based on 

the 1x scaling in the adder schematic and 3-12 sizing used for the high-skew inverter. 

 

Figure 4.19: Dynamic Sum gate and transistor schematics 

 

Figure 4.20: Dynamic not Sum gate calibration circuit input and output voltage 
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Figure 4.20 above shows the SPICE simulations used to compute the logical and parasitic 

effort of the sum gate. The simulation was done without the output inverter in the signal 

path. Tables 4.13, 4.14 and 4.15 show the logical effort of the not sum gate (complement 

of the signal), input capacitance and logical effort of the sum gate, respectively. 

Table 4.13: Embedded not Sum gate logical effort 

Dynamic Majority gate with Keeper 

Input Logical Effort Parasitic Effort ABCD 

A 0.762905 1.47823 -110 

B 0.730713 1.98016 1-10 

C 0.714673 2.26256 11-0 

D 0.833278 1.27067 100- 

A* 0.778093 2.19541 -001 

B* 0.766942 1.81375 0-01 

C* 0.756949 2.12740 00-1 

 

Table 4.14: Embedded Sum gate input capacitance 

Dynamic Sum gate input capacitance 

Input Capacitance 

A 3.6fF 

B 3.6fF 

C 3.6fF 

D 1.44fF 

 

Table 4.15: Sum gate logical effort 

Dynamic Majority gate with Keeper 

Input Logical Effort Parasitic Effort ABCD 

A 0.762905 1.47823 -110 

B 0.730713 1.98016 1-10 

C 0.714673 2.26256 11-0 

D 0.833278 1.27067 100- 

A* 0.778093 2.19541 -001 

B* 0.766942 1.81375 0-01 

C* 0.756949 2.122740 00-1 
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Figure 4.21: Dynamic Sum gate stick diagram 

 

 

Figure 4.22: Dynamic Sum gate Layout 

Again, stick diagrams are used in figure 4.21 as a preliminary model for the layout of the 

circuit in figure 4.22, while figure 4.23 is the layout of the whole circuit. 
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Figure 4.23 Layout of One Bit Adder 
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4.5  Input Distribution in Self-timed Circuits 

To achieve high performance and manage power loss, designers should consider 

non-traditional levels of abstraction, in particularly, input data profiling. Since the 

switching activity of a logic gate is a strong function of the input signal statistics, system 

designers can use this knowledge to exploit power delay capabilities of a circuit.   In this 

dissertation, a pipelined architecture that intersects the timing function of the circuit itself 

and the data that it is processing is utilized. Using input data distribution to increase self-

timed circuit performance and decrease energy dissipation is novel because the timing is 

determined locally, which is a function of the circuit and the input data.   

A few advantages of this proposed technique is the decreased circuit area. This is 

realized when the probability of a path being used is very low then the transistors on the 

path will be sized smaller. There is also an increase average circuit performance because 

when you include data profiling, performance is even better than self-timed alone. The 

average energy dissipation is decreased since energy is only consumed when and event 

happens. The decrease circuit noise is due in part by the fact that fewer transistors are 

used which decreases circuit activity. The local clock distribution alleviates the greedy 

global clock network and hazards that can be introduced by clock skew. This technique is 

less sensitive to changes to process variation because timing is generated locally. Figure 

4.25 gives a graphical illustration of a one bit self-timed RCA circuit path activation 

probability with eight different input distributions (0-7) and four different activation or 

critical paths illustrated by the different colors along the path. 
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Figure 4.24: Circuit Path Activation Probability 
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There are a few disadvantages. There are very few Computer Aided Design 

development tools for design a verification. Sensitive to charge sharing is another 

concern that is just the nature of dynamic logic which can be offset by circuit design that 

is sized to minimize the effect.  

The performance and energy dissipation of synchronous and asynchronous digital 

system is determined in part by the geometry of the devices used to realize the system 

embedded gates. The device geometry is set in the design process to minimize the 

propagation delay along all the paths in the systems. This approach maximizes the 

performance of synchronous systems because the propagation delay of the circuit critical 

path is also minimized. However the performance of asynchronous circuits is not 

maximized because the average propagation delay is not minimized. The performance 

and energy dissipation of asynchronous circuits that are optimized for the average delay 

of the completion detection circuit are maximized and minimized respectively. The 

proposed technique achieves this because it is based on the average completion circuit 

propagation delay and the circuit input data distribution.  

A novel self-timed circuit device sizing approach is presented in the dissertation. 

The analysis used to develop the approach is covered in section 4.7. The performance and 

energy dissipation of the proposed approach is compared to circuits that were designed 

with device sizing method that are used for synchronous circuits in section 4.8. The 

conclusion is presented in section 4.9. 
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Figure 4.25 Gaussian (Normal) and Discrete (Binomial) distribution 

Figure 4.25 shows two distributions, Gaussian or normal and binomial which 

apply to discrete numbers for digital system. We see that they a very similarity to 

Gaussian which is by definition continuous. The distributions show the probability that 

the input appears at the input of the ripple carry adder. If we assume the given 

distribution, then three is more likely to occur at the input and zero and six are less likely 

to occur. Therefore, transistors on the green path would be sized larger and transistors on 

the purple and red path would be sized smaller. Let take a closer look at the fundamental 

principles of this proposed approach.  
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4.6 Approach 

 

A novel self-timed circuit device sizing approach is presented in this section that 

is based on the optimization of circuit device size for a specified input distribution to 

minimize circuit average completion time. 

4.6.1 Circuit Device Sizing with Input Distribution Data without branching effort 

The performance of the circuits realized with circuit device sizing with input 

distribution data without branching effort approach outperforms previously proposed 

self-timed circuits for the specified input distribution. This due in-part to the fact that the 

circuit input distribution is not used to size circuit devices. The device sizing approach 

presented here is based on the Newton-Raphson algorithm which is a root finding 

algorithm for solving non-linear equations[11] and generally converges rapidly for a 

given circuit and input distribution. A self-timed full adder is used in this section to 

demonstrate the proposed device sizing approach. The adder is implemented with domino 

logic and dynamic input latches. It is shown in fig. 4.24.  

The time between the start signal (i.e. self-timed circuit local clock) rising 

transition and the rising transition on the Done node in fig. 4.24 is defined as the 

completion time of the adder. It is a function of the execution time of the self-timed 

circuit/system functional block. It depends on the circuit inputs and therefore it is the 

average of all the active critical path delays for the circuit input space. The active critical 

path delay is the propagation delay along the longest signal path for a given circuit input 

over the  valid input combinations of a self-timed circuit with n primary input bits. The 
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circuit in fig. 4.24 contains four active critical paths. The circuit four active critical paths 

from the primary inputs (i.e.  to the output of the completion detection 

circuit (i.e. node Done) are shown in fig. 4.24 with the respective inputs that activate the 

paths. The bits that define the numbers in fig. 4.24 are organized as follows:   

where    is the MSB. The normalized propagation delay along the critical path that is 

activated for input 000 is shown in equation (9). This equation is normalized with respect 

to the average intrinsic time constant, i.e. τ = 17.527 pSec for TSMC process, of a CMOS 

process. The propagation delay along the critical paths activated by input 001, 010 (or 

100), 011 (or 101) and 110 is shown in equation (10). Finally equation (11) is the 

normalized delay associated with the path activated by the input word 111. The delay 

associated with this path and that activated by input 000 (i.e.  and  ) is a piecewise 

function because the active critical path propagation time is determines by the minimum 

delay on the path that contains the NAND gate, high-skew inverter and AOI21 gate or 

NOR gate, high-skew inverter and AOI21 gate.  

 

Recall the formula that was used to calculate the delay,     Shown 

below in equations are the estimated delay associated with the four active paths for input 

distributions, where, 

  is input capacitance of AOI21 gate on input B, labeled 10 in fig. 4.24,  

- logical effort of AOI21 gate from input C,  

- NOR gate parasitic effort and  

- probability circuit input is 000,  
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- probability circuit input is 001, 

- probability circuit input is 010, 

- probability circuit input is 011,  

- probability circuit input is 100,  

- probability circuit input is 101,  

- probability circuit input is 110,  

- probability circuit input is 111.  
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The expected completion time of the full adder is the average of the active critical path 

delays , , ,  and . It equals equation (9). The unknown parameters 

in Fig. 4.25 related to the device geometry is , ,  

  , ,  , 

 and . The average is:  
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 (9) 

 

completion time of the adder is minimized if these values are set such that, 

 

 

 

 

 

 

 

 

The Newton-Raphson method is used to find the circuit parameters (i.e. unknown 

capacitances above) when the expressions in the equation above vanish. 

The primary problem encountered with this device sizing approach was the 

convergence problems. This problem is due to numerical problems in the Newton-

Raphson algorithm that is used to solve the non-linear system of equations. Due to 

problem, the convergence of this technique was very sensitive to the input data 

distribution. An example of this is the case where it worked well the bimodal input 

distribution and failed for Gaussian, binomial and uniform distributions. 

4.6.2  Circuit Device Sizing with Input Distribution Data with branching effort 

This is a new research approach that is based on adjusting the branching effort. 

The circuit in fig. 4.24 will be used to demonstrate the proposed approach. 
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Let, 

 

 

 

 

 

The stage effort is: 

 

 

 

 

The propagation delay along the path is: 

 

(path though NAND gate 1) 

  

The load at the input of high-skew inverter 12 is: 

 

 

 

The propagation delay through the NOR gate is: 
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(path though NOR gate 2) 

 

 

Figure 4.26: Trading delay in one path for delay in another 

The inverting logic in the full adder shown in fig. 4.24 is a mirror image of the 

un-inverted logic. If the input probability distribution is not symmetrically distributed 

then the delay associated with each side of the adder should be different. This is achieved 

in the proposed approach by adjust the input capacitance of the sum gates. The branching 

effort in the circuit associated with path is: 
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The stage effort of the left and right path in fig. 4.24 is: 

 

 

 

 

 

The path delay of the left and right sides is: 

 

 

 

The delay associate with each of these paths as x is swept from 0.1 to 0.9 is shown in fig. 

4.27. 

 

Figure 4.27: Left and Right circuit propagation delay for scaling factor x 
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Now let’s optimize the scaling factors for the circuit shown in fig. 4.24 for the following 

input distribution.  The input distribution is shown in fig. 4.28.  

 

Figure 4.28: Full Adder input Distribution 

 

Therefore, the expected completion time of the full adder is the average of the active 

critical path delays , and . It equals equation (10). The unknown 

parameters in fig. 4.25 related to the device geometry is: 

 

and  . 

   (10) 
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The average completion time of the adder is minimized if these values are set such that,  

1
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The Newton-Rapson method is used to find the circuit parameters (i.e. unknown 

capacitances above) when the expression in equation (11) vanishes. 
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4.7  Results 

Table 4.16 below shows the results of device sizing with branching effort. 

Table 4.16: Device capacitance in terms of transistor width 

 

Full 

Adder 

Side 

Branching 

Effort 
Nominal Bimodal[] Binomial[] 

Left-Side B0 3.889 9.22128 2.7882 

B0’ 5.8335 3.12388 14.3051 

Right-

Side 

B2 3.889 9.22128 2.7882 

B2’ 5.8335 3.12388 14.3051 

 B1 2.3335 2.3335 2.3335 

B1’ 2.3335 2.3335 2.3335 

Average 

Propagation 

Delay 

 
21.7258 

(22.9488) 

21.2617 

(24.0977) 

Speedup  5.629% 13.39% 

Energy % 

Reduction 
 11.567% 16.78% 

 

4.8  Conclusions  

 

The performance and energy dissipation of self-timed circuits/systems depend on 

the circuit gate-level implementation, device sizing and input distribution. The device 

sizing approach used in previously proposed self-timed circuits is identical to that used 

for synchronous realizations. Therefore it is only optimized to minimize the propagation 
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delay of all circuit signal paths. The performance and energy dissipation, i.e. average 

completion time and energy dissipation, of the proposed approach for a self-timed circuit 

is optimized, with respect to device sizing, for a given input distribution. It is less than 

realizations that do not considered this feature of the input space. This design process 

causes the active critical path delay of the circuit paths with the highest probability of 

being active to be less than the path delay in a realization that does not use input data. It 

also generates delay paths with larger propagation delay than that in previously proposed 

self-timed circuits design for path that are rarely used, i.e. paths associated with low 

probability. Both the performance and energy dissipation of self-timed circuits are 

reduced if the device sizing is optimized for the input distribution. 

 In short, performance is restricted by power and as chip density and frequency 

increase, synchronous designers try to figure out ways to deal with power/performance 

tradeoff. Can we get a better Energy Delay Product? Asynchronous designers do not have 

to deal with this tradeoff because of the nature of the logic design; we can use less 

transistors and operate at faster speeds. 

Using self-timed circuits coupled with data profiling, I can exploit the natural 

properties --faster speeds, less transistors and path sizing– to optimize power dissipation 

and performance. This gives us a superior Energy Delay Product. This technique is novel 

because there has been no research that alters the LE formula by manipulation the 

branching effort to trade delay in one part of the circuit for another. We can essentially 
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control the flow of data by allowing highly probable paths to be sized larger and vice 

versa. With a 13% increase in performance and 16% decrease in power dissipation. 
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APPENDIX 

 

5.1  C++ Code for Single Precision, Round to Even Floating Point Adder 

 

 #include <iostream.h> 

#include <fstream.h> 

#include <iomanip.h> 

#include <cmath> 

 

int main() 

{ 

float   num1 = 3.99, num2 = 3.99,  largest  = 0.0, smallest =0.0, sum = 0.0, Num1, Num2; 

 int    num1_exp =1, num2_exp =1, diff =0, Larger_exp = 0, shift = 1, x=10, larger = 0, 

smaller =0, sticky; 

char   sign; 

cout.setf(ios::fixed, ios::floatfield); //set up floating point 

cout.setf(ios::showpoint); //output format 

   

 

Num1 = num1; 

Num2 = num2; 

// compare exponents 

  if ( num1_exp >=  num2_exp) 

{  
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    larger  = num1_exp; 

 smaller  = num2_exp; 

    diff = larger - smaller;   

 

while ( diff > 0) 

      {  

         shift = shift * x; 

         diff --; 

       } 

 

 num2 = num2 / shift; 

 

 { 

  if  (num1 >= num2) 

  { 

  largest  = num1; 

  smallest  = num2; 

  } 

  else if (num1 < num2) 

  { 

        largest  = num2; 

  smallest  = num1; 

  } 

 } 
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} 

 if (num2_exp > num1_exp) 

{ 

  

    larger  = num2_exp; 

 smaller  = num1_exp; 

    diff = larger - smaller;   

while ( diff > 0) 

      {  

         shift = shift * x; 

         diff --; 

       } 

 num1 = num1 / shift; 

 

 { 

  if  (num1 >= num2) 

  { 

  largest  = num1; 

  smallest  = num2; 

  } 

  else if (num1 < num2) 

  { 

        largest = num2; 

  smallest = num1; 
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  } 

 } 

} 

 

Larger_exp = larger; 

sum = largest + smallest;  // add significands 

if (sum < 0) 

   sign = ‘-‘; 

else 

  sign = ‘+’; 

 

//Exception Handling 

if ((sum > 9.9999) || (sum < 1)) 

  sticky = 1; 

    Else  

  sticky = 0; 

 

// Normalizing 

while ( fabs (sum) > 9.9999) 

{ 

    sum = sum / x; 

 Larger_exp ++; 

 cout << "Overflow" << endl; 
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} 

 

while ( fabs(sum) < 1) 

{ 

   sum = (sum * x); 

   Larger_exp --; 

   cout << "Underflow" << endl; 

    

} 

 

//Rounding 

 

cout << setw(5) << setprecision(2) <<Num1 << " x 10 ^" << num1_exp << " + " << 

Num2 << " x 10^"  << num2_exp << " = " << sum << "  x 10^" << Larger_exp << endl; 

return 0; 

} 
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5.2  VHDL Code for Simple, Single Precision, Round to Even Floating Point Adder 

Library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

--use 16 bits for now SEEEEEEEEMMMMMMMM 

entity Thirty_Two_Bit_FP_ADD is 

    Port ( x : in STD_LOGIC_vector(31 downto 0);--first number 

             y : in  STD_LOGIC_vector(31 downto 0);--second number 

            final_Man: out std_logic_vector(23 downto 0);--final sig 

            Final_Exponent: out std_logic_vector(7 downto 0);--final exp 

            comp: out std_logic_vector(8 downto 0);-- tester 

            result : out std_logic_vector (31 downto 0);--answer 

            getflag: out std_logic; 

            mout: out string(32 downto 1);--message out  

            afteradd4 : out std_logic_vector (27 downto 0));--tester 

end Thirty_Two_Bit_FP_ADD; 

 

architecture structural of Thirty_Two_Bit_FP_ADD is 

Signal  Temp,Big_Exp, twos_comp_Temp,twos_comp_y, 

ShiftSmallSig,changeBigExp,changebigexp2, NewExp, original_exp,newdiff, 

temp_exp1, temp_exp, tempdiff, twos_comp_tempdiff, updated_exp, 

add2exp,add2exp2,final_exp1 , stky, xexp,  yexp, final_exp2, stky2,  tempexp,tempexp1, 

tempexp2, twos_comp_grstky, final_exp_EX, 

final_Exp_EX1,Small_Exp,Final_Exp_EX2: std_logic_vector ( 7 downto 0); 
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Signal  afterAdd,twos_comp_Afteradd,  grstky, 

Tempsig,twos_comp_tempSig,final_man_EX: std_logic_vector(23 downto 0); 

Signal prependZero, comp1,pickSmallSig,xorofsign, 

temp3,BigSigSign,Temp1,temp2,temp6, temp7,temp8,temp9,temp10,temp12, 

CO,ovfl,ovefl, udfl, NAN,Post_shift,updateexp2,check_exp, guard_bit, updateExp, 

guard_bit1, guard_bit2, guard_bit3, guard_bit4, guard_bit5,s, Rd2n, sticky,Addl,flag, 

fflag, fflag2,fflag3, setflag, dflag, nflag, inflag,underflag, underflag2, bpflag, zflag, 

zflag2, getAns, gflag, getMessage: std_logic;  

Signal Ready2Add, eflag  : std_logic_vector(8 downto 0); 

Signal Ready2Add2,Ready2add3, BigSig2,twos_comp_bigsig,temp4, 

BigSigready,int_part: std_logic_vector(23 downto 0); 

signal BigSig, Small_Sig,xman,yman, Final_man_EX1,final_man2,Final_Man_EX2 : 

std_logic_vector(22 downto 0); 

signal smallsigready,afteradd3,twos_comp_Ready2Add3,Small_Sig2,afteradd2: 

std_logic_vector(26 downto 0); 

signal message, message2,  final_message:string (32 downto 1) ; 

signal afteradd6, rounded_num,afteradd12,afteradd13: std_logic_vector(24 downto 0); 

signal sel:std_logic_vector(1 downto 0); 

signal afteradd1, afteradd0:std_logic_vector (27 downto 0); 

 

component Eight_bit_subtractor is 

Port(A, B: in std_logic_vector (7 downto 0); 

cout: out std_logic; 

Sum: out std_logic_vector(7 downto 0)); 

End component; 
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component Mux is 

    Port ( a : in  STD_LOGIC_vector (7 downto 0); 

           b : in  STD_LOGIC_vector (7 downto 0); 

           sel : in  STD_LOGIC; 

           e : out std_logic_vector (7 downto 0)); 

end component; 

 

component Mux2 is 

    Port ( a2 : in  STD_LOGIC; 

           B2 : in  STD_LOGIC; 

           Sel2 : in  STD_LOGIC; 

           e2: out std_logic); 

end component; 

 

component  Mux3 is 

    Port ( a : in  STD_LOGIC_vector (8 downto 0); 

           b : in  STD_LOGIC_vector (8 downto 0); 

           sel : in  STD_LOGIC; 

           e : out std_logic_vector (8 downto 0)); 

end component; 

 

component Mux24 is 

    Port ( a : in  STD_LOGIC_vector (23 downto 0); 

           b : in  STD_LOGIC_vector (23 downto 0); 
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           sel : in  STD_LOGIC; 

           e : out std_logic_vector (23 downto 0)); 

end component; 

 

component  Mux23 is 

    Port ( a : in  STD_LOGIC_vector (22 downto 0); 

           b : in  STD_LOGIC_vector (22 downto 0); 

           sel : in  STD_LOGIC; 

           e : out std_logic_vector (22 downto 0)); 

end component; 

 

component  Mux26 is 

    Port ( a : in  STD_LOGIC_vector (26 downto 0); 

           b : in  STD_LOGIC_vector (26 downto 0); 

           sel : in  STD_LOGIC; 

           e : out std_logic_vector (26 downto 0)); 

end component; 

 

component  Mux31 is 

    Port ( a : in  STD_LOGIC_vector (31 downto 0); 

           b : in  STD_LOGIC_vector (31 downto 0); 

           sel : in  STD_LOGIC; 

           e : out std_logic_vector (31 downto 0)); 

end component; 
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component twos_comp is 

Port ( B: in std_logic_vector (7 downto 0); 

        AplusB1: out std_logic_vector (7 downto 0)); 

End component; 

 

component twos_comp2 is 

Port ( B: in std_logic_vector (8 downto 0); 

     AplusB1: out std_logic_vector (8 downto 0)); 

End component; 

 

component twos_comp3 is 

Port ( B: in std_logic_vector (9 downto 0); 

     AplusB1: out std_logic_vector (9 downto 0)); 

End component; 

      

component twos_comp24 is 

Port ( B: in std_logic_vector (23 downto 0); 

     AplusB1: out std_logic_vector (23 downto 0)); 

End component; 

 

component twos_comp27 is 

Port ( B: in std_logic_vector (26 downto 0); 

     AplusB1: out std_logic_vector (26 downto 0)); 

 End component; 
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component Eight_bit_Adder is 

Port(A, B: in std_logic_vector(8 downto 0); 

cout: out std_logic; 

Sum: out std_logic_vector(8 downto 0)); 

End component; 

 

component Twenty4_Bit_Adder is 

Port(A, B: in std_logic_vector (23 downto 0); 

        cout: out std_logic; 

       Sum: out std_logic_vector(23 downto 0)); 

End component; 

 

component Twenty5_Bit_Adder is 

Port(A, B: in std_logic_vector (24 downto 0); 

        cout: out std_logic; 

       Sum: out std_logic_vector(24 downto 0)); 

End component; 

 

component CIE is 

Port(A, B: in std_logic_vector (7 downto 0); 

        cout: out std_logic; 

       Sum: out std_logic_vector(7 downto 0)); 

end component; 
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component  Mux4 is 

    Port ( a : in  STD_LOGIC_vector (9 downto 0); 

           b : in  STD_LOGIC_vector (9 downto 0); 

           sel : in  STD_LOGIC; 

           e : out std_logic_vector (9 downto 0)); 

end component; 

 

Begin 

  xExp <= x(30 downto 23); 

  yExp <= y(30 downto 23); 

  xMan <= x(22 downto 0); 

  yMan <= y(22 downto 0); 

     

  Process (xexp, yexp,xman, yman,stky, flag) 

      begin 

   If (xExp = "00000000") then  

    if (xMan = "00000000000000000000000") then  stky(0) <= '1'; flag <= '1'; 

      else stky(1) <= '1'; setflag <= '1'; --renomalize 

  end if; 

  end if; 

   

  If (xExp = "11111111")  then  

   if (xMan = "00000000000000000000000") then stky(6) <= '1'; flag <= '1';--INFN 

    else stky(7) <= '1'; flag <= '1';--NAN 
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end if; 

end if; 

 

   If (yExp = "11111111")  then  

    if (yMan = "00000000000000000000000") then stky(2) <= '1';flag <= '1';--INFN 

     else stky(3) <= '1'; flag <= '1';--NAN 

 end if; 

 end if; 

  

   If (yExp = "00000000") then  

    if (yMan = "00000000000000000000000") then  stky(4) <= '1'; flag <= '1'; 

     else stky(5) <= '1'; setflag <= '1';--renomalize 

 end if; 

 end if; 

  

end process;  

  

TC3: twos_comp -- getting negative for addition 

Port map (B(7 downto 0) => y(30 downto 23), AplusB1 (7 downto 0) => twos_comp_y(7 

downto 0)); 

     

--SUB EXP X-Y= DIFF/TEMP 

s0: Eight_bit_subtractor 
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Port map (A(7 downto 0) => X(30 downto 23), B(7 downto 0) => twos_comp_Y(7 

downto 0), Cout => Temp2, sum(7 downto 0) => Temp(7 downto 0)); 

     

Temp1 <= not temp(7); 

 

--Select big exponent 

 

M0: Mux 

Port map (A(7 downto 0) => X(30 downto 23), B(7 downto 0) => Y(30 downto 23), e(7 

downto 0) => Big_Exp(7 downto 0), Sel => temp(7)); 

 

--Select small exponent 

M11: Mux 

Port map (A(7 downto 0) => X(30 downto 23), B(7 downto 0) => Y(30 downto 23), e(7 

downto 0) => Small_Exp(7 downto 0), Sel => temp1); 

 

--select Big_Sig 

M1: Mux23 

Port map (A(22 downto 0) => X(22 downto 0), B(22 downto 0) => Y(22 downto 0), e(22 

downto 0) => BigSig(22 downto 0), Sel => temp(7)); 

 

 

--2'S COMP OF DIFF IN EXP 

TC1: twos_comp 

Port map (B(7 downto 0) => temp(7 downto 0), AplusB1 (7 downto 0) => 

twos_comp_Temp(7 downto 0)); 
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--select THE DIFF OF COMPLEMENT Or DIFF FOR SHIFT AMOUNT 

M4: Mux 

Port map (A(7 downto 0) => temp(7 downto 0), B(7 downto 0) => twos_comp_Temp (7 

downto 0), e(7 downto 0) => ShiftSmallSig(7 downto 0), Sel  =>  temp(7)); 

--24 bit shift? 

guard_bit1 <= (shiftsmallsig(7) or shiftsmallsig(6) or shiftsmallsig(5)); 

guard_bit2 <= (shiftsmallsig(4) AND shiftsmallsig(3)); 

guard_bit3 <= (shiftsmallsig(2) or shiftsmallsig(1) or shiftsmallsig(0)); 

guard_bit4 <= (guard_bit2 and guard_bit3); 

guard_bit5 <= (guard_bit1 or guard_bit4); 

 

fflag2 <= '0' when guard_bit5 = '1' else '1'; 

 

--PREPEND "1" TO BIG SIG 

--prependZero <= (big_exp(6) and big_exp(5) and big_exp(4) and big_exp(3) and 

big_exp(2) and big_exp(1) and big_exp(0)); 

BigSig2 <= '0' & bigsig when big_exp ="00000000" else '1' & BigSig; 

 

--get sign of big sig 

M26: Mux2 

Port map (A2 => x(31), B2 => y(31), e2 => BigSigSign, Sel2 =>  temp(7)); 
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--select small sig 

M2: Mux23 

Port map (A(22 downto 0) => X(22 downto 0), B(22 downto 0) => Y(22 downto 0), e(22 

downto 0) => Small_Sig(22 downto 0), Sel  =>  Temp1); 

 

-- PREPEND "1" TO SMALL SIG 

Ready2Add2 <= '0' & small_sig when small_exp = "00000000" else '1' & small_sig; 

 

--SHIFT SMALL SIG 

 

Ready2Add3 <=  Ready2Add2 when ("00000000" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 24) when 

("00011000" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 23) when 

("00010111" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 22) when 

("00010110" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 21) when 

("00010101" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 20) when 

("00010100" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 19) when 

("00010011" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 18) when 

("00010010" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 17) when 

("00010001" = ShiftSmallSig) else 
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      to_stdlogicvector(to_bitvector(Ready2Add2) srl 16) when 

("00010000" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 15) when 

("00001111" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 14) when 

("00001110" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 13) when 

("00001101" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 12) when 

("00001100" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 11) when 

("00001011" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 10) when 

("00001010" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 9) when 

("00001001" = ShiftSmallSig) else 

      to_stdlogicvector(to_bitvector(Ready2Add2) srl 8) when 

("00001000" = ShiftSmallSig) else 

              to_stdlogicvector(to_bitvector(Ready2Add2) srl 7) when ("00000111" = 

ShiftSmallSig) else 

              to_stdlogicvector(to_bitvector(Ready2Add2) srl 6) when ("00000110" = 

ShiftSmallSig) else 

              to_stdlogicvector(to_bitvector(Ready2Add2) srl 5) when ("00000101" = 

ShiftSmallSig) else 

              to_stdlogicvector(to_bitvector(Ready2Add2) srl 4) when ("00000100" = 

ShiftSmallSig) else 

              to_stdlogicvector(to_bitvector(Ready2Add2) srl 3) when ("00000011" = 

ShiftSmallSig) else 
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              to_stdlogicvector(to_bitvector(Ready2Add2) srl 2) when ("00000010" = 

ShiftSmallSig) else 

              to_stdlogicvector(to_bitvector(Ready2Add2) srl 1) when ("00000001" = 

ShiftSmallSig) else 

             "000000000000000000000000"; 

               

 --Generate Guard, Round and Sticky 

 --GRSTKY(23 downto 0)<= "000000000000000000000000"; 

 Process(Ready2add2,shiftsmallsig, GRSTKY,Ready2Add3) 

 begin 

 if  ("00000001" = ShiftSmallSig) then GRSTKY<= Ready2add2(0) & 

"00000000000000000000000";-- Ready2Add3 <= 

to_stdlogicvector(to_bitvector(Ready2Add2) srl 1); 

 elsif ("00000010" = ShiftSmallSig) then GRSTKY <= Ready2add2(1 downto 0) & 

"0000000000000000000000";-- Ready2Add3 

<=to_stdlogicvector(to_bitvector(Ready2Add2) srl 2);           

 elsif ("00000011" = ShiftSmallSig) then GRSTKY<= Ready2add2(2 downto 0) & 

"000000000000000000000";-- Ready2Add3 

<=to_stdlogicvector(to_bitvector(Ready2Add2) srl 3); 

 elsif ("00000100" = ShiftSmallSig) then GRSTKY <= Ready2add2(3 downto 0) & 

"00000000000000000000";-- Ready2Add3 

<=to_stdlogicvector(to_bitvector(Ready2Add2) srl 4); 

 elsif ("00000101" = ShiftSmallSig) then GRSTKY<= Ready2add2(4 downto 0) & 

"0000000000000000000";-- Ready2Add3 

<=to_stdlogicvector(to_bitvector(Ready2Add2) srl 5); 

 elsif ("00000110" = ShiftSmallSig) then GRSTKY<= Ready2add2(5 downto 0) & 

"000000000000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) 

srl 6); 
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 elsif ("00000111" = ShiftSmallSig) then GRSTKY<= Ready2add2(6 downto 0) & 

"00000000000000000";-- Ready2Add3 <= to_stdlogicvector(to_bitvector(Ready2Add2) 

srl 7); 

 elsif ("00001000" = ShiftSmallSig) then GRSTKY<= Ready2add2(7 downto 0) & 

"0000000000000000";-- Ready2Add3 <= to_stdlogicvector(to_bitvector(Ready2Add2) 

srl 8); 

 elsif ("00001001" = ShiftSmallSig) then GRSTKY<= Ready2add2(8 downto 0) & 

"000000000000000";-- Ready2Add3 <= to_stdlogicvector(to_bitvector(Ready2Add2) srl 

9); 

 elsif ("00001010" = ShiftSmallSig) then GRSTKY<= Ready2add2(9 downto 0) & 

"00000000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 

10); 

 elsif ("00001011" = ShiftSmallSig) then GRSTKY<= Ready2add2(10 downto 0) & 

"0000000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 

11); 

 elsif ("00001100" = ShiftSmallSig) then GRSTKY<= Ready2add2(11 downto 0) & 

"000000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 12); 

 elsif ("00001101" = ShiftSmallSig) then GRSTKY<= Ready2add2(12 downto 0) & 

"00000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 13); 

 elsif ("00001110" = ShiftSmallSig) then GRSTKY <= Ready2add2(13 downto 0) & 

"0000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 14); 

 elsif ("00001111" = ShiftSmallSig) then GRSTKY<= Ready2add2(14 downto 0) & 

"000000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 15); 

 elsif ("00010000" = ShiftSmallSig) then GRSTKY<= Ready2add2(15 downto 0) & 

"00000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 16); 

 elsif ("00010001" = ShiftSmallSig) then GRSTKY<= Ready2add2(16 downto 0) & 

"0000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 17); 

 elsif ("00010010" = ShiftSmallSig) then GRSTKY<= Ready2add2(17 downto 0) & 

"000000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 18); 

 elsif ("00010011" = ShiftSmallSig) then GRSTKY<= Ready2add2(18 downto 0) & 

"00000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 19); 
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 elsif ("00010100" = ShiftSmallSig) then GRSTKY<= Ready2add2(19 downto 0) & 

"0000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 20); 

 elsif ("00010101" = ShiftSmallSig) then GRSTKY<= Ready2add2(20 downto 0) & 

"000";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 21); 

 elsif ("00010110" = ShiftSmallSig) then GRSTKY<= Ready2add2(21 downto 0) & 

"00";-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 22); 

 elsif ("00010111" = ShiftSmallSig) then GRSTKY<= Ready2add2(22 downto 0) & '0';-- 

Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 23); 

 elsif ("00011000" = ShiftSmallSig) then GRSTKY(23 downto 0) <= Ready2add2(23 

downto 0);-- Ready2Add3 <=to_stdlogicvector(to_bitvector(Ready2Add2) srl 24); 

 else   GRSTKY<= "000000000000000000000000";-- Ready2Add3 <=  Ready2Add2;  

 end if; 

 end process;   

  

 -- get sticky 

 S<= (grstky(21)or grstky(20)or grstky(19) or grstky(18) or grstky(17) or grstky(16) or 

grstky(15) or grstky(14) or grstky(13) or grstky(12) or grstky(11) or grstky(10) or 

grstky(9) or grstky(8) or grstky(7) or grstky(6) or grstky(5) or grstky(4) or grstky(3) or 

grstky(2) or grstky(1) or grstky(0)); 

 

 

--2?s comp of small sig if it is negative 

 

TCT0: twos_comp24 

Port map (b(23 downto 0) => Ready2add3(23 downto 0),  AplusB1 (23 downto 0) => 

twos_comp_Ready2Add3(23 downto 0)); 
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TCT53: twos_comp 

port map (b(7 downto 3) => "00000", b(2 downto 1) => grstky (23 downto 22),b(0) => s, 

AplusB1(7 downto 0) => twos_comp_grstky(7 downto 0)); 

--get sign of small sig 

picksmallsig <= x(31) xor y(31);   

 

smallsigready <= Ready2add3(23 downto 0) & GRSTKY(23 downto 22) & S;              

 

--SELECTS SMALL SIG OR 2'S COMP OF SMALL SIG 

M57: Mux26 

Port map (A(26 downto 3) =>  Ready2add3(23 downto 0), A(2 downto 1) => 

GRSTKY(23 downto 22), A(0) => S, B(26 downto 3) => twos_comp_Ready2Add3(23 

downto 0), B(2 downto 0) => twos_comp_grstky(2 downto 0), e(26 downto 0) => 

Small_Sig2(26 downto 0), Sel  =>  PickSmallSig); 

 

--ADD BIG SIG TO SMALL SIG 

FA11: Twenty4_Bit_Adder 

Port map (A(23 downto 0) => BigSig2(23 downto 0), B(23 downto 0) => Small_Sig2(26 

downto 3), Cout => ovfl, sum(23 downto 0) => Tempsig(23 downto 0)); 

 

--twos comp of big&small sig addition 

TCT10: twos_comp24 

Port map (b(23 downto 0) => tempsig(23 downto 0), AplusB1 (23 downto 0) => 

twos_comp_tempSig(23 downto 0)); 

 

Co <= not ovfl; 
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comp1 <= (picksmallsig and (tempsig(23)) and Co); 

 

--select tempsig or twos comp to tempsig 

 

M15: Mux24 

Port map (A(23 downto 0) => tempsig(23 downto 0), B(23 downto 0) => 

twos_comp_tempSig(23 downto 0), e(23 downto 0) => afteradd(23 downto 0), Sel  =>  

comp1); 

 

--shift afteradd to normalize? 

 

updateExp<= ovfl when picksmallsig = '0' else 

            '0'; 

afteradd0<= updateExp & afteradd & small_sig2(2 downto 0); 

 

--afteradd1<= afteradd0 (27 downto 0) when picksmallsig = '1' else 

           --ovfl & afteradd0 (26 downto 0);             

 afteradd1 <= to_stdlogicvector(to_bitvector (Afteradd0) srl 1) when afteradd0(27) = '1' 

else afteradd0;           

afteradd2 <= afteradd1 (26 downto 0); 

 

--increment exp? 

s5: Eight_bit_subtractor 

Port map (A(7 downto 0) => Big_exp(7 downto 0), B(7 downto 1) => "0000000", B(0) 

=> updateExp, Cout => Temp2, sum(7 downto 0) => TempExp(7 downto 0)); 
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--Overflow? 

Eflag(0) <= '1' when temp2 = '1' else '0'; 

Eflag(1) <= '1' when tempExp= "11111111" else '0'; 

 

--Underflow? 

Eflag(2) <= '1' when tempExp = "00000000" else '0'; 

 

 --afteradd2 <= afteradd1 & small_sig2(2 downto 0) 

  

   --Normalize      

              

process( afteradd2,afteradd3, changeBigExp, underflag,TempExp1 ) 

   begin 

         

    if afteradd2(26)= '1' then afteradd3 <= afteradd2; changeBigExp <= 

"00000000";underflag <= '0'; 

   

    elsif afteradd2(25)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

1);changeBigExp <= "11111111"; underflag <= '0'; 

    elsif afteradd2(24)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

2);changeBigExp <= "11111110"; underflag <= '0'; 

    elsif afteradd2(23)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

3);changeBigExp <= "11111101"; underflag <= '0'; 

    elsif afteradd2(22)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

4);changeBigExp <= "11111100"; underflag <= '0'; 
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    elsif afteradd2(21)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

5);changeBigExp <= "11111011"; underflag <= '0'; 

    elsif afteradd2(20)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

6);changeBigExp <= "11111010"; underflag <= '0'; 

    elsif afteradd2 (19)= '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

7);changeBigExp <= "11111001"; underflag <= '0'; 

    elsif afteradd2 (18) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 8);changeBigExp <= "11111000"; underflag <= '0';  

    elsif afteradd2 (17) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 9);changeBigExp <= "11110111"; underflag <= '0';             

    elsif afteradd2 (16) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 10);changeBigExp <= "11110110"; underflag <= '0';     

    elsif afteradd2 (15) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 11);changeBigExp <= "11110101"; underflag <= '0';           

    elsif afteradd2 (14) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 12);changeBigExp <= "11110100"; underflag <= '0'; 

    elsif afteradd2 (13) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 13);changeBigExp <= "11110011"; underflag <= '0'; 

    elsif afteradd2 (12) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 14);changeBigExp <= "11110010"; underflag <= '0'; 

    elsif afteradd2 (11) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 15);changeBigExp <= "11110001"; underflag <= '0'; 

    elsif afteradd2 (10) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) 

sll 16);changeBigExp <= "11110000"; underflag <= '0'; 

    elsif afteradd2 (9) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

17);changeBigExp <= "11101111"; underflag <= '0'; 

    elsif afteradd2 (8) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

18);changeBigExp <= "11101110"; underflag <= '0'; 



 
 

96 
 

    elsif afteradd2 (7) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

19);changeBigExp <= "11101101"; underflag <= '0'; 

    elsif afteradd2 (6) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

20);changeBigExp <= "11101100"; underflag <= '0'; 

    elsif afteradd2 (5) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

21);changeBigExp <= "11101011"; underflag <= '0'; 

    elsif afteradd2 (4) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

22);changeBigExp <= "11101010"; underflag <= '0'; 

    elsif afteradd2 (3) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

23);changeBigExp <= "11101001"; underflag <= '0'; 

    elsif afteradd2 (2) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

24);changeBigExp <= "11101000"; underflag <= '0'; 

    elsif afteradd2 (1) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

25);changeBigExp <= "11100111"; underflag <= '0'; 

    elsif afteradd2 (0) = '1' then afteradd3 <= to_stdlogicvector(to_bitvector(Afteradd2) sll 

26);changeBigExp <= "11100110"; underflag <= '0'; 

    else underflag <= '1'; afteradd3 <= "000000000000000000000000000";  TempExp1 <= 

"00000000"; changeBigExp <= "00000000"; 

         end if;   

       

     end process; 

--inflag <= '0' when nflag = '1' else '1';   

fflag <= '0' when flag ='1' else '1'; 

dflag <= '1' when setflag = '1' else '0'; 

underflag2 <= '1' when underflag = '1' else '0'; 

tempexp2 <= tempexp1 when underflag2 = '1' else tempexp; 

bpflag <= '0' when (stky(4) or stky(0)) = '1' else '1'; 
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fflag3 <= not fflag2; 

zflag <= underflag2 or fflag3; 

zflag2 <= '0' when zflag = '1' else '1';   

   C1: CIE 

    Port map (A(7 downto 0) => TempExp2(7 downto 0), B(7 downto 0) => 

ChangeBigExp(7 downto 0), Cout => Temp6, sum(7 downto 0) => Temp_Exp(7 downto 

0)); 

    

   --Overflow? 

   Eflag(3) <= '1' when temp6 = '1' else '0'; 

   Eflag(4) <= '1' when temp_Exp= "11111111" else '0'; 

    

   --Underflow? 

   Eflag(5) <= '1' when temp_Exp = "00000000" else '0'; 

     

    

   --Rounding logic 

   Sticky <= ((afteradd3(1)) or (afteradd3(0))); 

   Rd2N <= ((afteradd3(3)) or (sticky)); 

   Addl <= ((Rd2N) and (afteradd3(2))); 

   --RNI  Rd2N <= ((afteradd3(2)) or (sticky)); 

   --RNI  Addl <= ((Rd2N) and (not(BigSigSign)));  

  

--Add one to odd sig 
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--C3: CIE 

--ADD ulp 

 afteradd6 <="000000000000000000000000" &  ADDl; 

FA3: Twenty5_Bit_Adder 

Port map (A(24 downto 0) => afteradd3(26 downto 2), B(24 downto 0) => afteradd6(24 

downto 0), Cout => Post_shift, sum(24 downto 0) => rounded_num (24 downto 0)); 

 

updateExp2<= '0' when Post_shift  = '0' else 

            '1'; 

             

--increment exp? 

s22: Eight_bit_subtractor 

Port map (A(7 downto 0) => Temp_Exp(7 downto 0), B(7 downto 1) => "0000000", B(0) 

=> updateExp2, Cout => Temp12, sum(7 downto 0) => Final_Exp1(7 downto 0)); 

 

--Overflow? 

eflag(6) <= '1' when temp12 = '1' else '0'; 

eflag(7) <= '1' when Final_Exp1= "11111111" else '0'; 

 

--Underflow? 

eflag(8) <= '1' when Final_Exp1 = "00000000" else '0'; 

  

 process(stky, stky2) 

     begin 
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 if stky(0) = '1' then stky2(0) <= '1'; else stky2 (0) <='0'; end if; 

 if stky(1) = '1' then stky2(1) <= '1'; else stky2 (1)<='0'; end if; 

 if stky(2) = '1' then stky2(2) <= '1'; else stky2 (2)<='0'; end if; 

 if stky(3) = '1' then stky2(3) <= '1'; else stky2 (3)<='0'; end if; 

 if stky(4) = '1' then stky2(4) <= '1'; else stky2 (4)<='0'; end if; 

 if stky(5) = '1' then stky2(5) <= '1'; else stky2 (5)<='0'; end if; 

 if stky(6) = '1' then stky2(6) <= '1'; else stky2 (6)<='0'; end if; 

 if stky(7) = '1' then stky2(7) <= '1'; else stky2 (7)<='0'; end if; 

  

 end process; 

  

 process (stky2, final_exp2, final_man2, message) 

     begin 

 Case stky2 is 

     when "00000001" => final_exp2 <= y(30 downto 23);final_man2 <= y(22 downto 0); 

     when "00000010" => message <= "first number is subnormal       "; 

     when "00000100" => message <= "Second Num/Result equal Infinity"; 

     when "00001000" => message <= "Second Number/Result equals NAN-"; 

     when "00010000" => final_exp2 <= x(30 downto 23);final_man2 <= x(22 downto 0); 

     when "00100000" => message <= "Second number must be normalized";   

     when "01000000" => message <= "First Num/Result equals Infinity"; 

     when "10000000" => message <= "First Number/Result equals NAN- "; 

     when "01000100" => message <= "Result equals Infinity         -";  

     when "01000001" => message <= "Result equals Infinity         -";  
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     when "00010100" => message <= "Result equals Infinity         -";  

     when "00010001" => message <= "Result equals NAN               ";  

     when "00000101" => message <= "Second Num/Result equal Infinity";  

     when "01010000" => message <= "First Num/Result equals Infinity";  

     when "01001000" => message <= "Result equals NAN               "; 

     when "10000100" => message <= "Result equals NAN               ";  

     when "00001001" => message <= "Result equals NAN               ";  

     when "10010000" => message <= "Result equals NAN               ";     

         

     when others => message <=     "                                " ;  

  end case; 

  end process; 

  

  

 process (eflag, message2) 

     begin 

 Case eflag is 

     when "000000001" => message2 <= "Result equals NAN - Overflow    "; 

     when "000000010" => message2 <= "Result equals NAN - Overflow    "; 

     when "000000100" => message2 <= "Result equals NAN - Underflow 1 "; 

     when "000001000" => message2 <= "Result equals NAN - Overflow    "; 

     when "000010000" => message2 <= "Result equals NAN - Overflow    "; 

     when "000100000" => message2 <= "Result equals NAN - Underflow 2 ";   

     when "001000000" => message2 <= "Result equals NAN - Overflow    "; 
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     when "010000000" => message2 <= "Result equals NAN - Overflow    "; 

     when "100000000" => message2 <= "Result equals NAN - Underflow 3 "; 

     when "010010000" => message2 <= "Result equals NAN - Overflow    "; 

     when "000100100" => message2 <= "Result equals NAN - Underflow 4 ";  

     when "100100100" => message2 <= "Result equals NAN - Underflow 5 "; 

     when "000000011" => message2 <= "Result equals NAN - Overflow    "; 

     when "000001011" => message2 <= "Result equals NAN - Overflow    ";  

     when "000011011" => message2 <= "Result equals NAN - Overflow    "; 

     when "001011011" => message2 <= "Result equals NAN - Overflow    ";  

     when "010010010" => message2 <= "Result equals NAN - Overflow    "; 

     when others =>      message2 <= "                                "; 

  end case; 

  end process; 

   

   

M299: Mux23 

Port map (A(22 downto 0) => final_man2(22 downto 0), B(22 downto 0) => y (22 

downto 0), e(22 downto 0) => Final_man_EX(22 downto 0), Sel  =>  fflag); 

M298: Mux 

Port map (A(7 downto 0) => final_exp2(7 downto 0), B(7 downto 0) => y(30 downto 

23), e(7 downto 0) => final_exp_EX(7 downto 0), Sel => fflag); 

getAns <= (bpflag and fflag); 

M279:Mux23     
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Port map (A(22 downto 0) => final_man_EX(22 downto 0), B(22 downto 0) => 

rounded_num(23 downto 1), e(22 downto 0) => Final_man_EX1(22 downto 0), Sel  =>  

getans); 

M278: Mux 

Port map (A(7 downto 0) => final_exp_EX(7 downto 0), B(7 downto 0) => Final_Exp1(7 

downto 0), e(7 downto 0) => final_exp_EX1(7 downto 0), Sel => getans); 

  

    

--M289: Mux23 

--Port map (A(22 downto 0) => final_man_EX(22 downto 0), B(22 downto 0) => 

Final_man_EX2(22 downto 0), e(22 downto 0) => Final_man_EX1(22 downto 0), Sel  

=>  getAns); 

--M288: Mux 

--Port map (A(7 downto 0) => final_exp_EX(7 downto 0), B(7 downto 0) => 

Final_Exp_EX2(7 downto 0), e(7 downto 0) => final_exp_EX1(7 downto 0), Sel => 

getAns); 

 

getMessage <= (eflag(8) or eflag(7) or eflag(6) or eflag(5) or eflag(4) or eflag(3) or 

eflag(2) or eflag(1) or eflag(0)); 

  

final_message <= message when (fflag ='0' or dflag ='1') else message2; 

          

final_Man <=  '1' & Final_man_EX1; 

Final_Exponent <= final_Exp_EX1; 

--tmpcomp <= final_exp1; 

comp <= Eflag;     

afteradd4 <=  afteradd2 & '0'; 
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getflag <= getmessage; 

mout <= final_message; 

result <=  BigSigSign & final_Exp_EX1 & Final_man_EX1; 

--z<= New_binout; 

 

            

end structural; 
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