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ABSTRACT 

 

Osman, Eisa Hassan Mohamed. MULTI-ROBOT AUCTION BASED 
COORDINATION.  (Major Advisor: Dr. Abdollah Homaifar) North Carolina 
Agricultural and Technical State University. (Co-advisor: Dr. Albert Esterline) North 

Carolina Agricultural and Technical State University. 

This dissertation studied the coordination problem for a Task Initiator (TI) with 

multiple ground stations (GSs). Each GS has a team of unmanned aerial vehicles (UAVs) 

that frequently collected data from a set of unattended ground sensors (UGSs) and 

delivered it to the source ground station (GS).  The GSs made the information available 

to the TI.  This problem formulated into a continuous, time-constrained version of the 

multi- travelling salesmen problem. A market-based coordination mechanism is presented 

that uses the concepts of price, revenue, cost, and a sequence of first-price, one-round 

auctions between the TI and GSs from one side, and double auction between GSs and 

UAVs from another side to distribute data collection tasks efficiently among team 

members.  In a dynamic environment, this approach promises robustness, adaptation, and 

graceful degradation.  Tasks from GS-to-UAV are double first-price sealed-bid 

sequential procurement auctions possibly with (additional) subcontracting (negotiation) 

and TI as a market matcher.  To the author‘s knowledge, this is the first occurrence of 

using double auction as a coordination method in robot industries. 
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CHAPTER 1 

INTRODUCTION 

 

In today‘s dynamic environment, the need of mapping a wider operational area 

gains significant attention due to the sensitivity of the information needed at real-time to 

the control unit such as in rescue, reconnaissance, and real- time surveillance operations.  

This issue is particularly relevant in military applications. In situations where unattended 

aerial vehicles (UAVs) need to communicate with a control unit, many problems arise 

such as sensor ranges and bandwidth. Distributing multiple ground stations (GSs) 

geographically will reduce the communication bottleneck, and simplify computation of 

deployed information. Interactions between many ground stations, a task initiator (TI), 

and UAVs become paramount, and require a special design to complete the mission 

effectively. Based on knowledge of the economic area, incorporating different auction 

approaches in engineering fields has helped resolve such issues. In this problem, single 

first-price sealed-bid sequential procurement auctions used between the TI and ground 

stations and double first-price sealed-bid sequential procurement auctions possibly with 

(additional) subcontracting (negotiation) from ground stations to UAVs.   

This chapter provides a general overview of the research work, and an overview 

of each chapter in this dissertation.   
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1.1 Multi-UAVs and Data Collection 

The rapid growth of sensor technologies in recent years has enabled scientists to 

solve complicated or difficult problems in many applications, such as the battlefield.  

Various mission tasks, such as target detection, reconnaissance and surveillance, and 

situation awareness include the major area of applications of unattended ground sensors 

(UGS) technologies.  

In the robotic field, scientists follow different approaches when dealing with task 

allocation.  There are three principal approaches to deal with task allocation, namely, 

centralized, distributed, and market-base.  In a centralized approach, the robotic team is 

treated as a single system with many degrees of freedom.  The leader or manager has the 

ability to plan for the entire team that requires the follower to inform the leader with their 

information to enable a manager to carry out actions.  Since the leader has all the 

knowledge about the environment, the leader can perfectly allocate tasks based on this 

knowledge.  The centralized approach produces optimal or near optimal results at the 

expense of high computational overhead and is prone to malfunctioning.   

Overcoming the shortcoming of the centralized approach has encouraged 

scientists to come up with the idea of a distributed system.  In this approach, distributing 

the responsibility of planning to the whole team reduces the communication bottleneck, 

and response to dynamic conditions is faster.   

In general, this system is robust, and no single point of failure can occur. 

Conversely, basing the decision only on local information the results in general are highly 

sub-optimal.  Preserving the advantages of centralized and distributed approaches, 
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scientists migrates ideas from economic areas to overcome the disadvantages of these 

approaches, which led to the birth of market-based coordination.  Market-based 

coordination is based on the free market economic model.  Essentially, the competition 

between members is to maximize their profit. Members under this system usually 

compete to achieve their goals and sometimes negotiation with other team members to 

reach their goals.   

A market-based approach accommodates multiple auctioneers who distribute an 

incoming information load among themselves.  There are three types of auctions for 

acquiring a commodity, namely, English auction, Dutch auction, first-price sealed-bid 

auction, and second-price sealed-bid auction.  In an English auction, an ―ascending‖ 

movement of a potential buyer bids occur until the bidding stops.  The winning bidder 

receives the item at the highest price, which could be less than its maximum valuation; 

however, is not always the case because bidders may tend to overbid, which causes the 

item to exceed its true valuation (Fasli, 2007).   

The Dutch auction is an open, ―descending,‖ bid auction designed to handle 

multiple identical items (usually in a lot).  In this auction, the seller sets an opening price.  

If no bids are made, the price is lowered until a bid is received.  The first bidder wins the 

first option of buying all or part of the lot.  The bidder may lose the item if he/she waits 

too long to enter their bid.   

In a first-price sealed-bid auction (FPSB), each bidder submits a sealed bid 

without knowing other bidders' valuation of the item, which reflects a private valuation 
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for the auctioned item.  In this auction, the highest bidder is the winner and pays the 

amount of his/her bid (Fasli, 2007).   

 In a second-price sealed-bid auction, each participant submits a sealed bid.  The 

highest bidder wins the auction, and only pays the price of the second highest bid.  

Therefore, it is the bidder‘s advantage to bid his/her true valuation of the item.   

A double auction is an environment where multiple buyers and sellers participate 

to trade a commodity.  In this environment, each buyer and seller submits a bid 

representing his/her offer to sell or buy the auctioned commodity.  Then, submitted bids 

are matched, and afterwards the auction is cleared.  Double auction, in this context, is a 

two-sided auction; one side represents a centralized approach while the other side 

represents a distributed approach, allowing the market to compute the information in an 

efficient manner while providing quick responses.   

As in battlefields, providing quick responses is a key factor when transmitting 

data back and forward to the TI.  A TI could also be a control room or an agent with the 

ability to initiate tasks.  Transmitting data are also a challenge when connectivity is an 

issue or when there are limited communication ranges such as unmanned ground sensors 

(UGSs) and large distances between UGSs and the TI.  However, task allocation through 

multiple ground stations (GSs) is more cost effective than single GSs for mapping wider 

areas and acquiring better robustness.   

To improve reliability, performance, and the cost of task allocation, logically one 

should consider a market-based coordination mechanism such as a free market economic 
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model, which provides better results for optimizing distance data delivery from multiple 

UGSs.  

Multiple GSs, in this context, will provide an excellent opportunity to overcome 

communication problems or sensor range limitations by forming a chain of 

communication to receive information from a further distance, reduce communication 

bottleneck, provide relief or reduce computation complexity for the control center (Moore 

et al., 2005).  

When using double auction, the TI, GSs, and UAVs formulate layers of 

communications that provide quick responses in a robust environment to benefit from the 

market-based mechanism. 

 

1.2  Dissertation Scope 

The focus of this research is two-fold: 

1. The coordination problem of task initiator (TI), ground stations (GSs) and a team 

of UAVs that is employed to frequently visit a set of remote UGSs, collect data 

from them, and return to the ground station to deliver the collected data.  As 

mentioned earlier, the importance of time as a factor can be realized when GSs 

receive this data.  A time constraint on data delivery is one of the concerns of this 

dissertation.  The deadline limit on data delivery time should not exceed a specific 

time in order to validate the accuracy of the data.  In particular, to achieve any 

task, the time between two successive tasks should not exceed a certain deadline 

time.  This constraint is imposed by the nature of the UGS applications (as in 
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target detection and situation awareness), in which late-delivered data will lose its 

sensitive value and may not be useful anymore and may result in hazardous 

situations, and   

2. The problem of assigning tasks when the environment has multiple GSs and 

multiple UAVs with full degree of freedom.   

UAVs are responsible for accomplishing tasks such as tracking enemy targets in 

battlefields or gathering information from UGS.  In these scenarios, the UAVs must 

coordinate their actions with GSs, usually through communication, in order to achieve 

their goals.  The UAVs must make independent decisions based on their perception of the 

environment, and act in a manner that optimize the global utility.   

Resources (utilities) or energy consumption is a constraint that the coordination 

system should satisfy.  Optimizing the average distance traveled of performing any task 

should be part of the coordination methods.  Under these conditions, this problem 

formulated as a continuous and time constrained version of the multi- traveling salesmen 

problem (MTSP).   

 Recent studies showed that multi-agent systems operating in dynamic 

environments such as surveillance, reconnaissance, and battlefields are highly prone to 

failures of many kinds, and it is crucial that the coordination method that deals with such 

kind of environment be robust to these failures (Ajorlou et al., 2007 and Dias et al., 

2004).   

Introducing the distributed coordination system helps to understand operating in 

this type an environment.  Market based coordination is one mechanism that have an 
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effective usage in an environment in which frequent auctioning, time limited contracts, 

and time-dependent prices ensure robustness in the face of loss of team members and 

failures of individuals (Dias et al., 2004).   

Stentz and Dias (2003) in TraderBots market-based coordination approach cited 

the work of (Smith, 1980) in Contract Net Protocol, the implementation of contract net 

protocol by (Sandholm, 1993), and an extension of it by (Sandholm and Lesser, 1995).  

These concepts were used to control different dynamic environment systems.  Stentz and 

Dias (1999) proposed a market-based approach for multi-robot coordination, which aims 

to exploit the desirable properties of both distributed and centralized approaches.  In 

order to take advantage of such approaches, (Dias et al., 2004) proposed a distributed task 

allocation protocol that uses the concepts of cost, revenue, and profit that efficiently 

distribute available tasks among team members through a sequence of multiple different 

auctions.  In this environment, each agent is self- interested in maximizing their personal 

profit, which can lead to a near global optimal plan for the entire team provided the costs 

and price functions are well defined.  Generally, in this kind of task allocation, the cost of 

the task will determine its priority among other tasks.  Adding a new task will be 

constrained to the due time of other tasks on the agent‘s current plan.  So the lower the 

cost, the more demand needed to perform it.  It is clear that the task‘s cost is not always 

the main factor.  In some situations, a task will be given higher priority even though it has 

a high execution cost compared to other tasks due to the sensitivity of task‘s information 

at the time.   
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Negotiation between UAVs after clearing the auction will improve system 

efficiency by reducing the cost to participating agents.  Because of the agents‘ interest, 

they will try to maximize their profit and reduce their cost.  By design, the auction can 

accommodate a situation where an agent auctioned a task earlier even when the agent was 

not bidding during the auction time because this agent is deemed fittest to perform the 

task.  In a system-optimized model, different negotiations produce the same result.  

Frequent auctioning will accommodate the recovery of task(s) timed out due to agent 

failure or death; reallocating these tasks to new agents will cause the system to be robust 

and guarantee the delivery of all auctioned tasks.   

 

1.3  Overview of Chapters 

Chapter 2 gives a general overview of the basic concepts in market-based 

coordination including auction mechanisms, types, and approaches.  It also provides a 

literature review.  Chapter 3 focuses on the problem formulation and methodology. 

Particular emphasis is on different auction structures.  Issues related to cost estimation 

and robustness are also discussed.  Presented in Chapter 4 are the simulation results, and 

the performance of the double auction.  The dissertation concludes with Chapter 5, which 

provides concluding comments and possible improvements.   
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1  Relevant Work 

Multi-robot coordination has received much attention in the last few decades.  

This is due to the demand for automation in application domains where multiple robots 

can accomplish the same tasks more efficiently than a single robot.  With a team of 

coordinated robots, tasks achievement is faster, safer, better than a single robot, and can 

accomplish operations that a single robot cannot execute alone (Lemair et al., 2004).  

Accordingly, coordinating multiple robots to complete a task cooperatively is a difficult 

problem that has attracted much attention from the robotics research community.  Based 

on the manner in which team members interact, multi-robot coordination mechanisms can 

be categorized into two groups: intentional swarm type cooperation.  Deneubourg, et al., 

(1991) mentioned that in swarm-type robotic systems, numerous homogeneous 

autonomous robots interact directly by exchanging their information with one another or 

by acting on their environment; this collective activity may produce coordinated 

behavior.  In contrast to this, there is an intentional coordination, in which agents 

negotiate explicitly and exchange task related information.  The motivation behind this 

kind of coordination is to satisfy mutual interest.   

Lemair et al., (2004) mentioned that the potential applications of this kind of 

coordination range from mapping missions of buildings or in a natural environment, 

rescue or intervention missions in hazardous areas to planetary explorat ion or deployment 
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of equipment without human intervention.  A system supported with several robots to 

perform a given mission should be flexible enough to allow robots to allocate tasks to 

each other and build their plans accordingly to complete the mission.  They should also 

be able to modify the allocation dynamically and consequently to their plans to adapt to 

changes in their environment or to new requests issued by the operator.  However, the 

system must also satisfy the limited constraints on energy resources and communication 

ranges.   

In their TraderBots, (Dias et al., 2004) mentioned that multi-agent systems 

operating in dynamic environments such as battlefields must accommodate many kinds 

of failures, frequent dynamical changes, and uncertain or imperfect information.  

Therefore, it is crucial that any kind of coordination methods applied for multi-agent 

systems be able to function well under such conditions.  Market based coordination was 

derived from a category of intentional coordination mechanisms, and is a promising 

method for handling these conditions.  Frequent auctioning, time limited contracts, and 

time-dependent prices ensure robustness in the loss of team members and individual 

failures, which also enable the team to get by with uncertainty and online tasks 

introduced over time (Dias et al., 2004, and 2005).  The distributed nature of market-

based coordination enables the team to rely on local knowledge so they can respond 

quick and fast to dynamic changes within their environment without the need of a central 

planner.  Since information is decomposed into bids, the market-based coordination 

systems can communicate efficiently and compute efficiently due to the parallelism.   
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During the last two decades, coordination mechanisms for multi-robot task 

allocation have been developed that are based on market-base coordination.  The M+ 

(Botelho and Alami, 1999) architecture, based on a greedy algorithm, was the first 

market-based approach to multi- robot task allocation.  The MURDOCH (Gerkey and 

Mataric, 2002), as a completely distributed system, offers a distributed approximation to 

a global optimum of resource usage, which is equivalent to an instantaneous greedy 

scheduler.  An online task assignment algorithm also assigns a newly created task to the 

fittest available robot (Gerkey and Mataric, 2004).  TraderBots models (Dias et al., 2004) 

represent a multi-robot team as an economy of self- interested agents that try to maximize 

their individual profits.  In these models, reallocating tasks allow for solution 

improvements over initial assignments, and for adapting task assignments as new 

information is ascertained.   

In this dynamic environment, agents who have the ability of planning for 

themselves and negotiating may do so by swapping some tasks (as self- interested agents).  

This redistribution of tasks and resources simultaneously at the end result in lower cost 

solutions, which imply some profit, and therefore will improve efficiency.  Given 

appropriate costs and revenue functions, this method can lead to a near globally optimal 

allocation.  Constrained tasks will not be dealt with in TraderBots where interrelated 

costs among the tasks are considered.  Hoplites (Karla et al., 2005) seem to be the first 

market based approach to constrained task execution.  In Hoplites, passive coordination 

produces locally developed solutions since agents frequently exchange information of 

their intended actions and locally select their actions.  In a situation where there is a 
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constraint violation, agents actively propose and bid on joint plans to resolve the 

constraint.  The performance of Hoplites is validated in perimeter sweeping (Karla et al., 

2005) and, more recently, in constrained exploration (Karla et al., 2006), during 

exploration of a hazardous area, robots are restricted to remain in communication with 

the base station directly or through a chain of teammates.  Lemaire et al. (2004) put soft 

time constraints on subtasks of a complex task to synchronize subtask execution.  To 

define the cost of a plan for tasks, needed are the sum of the distance cost of the plan and 

a cost term corresponding to the quality of the time-constraint satisfaction.  Agents, 

therefore, will try to reduce the deviation from the expected execution time while trading 

tasks. 

The price of a task determines the cost the auctioneer will pay an agent that 

accomplishes the task.  Using time-varying prices, the auctioneer announces higher prices 

for tasks that have become more important.  Therefore, bids reflect not only the agents' 

costs but also the importance of the tasks.   

 

2.2  Market-based Coordination 

This section briefly explains the basic concepts of market-based coordination 

mechanisms.   

2.2.1  Overview 

In market-based coordination methods, participants form an economy that 

allocates tasks to members through auctions.  Normally, a user or team members that 

have task creation capability (Dias, et al., 2005) generate tasks.  An auctioneer offers all 
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its available tasks to other agents in its environment, collects their bids, evaluates the 

collected bids, and assigns some or all of its tasks to them.  As discussed in the previous 

section, some market-based coordination systems allow reassignment of a task.  This 

means that an agent in charge of performing a task have the ability to rese ll that task to 

another agent, e.g., TraderBots (Dias et al., 2004), M+ (Botelho and Alami,1999), the 

system presented in (Ajorlou et al., 2007), and Sandholm's implementation of the contract 

net protocol (Sandholm, 1993).  In such systems, any team member can negotiate with 

teammates to improve their personal profit as a self- interested agent.  An agent who 

offered a task may submit a bid on it.  A submitted bid in this context represents the cost 

to the agent for performing the offered task.  The global objective of the application and 

resource consumption are two main factors in bid valuation.  By assigning the tasks to 

team members through a bidding process, the auctioneer tries to lower the overall team 

cost by allocating the tasks to team members with lower costs.   

2.2.2  Instantaneous Assignment (IA) vs. Time-extended Assignment (TA) 

Gerkey and Mataric (2002) categorized multi-robot task allocation mechanisms 

based on instantaneous assignment (IA) and time extended assignment (TA).  In IA, 

robots do not have the ability to plan for their future activities, which mean the available 

information concerning the robots, the tasks, and the environment permits only an 

instantaneous allocation of tasks to robots, with no planning for future allocations.  

Therefore, the agents can only buy or sell one task at a time, which indicates that there is 

no room for parallelism.  This type of allocation mechanism is useful for the applications 

in which tasks are introduced to the system online such as MURDOCH (Gerkey and 
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Mataric 2002), first-price auctions (Dias et al., 2003), and dynamic role assignment 

(Gerkey and Mataric, 2004).   

In TA, agents have more information about the environment, such as the set of all 

tasks that needs an assignment, or a model of how tasks are expected to arrive over time.  

In this type of assignment, agents are allowed to make plans for the future by accepting 

more than one task at a time.   

2.2.3  Auction Mechanisms 

This section describes various types of auctions.  In particular, how auctions differ 

and how auctioneers function within them.   

2.2.3.1 Procurement Auction 

A procurement auction, also called reverse auction, is a type of auction in which 

the role of the buyer and seller are reversed.  The primary objective here is to drive 

purchase prices downward.  In this kind of auction, sellers compete to obtain business.  In 

a procurement auction, a buyer puts up a request to purchase a particular item.  Multiple 

sellers bid to sell the requested item and the winner of the auction is the se ller who offers 

the lowest price (www.wordiq.com/definition/Procurement_auction).  In a procurement 

auction, the bidders seek a higher clearing price, and the auctioneer seeks a lower one.   

2.2.3.2 Double Auction 

Dynamic pricing mechanisms, and especially auctions with multiple buyers and 

sellers, are becoming popular in electronic commerce.  ―Double auction‖ refers to a 

market system where multiple buyers and sellers submit their bids for standardized units 

of well-defined items or securities by stating how much and at what price they will trade.  



15 

In double auction, each trader can express the subjective preference for the traded goods 

by using a utility function.  Thus, properly defining the utility for representing each 

trader's preference is an important issue for research on double auction.  Double auctions 

occur in an environment that has one commodity in the market with multiple buyers and 

sellers each submitting a single bid to buy or sell one unit of the commodity.  According 

to (Fasli, 2007) the general process is as follows: 

 Both buyer and sellers submit their bids.  

 Bids rank from highest to lowest to generate demand and supply profiles.  

 From the profiles, the maximum quantity exchanged can be determined by 

matching selling offers with demands bids. 

 The transaction price is set and the market clears.   

In this auction, each GS will sell only one task at a time, and any UAV will bid 

for only one task at a time.  Each bidder has a private utility value for the item, which 

represents its real cost to perform such a task.  The utility value from buyers‘, 

(respectively, sellers‘) point of view is the most (respectively, least) prices that they are 

willing to pay to buy (respectively, sell) the task.  Although all market agents are self-

interested, agents formulate their bids is based on the truthful value of the item.   

A double auction could be either periodic or continuous.  In a continuous double 

auction, buyers and sellers are matched immediately on detection of compatible bids, 

while in periodic double auction bids are collected over a specified period of time after 

which the market will be cleared.   
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2.2.3.3 Combinatorial Auction 

A combinatorial auction is one where buyers and sellers have preferences on 

packages or bundles of commodities rather than only on one particular commodity at 

time.  In this auction, bids are considered for combinations of different commodities.  

Consider a case where a set S of n tasks offered to the team members.  Each agent 

calculates the cost of performing each subset of S, and submits a bid on that subset.  After 

receiving all bids, the auctioneer evaluates them, and finds the partition of S with 

minimum cost.  Bid calculation and winner determination are NP hard, which makes the 

combinatorial auctions intractable. 

2.2.3.4  Parallel Auction  

In parallel auctions, a set S of n tasks offered to the team members.  Each agent 

calculates the cost of performing any of the offered tasks individually and submits a bid.  

The auctioneer then assigns each task to the agent that has submitted the lowest bid. 

Parallel auctions do not account for the dependencies among the tasks.   

2.2.3.5  Sequential Auction 

In sequential auctions, the set S of n tasks assigned through a sequence of n 

auctions, where only one task is sold in each auction.  During each auction, each agent 

computes the cost of adding each unsold task to its current plan.  Then, the task with the 

lowest cost is assigned to a corresponding bidder.  Clearly, submitting bids for all the 

tasks offered will create communication complexity; but, since only one task is assigned 

during each auction cycle, it is in the best interest of each bidder to submit a bid only for 

the task that cost less among all auctioned tasks.  This will have an impact of reducing the 
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communication bottleneck and increase the bidder‘s chance of winning the auctioned 

task.   

Calculating marginal cost (the cost of adding a new task to the current plan) is NP 

hard in the MTSP case since it requires re-planning for the new set of tasks.  In the 

heuristic used by (Ajorlou et al., 2007), a new task will be inserted between each two 

successive tasks into the agent plan to find the minimum cost of the new generated plan, 

which is the current plan.  The difference between the current plan and the old one is the 

cost of performing the new task.   

2.2.4  Auction Types 

In a single attribute or a one-side auction, agents negotiate over one item, which is 

available by itself as a whole and not in combination.  The negotiation has one 

dimension, usually price, and the relationship between buyers and sellers takes the form 

of one-to-one, one-to-many or many-to-many relationships.   

2.2.4.1  Ascending-bid Auction (English Auction) 

The English auction is the most common type of auction where the winning 

bidder receives the item at the highest price.  The auction uses upward or ―ascending‖ 

movement of potential buyer bids until the bidding stops.  Bids may be oral, signaled, 

written or by third-party proxy in which one item or groups of items can be auctioned.  

Auction periods vary but are generally short.  Items are frequently displayed to potential 

bidders prior to the auction with the reserve prices cited. E-Bay is a good e-commerce 

application of this type auction.   
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2.2.4.2  Descending-bid Auction (Dutch Auction) 

The Dutch auction is an open, ―descending‖ bid auction designed to handle 

multiple, identical items (usually in a lot).  In this type auction, the seller sets an opening 

price.  If no bids are made, the price is lowered until a bid is received.  This first bidder 

wins the first option of buying all or a part of the lot.  Other bidders have an opportunity 

to buy once the demand at that price is exhausted.  Additional bidders may bid a lower 

price. This cycle continues until the lot is gone.   

2.2.4.3  First-price Sealed-bid Auction  

In a first price sealed bid auction (FPSB), each bidder submits a sealed bid that 

reflects its private valuation for the auctioned item without knowing other bidders‘ 

valuations of the item.  In this auction, the highest bidder is the winner and pays the 

amount of his/her bid.  There are two distinctive phases (Fasli, M. 2007): 

1. The bidder phase in which participants submit their bids. 

2. The resolution phase in which the bids are opened and the winner is determined. 

2.2.4.4  Second-price Sealed-bid Auction (Vickery Auction) 

The second-price sealed-bid auction was named after William Vickery, a 1996 

Nobel Prize recipient (Economics).  In this type auction, each participant submits a sealed 

bid.  The highest bidder wins the auction but only pays the price of the second highest 

bid.  This auction fosters a bid strategy that reflects the buyer‘s true valuation of the item.  

The Vickery approach gives all competing buyers an incentive to disclose their true best 

price since they can safely bid a price that would yield zero profit.  The process can be 

used in a reverse auction method with the cheapest price winning but paying the second 
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lowest bid price. 

2.2.5  Auction Approaches 

Normally, targets are scattered in the environment and the number of UAVs may 

be more or less than the number of targets available.  In either case, an efficient task 

allocation method is needed for assigning UAVs to the targets.  An efficient task 

allocation strategy should complete the mission (that is, delivering the target information 

to the GSs) in minimum time by direct assignment from the GSs or through negotiation 

with other UAVs in communication range.  The classical solution for a task allocation 

problem would be to apply a centralized task allocation algorithm that generates the 

necessary commands for UAVs.  However, centralized task allocations have well known 

limitations.  Hence, there is a necessity to develop a decentralized task allocation 

algorithm.  Here, briefly discussed are the concepts of centralized and distributed task 

allocation to assign tasks to UAVs. 

2.2.5.1  Centralized Approaches 

With centralized approaches, one agent (the leader) is responsible for planning for 

the entire team, while simultaneously taking into account the environment and the 

interactions of all team members at all times.  All agents report to the leader and execute 

the plan.  Although the centralized approach generates an optimal solution under the 

assumption that the information from the agents is available, it is intractable for a team of 

UAVs due to the complexity of operations (Karla et al., 2006, Sariel et al., 2006).  

Coordinating more than a few agents in the centralized approach causes a heavy 

communication load, and a problem with the bandwidth due to restrictions on the 
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network.  This approach is slow to incorporate new environmental information since new 

information must be sent back to the planner who re-computes the entire team‘s plan, 

usually at significant computational expense.  Finally, a centralized approach does not 

allow a quick adaptation to change and tends to be brittle to failure.  Primarily, 

centralized approaches have been used loosely in coordinated systems for task allocation 

(Sariel et al., 2006).  Thus, centralized approaches are best suited for applications where 

teams are small and the environment is static or global state information is easily 

available.   

2.2.5.2  Distributed Approaches 

In a distributed approach, agents act independently and make decisions with local 

information about their state and their environment.  For example, the UAV work with 

the ground stations or the central units such as TI to conduct their own plans based on 

available information.  Here the role of the central control or ground station is for 

auctioning the task to the agents, evaluating received bids and awarding the winner agent.  

This approach tends to be more robust to failure, allowing for greater flexibility and 

tractability, and efficient for computation and communication.  However, the solution 

remains sub-optimal.  To emphasize the benefits of centralized approaches in distributed 

systems, market-based approaches have been designed to centrally plan over small 

subsets of the team where time and resources permit (Dias et al., 2004 and 2003).  

In market-based frameworks, agents model an economy of self- interested 

individuals that buy and sell tasks and resources to maximize personal profit (Dias et al., 

2005).  This redistribution of tasks and resources simultaneously results in lower cost 
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solutions for the team.  Most of the distributed task allocations use an explicit 

communication message, which means that agents make decisions based on inter-agent 

communications transmitted at different times.  This characteristic makes the algorithms 

more efficient, and with a higher level of fault tolerance than a centralized approach due 

to its distributed nature. 

Negotiation over the distributed system generates a step-wise improvement.  

Negotiation techniques based on market rules (i.e., market-based approaches) fall within 

the distributed algorithms that make use of explicit communication.  These techniques 

have received significant attention (Dias et al., 2006) since they offer a good compromise 

between communication requirements and the quality of the allocation.  

2.2.5.3  Market-based Approaches 

A task allocation algorithm can be a method of distributing common resources.  

Humans have dealt with similar problems for thousands of years with increasingly 

sophisticated market economies in which the individual pursuit of profit leads to the 

redistribution of resources and an efficient production of output.  Therefore, market based 

approaches make use of the principles of the market economy and apply them to multi-

agent coordination.  This idea started with the Contract Net Protocol or CNP (Smith, 

1980), which allocates tasks through negotiation of contracts.  In this virtual economy, 

agents are traders, tasks are traded commodities, and virtual money acts as currency.  

Agents compete, despite being teammates in reality, to win tasks by part icipating in 

auctions that produce efficient distributions based on specified preferences.  When the 

system is designed appropriately, each agent acts to maximize its individual profit, and 



22 

simultaneously improves the efficiency of the team.  This is the foundation of the success 

of the market-based approach; one engineers the costs, revenues, and auction 

mechanisms in such a way that individual self- interest leads to global efficient solutions.   

Generally, a multi-agent coordination approach is a market-based approach if it 

satisfies the following requirements (Dias et al., 2006): 

 The team is given a number of tasks that are achievable by individuals or sub-

teams.  To execute these tasks, the team has at its disposal a limited set of 

resources (robot capacities) that the team distributes among its members.   

 A global objective quantifies the system designer‘s preferences for all possible 

solutions.   

 An individual utility function specified for each agent quantifies that agent‘s 

preferences for its individual resource usage and contributions towards the 

team objective.  Evaluating this function cannot require global or perfect 

information about the state of the team or team objective.   

 A mapping is defined between the team objective function and individual or 

sub-team utilities.  This mapping addresses how the individual production and 

consumption of resources and individuals‘ advancement of the team objective 

affect the overall solution.   

 Resources and individual or sub-team objectives can be redistributed using a 

mechanism such as an auction.   

The core of market-based approach can be observed from where the auction 

mechanism is.  This mechanism can be divided in two phases, namely, a bidding phase 
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and the winner determination phase.  In the former, tasks are evaluated using a utility 

function, which does not require the use of global information.  In the latter phase, after 

receiving the different bids, a task awarding mechanism is applied in order to choose the 

most suitable agent for the task under auction.  Moreover, these two phases consider the 

participation of two roles: auctioneer and bidders.  The bidding phase starts with either TI 

or GS offering a task to the rest of the bidders.  After receiving the announcement, they 

should reply with their bids based on their capacity to execute that task (utility function).  

The bidding phase is finish when the auctioneer receives all the bids.  Next, the winner 

determination phase starts.  The auctioneer applies a mechanism that awards the task to 

one of the bidders.  Finally, the winner will add the task to his/her execution list.  Market-

based task allocation algorithms do not limit the number of auctioneers and more than 

one can operate at the same time.  The main concepts that define a task allocation 

mechanism based on auctions are: global objective, utility function, and task awarding 

mechanism.   

The global objective defines the team‘s goal to be optimized by coordinating all 

agents.  Different global objective functions can be considered (Tovey et al., 2005) 

described the sum of the utilities, the maximum of all the utilities, and the average of the 

utilities.  The sum of utilities is used in scenarios where it is important to minimize the 

total energy consumed by the team of agents.  The maximum of all the utilities is used in 

scenarios where it is fundamental to minimize the time needed to execute all tasks.  Both 

objectives have been used in multi-agent exploration scenarios.  On the other hand, the 
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average of the utilities used in search-and-rescue scenarios where it is important to 

minimize how long on average it takes to execute a task.   

The utility function is used to evaluate tasks and calculate bids.  This function is 

composed of the reward and cost functions as indicated in Chapter 3.  The reward 

function indicates the benefit of executing a task, and the cost function gives an estimate 

of the effort to accomplish the same task.   

The most common task awarding mechanism is to allocate a task to the agent with 

the highest utility or lowest cost considering all received bids.  As mentioned before, 

there is a connection between the individual utility function, the task awarding 

mechanism and the global objective.  The system designer‘s responsibility is to choose a 

utility function, and an awarding mechanism that leads to an efficient global solution.  

Tovey et al., 2005 explained the systematic methods for deriving appropriate utility 

functions and awarding mechanisms for each of the global objectives.   

Finally, other properties that allow for characterization of a market-based task 

allocation algorithm are described: 

 Multiple Robot Single Task (MRST) algorithms and Multiple Robots Multiple 

Tasks (MRMT) algorithms: MRST algorithms do not make use of local 

execution plans, and therefore, they are suited for applications where task 

costs may change through time.  However, the allocations are usually less 

efficient allocations than MRMT algorithms, which use local plans to increase 

the information used in the bid calculation.  It can be said that MRST and 



25 

MRMT algorithms have a capacity constraint equal to one and greater than 

one respectively (Koenig et al., 2007).   

 With and without reallocations: when reallocations are not considered, the 

same robots that initially allocated tasks execute tasks.  On the other hand, 

when a task allocation algorithm considers reallocations, it means that in order 

to increase the efficiency of the final allocation, a robot could re-announce its 

already allocated task or tasks.   

 Combinatorial or single- item auctions: in most of the task allocation 

algorithms, each auction process only considers a single task.  In 

combinatorial auctions, each auction can involve more than one task.  

Therefore, bids are calculated for bundles of tasks (Zheng et al., 2007).   

 Coordinated or loosely coupled tasks: when the execution of tasks is 

completely independent from the rest, this is termed loosely coupled.  

However, if the execution of tasks depends on others, tasks are coordinated. 

This fact should be taken into account in the task allocation algorithm in order 

to avoid execution deadlocks.   

 Sequential and parallel auctions: when only one auction runs at a time, the 

task allocation algorithm is sequential.  On the other hand, if more than one 

auction can be performed simultaneously, they are executed in parallel.  When 

parallel auctions are used, the system‘s designer must be aware of the biding 

process since bids used in one auction process are no longer valid due to the 

result of another parallel auction.   
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2.2.5.3.1 M+ Approach - M+ (Botelho and Alami, 1999) could be, the first distributed 

market-based system defined within a general architecture for the cooperation among 

multiple robots.  In this system, when a robot calculates the cost of a task, it considers 

one task ahead for each robot that allowed, whenever possible, an overlapping between 

the execution of the current task for a robot and the planning and task allocation of the 

next one, which increases the efficiency of the solution.  In order to synchronize subtask 

execution, the M+ approach imposes soft time constraints on subtasks for a complex task.  

Costs are also associated with the quality of time-constraint satisfaction.  In a multi-robot 

context, robots negotiate with one another to adapt its plan incrementally.  Since each 

task has a different execution time, for future negotiations, agents optimize deviation for 

different execution times.  Along the way, tasks can be moved from one UAV (agent) to 

another through negotiation.   

2.2.5.3.2 MURDOCH Approach - MURDOCH is a general task allocation system based 

on principled, resource centric, published/subscribe communication model that makes 

extensive use of explicit inter-robot communication (Gerkey and Mataric, 2002).  

Therefore, Murdoch is a MRST task allocation algorithm, in which robots do not take 

part in auctions while they are executing a task.  Therefore, a new task announced 

dynamically will be allocated to idle robots.  If all robots are executing a task; the task is 

either discarded or re-announced after a period.  Therefore, Murdoch appears as a version 

of Contract Net Protocol (CNP) of Smith (1980), which uses simple auctions to allocate 

tasks.  Murdoch‘s approach is considered the first proven application of auction methods 

for the coordination of physical multi-robot systems that applied multiple tasks.   
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2.2.5.3.3  TraderBots Approach - TraderBots is price-based approach in which robots are 

considered as self- interested agents and the team of robots as an economy.  Its goal is to 

complete tasks successfully while minimizing overall costs.  The individual goal for each 

robot is to maximize its individual profit, which at the end will contribute to overall good.  

Robots have the ability to make plans and perform task assignment.  Re-assignment is 

allowable and dependencies are taken into account.   



28 

CHAPTER 3 

PROBLEM FORMULATION AND METHODOLOGY 

 

3.1  Problem Formulation 

In this research environment, multiple buyers and sellers exchange a single item 

at a time; the TI creates n sensor-visit tasks corresponding to n random UGSs and assigns 

them to GSs via auctioning.  The GSs (and later on the UAVs) calculate the incremental 

cost for specific tasks and submit their sell (respectively, buy) bids to the TI 

(respectively, GS).  The market system consists of multiple buyers and sellers that submit 

their bids for standardized units of well-defined items by stating the amount and the price 

they will trade, referred to as a ―double auction.‖  Each bidder expresses its subjective 

preference for the traded item using a utility function, which represents its estimate of its 

real cost to perform such a task.   

 Consider a set of n UGSs scattered in a remote area.  A team of m UAVs 

designated to frequently visit these sensors collect their data and deliver it to the ground 

stations (GSs).  Therefore, the objective of the coordination problem is to apply double 

auctions to reduce the overall cost while satisfying time constraints.  The TI is located at 

the origin of a 3D-space bounded by the following ranges: 

 -2CommUAVMax ≤ x ≤ 2CommUAVMax 

 -2CommUAVMax≤ y ≤ 2CommUAVMax, and 

 0 ≤ z ≤ 2CommUAVMax,  
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where,  CommUAVMax is the maximum communication radius admissible by a UAV.  The TI 

computes the cost and the deadline for each task as indicated by Equations (3.1) and 

(3.2). 

 TITaskCost(t) = P0(1+up*t/tH) (3.1) 

 TItH(TK) = 2*||Tk – TI||2/
i

UAV _Speed + t (3.2) 

where, t is the time elapsed between the times the task is created until the time the task is re-

auctioned, up is a parameter to determine the increment in the price, tH is the deadline time for 

the task (TK) to be received by the auctioneer, and 
i

UAV _Speed is the speed of the 
i

UAV , 

as also used in Equation (3.3).  

P0= 2*(|| Tk – TI||2*(udc + utcost/
i

UAV _Speed) ) (3.3) 

Ideally, as soon as a task is created it is auctioned immediately to the GSs.  The TI 

broadcasts its tasks one at a time.  Each GS broadcasts the announced task to the UAVs in its 

connectivity range and submits its sell bid paired with the minimum buy bid received from 

the UAVs to the TI.  The TI ranks all received bids in descending order from maximum to 

minimum to generate a supply and demand profile.  Then, the TI evaluates its received bids 

and assigns the task to the GS with the minimum sell bid, which is paired with a UAV‘s 

minimum buy bid.  The GS that was paired with the winner UAV (
iWin

UAV ) prior to ranking the 

bids (denoted by 
jUAV
GS ) will tell 

iWin
UAV  to execute the task.  The 

jUAV
GS  will receive profit equal 

to the difference between its bid price and the announced winner GSs (denoted by
jWin
GS ) bid 

price.  The winner UAV (
iWin

UAV ), and the winner GS (
jWin
GS ) will receive the profit calculated 
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using Equation (3.4).   

ProfitGSi = ProfitUAV = 0.5*((
jWin
GS _SBid - 

iWin
UAV _BBid)+ (TI_P0- 

jWin
GS _SBid)- (

jUAV
GS _SBid - 

jWin
GS _SBid)) (3.4) 

If at any time a UAV does not deliver the task to the original GS, a penalty is incurred 

that reduces its profit as in Equation (3.5).   

Penalty =  0.5*(
jUAV
GS _SBid - 

jWin
GS _SBid) (3.5) 

Further, the UAVs submit bids reflecting the incremental cost of the data-delivery task, 

and the GS allocates the task to the UAV submitting the minimum bid.  This procedure is 

repeated until all tasks are sold.  However, allocation of data delivery tasks to UAVs 

must continue to optimize the overall distance traveled and to satisfy the deadline time 

constraint on data delivery time as denoted by Equation (3.6).   

njNitTT H

j

i

j

i 1,1  (3.6) 

Let Tj
i be the ith data delivery time for the jth sensor, tH be the deadline time for data 

deliveries for any sensor, and n be the number of unattended ground sensors.  In this case, 

we are dealing with a continuous task allocation mechanism that satisfies the constraint 

on data delivery time while optimizing the team‘s average distance traveled per data 

delivery.   

To obtain a solution, we describe sensor-visit tasks.  Each sensor-visit task 

consists of visiting a sensor, collecting its data, and returning to the GS to deliver the 

collected data.  A task created or renewed is the task creation time.  The data delivery 

time for a task is also the time passed from the task's creation time to the time the TI 

receives the task's data.  By using the task creations and data delivery times, the problem 
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statement reformulated as a problem of continuously allocating sensor-visit tasks to the 

UAVs so the data delivery times of all sensor-visit tasks remain lower than tH.   

 

3.2  Methodology 

In this dynamic research environment, off- line methods are not appropriate 

because new UGSs maybe added to or removed from the mission.  Further, the team of 

UAVs is prone to changes since we may lose some UAVs due to communication failure 

or death, and a UAV maybe added to the mission at any time.  Additionally, continuously 

updating task allocations will produce more allocations that are efficient because 

allocations depend on the UAVs‘ positions when tasks are refreshed, and efficient 

allocations may change from round to round.  Therefore, in this auction, the following 

assumptions are considered: 

1. Tasks are created every two seconds.   

2. Since the auction happen so quickly, UAVs wait until all tasks are auctioned before 

they start moving towards their tasks; otherwise, they hover around the GSs they 

communicate with.   

3. The space is constrained to  

 -2CommUAVMax  ≤  x  ≤  2CommUAVMax,  

 - 2CommUAVMax ≤ y ≤  2 CommUAVMax, and  

 0 ≤  z  ≤ 2CommUAVMax.   

4. Three GSs are scattered around the TI and communicate with one another.   
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5. A UAV‘s tasks are not delivered unless that UAV communicates with the GS it is 

supposed to deliver the tasks to.   

A market-based approach uses communication efficiently since the UAVs 

compress information into bids.  The role of the TI is limited to task creation and to 

holding auctions as well as matching sell bids with buy bids.  In a double auction, each 

bidder has a private utility value for an item, which represents its real cost to perform 

such a task.  In dealing with a minimization problem, we are trying to find a way to 

reduce the overall cost.  Therefore, in this auction, the TI broadcasts its tasks one at a 

time, each GS broadcasts the announced task to UAVs in its connectivity range and 

submits its sell bid, paired with the minimum buy bid received from the UAVs, to the TI.  

GSs use the TI‘s reservation price to generate their own price for the auctioned task, 

which is based on their linear distance to the auctioned task and the time needed for the 

task to be executed by a prospective UAV, which is also based on its known speed.   

The UAV inserts its awarded task into its current plan where the task remains 

until the UAV delivers the corresponding data to the GS.  When a GS receives the task's 

data, the TI‘s information will be updated accordingly.  Transaction determinations and 

winners (buyers and sellers) who are going to transact in the double auction are 

completely based on the bid price subject to the following constraints: 

 The bid price must be less than or equal to the announced reservation price,  

 A UAV that has a task from a previous auction cycle may submit a new buy bid if 

and only if executing the current bid will not make any previous won tasks in his 

task list time out.   
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The GS places a bid equal to the 
j

GS Cost for this task if and only if the constraint prescribed 

by Equation (3.7) is met. 

j
GS Cost(Tk) ≤ TITaskCost (Tk) (3.7) 

Each GS auctions the task to all UAVs in its communication range.  In other words, if the 

constraint prescribed by Equation (3.8) is met, a UAV qualifies to place a bid for that task 

from that GS. 

||UAV – GS||2 ≤ CSUAV-GS*(CommUAV + CommGS) (3.8) 

where CSUAV-GS, in [0, 1], is the communication strength between the UAV and GS, 

CommUAV is the communication radius of the UAV, and CommGS is the communication 

radius of the GS. 

 

3.3  Market-based Coordination Framework 

UAVs, GSs and the TI trade tasks continuously via double auctions.  The TI 

creates some tasks for bidding by the GSs.  At this point, each GS starts broadcasting an 

availability message containing its ID to determine available agents within its 

communication range.  When a GS detects a UAV inside its communication range, it sets 

an available flag for that UAV and adds it to its auction list.  A GS offers its tasks only to 

members within its communication range.  When a GS immediately detects an available 

agent within its communication range, auctioning of its task starts.  Each UAV sends a 

bid representing its most profitable deal to the source GS.  A GS, as auctioneer, evaluates 

all received bids, and sends its cost accompanied by the minimum buy bid to the TI.   
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3.4  Policy of the Market 

Based on the description of our market given in Section (3.3), the market policy 

is introduced as follows: 

 The accepting policy states that, in order for an incoming bid to be accepted, it 

must be less than or equal to the reservation price announced by the auctioneer.  

The purpose of such policy is to maintain a successful rate of transactions, and to 

signal to traders the current market prices.   

 The matching policy defines how to match a buy bid with a sell bid.  For any 

auctioned task, the minimum sell bid will be matched with the minimum buy bid. 

 The clearing policy determines what matched bids are being executed.  

 The clearing price will be equal to the won bid (Mth) price.   

For any GS that auctions a specific task that it has paired with a UAV offering a 

minimum bid, the bids from all the GS-UAV pairs are ranked in ascending order of 

magnitude.  Suppose the number of GSs submitting bids is M.  Counting from the top 

ranked bids, the value in the Mth position is the clearing price that task is sold for, and the 

that GS and the UAV making the bid becomes the seller and the buyer (winner), 

respectively, for that task. Then the UAV delivers the task to that GS.  A task not sold 

during the auction round is re-auctioned at a higher cost as determined by Equation (3.1).  

This procedure is repeated until all tasks are sold.   

Generally, the TI can determine ‗what‘ and ‗how‘ an incoming bid is transacted.  

Briefly, we can say, for a given set of incoming orders, that the accepting policy 

determines what bids are to be accepted.  The matching policy determines whose bid can 
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be matched with whom, and the clearing policy specifies the transaction that should be 

executed.   

Transaction determinations and winners (buyers and sellers) that are going to 

transact in double auctions have two issues that need to be well defined.  For instance, 

given the buy and sell bids for the following example, which of these is going to transact 

and at what clearing price? Which will lead us to the Mth and the (M+1)st price?   

3.4.1  Mth and (M+1)st Price Rules 

Let X denotes the set of all buy and sells bids for a single task; M of these bids are 

the sell offers, and N represents the buy offers.  The Mth price rule sets the clearing price 

at the Mth lowest price among all X bids.  The (M+1)st price rule sets the clearing price at 

the (M+1)st lowest price among all X bids.  In order to determine the bids that are going 

to be transacted, the transaction set proceeds as follows: 

While the lowest remaining buy bid is less than or equal to the lowest sell bid, 

remove these bids from the set of outstanding bids and add them to the set of 

matched bids (transaction set).   

Note that the Mth price is undefined if there are no sellers, and the (M+1)st price is 

undefined if there are no buyers.   

Consider the set of bids in the double auction shown in Figure 3.1.  The number 

of total bids is X = 6, of which M (number of sell offers) = 3 and N (number of buy 

offers) is X – M = 3.  The Mth clearing price is the Mth bid among all submitted bids while 

the (M+1)st price is the (M+1)st bid among all bids X = {30, 27, 25, 24, 18, 15}.   
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Figure 3.1. Schematic of bids in double auction with M th and (M+1) st price 

 

 To determine the transaction set, the lowest buy bid is matched with the lowest 

sell bid, providing the constraints in Section 3.2 are met.  This process continues until the 

buy bid is higher than the sell bid.  The transaction set will be {(15, 24), (18, 25)}.  

Matched bids are removed from the outstanding bids and placed in the matched bids 

profile where the lowest sell bid and the lowest buy bid are transacted.  For instance, the 

sell bid 25 cannot be transacted since only one task will be sold, which is the lowest buy 

and sell bids. The transaction price can either be set at 25 (the Mth) or at 24 (the (M+1)st) 

price.   

 For instance, take the first set of bids in the transaction set (24, 15).  If the Mth 

price is used, then each buyer and seller will make a profit equal to ½*((24-15) + (30-

24)), which is $7.5, assuming the TI‘s reservation price (P0) is $30, using Equation (3.4). 
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3.4.2  Auction Structure 

This implementation consists of two different kinds of auctions: 

1. Auctions held by the TI, and 

2. Auctions held by the GSs 

3.4.2.1  Combined Auction Procedures 

The auction proceeds as follows; see also the flow diagram in Figure 3.2: 

1. Task Announcement: Each auction starts with an offer message sent by the 

auctioneer (TI) to all GSs (TI  GSs).  The message contains the task‘s id, sensor 

location, task‘s creation times, task‘s deadline, and task‘s prices.   

2. GS Call for Bid: Upon receipt of the offer message from the TI, each GS 

broadcasts the task and calculates its cost for that task.   

3. GS’s Buyers Bid Evaluation: Each GS evaluates the buy bids received from the 

UAVs for validity according to the accepting policy and chooses a bid with the 

minimum price.   

4. Bid Submission: Each GS submits its bid with the winner UAV‘s buy bid to the 

TI.   

5. Matching Result: The auctioneer (TI) evaluates all received bids and finds the 

one with the most profit.  Then it matches a GS with the minimum sell bid with 

the ID of the minimum buy bid and the clearing price.    

6. Win Confirmation: Each winner (GS or UAV) receives the result and sends a 

confirmation message to the auctioneer indicating notification about the result.   

7. Offer End: The auctioneer sends an Offer End message to the auction participants 
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 when it successfully receives the Win Confirmation message and closes the 

 auction. 

 

 

Figure 3.2. Flow diagram for the market policy 

 

3.4.3  Cost Estimation 

As previously mentioned, tasks are traded between the TI, GSs and UAVs.  In 

order to define the allocation problem for such environments, it is necessary to specify 

the cost functions, as given by Equation (3.9).  
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P(Tl
, GSk) = R(Tl

 , GSk) − C(Tl
 , GSk)  (3.9) 

where P is the profit generated by the ground station GSk by accepting the task Tl and R 

and C are revenue and cost functions, respectively.  The revenue function indicates the 

benefit of executing a task, and the cost function provides an estimate of the cost to 

accomplish the same task.  In this dissertation, rewards associated with tasks are not 

considered; therefore, the utility functions equal the cost of the tasks.  Further, tasks are 

waypoints, and costs define an amount that reflects the distance between each GS or 

UAV and the location of interest, such as the traveled Euclidean distance.   

The global objective of the task allocation algorithm is to minimize overall costs.  

An important term used in the following chapters is global cost, which is the sum of the 

allocated task costs.  Therefore, the global objective used for this dissertation is the 

minimization of the global cost.  The multi-ground station task allocation problem stated 

in terms of global costs is as follows: 

Given a set of tasks, T = {T1, T2, ..., Tt}, a set of GSs {GS1, GS2, ..., GSr}, and a 

function P(Ti, GSi) that specifies the cost of executing a subset Ti of the set of tasks T 

by GSi, find the allocation of tasks to GSs that minimizes the global cost as given by 

Equation (3.10). 

),(
1 i

r

i

i
GSTP       (3.10) 

where r is the number of GSs and the subset of tasks Tj
 is assigned to GSj. 
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The TI issues and renews tasks, and each GS submits bids for the newly issued tasks; a 

task is assigned to the GS with the minimum bid.  The TI‘s algorithm for this allocation is 

as follows: 

if a task is created then 

announce task 
while timer is running do 

receive bids 
end while 
calculate best bid 

match buyer with seller 
award task to best match 

remove task from announcement list 
end if 
 

For each auction cycle, there is only one awarded task.  Upon winning a task, the 

winning GS broadcasts the same task(s) to the UAVs within its connectivity range.  The 

UAVs then calculate the cost for adding the new task to their current plan.  Then, the 

difference between the two plans (current plan and old plan) is the cost for 
i

UAV  to 

execute the auctioned task.   

 The algorithm for the GS task allocation is as follows: 

if a task-list is not empty then 

announce task 
while timer is running do 

calculate cost 

receive bids 
end while 

calculate best bid 
send cost and best bidder  
remove task from task-list 

end if 
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When a GS assigns a task to the winning UAV, it keeps the winner‘s id, task id, winner‘s 

cost, and the task due time in different lists to maintain control of its awarded task(s).  

 In this problem, two types of costs contribute to the marginal cost of adding a new 

task to a plan: 

1. The distance cost is the cost due to the additional distance that the UAV should 

travel, and 

2. The time cost is the cost due to latency that performing this task will cause in the 

data delivery time of the other tasks already in the plan.   

3.4.4  GSs Cost Estimation 

In the set up simulated in this work, there are three GSs located 120˚ apart from 

each other around the TI.  The GSs communicate with the TI all the time.  When a task is 

created at the TI level, each GS submits a bid for that task.  The bid is based on the linear 

distance to that task and uses the task‘s information provided by the TI (i.e., id, price, 

location, and creation time), which has a different price for each task.  First, the TI 

computes the cost and the deadline time for that task according to Equations (3.11) and 

(3.12):   

TITaskCost(t) = P0(1+up*t/tH) (3.11) 

where tH is the deadline time for task TK to be received by the auctioneer, as given by 

Equation (3.12). 

tH(TK) = 2*||Tk – TI||2/
i

UAV _Speed + t (3.12) 
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where t is the time elapsed from the time the task is created until the time the task is re-

auctioned, up is a parameter to determine increments in the price, tH is the deadline time 

for the task TK to be received by the auctioneer, udc is the distance unit cost, and 

i
UAV _Speed is the speed of

i
UAV , as used in Equation (3.13).   

P0 (Tk) = 2*|| Tk – TI||2*(udc +  utcost/
i

UAV _Speed)) (3.13) 

By the time the task reaches its deadline, if up is chosen to equal 1, the price of the 

task will have doubled since its creation time.  This will motivate the GSs to bid for the 

task that was not profitable during previous auction cycles.  When a task Tk is created at 

the TI level, all GSs will use the same TI‘s price function to generate a new bid for the 

auctioned task.  The GS will place a bid equal to GSTaskCost for this task if and only if the 

constraint prescribed by Equation (3.14) is met.   

GSTaskCost≤ TITaskCost(t) (3.14) 

Therefore, the GS‘s bid will be the GS‘s linear distance to Tk and back; in addition to the 

time the UAV needs to execute the task.   

First, the GSs calculate their cost as given by Equation (3.15).  

j
GS distCost  = 2*(||dist(

j
GS  , Tk)||2*udc              1 ≤ j ≤ 3, (3.15) 

where Tk is a new auctioned task to be added to 
j

GS  current plan, and udc is the unit 

distance cost.  Second, since the speed of the UAVs is known to the GSs, any 
j

GS can 

predict the execution time for the newly auctioned task.  Therefore, the time cost to 

execute a new auctioned task is calculated using Equation (3.16).   
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j
GS t imeCost = 2*(

j
GS dist / SpeedUAV)*utcost, (3.16) 

where utcost is the time unit cost, which is known to all GSs, and 
j

GS t imeCost is the cost of 

the time for 
j

GS  to receive the task‘s data, which is based on the task‘s distance to 
j

GS , 

GSdist, and the UAV‘s speed, SpeedUAV.  The sum of Equations (3.15) and (3.16) yields 

the GS‘s estimated cost, as given by Equation (3.17). 

j
GS Cost = 

j
GS distCost + 

j
GS t imeCost (3.17) 

And the GSs bids were calculated using Equation (3.18).  

j
GS Bid =  

j
GS Cost (3.18) 

Since a GS bids according to its true valuation for a task, a bid in Equation (3.18) 

will be the actual cost of the auctioned task to the GS that will submit it to the TI.  P0 is a 

new term that the GS will use to determine the price of task(s) later.  Therefore, the GS 

will use the P0 from the TI, as given by Equation (3.3), in order to generate its cost for 

newly auctioned tasks.   

As previously mentioned, the auctioneer uses a time- increasing function P(t) for 

assigning prices to tasks.  In order for any seller to maximize all profit made, the seller 

must sell tasks won as soon as possible.  Further, a GS is not assured of selling a task 

within a fixed time because bidders will only bid when assured a profit.  This is the main 

reason for using the increasing varying price function, which encourages buyers to bid for 

unsold tasks in the near future.  Therefore, the GS will make the task price function an 
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increasing function of time, which will guarantee that UAVs will be encouraged to buy 

tasks that were not profitable to them during previous auction cycles. The price function 

is given by Equation (3.19).   

GS_P(t) = P0*(1+up*t/tH) (3.19) 

The price function also motivates bidders to bid on those tasks for which more 

time has passed since their creation and so have become more profitable.  Clearly, the 

most profitable task is not necessarily the task with the lowest cost.  Ajorlou et al. (2007) 

suggested that, since price is time varying and profit is price minus cost, this time varying 

function will have an important effect on the balance between a task‘s cost and the 

importance of a task in the task allocation process.  Assume that the price of task Tk, 

offered by the TI at time t is P(t - tT), where, tT is the creation time of Tk.  The difference 

in price, with regard to time, should be large enough to overcome the extra cost that an 

expensive important task may have compared to other offered tasks, which can improve 

the performance by decreasing the probability of successive timeouts for a given task.   

 Clearly, the auctioneer associates a price with each offered task, and upon 

appropriate completion of the task, it pays revenue equal to the task's price to the agent 

that performed the task.  Agents' bids reflect the profit they can make by accepting and 

performing tasks.  In this case, the GSs and UAVs share the profit evenly after task 

completion.  Equation 3.4 is presented again here as Equation (3.20) for clarity.   

ProfitGS = ProfitUAV = 0.5*((
jWin
GS _SBid - 

iWin
UAV _BBid)+ (TI_P0- 

jWin
GS _SBid)- (

jUAV
GS _SBid - 

jWin
GS _SBid)) (3.20) 
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Adding any task to the bidder‘s current plan will result in an additional distance 

an executing agent needs to travel, and the delivery time of tasks will be pushed back, as 

expressed by Equation (3.21).   

H
ttP

otherwise

tR

0

0

)(
 (3.21) 

where t is the elapsed time since the task creation and P0 is the price of the task.  Note 

that P0 may be different for different tasks and is equal to the price the auctioneer 

announced while selling that task.  If a GS offers a task, its price is determined by the 

time-varying price function, as in Equation (3.11).  As previously mentioned, for any 

auctioned task, constraints must be satisfied in order for the task bid to be accepted.   

The auctioneer, TI, knows the price function and uses it to calculate the price 

announced to the GS when offering the task.  However, the revenue that a UAV will 

receive upon performing a task depends on both the time when it accepts the task and the 

time when it delivers the data.  Clearly, any GS will receive its revenue for any task it 

won and executed in a time not exceeding the task‘s deadline time.  

3.4.5  UAVs Cost Estimation 

The initial locations of the UAVs are generated randomly such that each UAV 

communicates with at least two GSs.  In this dissertation, a given 
i

UAV can participate in 

an auction with a given 
j

GS  if and only if 
i

UAV  is within
j

GS ‘s range and 
j

GS  is 
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within
i

UAV ‘s range.  Whichever range is smaller will determine how close 
i

UAV  must 

be to 
j

GS  for them to participate together.  We make the simplifying assumptions that all 

UAVs and GSs have the same range.  Call the area around a 
j

GS within which it can carry 

on an auction with a UAV its domain; a UAV‘s domain is defined similarly but with 

respect to a GS.  Whether the UAV‘s range is smaller than the GS‘s range or vice versa, 

the domains of all GSs will be the same size and shape.   

An interesting case is where the GSs‘ domains overlap.  When the TI announces 

its task(s), each GS checks for availability of UAVs before announcing a task.  When a 

GS receives a response from any UAV in its connectivity range, the GS starts to 

broadcast the announced task.  The UAV should deliver the data to the GS for which it 

sold the corresponding data-delivery task because that GS will count on that UAV 

returning it within a certain time.  As previously stated, if it delivers the data to another 

GS, it incurs a large penalty.  Recall that Equation (3.5) is  

Penalty = 0.5*(
jUAV
GS _SBid - 

jWin
GS _SBid)  

Upon receipt of a task announcement, the UAV computes its first bid and the 

estimated time taken to deliver the task to the GS according to Equations (3.22) and 

(3.23).   

UAVTaskCost = DistUAV- Tk*udcost + DistUAV- Tk*utcost/*
i

UAV _Speed (3.22) 

i
UAV tH =  DistUAV- Tk / 

i
UAV _Speed (3.23) 
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Then, the UAV places a bid for an amount equal to its cost to that GS for the task if the 

constraints prescribed by Equations (3.24) and (3.25) are met.  

i
UAV TaskCost(Tk)  ≤ TITaskCost(t) and (3.24) 

i
UAV tH(TK)  ≤  TItH(TK) - tUAVstart (3.25) 

where tUAVstart is the time the UAV starts executing the task in its task list.   

If the UAV already has at least one task in its task list, then calculating the marginal 

cost is NP hard and requires re-planning for a new set of tasks.  For simplicity, we use a 

heuristic in which we inserted the new task in all possible positions in the current plan and 

chose the one that minimized the distance cost of the new plan.  In addition to Equation 

(3.26), the constraints denoted by Equations (3.27) and (3.28) have to be met.   

TItHnew ≤ TItHold  (3.26) 

tUAVstart + tPathNew ≤ TItHnew  (3.27) 

UAVTaskCostExtra ≤ TITaskCost(TK) (3.28) 

where  

UAVTaskCostExtra = UAVCostCurrentPath - UAVCostPreviousPath.   

TItHold and TItHnew are the task deadlines for the immediate previous and the new task to bid 

for, respectively; UAVTaskCostExtra is the extra cost for adding on an additional task.  If all 

these constraints are met, then the UAV places a bid for the new task according to Equation 

(3.29). 
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UAVTaskCost(TK)    = UAVTaskCostExtra (3.29) 

 

3.5  Robustness 

3.5.1  UAV Malfunction 

In this dynamic research environment of market-based mechanisms, recall that, in 

order for a UAV to submit a bid, the UAV must first is able to deliver the task on time, 

meaning that the UAV's contract is time- limited, and the UAV is responsible for 

delivering its won task in a timely fashion.  During task execution, in the event a UAV 

malfunction, the tasks may not be delivered as desired.  All undelivered tasks are re-

auctioned to existing UAVs when the UAV never recovers to complete the task in its task 

list.  To plan for any uncertainties, undelivered tasks from a disconnected UAV are not 

immediately re-auctioned.  First, the GS allocates an extended time.  Then, after this time 

has elapsed, undelivered tasks are re-auctioned.  This extended time is computed using 

Equation (3.30).   

tReauction  = (1+γ) * min(TItH-
i

UAV ) 0 ≤ γ ≤ 1 (3.30) 

where TItH-
i

UAV contains task deadlines for all the tasks that are in the task list  for a 

specific
i

UAV .   

Since the route information for each UAV is known, the location of the UAV can 

easily be found.  Since the re-auction happens very frequently (every 2 secs), all UAVs 

hover around their current locations until announced re-auctioned tasks are sold.  A GS 
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will assume a UAV malfunction if a certain amount of time has passed since task(s) 

deadline has elapsed and the GS did not yet receive their corresponding data.  γ is a 

constant number chosen between zero and one, which is multiplied by the deadline to 

allow latency in delivering data due to possible estimation errors.  The task deadline 

triggers a UAV malfunction detection and recovery.  When a GS experiences a situation 

where needed task data was not received for a period of at least equal to the threshold 

time, it auctions all tasks won by the malfunctioned UAV.  Additionally, the fact that the 

price is an increasing function of time accelerates the recovery process by providing more 

profit for timed out tasks compared to the corresponding profit of its regular price.   

When the re-auction begins, all the remaining tasks (undelivered tasks) from each 

UAV become the previous task list.  Consequently, the route starting from the current 

location of that UAV becomes the immediate previous route.  As a result, the procedures 

described for GS and UAV bidding for a new task still apply except the new task 

deadline for any re-auctioned task is determined by Equation (3.31).   

TItHnewj  = TItHoldj + tjReauction – max(tMalfunctioned, tUAVstart) (3.31) 

where  

TItHnewj is the new task deadline for a given task j,  

TItHoldj is the old task deadline for a given task j,  

tMalfunctioned is the time at which the UAV get malfunctioned, and 

tjReauction ≥ tReauction is the time at which task j is re-auctioned.   

3.5.2  Communication Failure 

A UAV might also fail to communicate during the auction process.  Frequent 
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auctioning allows the UAV to regain its ground and is an essential part of this 

coordination method designed to accelerate the recovery of such a problem.  As soon as a 

UAV recovers from the communication failure by being able to communicate with any 

GS, the UAV will start observing the auction rules and participate in new auctions.   

Dias et al. (2003) suggested the following strategies to improve robustness: 

 monitoring the communication connectivity to robots that have subcontracted 

tasks,  

 frequent auctioning and bidding, which help reallocate tasks among robots more 

efficiently,  

 the absence of assumptions that all agents will participate in any auction, and 

 continuous scheduling of assigned tasks for execution as tasks are completed.  

 



51 

CHAPTER 4 

MULTI-GROUND STATIONS TASK ALLOCATION WITH 

DOUBLE AUCTION 

 

This chapter studies the performance of market-based coordination methods to 

demonstrate how a double auction can influence the quality of the solution.  Double 

auction consists of multiple buyers and sellers participating to trade a commodity.  Each 

buyer and seller submits a bid representing its offer to buy or sell the auctioned 

commodity.  Submitted bids are matched, and the auction is cleared thereafter.  A double 

auction, then, is a two-sided auction.  One side represents a centralized approach while 

the other represents a distributed approach. This enables the market to compute the 

information in an efficient manner while providing quicker responses.   

This study investigated the effect of increasing the UAVs‘ communication ranges 

on the distance travelled, and the time of task delivery using a different number of tasks 

while the UAVs participated in double auction coordination.  Therefore, the global 

objective used in this dissertation is the minimization of the global cost (distance 

travelled).   

 

4.1  Market Setup  

The market setup consists of an allocation of a set T of tasks among a set of GSs 

partitioning T among the GSs, where T = {T1, T2, . . . , Tn} and GSs = { GS1, GS2, . . . , 

GSm}. This is denoted by a tuple [T1, T2 , ... , Tn-1, Tn ] where:  
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 Each subset of tuples represents tasks assigned to a GS, i.e., a ground station GSi 

is assigned the tasks represented by Ti = {Ta, Tb, . . . , Tt}, which is a subset of 

the set T. 

 The union of the sets of tasks in the tuple is equal to the complete set of tasks, i.e.,  

Tl
  Tk ...  Tn = T 

 The sets in the tuple are pairwise disjoint, i.e., Tl  Tk = Ø; for all i k. 

The purpose of using a task allocation algorithm is to minimize overall costs, which are 

defined as the sum of the allocated task costs.  Hence, a task allocation problem for 

multiple GSs can be stated as follows: 

Given a set of tasks, T = [T1, T2, . . . , Tn], a set of GSs  = [GS1, GS2, . . . , GSm], and a 

function P(Ti , GSk) that specifies the utility of executing a subset of tasks Ti by GSi, i 

= 1, 2, …, n, find the allocation of tasks to GSi that optimizes the overall objective.  

Tasks are issued by the TI to the GSs for bidding, and allocated to the GSs with the 

minimum bid.  In defining the allocation problem, it is important to specify the cost 

function given in Chapter 3, Equation 3.2, repeated here as Equation 4.1.   

 P(Ti, GSk) = R(Ti , GSk) − C(Ti , GSk), (4.1) 

where P is the profit generated by the ground station GSk for accepting tasks Ti, and R 

and C are the revenue and cost functions, respectively.  The revenue function, R(Ti, GSk), 

represents the cost benefit to GSk for executing task Ti, and the cost function, C(Ti , GSk), 

represents a cost estimate for GSk for accomplishing the same task.  Tasks are waypoints, 

and costs are numbers that reflect the distance between each GS and a waypoint of 

interest, such as the Euclidean travelled distance.   
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4.2  Simulation Setup  

This section describes the simulation environment that consists of one TI, three 

GSs, and a different number of UAVs.  The TI, GSs, and UAVs interact over tasks issued 

by the TI.  The TI is located at the origin of a 3D-space bounded by the following ranges:  

 -2CommUAVMax ≤ x ≤ 2CommUAVMax, 

 -2CommUAVMax≤ y ≤ 2CommUAVMax, and  

 0 ≤ z ≤ 2 CommUAVMax,  

where CommUAVMax is the maximum communication radius admissible by a UAV during 

the design of that UAV, and x, y, and z are the coordinate axis.   

As shown in Figure 4.1, the three GSs are located 120˚ apart from each other 

around the TI, and can communicate with the TI at all times.  The initial locations of the 

UAVs are generated randomly such that each UAV communicates with at least two GSs.  

A given 
i

UAV can participate with a given 
j

GS  if and only if 
i

UAV  is within
j

GS ‘s range 

and 
j

GS  is within
i

UAV ‘s range.  Whichever range is smallest determines how close 

i
UAV  must be to 

j
GS  for them to participate together.  The simplifying assumption is 

that all UAVs and GSs have the same range.  The area around 
j

GS  in which it can carry 

on an auction with a UAVi is its domain.  Whether the UAV‘s range is smaller than the 

GS‘s range or vice versa, the domains of all GSs are the same size and shape.   

The TI‘s and GSs‘ communication ranges are 100 meters, and 200 meters, 

respectively.  Any GS has at least one UAV within its communication range before the 

start of the initial auction.  Any UAV can communicate with at least two GSs at the 
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beginning of the auction.  To enhance the design‘s quality of solution, the UAVs‘ 

communication ranges fell between 250 meters to 2,500 meters, and their speed is 10 

m/s.  The unit distance cost (udcost) is set at $0.1 / m, the time unit cost (tucost) at $0.1 /s, 

and up, a parameter to determine an increase in price, is set at 1.  Each task has a different 

value, which is determined by its distance from the TI.  This implies that, using the time 

varying price function, the price for a task will double when it reaches its deadline, tH, 

from its creation time and has not been sold.   
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Figure 4.1.  Setup of TI, three GSs and nine UAVs for double auction 

 

Each GS submits bids for newly issued tasks.  A task is assigned to a pair of GSs 

and the UAV with the minimum bid.  A task is an act of visiting and collecting data from 

a specific sensor location by a UAV and delivering the collected data to the TI through a 
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GS later.  In a practical sense, a TI could be a control room or any agent (including 

humans) with the ability to initiate and re-allocate tasks to the fittest pair of GSs and 

UAVs through double auction.  In this scenario, the UAVs have the ability to buy from 

more than one GS and deliver tasks to a source GS.   

 

4.3  Interaction between TI and GSs 

This section describes the interaction between the TI and GSs with emphasis on 

optimizing task allocation in double auction.  Presented are the results of five runs with 

relative statistics and associated profits.   

4.3.1  Double Auction between GSs and UAVs  

All GSs compete as self- interested agents to maximize their profits, and the 

UAVs aim to minimize their overall distance travelled in order to execute tasks.  The 

distance cost of adding a new task to any GS‘s current plan is double the linear distance 

from the GS to the task location in addition to the time needed for task(s) execution.  

Since the UAVs‘ speed is known, the GSs can predict the time cost for an auctioned task.  

Based on this information, the GSs submit their bids to the TI (refer to Chapter 3).   

Task performance is measured using the averages of at least five runs for each 

communication range.  Initially, Tables 4.1 through 4.5 summarizes the results for each 

run for the GSs and UAVs, and the profits each made during the auction cycles.  Table 

4.1 presents the data for twelve random tasks for six UAVs at 250 meters and the 

transactions between the UAVs and GSs for exchanging task(s) during each run.  

Randomly generated tasks do not necessarily mean tasks will be bought by the same 
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UAV from the previous run.  Instead, the cost of any task might change during each run 

depending on how far the task is from the UAV, and the time needed for execution.  

 

Table 4.1. Run 1: Profit generated by GSs and six UAVs while auctioning 12 

 random tasksat 250 meters 

Task TI Price 

Seller (GS) 

Bid 

Seller(GS) 

ID 

Buyer 

(UAV) ID 

Buyer 

(UAV) Bid 

Buyer/Seller 

Profits 

T1 $1117 $1084 2 2 $1023 $47 

T2 $310 $268 1 4 $215 $48 

T3 $1271 $1233 2 1 $1172 $50 

T4 $1136 $1107 2 1 $368 $384 

T5 $1502 $1466 1 3 $1410 $46 

T6 $832 $799 1 3 $336 $248 

T7 $842 $819 1 1 $410 $216 

T8 $508 $460 3 1 $216 $146 

T9 $630 $612 3 2 $167 $231 

T10 $1318 $1289 3 5 $1215 $51 

T11 $1235 $1202 3 5 $277 $479 

T12 $1702 $1664 2 6 $1616 $43 

 

Since delivery cost is assumed to be at the intersection of the UAVs‘ 

communication range and the target sensor location, tasks executed by each UAV might 

also change from one run to the next, depending on whether the task(s) on the UAV‘s list 

permits executing a newly auctioned task without making any of its previous won task(s) 

timeout.  The profit each UAV and GS generates during a double auction relies on how 

well the UAVs are positioned during the auctioned task with respect to the task‘s location 

and the UAV‘s communication ranges.  The program ran for at least five times to 

generate profit, as denoted by Equation 4.2.   
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1

_ _ ( _ Pr ) 1 3
m

j
i

GS average profit Average UAVi ofit j  (4.2) 

where m is the number of UAVs that paired with 
j

GS  during the auction and 

j
GS _average_profit is the average profit made by that specific GS.  The data in Tables 

4.2 through 4.5 show the profit for each GS and a list of corresponding UAVs for runs 2 

through 5.   

 

Table 4.2. Run 2: Profit generated by GSs and six UAVs while auctioning 12 

 random tasks at 250 meters 

Seller (GS) ID GS Total Profit GS Task List Buyer (UAV) ID 

1 $462 4, 5, 11, 12 1, 2, 4, 6 

2 $255 3, 6 1, 2 

3 $873 1, 2 ,7, 8, 9, 10  1, 4, 5, 6 

 

Table 4.3.  Run 3: Profit generated by GSs and six UAVs while auctioning 12    

  random tasks at 250 meters 

Seller (GS) ID GS Total Profit GS Task List Buyer (UAV) ID 

1 $736 1, 7, 8, 9 1, 3, 4 

2 $1578 2, 3, 4, 5, 6, 11, 12 2, 4, 1, 5 

3 $444 10 1 

 

Table 4.4. Run 4: Profit generated by GSs and six UAVs while auctioning 12 

 random tasks at 250 meters 

Seller (GS) ID GS Total Profit GS Task List Buyer (UAV) ID 

1 $1258 2, 3, 6, 9, 10 3, 4, 5 

2 $935 7, 8, 11, 12 3, 4 

3 $648 1, 4, 5 3, 5 
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Table 4.5. Run 5: Profit generated by GSs and six UAVs while auctioning 12 

 random tasks at 250 meters 

Seller (GS) ID GS Total Profit GS Task List Buyer (UAV) ID 

1 $606 3, 5, 6, 10, 12 2, 3, 4 

2 $202 1, 7 1, 4 

3 $809 2, 4, 8, 9, 11 1, 2, 5, 6 

 

4.3.2  Results for increasing UAVs’ Communication Range 

The impact of increasing the UAVs‘ communication ranges was investigated to 

enhance the quality of the solution for each GS.  Profits are divided evenly between 

participating GSs and UAVs.  Therefore, each GS‘s profit influenced the total distance 

travelled by the UAVs on the GS‘s / UAV list and the total execution time for its task(s), 

which affected the UAV‘s ability to reach and execute tasks at an earlier time.  Further, 

since all UAVs‘ speed is constant, the only factor that affected a task‘s reachability is 

their communication ranges.   

The average GSs profit generated from these runs is the profit made by all UAVs 

on its UAV list.  The profit for the GSs at each communication range during the five runs 

was summed to give the average profit.  As shown in Table 4.6, each GS‘s profit 

continued to increase as the UAVs‘ communication ranges increased.  Because the UAVs 

share profits evenly with their GSs, they also benefitted from increasing their 

communication range.   

As depicted in Table 4.6 and Figure 4.2, increasing the UAVs‘ communication 

range affected not only the profit each buyer and seller generated, but also the task‘s 

execution time as well.  The UAV‘s constant speed contributed to the decrease in the 
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distance travelled to execute a task, which was a direct result of increasing the UAV‘s 

communication range.  Thus, the decrease of distance travelled automatically affected the 

task execution time.   

 

Table 4.6. Average GSs profit while auctioning five sets of 12 random tasks to six 

 UAVs 

UAVs 
Communication 

Range (m) 

 
250 

 
500 

 
750 

 
1000 

 
1250 

 
1500 

 
1750 

 
2000 

 
2250 

 
2500 

GS1 $724 $749 $774 $801 $837 $961 $981 $1070 $1081 $1101 

GS2 $699 $719 $739 $758 $917 $940 $962 $984 $1001 $1025 

GS3 $736 $754 $771 $788 $791 $876 $898 $903 $939 $959 

 

 

Figure 4.2. UAV1’s trace of path time of task execution at different 

communication ranges 

 

Figure 4.2 shows UAV1‘s path of tasks execution during different communication 

ranges that depicts the impact of increasing the UAV‘s communication ranges over the 

tasks‘ execution time, which reduced the UAV‘s ability to deliver its tasks earlier since it 
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travelled less distance to its intended GS and target sensor.  Figure 4.2 also shows a large 

drop in UAV1‘s path execution time when its communication range increased from 1250 

meters to 1500 meters.  At 1250 meters, UAV1 won tasks 10 and 6; while at 1500 meters 

UAV1 won tasks 11 and 4.  Therefore, the reason for the drop in path execution time is 

that they have different coordinates.  

Tasks must also be delivered on time such that any UAV will not bid for any 

auctioned task that will cause any of its current task(s) to timeout.  Since tasks are 

generated randomly, their IDs and number of tasks won by an individual UAV may 

change from one run to the next; therefore, the time required to execute the task(s) may 

change accordingly.  Table 4.7 shows the tasks path execution times and their tasks for 

UAV1 with varied communication ranges.  The results show it took less time when the 

UAV‘s communication range increased for the same task(s) to be delivered to the same 

destination.   

 

Table 4.7.  UAV1’s tasks execution time during different communication ranges 

UAV Communication 

Range (m) 

Tasks Path Execution Times 

(sec) 

Task List 

250 2056 11, 6, 10 

500 2033 11, 6, 10 

750 2011 11, 6, 10 

1,000 1930 6, 10 

1,250 1907 6, 10 

1,500 708 11, 4 

1,750 685 11, 4 

2,000 663 11, 4 

2,250 640 11, 4 

2,500 618 11, 4 
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4.3.3  Results of Average Distance Travelled and Average Time to Perform Tasks 

In a double auction, UAVs may submit their bids to more than one GS to increase 

their chances of winning an auctioned task as self- interested agents.  Different cases were 

investigated to show the effect of increasing the buyers‘ communication ranges during a 

double auction.  A base case involves nine random tasks auctioned to three GSs to sell to 

six UAVs bidding to execute these tasks.  Table 4.8 shows the average total distance 

travelled to execute the tasks and the average time required to perform the tasks.   

The data in Table 4.8 shows that the average time needed to execute tasks 

improved as the UAV‘s communication range increased. When the UAVs 

communication ranges increased from 250 meters to 2500 meters, the average distance of 

data delivery decreased by 16.8%.  As shown in Table 4.9, this decrease resulted in all 

the GSs receiving a profit increase.  GS1, GS2, and GS3 realized an increase in their 

average profit up to 39.8%, 57.9% and 20.9%, respectively.  

 

Table 4.8.  Data delivery statistics for nine random tasks by six UAVs 

UAV Communication 

Range(m) 

Mean Data Delivery 

Distance (m) 

Mean Tasks Execution Time 

(sec) 

250 9871 987 

500 9625 962 

750 9445 944 

1,000 9264 927 

1,250 9085 909 

1,500 8905 890 

1,750 8725 872 

2,000 8545 855 

2,250 8371 837 

2,500 8213 821 
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Table 4.9. Average GSs profit from selling nine tasks to six UAVs 

UAV 

Communicati

on Range (m) 

 

250 

 

500 

 

750 

 

1000 

 

1250 

 

1500 

 

1750 

 

2000 

 

2250 

 

2500 

GS1 $431 $454 $474 $493 $513 $533 $553 $573 $590 $602 

GS2 $458 $504 $532 $559 $586 $613 $640 $668 $696 $723 

GS3 $535 $548 $560 $573 $585 $597 $610 $622 $634 $647 

 

This research used two cases to investigate the scalability of the market-based 

coordination.  In Case-1, the number of tasks was increased from 9 to 12, and in Case-2, 

decreased from nine to six, respectively, while the number of UAVs that carried out the 

job remained unchanged at six.  The task execution time decreased for each UAV 

delivering to the same destination as its communication range increased.  As shown in 

Table 4.10, the average data delivery distance travelled by all six UAVs decreased.  

 

Table 4.10. Data delivery statistics for 12 random tasks by six UAVs 

UAV Communication 

Range(m) 

Mean Data Delivery 

Distance (m) 

Mean Tasks Time 

Execution (sec) 
250 12676 1268 

500 12489 1249 

750 12301 1230 

1,000 12104 1210 

1,250 11821 1182 

1,500 11119 1119 

1,750 10924 1092 

2,000 10572 1057 

2,250 10341 1034 

2,500 10131 1013 

 

Even though the market is scaled up, it still benefitted from double auction, and is 

better off by 3% in the distance travelled when tasks are scaled up to twelve as compared 
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to the base case; see Table 4.8.  This improvement accompanied an improvement in the 

quality of the solution since the decrease in the average time of task execution showed 

the same result for the reduction in the distance travelled.    

Computing the profit generated by each GS in the double auction provides a 

better view of these results.  As the number of auctioned tasks increased for the same 

UAVs, the probability of increasing the profit for each participating UAV increased.  By 

scaling the number of auctioned tasks to twelve, GS1, GS2 and GS3 received an increase 

in their profit by 52%, 46.6% and 30.2%, respectively.   

In Case-2, the number of tasks was scaled down to six tasks to be bought by the 

same six UAVs who participated in double auction in Case-1.  The data in Tables 4.11 

and 4.12 show the results from increasing the UAVs communication range. 

 

Table 4.11. Data delivery statistics for six random tasks by six UAVs 

UAV Communication 
Range(m) 

Mean Data Delivery 
Distance (m) 

Mean Tasks Execution Time 
(sec) 

250 8080 808 

500 7937 794 

750 7783 778 

1,000 7640 764 

1,250 7420 742 

1,500 7258 726 

1,750 6958 696 

2,000 6793 679 

2,250 6595 659 

2,500 6430 643 

 

To investigate the matter further, using the same tasks, the numbers of buyers 

were increased from six to nine to buy twelve tasks that were sold in Case-1.  As in Case-
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1, increasing the UAV‘s ranges affected the average data delivery time for an auctioned 

task by allowing it to be performed in a shorter time as data delivery will be completed 

earlier due to the increase in the UAVs‘ communication range.  Table 4.13 and Figure 4.3 

show the effect on average time of tasks execution when the UAVs‘ ranges increased.   

 

Table 4.12. Average GSs profit from selling 6 tasks to 6 UAVs 

UAV 

Communication 

Range (m) 

 

250 

 

500 

 

750 

 

1000 

 

1250 

 

1500 

 

1750 

 

2000 

 

2250 

 

2500 

GS1 $130 $148 $165 $182 $200 $217 $234 $251 $278 $292 

GS2 $291 $303 $320 $353 $370 $387 $465 $482 $502 $521 

GS3 $192 $209 $226 $244 $261 $280 $284 $304 $324 $343 

 

Table 4.13. Execution time of 12 tasks by UAVs during different  

 communication ranges 

UAV Communication 

Range(m) 

Average Time Travelled by 6 

UAVs 

Average Time 

Travelled by 9 UAVs 

250 1268 836 

500 1249 824 

750 1230 811 

1,000 1210 798 

1,250 1182 785 

1,500 1119 740 

1,750 1092 725 

2,000 1057 700 

2,250 1034 685 

2,500 1013 670 

 

 Increasing the communication ranges also improved the quality of the solution by 

reducing the execution time, thus increasing each participant‘s profit.  Table 4.14 shows 

that increasing a UAV‘s communication range led to a decrease in the t ime travelled and 

a decrease in the average distance travelled.  Accordingly, the decrease in the distance 
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travelled or the time of execution yielded an increase in the profit generated by 

participating UAVs, as shown in Table 4.15.  This meant that the increase in profit would 

be divided evenly between the GSs and their UAVs.  

 

 

Figure 4.3.  Execution time of same 12 tasks in double auction 

 

Table 4.14.  Data delivery statistics for 12 random tasks by nine UAVs 

UAV Communication 

Range(m) 

Mean Data Delivery 

Distance Cost 

Mean Task Execution 

Time(sec) 
250 $8364 836 

500 $8239 824 

750 $8114 811 

1,000 $7981 798 

1,250 $7854 785 

1,500 $7398 740 

1,750 $7253 725 

2,000 $6997 700 

2,250 $6851 685 

2,500 $6699 670 
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Table 4.15. GSs average profit while auctioning five sets of 12 random tasks  

 to nine UAVs  

UAV 

Communication 

Range(m) 

 

250 

 

500 

 

750 

 

1000 

 

1250 

 

1500 

 

1750 

 

2000 

 

2250 

 

2500 

GS1 $751 $774 $796 $822 $845 $968 $988 $1088 $1090 $1112 

GS2 $832 $854 $877 $899 $921 $944 $966 $989 $1016 $1033 

GS3 $722 $739 $756 $774 $792 $879 $901 $905 $948 $985 

 

 This reduction in tasks execution time meant that the distance travelled also 

reduced as observed earlier since the UAV‘s speed is constant.  In fact, the decrease in 

the average execution time is a direct result of the decrease in the average distance 

travelled as depicted in Figure 4.4, where six UAVs compete to buy a different number of 

auctioned tasks.   

 

 

Figure 4.4. Average distance travelled by six UAVs competing over a different 

number of tasks 
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Since the average task execution time decreased as a result of increasing the 

UAVs‘ communication ranges, the profit generated by the UAVs increased as well.  The 

increase in the UAVs‘ profit led to an increase in the average profit generated by GSs as 

their profit is the summation of all profit made by each participant UAV that bought 

task(s) from that specific GS, as mentioned before in Equation 4.2.  As an example, refer 

to Figure 4.5 and Table 4.15. 

 

 

Figure 4.5.  GSs average profit of selling 12 tasks to nine UAVs  

 

Scaling up the number of UAVs from six to nine competing over the same 

number of tasks resulted in the same improvement as the reduction in the average of task 

execution time and the distance travelled (Figures 4.3 and 4.4, respectively) as well as the 

profit generated due to increasing the UAVs‘ communication ranges (Figure 4.5).  
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Scaling up the number of tasks to twelve resulted in a decrease of 31.8% in the 

average task execution times, while the UAVs ranges increased from 250 meters to 2500 

meters; see Table 4.13. 

Increasing the number of UAVs competing for the same number of tasks resulted 

in finding the fittest UAV, and a quicker response, which decreased the average distance 

travelled as well as the average task execution times, as depicted by Figure 4.6.   

 

 

Figure 4.6.  UAVs average distance travelled to execute 12 tasks 

 

4.3.4  System Robustness 

 In a dynamic research environment, system robustness is one of the most 

important criteria for reliability.  The availability of task data to the TI is very crucial, 

particularly in military operations or rescue missions; therefore, the system must be 
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robust.  To validate the system‘s robustness, UAV1, which had four tasks in its current 

plan, {9, 10, 11, and 12} assumed to fail before delivering any of its tasks to GS2, as 

shown in Figure 4.7.   
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Figure 4.7.  Path for executing tasks by UAV1 

 

As a result, GS2 detected the absence of UAV1‘s task data after  time passed 

because the deadline due time, tH, for the first task was due by UAV1.  To recover from 

this failure, using the time-increasing function with higher prices to accelerate recovering 

these tasks, GS2 re-auctioned the undelivered tasks to the UAVs within its 

communication range.  The eligible UAVs submitted their bids for those tasks from 

where they were at the beginning of re-auctioning, as shown in Table 4.16.  During re-

auctioning, UAV2 won tasks 9 and 12 in addition to those delivered earlier, and on time.  

For clarity, the execution path of tasks won by UAV2 before and after re-auctioning is 
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shown in Figure 4.8.  While UAV4 won task10 and delivered it to GS1 and the fourth re-

auctioned task was delivered by UAV1, it recovered from its failure and was able to win 

this task during re-auctioning because at that time the task was already on its task list.   

 

Table 4.16.  UAVs coordinates at re-auctioning tasks 

UAVi x y z 

1 313 -61 315 

2 -115 200 0 

3 -115 200 0 

4 219 13 139 

5 -115 -180 134 

6 -115 -200 0 

 

This robustness affected the time of data delivery due to the extended time due to 

tasks not delivered on time.  Therefore, the average time for tasks delivered increased 

from 1005 seconds to 1095 seconds.  The difference in these two numbers represents the 

cost for making the system robust to uncertainty, and is the cost for assuring data 

delivery.   

Since re-auctioning in this case takes place only when tasks are not delivered at 

their expected due time, re-auctioning undelivered tasks will cause some delay on the 

average data delivery time.  As shown in Figure 4.9, when 12 tasks was delivered by six 

UAVs, at a range of 250 meters, re-auctioning caused a 295 seconds delay in data 

delivery; while at a range of 2500 meters, re-auctioning caused the same data to be 

delivered 127 seconds late. 
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Figure 4.8.  Path for executing tasks by UAV2 before and after validating 

robustness 

 

 

Figure 4.9.  Data delivery time history for 12 tasks by six UAVs before and after re-

auctioning 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

This dissertation studied the problem of collecting data from a series of unmanned 

ground sensors (UGSs) using a team of unmanned aerial vehicles (UAVs), and delivering 

the information to a task initiator (TI) through the ground stations (GSs).  The problem 

formulated into a procurement auction between the TI and GSs and a double auction 

between the GSs and UAVs, which was formalized as a continuous time-constraint 

version of a multi-traveling salesperson problem. 

A market-based coordination method was simulated using double auction 

methods applying concepts of price, revenue, and cost to trade task allocations between 

the UAVs and GSs.  A double auction enabled the TI to benefit from 1) having different 

ground stations reach farther locations in a timely manner, and 2) cost efficiency by 

allowing task executions through a different agent in the system, which led to a decrease 

in time and cost.  

The market-based method used communication efficiently because it compressed 

the UAVs‘ data into bids.  The role of the TI, in addition to task creation and holding 

auctions, was as a market matcher that matched the sell bids and purchased bids during 

the double auctions.  The GSs are buyers that participated with the TI and sellers in the 

double auctions.  This allowed the UAVs to control the allocation process by the bids 

they submitted.  All GSs participated in auctioning tasks received from the TI to UAVs 

that submitted bids to one or more GSs.  This gave the UAVs more chances to win the 
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auctioned tasks.  Therefore, the buyer's cost for executing the task was considered in a 

bid that reflected the maximum price the buyer can pay for that task.  Thus, the seller‘s 

bid is considered the minimum price acceptable to trade the task.  

As a global objective, this dissertation used double auctions to minimize the 

overall cost. During the auctioning process, the UAV's cost for executing tasks was 

considered a bid that did not exceed the auctioneer‘s reserve price.  Therefore, more than 

one agent may submit the same bid, and the auctioneer‘s role was as tiebreaker.  GSs 

were bounded by the TI‘s reservation price when submitting their bids to the TI; hence, 

they benefitted from the buyers that bid for less in case they did not win the task.  Yet 

there was still an opportunity for them to receive partial profit in case their buyer agent 

became the winner.  The GSs used the TI‘s reserve price to come up with their own price 

for the auctioned task that was based on their linear distance to the auctioned task, and 

the time needed to execute a task by a prospective winner, which was based on the 

known speed of the UAVs.  UAVs submitted their buy offers to the market (GS in this 

situation) according to the market rules; the seller‘s decision was based on the minimum 

bid.   

For any auctioned task, there is a deadline time for the task data to be received by 

the auctioneer.  When execution of a candidate task would cause the execution of any 

task in the UAV‘s current plan to miss its deadline, the UAV did not submit a bid for that 

auctioned task.  Thus, data delivery time affected the amount of profit a UAV could earn; 

the sooner the task(s) were delivered to the auctioneer, the more profit the UAV 
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generated, which was a direct result of the UAV‘s communication range.  Increasing the 

UAVs‘ communication ranges enabled them to deliver the needed data sooner.   

This double auction operated differently than a regular double auction.  The 

overall objective was to minimize overall costs.  Bids were ranked from minimum to the 

maximum; the agent with the minimum bid was awarded the task assuming all 

constraints were met. 

Using the increasing price function, re-auctioning the GSs‘ tasks improved the 

quality of the solution because all tasks at the end were bid on and thereafter assigned.  

Re-auctioning made the system robust and maintained strong control over all auctioned 

tasks regardless of any uncertainty agents might have faced (e.g., UAV communication 

malfunction) during task execution.  When a UAV was unable to perform its tasks, these 

tasks were assigned to other agents through a new auction held by the GS that was 

supposed to receive the data on time. 

This double auction generated a random number of tasks to be executed by a 

different number of UAVs to determine the effect on the quality of the solution.  For the 

same number of tasks, having more UAVs participate in the auction resulted in a quicker 

response by reducing the average distance traveled, and the average time of tasks 

execution decreased as well.  Increasing the communication ranges also improved the 

quality of the solution by reducing the execution time and increasing the profit for each 

participant.   

Assuming each UAV is self- interested, the total time to complete all the tasks 

assigned to it was minimized.  Tasks were assigned through bidding according to double 
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auction rules.  Additionally, communication malfunctions of the UAVs were simulated.   

In this research, UAVs could become disabled and so fail to deliver their task(s). 

Therefore, UAV malfunctioning introduces new challenges for this system.  Since each 

UAV is responsible for delivering its won tasks, it will have to assure delivering the 

completed tasks to the source GS without any delay to maximize its won profit.  

Otherwise, the UAV suffers a severe penalty.  The robustness issue was addressed by 

introducing a point of failure for some UAVs during task execution.  This was done by 

disconnecting a UAV before it delivered all or some of its tasks to their final destination.  

Since the tasks are time limited, the system‘s robustness was validated by re-auctioning 

undelivered tasks(s) by the prospective receiver GS after gamma ( ) time passed since 

their due time.  However, a disabled UAV could recover from its failure during re-

auctioning, and if it participated in the bidding of any task(s) on its task list, the UAV 

wins those tasks if the UAV was already on its way to deliver the tasks‘ data when it was 

disabled.   

The GS malfunctioning issue is an area for future research, since the current 

constraints made it difficult to handle at this time.  Going forward, UAVs may have 

different capabilities such as different speeds and different communication ranges; 

therefore, research is needed to explore the effect of these on the quality of the solution 

and the profit that can be generated.  To address relevant issues in double auctions, future 

research can also expand on this research by exploring double auctions between GSs in 

addition to the combinations (GSs and UAVs) investigated in this research.  
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APPENDIX A 

DOUBLE AUCTION TRACES 

 

Actual GS communication radius for the overlap case is: 400  
TI communication radius: 231 
 

 
GSs and UAVs bid pairs: 

           GS       GS_Bid       UAV      UAV_Bid 
     1   475     3   406 
     2   Inf     3   433 

     3   Inf     3   447 
 

GSs and UAVs bid pairs: 
           GS       GS_Bid       UAV      UAV_Bid 
           1        1105           1        1034 

           2        1101           1        1032 
           3         Inf           1        1069 

 
GSs and UAVs bid pairs: 
           GS       GS_Bid       UAV      UAV_Bid 

           1        1077           1         907 
           2         Inf           1         945 

           3        1085           1         911 
 
GSs and UAVs bid pairs: 

           GS       GS_Bid       UAV      UAV_Bid 
     1   Inf     1   307 

     2   524     1   307 
     3   Inf     1   307 
 

GSs and UAVs bid pairs: 
           GS       GS_Bid       UAV      UAV_Bid 

     1   Inf     2   766 
     2   805     2   735 
     3   Inf     2   764 

 
GSs and UAVs bid pairs: 

           GS       GS_Bid       UAV      UAV_Bid 
     1   407     2    64 
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     2   380     2    64 
     3   Inf     2    64 

 
GSs and UAVs bid pairs: 

           GS       GS_Bid       UAV      UAV_Bid 
     1   Inf     5   939 
     2   980     5   920 

     3   Inf     5   942 
 

GSs and UAVs bid pairs: 
           GS       GS_Bid       UAV      UAV_Bid 
     1   561     5   285 

     2   586     5   297 
     3   Inf     5   297 

 
GSs and UAVs bid pairs: 
           GS       GS_Bid       UAV      UAV_Bid 

           1         Inf           9        1343 
           2         Inf           9        1331 

           3        1374           9        1304 
 
GSs and UAVs bid pairs: 

           GS       GS_Bid       UAV      UAV_Bid 
           1        1158           9         947 

           2        1179           9         957 
           3         Inf           9         970 
 

GSs and UAVs bid pairs: 
           GS       GS_Bid       UAV      UAV_Bid 

     1   599     9   133 
     2   Inf     9   133 
     3   602     9   133 

 
GSs and UAVs bid pairs: 

           GS       GS_Bid       UAV      UAV_Bid 
           1        1077           4         993 
           2         Inf           4        1014 

           3        1052           4         981 
 

 
UAV_TaskList =  
 

  Columns 1 through 5 
    [1x3 double]    [1x2 double]    [1]    [12]    [1x2 double] 
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  Columns 6 through 9 

     []     []     []    [1x3 double] 
 

Ground Stations coordinates (in rows): 
   231     0     0 
  -115   200     0 

  -115  -200     0 
 

UAVs Initial Coordinates (in rows): 
  -114   219   121 
   -78   199   106 

   218    28   132 
   -65  -151   144 

   -24  -127   169 
   -52  -144   111 
  -115  -180   106 

  -115  -180   119 
  -115  -180   132 

 
Tasks Coordinates (in rows): 
        2073         832         759 

        2297        4431        1144 
        2802       -3897        1470 

       -2120        1407         433 
       -1624        2492        2422 
         261        1538        1028 

       -1035        2227        3860 
        1926        1837         503 

       -4385       -3825        2759 
        2814        2401        3910 
        1079       -1712        1941 

         567       -3680        3210 
 

RECORDS FOR UAV1: 
Tasklist: 
     2     3     4 

 
Minimum Route: 

     1     4     2     3     1 
 
StartTime  DeliveryTime  PathTime LatestDeliveryTime 

          22        2063        2041        2581 
RECORDS FOR UAV2: 
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Tasklist: 
     5     6 

 
Minimum Route: 

     2     6     5     2 
StartTime  DeliveryTime  PathTime LatestDeliveryTime 
          22         749         727        1868 

RECORDS FOR UAV3: 
Tasklist: 

     1 
 
Minimum Route: 

     3     1     1 
 

StartTime  DeliveryTime  PathTime LatestDeliveryTime 
          22         391         369        2359 
 

RECORDS FOR UAV4: 
Tasklist: 

    12 
 
Minimum Route: 

     4    12     3 
 

StartTime  DeliveryTime  PathTime LatestDeliveryTime 
          22         914         892        4916 
 

RECORDS FOR UAV5: 
Tasklist: 

     7     8 
 
Minimum Route: 

     5     7     8     1 
 

StartTime  DeliveryTime  PathTime LatestDeliveryTime 
          22        1117        1095        2709 
 

RECORDS FOR UAV9: 
Tasklist: 

     9    10    11 
 
Minimum Route: 

     9     9    11    10     1 
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StartTime  DeliveryTime  PathTime LatestDeliveryTime 
          22        2189        2167        2804 

 
UAV LIST FOR GS1: 

     3     1     5     9     9 
 
UAV LIST FOR GS2: 

     1     1     2     2     5 
 

UAV LIST FOR GS3: 
     9     4 
 

    AvgDist(m)   AvgTime(s)  Dist_std(m)  Time_std(s) 
        8101         810        8378         838 

 
 
 

 
 

RESULTS FROM THE ROBUSTNESS 
Records for the disconnected UAV: 
UAV Disconnected = 1 

Time it got eliminated = 50 
Time it recovered = 4400 

Its latest task delivery time = 2581 
Tasks in its tasklist are: 
     4     2     3 

 
Tasks delivered are: 

None 
Tasks undelivered are: 
     4     2     3 

 
 

 
TIME AT WHICH THE REAUCTION OF TASKS FROM THE DISCONNECTED 
UAV BEGINS: 2586 

THE REMAINING TASKS TO BE DONE BY ALL THE OTHER UAV JUS T 
BEFORE THE REAUCTION OF TASKS FROM THE DISCONNECTED, UAV1:  

The remaining tasks for UAV 2  are: None 
The remaining tasks for UAV 3  are: None 
The remaining tasks for UAV 4  are: None 

The remaining tasks for UAV 5  are: None 
The remaining tasks for UAV 6  are: None 
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The remaining tasks for UAV 7  are: None 
The remaining tasks for UAV 8  are: None 

The remaining tasks for UAV 9  are: None 
UAVs current coordinates just before the reauction of tasks from the eliminated UAV: 

  -353   361   158 
  -115   200     0 
   232     1     1 

  -115  -200     0 
   232     1     0 

   -52  -144   111 
  -115  -180   106 
  -115  -180   119 

   232     1     2 
 

GSs and UAVs bid pairs: 
           GS       GS_Bid       UAV      UAV_Bid 
     1   Inf     2   503 

     2   524     1   425 
     3   Inf     1   450 

 
GSs and UAVs bid pairs: 
           GS       GS_Bid       UAV      UAV_Bid 

           1        1105           2        1038 
           2        1101           2        1036 

           3         Inf           2        1074 
 
GSs and UAVs bid pairs: 

           GS       GS_Bid       UAV      UAV_Bid 
           1        1077           2         907 

           2         Inf           2         945 
           3        1085           2         911 
 

RECORDS FOR UAVs WHICH WON REAUCTIONED TASK(S):  
(Note: Those UAVs which did not win any reacuctioned tasks have the same records as 

shown before) 
UAV1: 
TASKLIST: 

Task completed before REAUCTION: 
Task completed after REAUCTION: 

     4 
 
Minimum Route from start to end: 

     1     4     2 
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StartTime  DeliveryTime  PathTime LatestDeliveryTime 
          22        2977         415        5117 

 
UAV2: 

TASKLIST: 
Task completed before REAUCTION: 
     6     5 

Task completed after REAUCTION: 
     2     3 

 
Minimum Route from start to end: 
     2     6     5     2     3     1 

 
StartTime  DeliveryTime  PathTime LatestDeliveryTime 

          22        4356        2493        1868 
 
UAV LIST FOR GS1: 

     3     5     9     9     2 
 

UAV LIST FOR GS2: 
     2     2     5     1     2 
 

UAV LIST FOR GS3: 
     9     4 

 
    AvgDist(m)   AvgTime(s)  Dist_std(m)  Time_std(s) 
        8257         826        9407         941 

 
 
  

Ground Stations coordinates (in rows): 

   231     0     0 

  -115   200     0 

  -115  -200     0 

 

UAVs and Tasks coordinates: 

 

9 UAVs 
 

UAVs Initial Coordinates (in rows): 

    69 114 138 

   -97 210 100 

   -89 205 146 

    -8 -118 136 

   -58 -147 155 

    68 -74 160 
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  -115 -180 143 

  -115 -180 166 

  -115 -180 112 

 

 

20 Tasks  
Tasks coordinates (in rows): 

        3148        -613        4615 

        4706        -544        2990 

       -3731        2547        3855 

        4134        1551         405 

        4158        2655        1679 

        2922         853        2995 

        4058       -3374        1985 

        4595        -102         702 

         469        2094        4694 

        1324        4598        2906 

       -4025       -3132         954 

       -2215       -1185        3973 

        4576        2952        1917 

        3003       -2762        2119 

        -146       -3810        2533 

        -782        1463        2818 

        4572         -16         600 

       -3581       -2240        3871 

       -3424        1797        3072 

        4649       -1596        4214 

 
Ground Stations coordinates (in rows): 

   231     0     0 

  -115   200     0 

  -115  -200     0 

 

 

 

6 UAVs 

 

UAVs Initial Coordinates (in rows): 

    17   144   115 

    37   132   139 

   131   -38   113 

   146   -29   153 

  -115  -180   177 

  -115  -180   127 

 

 

12 Tasks 

 

Tasks coordinates (in rows): 

        2073         832         759 

        2297        4431        1144 
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        2802       -3897        1470 

       -2120        1407         433 

       -1624        2492        2422 

         261        1538        1028 

       -1035        2227        3860 

        1926        1837         503 

       -4385       -3825        2759 

        2814        2401        3910 

        1079       -1712        1941 

         567       -3680        3210 
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APPENDIX B 

CODE 

 

File CalUAVDistance 
function DistTravelled = CalUAVDistance(UAV_Speed, 

TimeTaskStart,NegTIME,TaskDeliveryTime) 
            % Computes the instaneous distance travelled by UAV 
            % NegTIME is the instance at which negotiation is to happen 

         
            if NegTIME<=TimeTaskStart 
                DistTravelled = 0; 
            else 
                DistTravelled = 

UAV_Speed*(min(NegTIME,TaskDeliveryTime)-TimeTaskStart); 
            end 
            %%%%%%%%%%%%%%%%%%%% 

 

File CalUAVsNegBids 
function [UAVNegPath,PathCostNeg] = 

CalUAVsNegBids(DistTravel_UAVi,UAVi_MovingTo,... 
    

UAVj_MovingTo,GS_UAVi_RouteCords,GS_UAVj_RouteCords,UAVi_NewLocation,..

. 
    

UAVj_NewLocation,DistUnitCost,TimeUnitCost,UAV_Speed,TimeHistory,ROUTEi

d_j,Deadlines,GS_UAViRoutes) 

  
%%% UAVi negotiating a task 

global TaskName 
UAVNegPath = []; 
PathCostNeg = inf; 

  
if DistTravel_UAVi>0 
    TaskToNeg_i = GS_UAVi_RouteCords(UAVi_MovingTo,:); 
    TaskName = GS_UAViRoutes(UAVi_MovingTo); 
    %%% compute the cost of the UAVs to the tasks 
   UAVi_NegBid = norm(TaskToNeg_i-UAVi_NewLocation)*DistUnitCost + 

norm(TaskToNeg_i-UAVi_NewLocation)*TimeUnitCost/UAV_Speed; % in USD  
   UAVj_NegBid = norm(TaskToNeg_i-UAVj_NewLocation)*DistUnitCost + 

norm(TaskToNeg_i-UAVj_NewLocation)*TimeUnitCost/UAV_Speed; % in USD 
   if UAVj_NegBid<UAVi_NegBid 
       TempUAVjRoute = [GS_UAVj_RouteCords(1:UAVj_MovingTo-

1,:);UAVj_NewLocation;TaskToNeg_i;GS_UAVj_RouteCords(1:UAVj_MovingTo,:)

]; 
       %%% computing the cost of the new path 
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       NegPathDist_j = ComputeNegPathDistance(TempUAVjRoute);  %% a 

function called to compute path distance 

        
       PathTimeNeg_j =  NegPathDist_j/UAV_Speed; 
       PathCostNeg =  NegPathDist_j*DistUnitCost + 

PathTimeNeg_j*TimeUnitCost; % in USD 
       TaskCompletionTimeNeg_j = TimeHistory(ROUTEid_j,1)+ 

PathTimeNeg_j; 
       if 

TaskCompletionTimeNeg_j<=TimeHistory(ROUTEid_j,3)&&TaskCompletionTimeNe

g_j<=Deadlines(TaskName) 
           UAVNegPath = TempUAVjRoute; 
          % GS_UAVi_RouteCords(UAVi_MovingTo,:) = []; 
       end 
   end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       

       
%   %%% UAVj negotiating a task 
% if DistTravel_UAVj>0 
%     TaskToNeg_j = GS_UAVj_RouteCords(UAVj_MovingTo,:); 
%     %%% compute the cost of the UAVs to the tasks 
%    UAVj_NegBid = norm(TaskToNeg_j-UAVj_NewLocation)*DistUnitCost + 

norm(TaskToNeg_j-UAVj_NewLocation)*TimeUnitCost/UAV_Speed; % in USD  
%    UAVi_NegBid = norm(TaskToNeg_j-UAVi_NewLocation)*DistUnitCost + 

norm(TaskToNeg_j-UAVi_NewLocation)*TimeUnitCost/UAV_Speed; % in USD 
%    if UAVi_NegBid<UAVj_NegBid 
%        TempUAViRoute = [GS_UAVi_RouteCords(1:UAVi_MovingTo-

1,:);UAVi_NewLocation;TaskToNeg_j;GS_UAVi_RouteCords(1:UAVi_MovingTo,:)

]; 
%        %%% computing the cost of the new path 
%        NegPathDist_i = ComputeNegPathDistance(TempUAViRoute);  %% a 

function called to compute path distance 
%         
%        PathTimeNeg_i =  NegPathDist_i/UAV_Speed; 
%        PathCostNeg_i =  NegPathDist_i*DistUnitCost + 

PathTimeNeg_i*TimeUnitCost; % in USD 
%        TaskCompletionTimeNeg_i = TimeHistory(ROUTEid_i,1)+ 

PathTimeNeg_i; 
%        if TaskCompletionTimeNeg_i<=TimeHistory(ROUTEid_j,3) 
%            GS_UAVi_RouteCords = TempUAViRoute; 
%            GS_UAVj_RouteCords(UAVi_MovingTo,:) = []; 
%        end 
%    end 
% end   
       

 

File 
function NegPathDist = ComputeNegPathDistance(TempUAVRoute) 
% computes the distance of the new path formed by adding a new task 

from 
% another UAV 
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NegPathDist = 0; 
for i =1:size(TempUAVRoute,1)-1 
    NegPathDist = NegPathDist + norm(TempUAVRoute(i+1,:)-

TempUAVRoute(i,:)); 

end 
     

 

File 
function [RouteLenghts,CumRouteLenghts] = 

ComputeSegmentDistance(GS_UAVRouteCordAll,GS_UAVRoutesAll) 
global GS_UAVCommStrength GS_CommRange UAV_CommRange; 
RouteLenghts = []; 
CumRouteLenghts = []; 
NumberOfRoutes = length(GS_UAVRoutesAll); 
for u=1:NumberOfRoutes 
    RouteLenghts{u}(:,1) = 0; 
    NumOfPoints = size(GS_UAVRouteCordAll{u},1); 
    %if NumOfPoints>2 % Avoid dealing with a route with no task 
    for r = 1:NumOfPoints-1 

    RouteLenghts{u}(:,r+1) = norm(GS_UAVRouteCordAll{u}(r+1,:)-

GS_UAVRouteCordAll{u}(r,:)); 
    end 
    RouteLenghts{u}(:,NumOfPoints)= RouteLenghts{u}(:,r+1)-(1-

GS_UAVCommStrength)*(GS_CommRange+UAV_CommRange); 
    CumRouteLenghts{u} = cumsum(RouteLenghts{u}); % zero included for 

reference purposes 
    %end 

   

end 

 

 

File 
function GS_Cord = CreateAllGroundStations(NumberOfGS, TI, 

TI_CommRange, GS_CommRange,Scenario) 

  
GS_AngleChange = 2*pi/NumberOfGS;  % Angular displacement between anay 

two GS from TI 
GS_Angle = [1:NumberOfGS].*GS_AngleChange; % The angles at which the 

Manager distributes the GS 

  
if Scenario ==1 
   GS_Angle = [0,pi/2,pi]; 
    % FAR APART 

    RADIUS = 0.9 *(TI_CommRange+GS_CommRange); 
    GS_X = RADIUS.*cos(GS_Angle)+ TI(:,1); 
    GS_Y = RADIUS.*sin(GS_Angle) + TI(:,2); 
elseif Scenario ==2 
    % INTERSECT  
   GS_X = [0, GS_CommRange,  -GS_CommRange ]+ TI(:,1); 
   GS_Y = [2*GS_CommRange, GS_CommRange,  GS_CommRange ] + TI(:,2); 
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elseif Scenario ==3 
    % TANGENT     
RADIUS = 2*GS_CommRange/sqrt(3); 
    GS_X = RADIUS.*cos(GS_Angle)+ TI(:,1); 
    GS_Y = RADIUS.*sin(GS_Angle) + TI(:,2); 

end 

  
GS_Z = zeros(1,NumberOfGS); 
GS_Cord = [GS_X',GS_Y',GS_Z']; 
  

  

File 
function UAVsAll = CreateAllUAVs(NumberOfUAVs,TI_CommRange, 

UAV_CommRange,UAVCommStrength,UAVAngleFromTI,TI) 

  

  
% This function creates Unmanned Aerial Vehicles and displays them in 

such 
% a way that at each Ground Station(i.e. GS) has at least one UAV in 

its 

% communication range 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    % The initial angles at which the UAVs are distributed from the TI 
    ChangeInTeta_TI = 2*pi/NumberOfUAVs; 
    Teta_TI_UAVs = [1:NumberOfUAVs].* ChangeInTeta_TI; % X-axis angle 

     
    Dist_TI_UAVs = UAVCommStrength*(TI_CommRange + UAV_CommRange); 

    UAV_X = cos(UAVAngleFromTI)*Dist_TI_UAVs.*cos(Teta_TI_UAVs) + 

TI(1,1); 
    UAV_Y = cos(UAVAngleFromTI)*Dist_TI_UAVs.*sin(Teta_TI_UAVs) + 

TI(1,2); 
    Z_Value = Dist_TI_UAVs.*sin(UAVAngleFromTI) + TI(1,3); 
    UAV_Z(:,1:NumberOfUAVs) = Z_Value; 
    UAVsAll = [UAV_X',UAV_Y',UAV_Z']; 

    

    

File 
function [GS_Cord, GS_CommRange,TI_CommRange] = 

CreateGroundStations(NumberOfGS, TI,TangGS_CommRange,Scenario, 

GS_GS_CommStrength) 

  
GS_Angle = [0,2*pi/3, 4*pi/3]; 
RADIUS = 2*TangGS_CommRange/sqrt(3); % radius at which all three GSs 

are tangential 
GS_X = RADIUS.*cos(GS_Angle)+ TI(:,1); 
GS_Y = RADIUS.*sin(GS_Angle) + TI(:,2); 
GS_Z = zeros(1,NumberOfGS)+  TI(:,3); 
GS_Cord = [GS_X',GS_Y',GS_Z']; 
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if Scenario ==1      % FAR APART 
    GS_CommRange = GS_GS_CommStrength*TangGS_CommRange; 
elseif Scenario ==2  % INTERSECT 
    GS_CommRange = (1 + GS_GS_CommStrength)*TangGS_CommRange; 

elseif Scenario ==3 % TANGENT 
    GS_CommRange = TangGS_CommRange; 
end 

  
TI_CommRange = RADIUS; %(RADIUS/GS_TI_CommStrength) - GS_CommRange; 

  

  

File 
function [GS_UAVs_Route,UAVs_Route,UAVRouteCord,ID_UAVs, 

UAVTaskStartTime, UAVTaskEndTime] = 

DisplayUAVTaskList(WinnerUAV_Route,UAVs, GS_Cord, 

Task,WinnerPathTime,TaskCreationTimes) 
global UAVsNames Count GS_UAVRoutesAll Counter GS_UAVRouteCordAll 

Deadlines TimeHistory 
Route = []; 

Count = 0; 
UAVRouteCord = []; 
TimeForTaskExecution = []; 
ID_UAVs  = []; 
for m=1:length(WinnerUAV_Route) 
    if ~isempty(WinnerUAV_Route{m}) 
        Count = Count + 1; 
        Counter = Counter + 1; 
   UAVs_Route{Count} = WinnerUAV_Route{m}; 

   Route = UAVs_Route{Count}; 
   GS_UAVs_Route{Count} = UAVs_Route{Count}; 
   GS_UAVs_Route{Count}(1,1) = UAVsNames(Route(1)); 
   GS_UAVRoutesAll{Counter} = GS_UAVs_Route{Count}; 
   TimeForTaskExecution(Count) = round(WinnerPathTime(Route(1),:)); 
   TaskList =  Route(:,2:end-1);  
   UAVTaskStartTime(Count,:) = TaskCreationTimes(TaskList(1)); % time 

at which UAV begins executing task 
   UAVTaskEndTime(Count,:) = UAVTaskStartTime(Count,:) + 

TimeForTaskExecution(Count); % time at which UAV ends its task 

    
   disp(sprintf('The Task List for UAV %s  is: %s, Tasks start time is 

%d and Task delivery time is %.0d'... 
       ,num2str(UAVsNames(Route(1))), 

num2str(TaskList),UAVTaskStartTime(Count,:), UAVTaskEndTime(Count,:))) 
   UAVRouteCord{Count} = [UAVs(Route(1),:); Task(Route(2:end-

1),:);GS_Cord(Route(end),:)]; 
   ID_UAVs = [ID_UAVs;UAVsNames(Route(1))]; 

    
   LatestDeliveryTime = min(Deadlines(Route(2:end-1))); 

    
   GS_UAVRouteCordAll{Counter} = UAVRouteCord{Count}; 
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   TimeHistory(Counter,:) = [UAVTaskStartTime(Count,:), 

UAVTaskEndTime(Count,:),LatestDeliveryTime]; 
    end 
end 

 

 

File 
function [UAVNewLocation, PointMovingTo, LastTaskDone]= 

FindUAVnewLocation(UAVCumRouteLenghts, GS_UAVRouteCords, 

RouteLenghts,DistTravelled) 

  
global  GS_CommRange UAV_CommRange GS_UAVCommStrength 

  
UAVNewLocation = []; 
LastTaskDone = 0; % no task is done  
if DistTravelled==0 
    UAVNewLocation = GS_UAVRouteCords(1,:); % UAV initial coordinate 
     PointMovingTo = 1; 
else 
for i =1:length(UAVCumRouteLenghts) 

    if DistTravelled < UAVCumRouteLenghts(i) 
        PointMovingTo = i;  

         
        DistFromPreviousPoint = DistTravelled - 

UAVCumRouteLenghts(PointMovingTo-1); 
        DirectionVector = GS_UAVRouteCords(PointMovingTo,:)-

GS_UAVRouteCords(PointMovingTo-1,:); 

        
        UAVNewLocation = GS_UAVRouteCords(PointMovingTo-1,:) + 

(DistFromPreviousPoint/RouteLenghts(PointMovingTo))*DirectionVector; 

      
     if PointMovingTo > 2  
     LastTaskDone = PointMovingTo - 2; % number of tasks done (Note: 

not necesarily task IDs) 
      end 
        break; 
    end 
end 

  
if isempty(UAVNewLocation) 

     

      
     DirectionVector = GS_UAVRouteCords(end,:)-GS_UAVRouteCords(end-

1,:); 
     DistFromPreviousPoint = norm(GS_UAVRouteCords(end,:)-

GS_UAVRouteCords(end-1,:))-(1-

GS_UAVCommStrength)*(GS_CommRange+UAV_CommRange);  

      
     UAVNewLocation = GS_UAVRouteCords(end-1,:) + 

(DistFromPreviousPoint/DistFromPreviousPoint)*DirectionVector; % UAV 

has finished its tasks and arrived at the GS 
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%      UAVNewLocation = GS_UAVRouteCords(end,:); % UAV has finished its 

tasks and arrived at the GS 
     LastTaskDone = length(UAVCumRouteLenghts) - 2; % 2, because we 

have one UAV and one GS coordinates 
     PointMovingTo = length(UAVCumRouteLenghts); 

end 

     
end 

  

  

File 
function RandUAVs =  

GenerateRandUAVs(NumberOfGS,NumberOfUAVs,GS_Cord,TangGS_CommRange,UAV_C

ommRangeMin) 
Lines = nchoosek(1:NumberOfGS,2); % lines connecting the centre of the 

GSs 
NumOfLines = size(Lines,1); 

  
NumOfRandUAV = zeros(1,NumOfLines); 
NumOfRandUAV(1:NumOfLines-1) = 

repmat(floor(NumberOfUAVs/NumberOfGS),1,NumOfLines-1); 
NumOfRandUAV(NumOfLines) = NumberOfUAVs - 

sum(NumOfRandUAV(1:NumOfLines-1)); %% Last GS pair takes the remaining 

UAVs 
TempUAVs  = []; 
for i=1:NumOfLines 
    x1 = GS_Cord(Lines(i,1),1); 
    y1 = GS_Cord(Lines(i,1),2); 
    x2 = GS_Cord(Lines(i,2),1); 

    y2 = GS_Cord(Lines(i,2),2); 
    if max(x1,x2)-min(x1,x2)< NumOfRandUAV(i) 
    UAV_X = repmat(min(x1,x2),1,NumOfRandUAV(i)); 
        else 
    UAV_X = randsample(min(x1,x2):max(x1,x2),NumOfRandUAV(i)); 
    end 
    UAV_Y  = ((y2- y1)/(x2-x1)).*(UAV_X-x1)+ y1 + 0.1*TangGS_CommRange; 
    UAV_Z  = randsample(0.5*TangGS_CommRange:0.4*(TangGS_CommRange + 

UAV_CommRangeMin),NumOfRandUAV(i)); 
    TempUAVs = [TempUAVs ;[UAV_X',UAV_Y',UAV_Z']]; 

end 
RandUAVs = TempUAVs; 
FileName = 

strcat(num2str(NumberOfUAVs),'RandUAVs_',num2str(UAV_CommRangeMin)); 
save (FileName, 'RandUAVs')  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
UAVsCommWithGS{NumberOfGS} = [];  
for g=1:NumberOfGS 

     
DistOfUAVfromGS = sqrt(sum((bsxfun(@minus, GS_Cord(g,:), 

RandUAVs)).^2,2)); 
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% Temp = find(DistOfUAVfromGS<=(TangGS_CommRange + UAV_CommRangeMin)); 
for j=1:NumberOfUAVs 
        if DistOfUAVfromGS(j)<=(TangGS_CommRange + UAV_CommRangeMin) 
            UAVsCommWithGS{g} = [UAVsCommWithGS{g},j]; 
%             break 

        end 
end 
end 

  
disp('COMMUNICATION BETWEEN GSs and UAVs') 
for g=1:NumberOfGS 
disp(strcat('UAV communicating with GS', num2str(g))) 
disp(UAVsCommWithGS{g}) 
end 

 

 

File 
function RandTasks = GenerateTask() 
UAV_CommRangeMax = 2500; 
NumOfTasks = 20; 

Xmin= -2*UAV_CommRangeMax; 
Xmax= 2*UAV_CommRangeMax; 
Ymin= -2*UAV_CommRangeMax; 
Ymax = 2*UAV_CommRangeMax; 
Zmin = 0;%TangGS_CommRange+UAV_CommRangeMin; 
Zmax  = 2*UAV_CommRangeMax; 
X_Cords = randsample(Xmin:Xmax, NumOfTasks); 
Y_Cords = randsample(Ymin:Ymax, NumOfTasks); 
Z_Cords = randsample(Zmin:Zmax, NumOfTasks); 

RandTasks = [X_Cords',Y_Cords',Z_Cords']; 
FileName = strcat('RandTasks_',num2str(NumOfTasks)); 
save (FileName, 'RandTasks') 

 

 

File 
function GS_Bids = GS_Bidding(NumberOfGS, TI, Task, 

GS_Cord,TI_CommRange,GS_CommRange,UAV_Speed,DistUnitCost,TimeUnitCost, 

TI_TaskCost,Task_id) 

  
% This function computes the the cost for Ground Station(GS) to perform 

a given 
% task and makes a list of the tasks won by each GS 
GS_Bids = []; 
Po = []; 

Alpha = 0.5; % 0<Alpha<1 
for i=1:NumberOfGS 
    %      CommCheck = norm(TI- GS_Cord(i,:)); % checking to see if GS 

and TI are in communication range 
    %      if CommCheck<=(TI_CommRange + GS_CommRange) 
%     GS_TaskDist = norm(Task-GS_Cord(i,:)); % distance between the 

task and the ground station 
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%     GS_TaskDistCost = DistUnitCost*(GS_TaskDist); % (in USD) % Take 

note 
%     GS_TaskTime = GS_TaskDist/UAV_Speed; 
%     TGS_TaskTimeCost = GS_TaskTime*TimeUnitCost;  % (in USD) 
%     Po(:,i) =  2*(GS_TaskDistCost + TGS_TaskTimeCost);  %2*norm(Task-

GS_Cord(i,:))*DistUnitCost; % price from the task 
    Po(:,i) = 2*(norm(Task-GS_Cord(i,:))*DistUnitCost + norm(Task-

GS_Cord(i,:))*TimeUnitCost/UAV_Speed); % cost in USD 

     
%     GS_Cost = Alpha*Po(:,i) + (GS_TaskDistCost + 

TGS_TaskTimeCost)*(1-Alpha); % GS bid for a task 

     
    GS_Cost  = Po(:,i); 

     

    if GS_Cost<=TI_TaskCost(Task_id) 
        GS_Bids(:,i) =  GS_Cost; %GS_Bids(:,i); %GS_Cost; 
    else 
        GS_Bids(:,i) = Inf; 
    end 
end 
% [Po TI_TaskCost(Task_id)] 

 

 

File 
function PlotTheSpaceWithTheAgents(GS_Cord, GS_CommRange, 

NumberOfGS,TI_CommRange, TI,UAVs,NumberOfUAVs) 
figure('Name','GS and TI communication ranges, Tasks and UAVs') 
plot3(UAVs(:,1),UAVs(:,2),UAVs(:,3),'*') 
uavnames = 1:NumberOfUAVs; 
text(UAVs(:,1),UAVs(:,2),UAVs(:,3),num2str(uavnames')) 
hold on 
plot3(GS_Cord(:,1),GS_Cord(:,2),GS_Cord(:,3),'o') 
hold on 
plot3(TI(:,1),TI(:,2),TI(:,3),'s') 
% hold on 
% plot3(Task(:,1),Task(:,2),Task(:,3),'') 
legend('UAV','GS','TI') 
xlabel('x') 
ylabel('y') 
zlabel('z') 
hold on 

  
COL =['r';'b';'g';'m']; 

for i =1:NumberOfGS 
    % use to plot a circle for the GS communication ranges 
    N =256; 
t = (0:N)*2*pi/N; 
Z = zeros(1,N+1); 
plot3(GS_CommRange*cos(t)+GS_Cord(i,1), 

GS_CommRange*sin(t)+GS_Cord(i,2),Z,COL(i,:)) 
hold on 
plot(GS_Cord(i,1),GS_Cord(i,2),strcat(COL(i,:),'o')) 
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text(GS_Cord(i,1),GS_Cord(i,2),strcat('GS',num2str(i))) 
hold on 
end 

  
plot3(TI_CommRange*cos(t)+TI(:,1), 

TI_CommRange*sin(t)+TI(:,2),Z,COL(4,:)) 
plot(TI(:,1),TI(:,2),strcat(COL(4,:),'o')) 
text(TI(:,1),TI(:,2),'TI') 
grid on 
hold on 

  

  

File 
% The function tries to distribute the tasks for a given UAV to other 

UAVs 
function Robustness(UAV_ID_Eliminate, UAV_Elimination_Time, 

UAVRecoveryTime, GS_UAVRoutesAll,... 
    TimeHistory, GS_UAVRouteCordAll, 

UAVTasksCompletionDurations,AllTaskDeadlines) 
% GS_UAVRoutesAll contains all the UAVs' routes (i.e. from UAV->Task-

>GS) 
% TimeHistory contains the task start time , delivery time and the 

latest 
% time the task could be delivered without timeout 
% UAV_ID_Eliminate is UAV to be eliminated due to injury 
% UAVRecoveryTime > UAV_Disconnection_Time 
global TI_CostScalar InitNumberOfTask CycleAuctionCloseTime 
tH_Robust = AllTaskDeadlines; 
% Making sure the  UAVRecoveryTime and UAV_Disconnection_Time are valid 

while (UAVRecoveryTime < UAV_Elimination_Time) 
    disp('UAVRecoveryTime must be more than UAV_Elimination_Time and 

both must be greater than zero') 
    UAV_Elimination_Time = input('Please enter UAV_Elimination_Time:    

'); 
    UAVRecoveryTime = input('Please enter the UAVRecoveryTime:   '); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
global GS_CommRange NumberOfGS TI_CommRange TI UAV_CommRange GS_History  

Task UAV_Speed WinnerUAV_RouteOld TangGS_CommRange 

GS_UAVCommStrength... 
    DistUnitCost TimeUnitCost NumberOfUAVs TaskAuctionTimesOld GS_Cord 

Up AuctionTimeStep TI_id WinnerPathTimeOld GS_UAVList UAVs 
 global SellAndBuyBids M_BuyBid SellAndBuyWinners SellAndBuyWinnerBids 

TI_TaskCost GS_jUAV_SBids TaskCreationTime Scenario Gamma OriginalUAV 

OriginalGS 

  
% Note: Gamma is a fraction of latest delivery time of task by 

eliminated UAV 
NumberOfUAVsAll = NumberOfUAVs; 
% Find the UAV to be disconnected 
UAVs_CurrentLocations = zeros(NumberOfUAVsAll,3); 
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UAVsWithTasks = []; 
RemainingPathTime = UAVTasksCompletionDurations; 

%zeros(NumberOfUAVsAll,1); 
DeadTimes = zeros(NumberOfUAVsAll,1); 
UAV_TaskListRemaining = [];  % tasks unvisisted prior to the UAV's 

disconnection 
 NumOfTasks = zeros(NumberOfUAVsAll,1); 
for j = 1: length(GS_UAVRoutesAll) 
        if ~isempty(GS_UAVRoutesAll{j}) 
    NumOfTasks(j,:) = length(GS_UAVRoutesAll{j}) - 2; % stores the 

number of tasks in the tasklist of each UAV 
%     UAVsWithTasks   = [UAVsWithTasks; GS_UAVRoutesAll{j}(1)];  % UAV 

IDS basically 

     
    DeadTimes(GS_UAVRoutesAll{j}(1),:) = 

min(AllTaskDeadlines(GS_UAVRoutesAll{j}(2:end-1))); % stores the time 

for the last auctioned tasks for each route 
    %     GS_id(j,:) = GS_UAVRoutesAll{j}(end); 
        else 
          UAVs_CurrentLocations(j,:) =  UAVs(j,:);  % UAV  does not 

move if it wins no task 
        end 
end 

  

  

  
% Checking to make sure the UAV entered is valid and has some task(s) 
ValidUAV_IDChecker = 0; 
while (ValidUAV_IDChecker==0) 
%     ROUTEidToDelete = find( UAVsWithTasks == UAV_ID_Eliminate); 
    if isempty(GS_UAVRoutesAll{UAV_ID_Eliminate}) 
        disp('The UAV you have entered does not exist or has no task; 

taking it out has no impact on the system.') 
        UAV_ID_Eliminate = input('Please enter another UAVid (any 

number from 1 through 9):   '); % There are 9 UAVs 
        ValidUAV_IDChecker = 0; 
    else 
        ValidUAV_IDChecker = 1; 
        ROUTEidToDelete = UAV_ID_Eliminate; 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
RouteToDelete = GS_UAVRoutesAll{ROUTEidToDelete}; % contains the UAV, 

its tasks, and the GS to deliver to 

  
TasksForUAV_ID_Eliminate = RouteToDelete(2:end-1); % Task IDs from the 

eliminated UAV 
% NumOfTasks = length(TasksForUAV_ID_Eliminate); 
LatestTasksDeliveryTime = TimeHistory(ROUTEidToDelete, 4);  
TimeToReAuctionTasks = round((1 + Gamma)*LatestTasksDeliveryTime); % 

time to restart auctioning taks from the eliminated UAV 
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TimeToBeginReAuctionTasks = TimeToReAuctionTasks; 
% Compute the new location of the UAV prior to its elimination (i.e. 

deletion) 
DistByUAV_ID_Eliminate = CalUAVDistance(UAV_Speed, 

TimeHistory(ROUTEidToDelete,1),UAV_Elimination_Time,TimeHistory(ROUTEid

ToDelete,2)); 
Temp1{1} = GS_UAVRouteCordAll{ROUTEidToDelete};  % take note of 

{RouteToDelete}; 
Temp2{1} = GS_UAVRoutesAll{ROUTEidToDelete};     % take note of 

{RouteToDelete}; 

  
[RouteLenghts,UAVCumRouteLenghts] = ComputeSegmentDistance(Temp1, 

Temp2); 

  

Temp3  = GS_UAVRouteCordAll{ROUTEidToDelete};    % take note of 

{RouteToDelete}; 
Temp4 = UAVCumRouteLenghts{1}; 
Temp5 = RouteLenghts{1}; 
[UAVNewLocation1, PointMovingTo, LastTaskDone] = 

FindUAVnewLocation(Temp4, Temp3, Temp5,DistByUAV_ID_Eliminate); 

  
% Compute UAV new location after the UAV has recovered and moved 

towards 
% the remaining tasks 
if UAVRecoveryTime < TimeToReAuctionTasks 
    EarliestExpDeliveryTime = 

TimeHistory(ROUTEidToDelete,2)+(UAVRecoveryTime-UAV_Elimination_Time); 
    DistByUAV_ID_Eliminate2 = CalUAVDistance(UAV_Speed, 

UAVRecoveryTime, TimeToReAuctionTasks,EarliestExpDeliveryTime); 
    TotalDist = DistByUAV_ID_Eliminate + DistByUAV_ID_Eliminate2; 
    [UAVNewLocation2, PointMovingTo, LastTaskDone] = 

FindUAVnewLocation(Temp4, Temp3, Temp5, TotalDist); 
    UAVs_CurrentLocations(UAV_ID_Eliminate, :) = UAVNewLocation2; 
else 
    UAVs_CurrentLocations(UAV_ID_Eliminate, :) = UAVNewLocation1; 
    UAVNewLocation2 = UAVNewLocation1; 
end 

  

  
UAV_GS_CommChecker = UAV_CommRange + GS_CommRange; 
Store1 = GS_UAVRouteCordAll{ROUTEidToDelete}(end,:); % GS co-ordinates 
if (LastTaskDone>0) && (LastTaskDone < NumOfTasks(ROUTEidToDelete)) 

&&((norm(Store1- UAVNewLocation2)<=(UAV_GS_CommChecker))) % check 

communication 
    TasksUnDelivered = TasksForUAV_ID_Eliminate(LastTaskDone+1:end); % 

these tasks have to be re-auctioned to the existing UAVs 
elseif LastTaskDone < 1 
    TasksUnDelivered = TasksForUAV_ID_Eliminate; 
elseif (LastTaskDone==NumOfTasks(ROUTEidToDelete)) && 

((norm(GS_UAVRouteCordAll{ROUTEidToDelete}(end,:)- 

UAVNewLocation2)<=(UAV_GS_CommChecker))) 
    TasksUnDelivered = []; % all tasks are delivered. 
else 
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    TasksUnDelivered = TasksForUAV_ID_Eliminate; 
end 

  
TasksDelivered = 

TasksForUAV_ID_Eliminate(1:length(TasksForUAV_ID_Eliminate)-

length(TasksUnDelivered));  

%TasksForUAV_ID_Eliminate(length(TasksUnDelivered)+1:end); 

  
% Display some statistics for the disconnected UAV 
disp('Records for the disconnected UAV:') 

  
disp(sprintf('UAV Disconnected = %d', UAV_ID_Eliminate)) 
disp(sprintf('Time it got eliminated = %d', UAV_Elimination_Time)) 
disp(sprintf('Time it recovered = %d', UAVRecoveryTime)) 

disp(sprintf('Its latest task delivery time = %d', 

LatestTasksDeliveryTime)) 
disp('Tasks in its tasklist are:') 
disp(TasksForUAV_ID_Eliminate) 
disp('Tasks delivered are:') 
if isempty(TasksDelivered) 
    disp('None') 
else 
    disp(TasksDelivered) 
end 

  

  
disp('Tasks undelivered are:') 
if isempty(TasksUnDelivered) 
    disp('none') 
else 
    disp(TasksUnDelivered) 
end 
disp(sprintf('\n')) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  
% Computing the remaining tasks to be done by the existing UAVs at the 

point of reauctioning of the tasks undelivered by the disconnected UAV 

  
% Initialize the task lists 
 UAV_TaskListRemaining{NumberOfUAVsAll} = []; 
%  UAV_TaskListRemaining{UAV_ID_Eliminate} = TasksUnDelivered; 
 RemainingPathTime = zeros(NumberOfUAVsAll,1); %initialization  
%  WinnerUAV_Route{NumberOfUAVsAll} = []; 
 UAV_TaskListCompleted{NumberOfUAVsAll} = []; 
  UAV_TaskListCompleted{UAV_ID_Eliminate} = TasksDelivered; 
%%%%%%%%%%%%%%%%%%%% 
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% Find the remaining tasks for UAVs with tasks 
 TaskAuctionTimes = zeros(InitNumberOfTask,1); 
 WinnerPathTimeOld = zeros(NumberOfUAVsAll,1); 
 last =[]; 

for j = 1: NumberOfUAVsAll %length(UAVsWithTasks) 
    if j~=UAV_ID_Eliminate % avoid doing for eliminated UAV 
        if ~isempty(GS_UAVRoutesAll{j}) 
            Distance = CalUAVDistance(UAV_Speed, TimeHistory(j,1), 

TimeToReAuctionTasks,TimeHistory(j,2)); 

             
            Temp6{1} = GS_UAVRouteCordAll{j}; 
            Temp7{1} = GS_UAVRoutesAll{j}; 

             

            [RouteLenghts,UAVCumRouteLenghts] = 

ComputeSegmentDistance(Temp6, Temp7); 
%              [j,Distance,UAVCumRouteLenghts{1}(end)] 
            [UAVs_CurrentLocations(j,:), PointMovingTo, LastTaskDone] = 

FindUAVnewLocation(UAVCumRouteLenghts{1}, GS_UAVRouteCordAll{j}, 

RouteLenghts{1},Distance); 

              
            if LastTaskDone>0 && LastTaskDone <= NumOfTasks(j) 
                UAV_TaskListCompleted{j} = 

GS_UAVRoutesAll{j}(2:LastTaskDone+1); 
                GS_UAVRoutesAll{j}(2:LastTaskDone+1) = []; % delete 

tasks IDs visited 
                UAV_TaskListRemaining{j} = GS_UAVRoutesAll{j}(2:end-1); 

% UAV_TaskListRemaining contains remaining task to be done 
                GS_UAVRouteCordAll{j}(2:LastTaskDone+1, :) = []; % 

delete the coordinates of tasks visited 
                WinnerPathTimeOld(j) = 

min(TimeToReAuctionTasks,TimeHistory(j,2))-TimeHistory(j,1); % time 

already travelled. 
%                 last = [last; [j  NumOfTasks(j) LastTaskDone  

UAV_TaskListRemaining{j}]] 
            elseif LastTaskDone==0 
                UAV_TaskListRemaining{j} = GS_UAVRoutesAll{j}(2:end-1); 

                 
                 UAV_TaskListCompleted{j} = []; 
%                  WinnerPathTimeOld(j) = TimeToReAuctionTasks-

TimeHistory(j,1); % time elapsed. 
            end 

             

            if TimeToReAuctionTasks < TimeHistory(j,2) % less than 

earliest delivery time 
                RemainingPathTime(j,:) =  TimeHistory(j,2) - 

TimeToReAuctionTasks; % time remaining to be travelled. 
            end 

            
        else 
            UAV_TaskListRemaining{j} = []; 
        end 
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    end 

      
end 

  

  

%  WinnerPathTimeOld(4) 
RemainingPathTime(UAV_ID_Eliminate,:) =  

TimeHistory(UAV_ID_Eliminate,2) - UAV_Elimination_Time; % time 

remaining to be travelled. 

  
UAV_TaskListRemaining{UAV_ID_Eliminate} = []; % the remaining tasks for 

the deleted UAV are the undelivered tasks 
WinnerPathTimeOld( UAV_ID_Eliminate) = UAV_Elimination_Time - 

TimeHistory(UAV_ID_Eliminate,1); % time already travelled. 

% WinnerPathTimeOld( UAV_ID_Eliminate) = 

TimeHistory(UAV_ID_Eliminate,2) - TimeHistory(UAV_ID_Eliminate,1); 

  
disp(sprintf('TIME AT WHICH THE REAUCTION OF TASKS FROM THE 

DISCONNECTED UAV BEGINS: %s', 

num2str(round(TimeToBeginReAuctionTasks)))) 
disp(sprintf('THE REMAINING TASKS TO BE DONE BY ALL THE OTHER UAV JUST 

BEFORE THE REAUCTION OF TASKS FROM THE DISCONNECTED, UAV%s:', 

num2str(UAV_ID_Eliminate))) 

for i=1:NumberOfUAVsAll 
    if i~=UAV_ID_Eliminate % avoid doing for eliminated UAV 
        if isempty(UAV_TaskListRemaining{i}) 
            disp(sprintf('The remaining tasks for UAV %s  are: %s', 

num2str(i), 'None')) 
            GS_UAVRoutesAll{i} = []; 
        else 
            disp(sprintf('The remaining tasks for UAV %s  are: %s', 

num2str(i), num2str(UAV_TaskListRemaining{i}))) 
            TaskAuctionTimes(UAV_TaskListRemaining{i}) = 

TimeToReAuctionTasks + (0:length(UAV_TaskListRemaining{i})-

1).*AuctionTimeStep; 
        end 
    end 
end 
GS_UAVRoutesAll{UAV_ID_Eliminate} = []; % deleted UAV has no route 

until it recovers and wins some tasks. 
disp(sprintf('\n')) 

  

  
disp('UAVs current coordinates just before the reauction of tasks from 

the eliminated UAV:') 
disp(round(UAVs_CurrentLocations)) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% The reauctioning of the undelivered tasks from the disconnected UAVs 

  
PreviousGSTaskAuctionTimes = TaskAuctionTimes; % keeps the times the 

tasks were originally sold to the UAVs. 

for gs=1:NumberOfGS 
    TempGS_UAVlist = GS_UAVList{gs}; 
    GS(gs).UAV_Route = GS_UAVRoutesAll; 
    TempGS_UAVlist(find(TempGS_UAVlist==UAV_ID_Eliminate))=[]; 
    GS_UAVList{gs} = TempGS_UAVlist; % deleted UAV eliminated 
end 
WinnerUAV_Route = GS_UAVRoutesAll; % New UAV routes ( initialization ) 
WinnerPathTime  = RemainingPathTime; % initialization 

  

UAV_TaskListNew = UAV_TaskListRemaining; 

  
if isempty(TasksUnDelivered) 
    ReauctionCloseTime = 0; 
    disp('All the tasks have already been delivered by the disconnected 

UAV before the reauctioning time') 
else 
    Start_t = TimeToBeginReAuctionTasks - AuctionTimeStep; % 

initialization 
%     GS_UAVList{NumberOfGS} =  []; % initialization 
    WinnerUAVsIDs = []; 
    UAVsBids = []; 
    CycleCount = 0; 

        
    UnsoldTaskIDs = TasksUnDelivered; 
    InitReAuctioneTimes(UnsoldTaskIDs) = TimeToReAuctionTasks + 

(0:length(UnsoldTaskIDs)-1).*AuctionTimeStep; % For initial undelivered 

tasks 
    while(1) % do until all tasks are re-auctioned 
        CycleCount = CycleCount + 1; 
        NumberOfTask(CycleCount) = length(UnsoldTaskIDs); 
        UnsoldTaskIDsTemp = []; 

         
        for i = 1: NumberOfTask(CycleCount) 
            TaskID = UnsoldTaskIDs(i); 
            NewTask_id = TaskID; 
            Start_t = Start_t + AuctionTimeStep;  % note, Start_t 

starts from TimeToReAuctionTasks and it is basically task re-auctioned 

time 
            TaskAuctionTimes(TaskID) = Start_t; % 

             
            AllTaskDeadlines(TaskID,:) =  AllTaskDeadlines(TaskID) + 

Start_t - max(UAV_Elimination_Time, TimeHistory(ROUTEidToDelete,1));   

% task deadlines have been readjusted 
            NewTaskDeadline =  AllTaskDeadlines(TaskID); 

             
            %Compute the cost of the task to be auctioned 
            t = TaskAuctionTimes(TaskID)-InitReAuctioneTimes(TaskID); 



106 

            TI_Po(:,TaskID) = 2*(norm(TI-Task(TaskID,:))*DistUnitCost + 

norm(TI-Task(TaskID,:))*TimeUnitCost/UAV_Speed); % initial price from 

the task initiator 

  
            TI_TaskCost(TaskID,:) = TI_CostScalar*TI_Po(:,TaskID)*(1 + 

Up*t/tH_Robust(TaskID)); 
            GS_Bids{TaskID} = GS_Bidding(NumberOfGS, TI, 

Task(TaskID,:),GS_Cord,TI_CommRange,GS_CommRange,UAV_Speed,DistUnitCost

,TimeUnitCost,TI_TaskCost,TaskID); % sell bids 

             
            % Computing the UAVs Biddings and the optimize path as well 
            UAVwinnerBids  = zeros(1,NumberOfGS); 
            WinnerUAVnames = zeros(1,NumberOfGS); 
            GSs_UAVs_BidPairs = zeros(NumberOfGS,4); 

            GSnames = 1:NumberOfGS; 

             
            AllUAVNames =  1: NumberOfUAVsAll; % initialization 
            if UAVRecoveryTime < Start_t 
                for gs = 1:NumberOfGS 
                    UAV_Bids{TaskID}(UAV_ID_Eliminate) = inf; 
                    GS(gs).UAV_Route{UAV_ID_Eliminate} = []; 
                    GS(gs).PathTime(UAV_ID_Eliminate,:) = inf; 
                end 
                AllUAVNames(UAV_ID_Eliminate)=[];  % to prevent the 

deleted UAV from bidding 
            end 

             
            for gs = 1:NumberOfGS 
                UAV_Bid = []; 
                for j=1: length(AllUAVNames) %NumberOfUAVsAll                         
                    UAVID =  AllUAVNames(j); 

                    
%                     if UAVID==UAV_ID_Eliminate && UAVRecoveryTime < 

Start_t 
%                         UAV_Bids{TaskID}(UAVID) = inf; 

GS(gs).UAV_Route{UAVID} = []; GS(gs).PathTime(UAVID,:) = inf; % to 

prevent the deleted UAV from bidding 
%                     else 

                         
                        if isempty(UAV_TaskListNew{UAVID}) 
                            UAV_TaskListPrevious = []; 
                            NewLeastPathTime = 0; 
                            OldTaskDeadline = 0; 
                            oldGS_ID = 0; 
                            

[UAV_Bids{TaskID}(UAVID),GS(gs).UAV_Route{UAVID},GS(gs).PathTime(UAVID)

] =  UAV_Bidding(UAV_TaskListPrevious, TI, 

TI_id,UAVID,UAVs_CurrentLocations,Task,UAV_Speed,TI_TaskCost,... 
                                

TaskID,DistUnitCost,TimeUnitCost,NewLeastPathTime,NewTaskDeadline,... 
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OldTaskDeadline,GS_CommRange,UAV_CommRange, 

TaskAuctionTimes,GS_Cord,gs,oldGS_ID); 
                        elseif ~isempty(UAV_TaskListNew{UAVID}) 
                            UAV_TaskListPrevious = 

UAV_TaskListNew{UAVID}; 
                            NewLeastPathTime = WinnerPathTime(UAVID); 
                            %                         OldTaskDeadline = 

DeadTimes(UAVID); 
                            oldGS_ID = WinnerUAV_Route{UAVID}(end); 
%                            bb =  GS(gs).UAV_Route{UAVID}(end-1) 
                            OldTaskDeadline =  

min(AllTaskDeadlines(UAV_TaskListNew{UAVID})); 

%AllTaskDeadlines(GS(gs).UAV_Route{UAVID}(end-1)); 
                            

[UAV_Bids{TaskID}(UAVID),GS(gs).UAV_Route{UAVID},GS(gs).PathTime(UAVID)

] =  UAV_Bidding(UAV_TaskListPrevious, TI, 

TI_id,UAVID,UAVs_CurrentLocations,Task,UAV_Speed,TI_TaskCost,... 
                                

TaskID,DistUnitCost,TimeUnitCost,NewLeastPathTime,NewTaskDeadline,... 
                                

OldTaskDeadline,GS_CommRange,UAV_CommRange, 

TaskAuctionTimes,GS_Cord,gs,oldGS_ID); 
                        end 

                         
%                     end 
                end 
                [UAVwinnerBids(gs), WinnerUAVnames(gs)] = 

min(UAV_Bids{TaskID}); 
            end 

             
            GSs_UAVs_BidPairs = [GSnames',round(GS_Bids{TaskID}'), 

WinnerUAVnames',round(UAVwinnerBids')]; 
            disp('GSs and UAVs bid pairs:') 
            disp('           GS       GS_Bid       UAV      UAV_Bid') 
            disp(GSs_UAVs_BidPairs) 
            %       UAV_Bids{i} 

             
            

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             
            % Matching the GS_Bids (i.e. sell bids) and the UAV_Bids 

(i.e. buy 
            % bids 
            Sell_in_Bids = []; 
            Buy_in_Bids  = []; 
            TransactionSet = []; 
            UAV_Indx = []; 
            GS_Indx = []; 
            UAV_Indx1 = []; 
            GS_Indx1 = []; 

             
            % Determine eligible sellers and buyers 
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            for m=1:NumberOfGS 
                if GS_Bids{TaskID}(m)~=Inf && UAVwinnerBids(m)~=Inf 
                    TransactionSet = [TransactionSet; 

[GS_Bids{TaskID}(m),UAVwinnerBids(m)]]; 
                    UAV_Indx1 = [UAV_Indx1; WinnerUAVnames(m)]; 

                    GS_Indx1 = [GS_Indx1; m]; 
                end 
            end 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             
            NumOfSellers = size(TransactionSet,1); 
            if ~isempty(TransactionSet) % There are seller(s) and 

buyer(s) 
                [ignore1 OrigIndx] = min(TransactionSet(:,1)); 
                OriginalUAVtemp = UAV_Indx1(OrigIndx); 
                OriginalGStemp  = GS_Indx1(OrigIndx); 

                 
                Rank = sort([TransactionSet(:,1), 

TransactionSet(:,2)],'ascend'); 
                M_BuyBid(TaskID,:) = Rank(NumOfSellers);  % Mth bid 
                M_nextBuyBid(TaskID,:) = Rank(NumOfSellers+1); % M+1st 

bid 

                 
                [Sell_Bids{TaskID}, GS_IndxTemp{TaskID}] = 

min(TransactionSet(:,1)); 
                GS_Indx(1)  = GS_Indx1(GS_IndxTemp{TaskID}); % winner 

GS(i.e. GS with minimum bid) 
                UAV_Indx(1) = UAV_Indx1(GS_IndxTemp{TaskID});  % winner 

UAV (i.e. UAV with minimum bid) 

                 
                Buy_Bids{TaskID} = 

TransactionSet(GS_IndxTemp{TaskID},2); 
                %                 GS_Winner = 

GS_Indx1(GS_IndxTemp{TaskID}); % actual winner 
                                GS_jUAV_SBids(TaskID) = 

GS_Bids{TaskID}(GS_Indx(1)); % cost of GS to which task is delivered 
%                 GS_TaskDelivered(TaskID) = GS_Indx(1); 

                 
                %%%Determine the winner 
                UAV_TaskListNew{UAV_Indx(1)}    = 

[UAV_TaskListNew{UAV_Indx(1)}, TaskID]; 
                GS_UAVList{GS_Indx(1)}       = [GS_UAVList{GS_Indx(1)}, 

UAV_Indx(1)]; 
                WinnerUAV_Route{UAV_Indx(1)} = 

GS(GS_Indx(1)).UAV_Route{UAV_Indx(1)}; 
                WinnerPathTime(UAV_Indx(1))  = 

GS(GS_Indx(1)).PathTime(UAV_Indx(1)); 
                SellAndBuyBids(TaskID,:)     = 

SellAndBuyWinnerBids(TaskID,:); %winning sell and buy bids pair 
                SellAndBuyWinners(TaskID,:) =  [GS_Indx(1), 

UAV_Indx(1)]; % UAVs and GSs that win the tasks 
                SellAndBuyWinnerBids(TaskID,:) = [Sell_Bids{TaskID}, 

Buy_Bids{TaskID}]; 
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                SellAndBuyBids(TaskID,:) =     

SellAndBuyWinnerBids(TaskID,:); 

                 
                OriginalUAV(TaskID) = OriginalUAVtemp; % UAV with 

minimum cost 

                OriginalGS(TaskID)  = OriginalGStemp;  % GS paired with 

UAV with minimu cost 
            else % there are no sellers and/or buyers 
                UnsoldTaskIDsTemp = [UnsoldTaskIDsTemp,TaskID]; 
            end 
        end 
        TransactionSet = []; 

         
        % Check if all tasks are sold 

        if isempty(UnsoldTaskIDsTemp) 
            break; % break from the while loop 
        else 
            UnsoldTaskIDs = UnsoldTaskIDsTemp; % tasks unsolds 
        end 
%         UnsoldTaskIDs 
    end 
    ReauctionCloseTime =  Start_t;  % time at which the reauction of 

the tasks from the disconnected UAV is over 
end 

  

  
%Display the final routes for UAVs which won some reauctioned tasks 
UAVTasksStartTimes = []; 

  
% disp('THE ROUTES FOR THE BUSY (THOSE WHICH HAD TASKS) UAVs FROM THE 

TIME THE UNDELIVERED TASKS ARE REAUCTIONED:') 
% for i=1: NumberOfUAVsAll 
%     if ~isempty(WinnerUAV_Route{i}) 
%         %      UAVTasksStartTimes = [UAVTasksStartTimes; 

GSTaskAuctionedTimes(WinnerUAV_Route{i}(2))]; 
%         disp(WinnerUAV_Route{i}) 
%         disp(sprintf('Tasks begin at %s,  delivered at %s', 

num2str(TaskAuctionTimes(WinnerUAV_Route{i}(2))),... 
%             num2str(round(WinnerPathTime(i)+ 

TaskAuctionTimes(WinnerUAV_Route{i}(2)))))) 
%         disp(sprintf('\n')) 
%     end 
% end 

  
TaskAuctionTimesOld(TasksUnDelivered) = 

TaskAuctionTimes(TasksUnDelivered); % Replace the aution times for the 

re-autioned tasks 

  
 %%% Detail Results 

  
TaskNames = 1:InitNumberOfTask; 
% Calculate the profit using the clearing price (i.e. M_BuyBid)     
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SellerProfit1  = 0.5*(SellAndBuyWinnerBids(:,1)-

SellAndBuyWinnerBids(:,2) + TI_TaskCost - SellAndBuyWinnerBids(:,1) -( 

GS_jUAV_SBids-SellAndBuyWinnerBids(:,1))); 
BuyerProfit1 = SellerProfit1; 
OriginalGS_Profit = 0.5*(GS_jUAV_SBids - SellAndBuyWinnerBids(:,1)); % 

profit of original GS that was paired with the winner UAV 

  
AvgSellBid = mean(SellAndBuyWinnerBids(:,1)); 
AvgBuyBid = mean(SellAndBuyWinnerBids(:,2)); 
% AvgGS_DelivererBid = mean(GS_jUAV_SBids); 
AvgOriginalGS_Bid = mean(GS_jUAV_SBids); 
AllAvgBids = [AvgOriginalGS_Bid,AvgSellBid,AvgBuyBid]; 

  
AvgClearingPrice = mean(M_BuyBid); 

AvgOriginalGS_Profit = mean(OriginalGS_Profit); 
AvgSellProfit = mean(SellerProfit1); 
AvgBuyProfit = mean(BuyerProfit1); 
% AvgGS_DelivererProfit = mean(GS_Profit); 
AllAvgProfits = [AvgClearingPrice,AvgOriginalGS_Profit,AvgSellProfit, 

AvgBuyProfit]; 

  

  
% Compute the total profits for all GS 

  
GS_TotalProfits = zeros(NumberOfGS,1); 
GS_Names = 1:NumberOfGS; 
for g = 1:NumberOfGS 
    GS_Originalfrequency = find(OriginalGS==g); % how often GS 

originally paired with the winner UAV 
    GS_Sellfrequency = find(SellAndBuyWinners(:,1)==g); % how often GS 

got tasks delivered to it 

     
    if ~isempty(GS_Originalfrequency) 
    GS_TotalProfits(g) = GS_TotalProfits(g)+ 

sum(OriginalGS_Profit(GS_Originalfrequency));   
    end 
        if ~isempty(GS_Sellfrequency) 
    GS_TotalProfits(g) = GS_TotalProfits(g)+ 

sum(SellerProfit1(GS_Sellfrequency));   
        end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Compute the total for all UAVs 

  
UAV_TotalProfits = zeros(NumberOfUAVs,1); 
UAV_Names = 1:NumberOfUAVs; 
for u = 1:NumberOfUAVs 
    UAV_Buyfrequency = find(SellAndBuyWinners(:,2)==u); % how often UAV 

buys tasks from Winner GS 
    if ~isempty(UAV_Buyfrequency) 
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    UAV_TotalProfits(u) = UAV_TotalProfits(u)+ 

sum(BuyerProfit1(UAV_Buyfrequency));   
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Write the results into excel sheeet 
TITLE = {'TaskName','Creation Time(sec)','Auction 

Time(sec)','Deadline(sec)','Task Cost($) (from TI)', 'Original Seller 

Bid($)','Winning Seller Bid($)', 'Winning Buyer Bid($)',... 
    'Original_GS', 'Seller(GS)','Buyer(UAV)', 'Clearing Price($)', 

'Original_GS Profit($)', 'Seller Profit($)','Buyer Profit($)'}; 

  
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

TITLE, 'A1:O1') 
BuySellRecords = [TaskNames',TaskCreationTime',TaskAuctionTimesOld, 

AllTaskDeadlines,TI_TaskCost,GS_jUAV_SBids,SellAndBuyWinnerBids(:,1),Se

llAndBuyWinnerBids(:,2),... 
OriginalGS, SellAndBuyWinners(:,1), SellAndBuyWinners(:,2),M_BuyBid, 

OriginalGS_Profit,SellerProfit1,BuyerProfit1]; 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

BuySellRecords, strcat('A2:O',num2str(InitNumberOfTask+1))) 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

{'AVERAGE'}, 

strcat('E',num2str(InitNumberOfTask+2),':','E',num2str(InitNumberOfTask

+2))) 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

AllAvgBids, 

strcat('F',num2str(InitNumberOfTask+2),':','H',num2str(InitNumberOfTask

+2))) 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

AllAvgProfits, 

strcat('L',num2str(InitNumberOfTask+2),':','O',num2str(InitNumberOfTask

+2))) 

  
SubTitle = {'GS', 'GS Total Profit($)'}; 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

SubTitle,  

strcat('I',num2str(InitNumberOfTask+5),':','J',num2str(InitNumberOfTask

+5))) 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

GS_Names', 

strcat('I',num2str(InitNumberOfTask+6),':','I',num2str(InitNumberOfTask

+6+NumberOfGS-1))) 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

GS_TotalProfits, 

strcat('J',num2str(InitNumberOfTask+6),':','J',num2str(InitNumberOfTask

+6+NumberOfGS-1))) 

  

  
SubTitle = {'UAV', 'UAV Total Profit($)'}; 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

SubTitle,  
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strcat('M',num2str(InitNumberOfTask+5),':','N',num2str(InitNumberOfTask

+5))) 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

UAV_Names', 

strcat('M',num2str(InitNumberOfTask+6),':','M',num2str(InitNumberOfTask

+6+NumberOfUAVs-1))) 
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)), 

UAV_TotalProfits, 

strcat('N',num2str(InitNumberOfTask+6),':','N',num2str(InitNumberOfTask

+6+NumberOfUAVs-1))) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%Display the UAV tasklists 

% TimeHistory = zeros(NumberOfUAVs,4); %initialization 
GS_UAVRouteCordAll{NumberOfUAVs} = []; % initialization 
GS_UAVRouteCordAllTemp{NumberOfUAVs} = []; % initialization  to hold 

coordinates without UAV current locations 
UAVTasksCompletionDurations  = zeros(NumberOfUAVs,1); 
GS_UAVRoutesAll{NumberOfUAVs} = []; 
TaskCompletionTimes = []; 
TaskCompletionDists = []; 
 WinnerUAV_RouteNew =  WinnerUAV_Route; 
UAV_TaskList{NumberOfUAVsAll} = []; % initialization 
 WinnerUAV_Route{NumberOfUAVsAll} = []; 
 GS = 0; 
 DelayTimes = zeros(1,NumberOfUAVsAll); 
 DelayTimes(UAV_ID_Eliminate) = UAVRecoveryTime-UAV_Elimination_Time; 
 disp('RECORDS FOR UAVs WHICH WON REAUCTIONED TASK(S): ') 
 disp('(Note: Those UAVs which did not win any reacuctioned tasks have 

the same records as shown before)') 
 for UAVname=1:NumberOfUAVsAll 
    UAV_TaskList{UAVname} = [UAV_TaskListCompleted{UAVname}, 

UAV_TaskListNew{UAVname}]; 
    if ~isempty(WinnerUAV_RouteNew{UAVname}) 
        GS = WinnerUAV_RouteNew{UAVname}(end); 
    elseif ~isempty(WinnerUAV_RouteOld{UAVname}) 
        GS = WinnerUAV_RouteOld{UAVname}(end); 
    end 

    
    if ~isempty(UAV_TaskList{UAVname})&& 

~isempty(UAV_TaskListNew{UAVname}) 
        WinnerUAV_Route{UAVname} = [UAVname, 

UAV_TaskListCompleted{UAVname},WinnerUAV_RouteNew{UAVname}(2:end-

1),GS]; % from beginning to end 
        disp(strcat('UAV',num2str(UAVname),':')) 
        disp('TASKLIST:'),  
        disp('Task completed before REAUCTION:') 
        disp(UAV_TaskListCompleted{UAVname}) 
        disp('Task completed after REAUCTION:') 
        disp(UAV_TaskListNew{UAVname}) 
        disp('Minimum Route from start to end:'), 

disp(WinnerUAV_Route{UAVname}) % from start to after reauction 
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        disp('StartTime  DeliveryTime  PathTime LatestDeliveryTime') 

         
        DeliveryTime = round(ReauctionCloseTime) + 

round(WinnerPathTime(UAVname));  
%       DeliveryTime  = round(CycleAuctionCloseTime)+ 

round(WinnerPathTimeOld(UAVname))+ round(WinnerPathTime(UAVname)); 
        LatestDeliveryTime = 

min(AllTaskDeadlines(UAV_TaskList{UAVname})); 
        UAVPathTime =  round(WinnerPathTimeOld(UAVname))+ 

round(WinnerPathTime(UAVname)); % time taken by UAV from start to end 
        TimeHistory(UAVname,:) = 

round([CycleAuctionCloseTime(end),DeliveryTime, UAVPathTime, 

LatestDeliveryTime]); 
%          

  
%         DeliveryTime = 

round(TaskAuctionTimes(WinnerUAV_Route{UAVname}(2)))+ 

max(round(WinnerPathTime(UAVname)), round(WinnerPathTimeOld(UAVname)))+  

DelayTimes(UAVname); 
%         LatestDeliveryTime = 

min(AllTaskDeadlines(UAV_TaskList{UAVname})); 
%         UAVPathTime = DeliveryTime - 

round(TaskAuctionTimes(WinnerUAV_Route{UAVname}(2)))-

DelayTimes(UAVname); 
%         TimeHistory(UAVname,:) = 

round([TaskAuctionTimes(WinnerUAV_Route{UAVname}(2)),DeliveryTime, 

UAVPathTime, LatestDeliveryTime]); 
%          

         
        disp(TimeHistory(UAVname,:)) 
        GS_UAVRouteCordAll{UAVname} = 

[UAVs(UAVname,:);Task(UAV_TaskListCompleted{UAVname},:); 

UAVs_CurrentLocations(UAVname,:);... 
                                       

Task(WinnerUAV_RouteNew{UAVname}(2:end-1),:);GS_Cord(GS,:)]; 
         GS_UAVRouteCordAllTemp{UAVname} = 

[UAVs(UAVname,:);Task(UAV_TaskListCompleted{UAVname},:);... 
                                               

Task(WinnerUAV_RouteNew{UAVname}(2:end-1),:);GS_Cord(GS,:)]; 
        TaskNames = WinnerUAV_Route{UAVname}(2:end-1); 
        UAVTasksCompletionDurations(UAVname) = WinnerPathTime(UAVname); 
        GS_UAVRoutesAll{UAVname} = WinnerUAV_Route{UAVname}; 
        TaskCompletionTimes = [TaskCompletionTimes, 

WinnerPathTime(UAVname) + WinnerPathTimeOld(UAVname)]; 
        figure('Name', strcat('Robustness:  Path for executing task by 

UAV', num2str(UAVname))) 
        

plot3(GS_UAVRouteCordAll{UAVname}(:,1),GS_UAVRouteCordAll{UAVname}(:,2)

,GS_UAVRouteCordAll{UAVname}(:,3),'*-') 
        

text(GS_UAVRouteCordAll{UAVname}(1,1),GS_UAVRouteCordAll{UAVname}(1,2),

GS_UAVRouteCordAll{UAVname}(1,3), strcat('UAV',num2str(UAVname))) 
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        text(GS_UAVRouteCordAllTemp{UAVname}(2:end-

1,1),GS_UAVRouteCordAllTemp{UAVname}(2:end-

1,2),GS_UAVRouteCordAllTemp{UAVname}(2:end-1,3), num2str(TaskNames')) 
        

text(UAVs_CurrentLocations(UAVname,1),UAVs_CurrentLocations(UAVname,2),

UAVs_CurrentLocations(UAVname,3), strcat('UAV',num2str(UAVname))) 
        

text(GS_UAVRouteCordAll{UAVname}(end,1),GS_UAVRouteCordAll{UAVname}(end

,2),GS_UAVRouteCordAll{UAVname}(end,3), strcat('GS',num2str(GS))) 
        grid on 
        xlabel('x') 
        ylabel('y') 
        zlabel('z') 
    else 

  
         TaskCompletionTimes = [TaskCompletionTimes, 

WinnerPathTime(UAVname) + WinnerPathTimeOld(UAVname)]; 
    end 
 end 

  
TaskCompletionDists = UAV_Speed.*TaskCompletionTimes; 
% Display the GS and the UAVs  it solds tasks to 
for GS=1:NumberOfGS 
    if ~isempty(GS_UAVList{GS}) 
        disp(strcat('UAV LIST FOR GS',num2str(GS),':')) 
        disp(GS_UAVList{GS}) 
    end 
end 

  
disp('    AvgDist(m)   AvgTime(s)  Dist_std(m)  Time_std(s)') 
disp(round([mean(TaskCompletionDists), mean(TaskCompletionTimes), 

std(TaskCompletionDists), std(TaskCompletionTimes)])) 

  
% plot the space just before negotiation 
% UAVs_CurrentLocations 
PlotTheSpaceWithTheAgents(GS_Cord, GS_CommRange, 

NumberOfGS,TI_CommRange, TI,UAVs_CurrentLocations,NumberOfUAVsAll) 

 

 

File 
function [UAV_Bid,UAV_Route,PathTime] = RouteOptimizer(UAV_TaskList, 

GS_Cord, GS_id, UAV_id, UAVs, Task,UAV_Speed,Task_Cost,... 
                                        

NewTask_id,DistUnitCost,TimeUnitCost,NewLeastPathTime,NewTaskDeadline,.

.. 
                                        

OldTaskDeadline,GS_CommRange,UAV_CommRange,TASK_auctionTime, 

GSTaskAuctionedTimes, GS_WinningCosts) 

  
 global GS_UAVCommStrength 
 UAV_Bid = []; 
 UAV_Route =[]; 



115 

 PathTime = []; 
if ~isempty(UAV_TaskList) 
    PreviousLeastPathTime = NewLeastPathTime; 
    Task_Order = perms([UAV_TaskList,NewTask_id]); 
    [NumOfPath,NumOfCordPerPath] = size(Task_Order); 

    UAV_Path = [repmat(UAV_id,NumOfPath,1), 

Task_Order,repmat(GS_id,NumOfPath,1)]; 

     
    NumOfCordPerPath = NumOfCordPerPath + 2; 
    Path_Cost = []; 
    for m = 1:NumOfPath 
        Path_Dist(m,:)= 0; 
        UAV_Path_Cord = [UAVs(UAV_id,:); Task(Task_Order(m,:),:); 

GS_Cord(GS_id,:)]; 
        for n = 1:NumOfCordPerPath-1 
            Path_Dist(m,:) = Path_Dist(m,:) + 

norm(UAV_Path_Cord(n+1,:)-UAV_Path_Cord(n,:)); 
        end 
    end 
    Path_Dist = Path_Dist - 

GS_UAVCommStrength*(GS_CommRange+UAV_CommRange); 
    Path_Cost = Path_Dist*DistUnitCost; % in USD 
    PathTime = Path_Dist./UAV_Speed; % (in seconds) 
    PathTime_Cost =  PathTime *TimeUnitCost; % in USD 

     
   [Path_LeastCost,Path_Idx] =  min(Path_Cost + PathTime_Cost); 
   UAV_Route = UAV_Path(Path_Idx,:); 
   NewLeastPathTime = PathTime(Path_Idx,:);  
   PathTime =  NewLeastPathTime;  
   FirstTaskAuctionTime =  GSTaskAuctionedTimes(UAV_Route(2)); % the 

time at which the first task in that UAV task list is auctioned 
   UAV_BidCost = UAV_BidChecker(NewLeastPathTime, 

Task_Cost,PreviousLeastPathTime,NewTaskDeadline, 

FirstTaskAuctionTime,... 
       OldTaskDeadline,DistUnitCost,UAV_Speed,TimeUnitCost); 

    
  UAV_Bid = UAV_BidCost; 
elseif isempty(UAV_TaskList) 
  [UAV_Bid,PathTime] = UAV_LocalBid(GS_Cord,UAVs,GS_id, 

NewTask_id,Task,UAV_id,DistUnitCost,UAV_Speed,TimeUnitCost,GS_CommRange

,UAV_CommRange,NewTaskDeadline,TASK_auctionTime,GS_WinningCosts); 
  UAV_Route = [UAV_id,NewTask_id,GS_id]; 
end 

  

    

       

         

 

File 
function [UAV_BidCost,PathTime] = UAV_BidChecker(NewLeastPathTime, 

Task_Cost,PreviousLeastPathTime,NewTaskDeadline,FirstTaskAuctionTime,Ol
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dTaskDeadline,DistUnitCost,UAV_Speed,TimeUnitCost,NewTask_id,PathTime1.

.. 
    ,GS_Cord,GS_ID,UAV_id, UAVs,GS_CommRange,UAV_CommRange) 

  
UAV_ExtraTime = NewLeastPathTime - PreviousLeastPathTime; 

NewLeastPathDueTime = NewLeastPathTime+FirstTaskAuctionTime; % Expected 

time for UAV to deliver its tasks 

  
ExtraDistCost = UAV_ExtraTime*UAV_Speed*DistUnitCost; 
ExtraTimeCost =  UAV_ExtraTime*TimeUnitCost; 
UAV_CostCheck = ExtraDistCost + ExtraTimeCost; 

  
 UAVCommCheck = norm(UAVs(UAV_id,:)- GS_Cord(GS_ID,:)); % checking to 

see if UAV and GS are in communication range 

  
if (NewTaskDeadline<=OldTaskDeadline) &&(NewLeastPathDueTime<= 

NewTaskDeadline)&& (UAV_CostCheck<=Task_Cost(NewTask_id)) && 

UAVCommCheck <=(GS_CommRange + UAV_CommRange) 
% if (NewLeastPathDueTime<= OldTaskDeadline)&&(NewTaskDeadline<= 

OldTaskDeadline)&&(UAV_CostCheck>=Task_Cost(NewTask_id)) 
    UAV_BidCost = UAV_CostCheck; 
    PathTime = PathTime1; 
else 
    UAV_BidCost = Inf; 
    PathTime = Inf; 
end 
% [(NewTaskDeadline-OldTaskDeadline),(NewLeastPathDueTime-

NewTaskDeadline), (UAV_CostCheck-Task_Cost(NewTask_id)), (UAVCommCheck 

-(GS_CommRange + UAV_CommRange))] 

 

 

File 
function [UAV_BidCost,PathTime] = UAV_BidChecker(NewLeastPathTime, 

Task_Cost,PreviousLeastPathTime,NewTaskDeadline,FirstTaskAuctionTime,Ol

dTaskDeadline,DistUnitCost,UAV_Speed,TimeUnitCost,NewTask_id,PathTime1.

.. 
    ,GS_Cord,GS_ID,UAV_id, UAVs,GS_CommRange,UAV_CommRange) 

  
UAV_ExtraTime = NewLeastPathTime - PreviousLeastPathTime; 
NewLeastPathDueTime = NewLeastPathTime+FirstTaskAuctionTime; % Expected 

time for UAV to deliver its tasks 

  

ExtraDistCost = UAV_ExtraTime*UAV_Speed*DistUnitCost; 
ExtraTimeCost =  UAV_ExtraTime*TimeUnitCost; 
UAV_CostCheck = ExtraDistCost + ExtraTimeCost; 

  
 UAVCommCheck = norm(UAVs(UAV_id,:)- GS_Cord(GS_ID,:)); % checking to 

see if UAV and GS are in communication range 

  



117 

if (NewTaskDeadline<=OldTaskDeadline) &&(NewLeastPathDueTime<= 

NewTaskDeadline)&& (UAV_CostCheck<=Task_Cost(NewTask_id)) && 

UAVCommCheck <=(GS_CommRange + UAV_CommRange) 
% if (NewLeastPathDueTime<= OldTaskDeadline)&&(NewTaskDeadline<= 

OldTaskDeadline)&&(UAV_CostCheck>=Task_Cost(NewTask_id)) 

    UAV_BidCost = UAV_CostCheck; 
    PathTime = PathTime1; 
else 
    UAV_BidCost = Inf; 
    PathTime = Inf; 
end 

  
% [(NewTaskDeadline-OldTaskDeadline),(NewLeastPathDueTime-

NewTaskDeadline), (UAV_CostCheck-Task_Cost(NewTask_id)), (UAVCommCheck 

-(GS_CommRange + UAV_CommRange))] 

 
 

File 
function [UAV_Cost,PathTime] = UAV_LocalBid(TI,UAVs,TI_id, 

Task_id,Task,UAV_id,DistUnitCost,UAV_Speed,... 
    

TimeUnitCost,GS_CommRange,UAV_CommRange,NewTaskDeadline,TASK_auctionTim

es, Task_Cost,GS_Cord,GS_ID) 

  
% This function computes the bid for UAV that communicates with a given 

GS 
% having a task list 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global GS_UAVCommStrength 
UAV_Cost = []; 
PathTime = []; 
Alpha  = 0.5; 
% 
UAVCommCheck = norm(UAVs(UAV_id,:)- GS_Cord(GS_ID,:)); % checking to 

see if UAV and GS are in communication range 
if UAVCommCheck <=(GS_CommRange + UAV_CommRange) 
%      
    Dist = (norm(UAVs(UAV_id,:)-Task(Task_id,:)) + 

norm(Task(Task_id,:)-GS_Cord(GS_ID,:)))-(1-

GS_UAVCommStrength)*(GS_CommRange+UAV_CommRange); 

     
%     Dist = 2*norm(UAVs(UAV_id,:)-Task(Task_id,:)); 
    DistCost = Dist*DistUnitCost; 

    Time = Dist/UAV_Speed; 
    TimeCost = Time*TimeUnitCost; 
    Cost = DistCost + TimeCost; % measured in USD 
    if Time<=(NewTaskDeadline-TASK_auctionTimes(Task_id))&& 

Cost<=Task_Cost(Task_id) 
%         UAV_Cost = Alpha*Task_Cost(Task_id) + Cost*(1-Alpha); % the 

bid from UAV for  a task 
        PathTime = Time; 
        UAV_Cost = Cost; 
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    else 
        UAV_Cost = Inf; 
        PathTime = Inf; 
     end 
else 

    UAV_Cost =  Inf; 
    PathTime =  Inf; 
%     UAV_id 
end 

  

 

File 
clear all; 
close all; 
clc; 

  
global Task UAVsAll GS_Cord GS_CommRange NumberOfGS TI_CommRange TI 

UAV_CommRange UAV_Speed WinnerUAV_RouteOld TangGS_CommRange 

GS_UAVCommStrength... 
DistUnitCost TimeUnitCost NumberOfUAVs GSTaskAuctionedTimes Up 

AuctionTimeStep TI_id TaskAuctionTimesOld WinnerPathTimeOld GS_UAVList 

UAVs 
 global SellAndBuyBids M_BuyBid SellAndBuyWinners SellAndBuyWinnerBids 

TI_TaskCost GS_jUAV_SBids InitNumberOfTask TaskCreationTime Scenario 
global TI_CostScalar CycleAuctionCloseTime Gamma OriginalUAV OriginalGS 
% load tasks from file 
   load('RandTasks_12') 
   Task = RandTasks; % Don't edit this line 
%  Task = load ('-ascii', 'TaskCord.DAT'); %// old 

%  %load randomized UAVs 
% load('RandUAVs'); % 10 set of initial UAVs location 
% SampleNumber = 1; % Choose from 1 through 10 
% UAVs = RandUAVs{SampleNumber}; 

     
TangGS_CommRange = 200; % radius when GSs are tangent to each other 
UAV_CommRange = 250;%750; %2500; %150; %2500; % 150, 250,750,1000,1500 
UAV_CommRangeMin = 250; 
Scenario = 2;   % 1 =>GSs Disjoint,  2 => GSs Overlapped, 3 => GSs at 

Tangency 

NumberOfUAVs = 9; 
UAV_Speed = 10; % in m/s 
GS_UAVCommStrength = 0.1;  % comm strength between GS and UAV. The 

bigger this number the weaker the communication 
GS_GS_CommStrength = 1; % comm strength between two GSs if they 

intersect 
% Note: (1)The bigger the communication radius, the stronger the 
% communication. (2) This value lies between 0 and 1 

  

Gamma = 0.002; % Note: Gamma is a fraction of latest delivery time of 

task by eliminated UAV 
% Cost constant 
DistUnitCost = 0.1; 
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TimeUnitCost = 0.1; 
Up = 1; 
InitNumberOfTask = size(Task,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% Initiator's Coordinates 
X_TI = 0; 
Y_TI = 0; 
Z_TI = 0; 
TI = [X_TI, Y_TI, Z_TI]; 
TI_id = 1; % There is only one Task initiator 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

% Generate the Ground Stations (GS) 
NumberOfGS = 3; 
[GS_Cord, GS_CommRange,TI_CommRange] = CreateGroundStations(NumberOfGS, 

TI,TangGS_CommRange,Scenario, GS_GS_CommStrength); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
disp(sprintf('Actual GS communication radius for the overlap case is: 

%s', num2str(GS_CommRange))) 
disp(sprintf('TI communication radius: %s', 

num2str(round(TI_CommRange)))) 
disp(sprintf('\n')) % print an empty space for clarity purposes 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%Generate Randomized the Unmanned Aerial Vehicles (UAVs) such that each 

communicate 
% with at least two GS 

  
%  RandUAVs =  

GenerateRandUAVs(NumberOfGS,NumberOfUAVs,GS_Cord,TangGS_CommRange,UAV_C

ommRangeMin); 
% Note: comment the line above once you're satisfied with the initial 

randomized locations of the UAVs 
load(strcat(num2str(NumberOfUAVs),'RandUAVs_',num2str(UAV_CommRangeMin)

)) % don't edit this line 
UAVs = RandUAVs; % Don't edit this line 

  
%     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        

     
UAV_TaskList{NumberOfUAVs} =  []; % initialization 
GS_UAVList{NumberOfGS} =  []; % initialization 
SellAndBuyBids = []; 
SellAndBuyBidsLimit = []; 
TaskAuctionTimes = []; 
tH = []; 
AuctionTimeStep = 2; %in seconds 
DeadLineScalar = 10; % To give good estimation of the task's deadline 
TI_CostScalar = 1; % To give good estimation of the task's cost 
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TaskCreationTime = 0:AuctionTimeStep:(InitNumberOfTask-

1)*AuctionTimeStep;  % Task is created every 2 seconds 
UnsoldTaskIDs = 1:InitNumberOfTask;  % all tasks are unsold initially 
CycleCount = 0; 
SellAndBuyBids = zeros(InitNumberOfTask,2);% initialization for winning 

sell and buy bids pair 
GS_jUAV_SBids = zeros(InitNumberOfTask,1); % initialization 
M_BuyBid = zeros(InitNumberOfTask,1); % initialization 
SellAndBuyWinners = zeros(InitNumberOfTask,2); % initialization 
SellAndBuyWinnerBids = zeros(InitNumberOfTask,2); % initialization 
GS_TaskDelivered = zeros(InitNumberOfTask,1); % initialization 
WinnerUAV_Route{NumberOfUAVs} = []; % initialization 
WinnerPathTime = zeros(NumberOfUAVs,1); % initialization 
OriginalUAV = zeros(InitNumberOfTask,1); 
OriginalGS = zeros(InitNumberOfTask,1); 

tH_Original = DeadLineScalar*(sqrt(sum((bsxfun(@minus, TI, 

Task)).^2,2)))/UAV_Speed;% all original task deadlines 
while(1) 
CycleCount = CycleCount + 1; 
NumberOfTask(CycleCount) = length(UnsoldTaskIDs); 
UnsoldTaskIDsTemp = []; 
CycleAuctionCloseTime(CycleCount) = sum(NumberOfTask - 

1)*AuctionTimeStep; 

  

for i=1:NumberOfTask(CycleCount) 
    TaskID = UnsoldTaskIDs(i); 
    if CycleCount>1 
        TaskAuctionTimes(TaskID) = i*AuctionTimeStep + 

CycleAuctionCloseTime(CycleCount-1); 
    else 
        TaskAuctionTimes(TaskID,:) =  TaskCreationTime(TaskID); 
    end 
    t =  TaskAuctionTimes(TaskID) - TaskCreationTime(TaskID);  % Time 

ellasped before task gets sold 
    tH(TaskID,:) = tH_Original(TaskID) + t; % Task deadline 

  
    %Compute the cost of the task to be auctioned 
    TI_Po(:,TaskID) = 2*(norm(TI-Task(TaskID,:))*DistUnitCost + 

norm(TI-Task(TaskID,:))*TimeUnitCost/UAV_Speed); % initial price from 

the task initiator 
    TI_TaskCost(TaskID,:) = TI_CostScalar*TI_Po(:,TaskID)*(1 + 

Up*t/tH_Original(TaskID)); 
    GS_Bids{TaskID} = GS_Bidding(NumberOfGS, TI, 

Task(TaskID,:),GS_Cord,TI_CommRange,GS_CommRange,UAV_Speed,DistUnitCost

,TimeUnitCost,TI_TaskCost,TaskID); % sell bids 

     

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%% Compute the bids for the UAVs 
    UAVwinnerBids  = zeros(1,NumberOfGS); 
    WinnerUAVnames = zeros(1,NumberOfGS); 
    GSs_UAVs_BidPairs = zeros(NumberOfGS,4); 
    GSnames = 1:NumberOfGS; 
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    for gs = 1:NumberOfGS 
        UAV_BidsTemp = Inf*ones(1,NumberOfUAVs); % initialization 
        for k=1:NumberOfUAVs 
            if isempty(UAV_TaskList{k}) 

                UAV_TaskListPrevious = []; 
                NewLeastPathTime = 0; 
                OldTaskDeadline = 0; 
                oldGS_ID = 0; 
                

[UAV_Bids{TaskID}(k),GS(gs).UAV_Route{k},GS(gs).PathTime(k)] =  

UAV_Bidding(UAV_TaskListPrevious, TI, TI_id, k, UAVs, 

Task,UAV_Speed,TI_TaskCost,... 
                    

TaskID,DistUnitCost,TimeUnitCost,NewLeastPathTime,tH(TaskID),... 
                    OldTaskDeadline,GS_CommRange,UAV_CommRange, 

TaskAuctionTimes,GS_Cord,gs,oldGS_ID); 
            else 
                UAV_TaskListPrevious = UAV_TaskList{k}; 
                NewLeastPathTime = WinnerPathTime(k,:); 
                OldTaskDeadline = min(tH(UAV_TaskList{k}));    

%tH(GS(gs).UAV_Route{k}(end-1)); 
                oldGS_ID = WinnerUAV_Route{k}(end); 
                

[UAV_Bids{TaskID}(k),GS(gs).UAV_Route{k},GS(gs).PathTime(k)] =  

UAV_Bidding(UAV_TaskListPrevious, TI, TI_id, k, UAVs, 

Task,UAV_Speed,TI_TaskCost,... 
                    

TaskID,DistUnitCost,TimeUnitCost,NewLeastPathTime,tH(TaskID),... 
                    OldTaskDeadline,GS_CommRange,UAV_CommRange, 

TaskAuctionTimes,GS_Cord,gs,oldGS_ID); 
            end 
        end 
        %         UAV_Bids{TaskID} 
        [UAVwinnerBids(gs), WinnerUAVnames(gs)] = 

min(UAV_Bids{TaskID}); 
        UAV_BidsTemp(WinnerUAVnames(gs)) = UAVwinnerBids(gs); 
    end 

     
    GSs_UAVs_BidPairs = [GSnames',round(GS_Bids{TaskID}'), 

WinnerUAVnames',round(UAVwinnerBids')]; 
    disp('GSs and UAVs bid pairs:') 
    disp('           GS       GS_Bid       UAV      UAV_Bid') 
    disp(GSs_UAVs_BidPairs) 
    %       UAV_Bids{i} 

     
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    % Matching the GS_Bids (i.e. sell bids) and the UAV_Bids (i.e. buy 
    % bids 
    Sell_in_Bids = []; 
    Buy_in_Bids  = []; 
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    TransactionSet = []; 
    UAV_Indx = []; 
    GS_Indx = []; 
    UAV_Indx1 = []; 
    GS_Indx1 = []; 

     
    % Determine eligible sellers and buyers 
    for m=1:NumberOfGS 
        if GS_Bids{TaskID}(m)~=Inf && UAVwinnerBids(m)~=Inf 
                    TransactionSet = [TransactionSet; 

[GS_Bids{TaskID}(m),UAVwinnerBids(m)]]; 
                    UAV_Indx1 = [UAV_Indx1; WinnerUAVnames(m)]; 
                    GS_Indx1 = [GS_Indx1; m]; 

                     

        end 
    end 

  
      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    NumOfSellers = size(TransactionSet,1);  
    if ~isempty(TransactionSet) % There are seller(s) and buyer(s) 

         
        [ignore1 OrigIndx] = min(TransactionSet(:,1)); 

        OriginalUAVtemp = UAV_Indx1(OrigIndx); 
        OriginalGStemp  = GS_Indx1(OrigIndx); 

         
        Rank = sort([TransactionSet(:,1), 

TransactionSet(:,2)],'ascend'); 
        M_BuyBid(TaskID,:) = Rank(NumOfSellers);  % Mth bid 
        M_nextBuyBid(TaskID,:) = Rank(NumOfSellers+1); % M+1st bid 

         
        [Sell_Bids{TaskID}, GS_IndxTemp{TaskID}] = 

min(TransactionSet(:,1)); 
        GS_Indx(1)  = GS_Indx1(GS_IndxTemp{TaskID}); % winner GS(i.e. 

GS with minimum bid) 
        UAV_Indx(1) = UAV_Indx1(GS_IndxTemp{TaskID});  % winner UAV 

(i.e. UAV with minimum bid) 

         
        Buy_Bids{TaskID} = TransactionSet(GS_IndxTemp{TaskID},2); 
%         GS_Winner = GS_Indx1(GS_IndxTemp{TaskID}); % actual winner 
        GS_jUAV_SBids(TaskID) = GS_Bids{TaskID}(GS_Indx(1)); % cost of 

GS to which task is supposed to be delivered 
        GS_TaskDelivered(TaskID) = GS_Indx(1); 

         
        %%%Determine the winner 
        UAV_TaskList{UAV_Indx(1)}    = [UAV_TaskList{UAV_Indx(1)}, 

TaskID]; 
        GS_UAVList{GS_Indx(1)}       = [GS_UAVList{GS_Indx(1)}, 

UAV_Indx(1)]; 
        WinnerUAV_Route{UAV_Indx(1)} = 

GS(GS_Indx(1)).UAV_Route{UAV_Indx(1)}; 



123 

        WinnerPathTime(UAV_Indx(1))  = 

GS(GS_Indx(1)).PathTime(UAV_Indx(1)); 
        SellAndBuyBids(TaskID,:)     = SellAndBuyWinnerBids(TaskID,:); 

%winning sell and buy bids pair 
        SellAndBuyWinners(TaskID,:) =  [GS_Indx(1), UAV_Indx(1)]; % 

UAVs and GSs that win the tasks 
        SellAndBuyWinnerBids(TaskID,:) = [Sell_Bids{TaskID}, 

Buy_Bids{TaskID}]; 
        SellAndBuyBids(TaskID,:) =     SellAndBuyWinnerBids(TaskID,:); 

         
        OriginalUAV(TaskID) = OriginalUAVtemp; % UAV with minimum cost 
        OriginalGS(TaskID)  = OriginalGStemp;  % GS paired with UAV 

with minimu cost 
    else % there are no sellers and/or buyers 
        UnsoldTaskIDsTemp = [UnsoldTaskIDsTemp,TaskID]; 
    end 
end 
TransactionSet = []; 

  
% Check if all tasks are sold 
if isempty(UnsoldTaskIDsTemp) 
            break; % break from the while loop 
else 
    UnsoldTaskIDs = UnsoldTaskIDsTemp; % tasks unsolds 
end 
%     UnsoldTaskIDs 
end 

  
 UAV_TaskList % without robustness 
TaskAuctionTimesOld = TaskAuctionTimes; 
WinnerPathTimeOld = WinnerPathTime; 
WinnerUAV_RouteOld = WinnerUAV_Route; 
TaskNames = 1:InitNumberOfTask; 
% Calculate the profit using the clearing price (i.e. M_BuyBid)     
SellerProfit1  = 0.5*(SellAndBuyWinnerBids(:,1)-

SellAndBuyWinnerBids(:,2) + TI_TaskCost - SellAndBuyWinnerBids(:,1) -( 

GS_jUAV_SBids-SellAndBuyWinnerBids(:,1))); % profit of GS to which task 

is delivered to 
BuyerProfit1   = SellerProfit1;  %profit of the winner UAV 
OriginalGS_Profit      = 0.5*(GS_jUAV_SBids - 

SellAndBuyWinnerBids(:,1)); % profit of original GS that was paired 

with the winner UAV 

  
AvgSellBid = mean(SellAndBuyWinnerBids(:,1)); 
AvgBuyBid = mean(SellAndBuyWinnerBids(:,2)); 
% AvgGS_DelivererBid = mean(GS_jUAV_SBids); 
AvgOriginalGS_Bid = mean(GS_jUAV_SBids); 
AllAvgBids = [AvgOriginalGS_Bid,AvgSellBid,AvgBuyBid]; 

  
AvgClearingPrice = mean(M_BuyBid); 
AvgOriginalGS_Profit = mean(OriginalGS_Profit); 
AvgSellProfit = mean(SellerProfit1); 
AvgBuyProfit = mean(BuyerProfit1); 
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% AvgGS_DelivererProfit = mean(GS_Profit); 
AllAvgProfits = [AvgClearingPrice,AvgOriginalGS_Profit,AvgSellProfit, 

AvgBuyProfit]; 

  

  

% Compute the total profits for all GS 

  
GS_TotalProfits = zeros(NumberOfGS,1); 
GS_Names = 1:NumberOfGS; 
for g = 1:NumberOfGS 
    GS_Originalfrequency = find(OriginalGS==g); % how often GS 

originally paired with the winner UAV 
    GS_Sellfrequency = find(SellAndBuyWinners(:,1)==g); % how often GS 

got tasks delivered to it 

     
    if ~isempty(GS_Originalfrequency) 
    GS_TotalProfits(g) = GS_TotalProfits(g)+ 

sum(OriginalGS_Profit(GS_Originalfrequency));   
    end 
        if ~isempty(GS_Sellfrequency) 
    GS_TotalProfits(g) = GS_TotalProfits(g)+ 

sum(SellerProfit1(GS_Sellfrequency));   
        end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  
% Compute the total for all UAVs 

  
UAV_TotalProfits = zeros(NumberOfUAVs,1); 
UAV_Names = 1:NumberOfUAVs; 
for u = 1:NumberOfUAVs 
    UAV_Buyfrequency = find(SellAndBuyWinners(:,2)==u); % how often UAV 

buys tasks from Winner GS 
    if ~isempty(UAV_Buyfrequency) 
    UAV_TotalProfits(u) = UAV_TotalProfits(u)+ 

sum(BuyerProfit1(UAV_Buyfrequency));   
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
% Write the results into excel sheeet 
TITLE = {'TaskName','Creation Time(sec)','Auction 

Time(sec)','Deadline(sec)','Task Cost($) (from TI)', 'Original Seller 

Bid($)','Winning Seller Bid($)', 'Winning Buyer Bid($)',... 
    'Original_GS', 'Seller(GS)','Buyer(UAV)', 'Clearing Price($)', 

'Original_GS Profit($)', 'Seller Profit($)','Buyer Profit($)'}; 
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xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), TITLE, 

'A1:O1') 
BuySellRecords = 

[TaskNames',TaskCreationTime',TaskAuctionTimes,tH,TI_TaskCost 

,GS_jUAV_SBids, SellAndBuyWinnerBids(:,1),SellAndBuyWinnerBids(:,2),... 

OriginalGS, SellAndBuyWinners(:,1), SellAndBuyWinners(:,2),M_BuyBid, 

OriginalGS_Profit, SellerProfit1,BuyerProfit1]; 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), 

BuySellRecords, strcat('A2:O',num2str(InitNumberOfTask+1))) 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), 

{'AVERAGE'},  

strcat('E',num2str(InitNumberOfTask+2),':','E',num2str(InitNumberOfTask

+2))) 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), 

AllAvgBids, 

strcat('F',num2str(InitNumberOfTask+2),':','H',num2str(InitNumberOfTask

+2))) 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), 

AllAvgProfits, 

strcat('L',num2str(InitNumberOfTask+2),':','O',num2str(InitNumberOfTask

+2))) 

  
SubTitle = {'GS', 'GS Total Profit($)'}; 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), SubTitle,  

strcat('I',num2str(InitNumberOfTask+5),':','J',num2str(InitNumberOfTask

+5))) 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), 

GS_Names', 

strcat('I',num2str(InitNumberOfTask+6),':','I',num2str(InitNumberOfTask

+6+NumberOfGS-1))) 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), 

GS_TotalProfits, 

strcat('J',num2str(InitNumberOfTask+6),':','J',num2str(InitNumberOfTask

+6+NumberOfGS-1))) 

  

  
SubTitle = {'UAV', 'UAV Total Profit($)'}; 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), SubTitle,  

strcat('M',num2str(InitNumberOfTask+5),':','N',num2str(InitNumberOfTask

+5))) 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), 

UAV_Names', 

strcat('M',num2str(InitNumberOfTask+6),':','M',num2str(InitNumberOfTask

+6+NumberOfUAVs-1))) 
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), 

UAV_TotalProfits, 

strcat('N',num2str(InitNumberOfTask+6),':','N',num2str(InitNumberOfTask

+6+NumberOfUAVs-1))) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
disp('Ground Stations coordinates (in rows):') 
disp(round(GS_Cord)) 
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disp('UAVs Initial Coordinates (in rows):') 
disp(round(UAVs)) 
disp('Tasks coordinates (in rows):') 
disp(Task) 

  

%Display the UAV tasklists 
TimeHistory = zeros(NumberOfUAVs,4); %initialization 
GS_UAVRouteCordAll{NumberOfUAVs} = []; % initialization 
UAVTasksCompletionDurations  = zeros(NumberOfUAVs,1); 
GS_UAVRoutesAll{NumberOfUAVs} = []; 
TaskCompletionTimes = zeros(1,NumberOfUAVs); 
TaskCompletionDists = []; 
for UAVname=1:NumberOfUAVs 
    if ~isempty(UAV_TaskList{UAVname}) 
        disp(strcat('RECORDS FOR UAV',num2str(UAVname),':')) 
        disp('Tasklist:'), disp(UAV_TaskList{UAVname}) 
        disp('Minimum Route:'), disp(WinnerUAV_Route{UAVname}) 
        disp('StartTime  DeliveryTime  PathTime LatestDeliveryTime') 
        DeliveryTime = round(CycleAuctionCloseTime(end))+ 

round(WinnerPathTime(UAVname)); 
        LatestDeliveryTime = min(tH(UAV_TaskList{UAVname})); 
        TimeHistory(UAVname,:) = 

round([CycleAuctionCloseTime(end),DeliveryTime, 

WinnerPathTime(UAVname), LatestDeliveryTime]); 

        disp(TimeHistory(UAVname,:)) 
        GS_UAVRouteCordAll{UAVname} = 

[UAVs(UAVname,:);Task(WinnerUAV_Route{UAVname}(2:end-1),:); 

GS_Cord(WinnerUAV_Route{UAVname}(end),:)]; 
        TaskNames = WinnerUAV_Route{UAVname}(2:end-1); 
        UAVTasksCompletionDurations(UAVname) = WinnerPathTime(UAVname); 
        GS_UAVRoutesAll{UAVname} = WinnerUAV_Route{UAVname}; 
        TaskCompletionTimes(UAVname) = WinnerPathTime(UAVname); 
        figure('Name', strcat('Path for executing task by UAV', 

num2str(UAVname))) 
        

plot3(GS_UAVRouteCordAll{UAVname}(:,1),GS_UAVRouteCordAll{UAVname}(:,2)

,GS_UAVRouteCordAll{UAVname}(:,3),'*-') 
        

text(GS_UAVRouteCordAll{UAVname}(1,1),GS_UAVRouteCordAll{UAVname}(1,2),

GS_UAVRouteCordAll{UAVname}(1,3), strcat('UAV',num2str(UAVname))) 
        text(GS_UAVRouteCordAll{UAVname}(2:end-

1,1),GS_UAVRouteCordAll{UAVname}(2:end-

1,2),GS_UAVRouteCordAll{UAVname}(2:end-1,3), num2str(TaskNames')) 
        

text(GS_UAVRouteCordAll{UAVname}(end,1),GS_UAVRouteCordAll{UAVname}(end

,2),GS_UAVRouteCordAll{UAVname}(end,3), 

strcat('GS',num2str(WinnerUAV_Route{UAVname}(end)))) 
        grid on 
        xlabel('x') 
        ylabel('y') 
        zlabel('z') 
    end 
end 
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% WinnerPathTime(4) 
TaskCompletionDists = UAV_Speed.*TaskCompletionTimes; 
% Display the GS and the UAVs  it solds tasks to 
for GS=1:NumberOfGS 
    if ~isempty(GS_UAVList{GS}) 

        disp(strcat('UAV LIST FOR GS',num2str(GS),':')) 
        disp(GS_UAVList{GS}) 
    end 
end 

  
% TaskCompletionTimesNew = [TaskCompletionTimes,zeros(1, NumberOfUAVs-

length(TaskCompletionTimes))]; 
% TaskCompletionDists = UAV_Speed.*TaskCompletionTimesNew; 

  

disp('    AvgDist(m)   AvgTime(s)  Dist_std(m)  Time_std(s)') 
disp(round([mean(TaskCompletionDists), mean(TaskCompletionTimes), 

std(TaskCompletionDists), std(TaskCompletionTimes)])) 

  
% plot the space 
PlotTheSpaceWithTheAgents(GS_Cord, GS_CommRange, 

NumberOfGS,TI_CommRange, TI,UAVs,NumberOfUAVs) 

  
%  % Running the robustness 
 % Inputs required from the user: 
 disp(sprintf('\n')) 
 disp(sprintf('\n')) 
 disp('RESULTS FROM THE ROBUSTNESS') 
 UAV_ID_Eliminate = 1;  
 UAV_Elimination_Time = 50;  
 UAVRecoveryTime = 4400;  
 Robustness(UAV_ID_Eliminate, UAV_Elimination_Time, UAVRecoveryTime, 

GS_UAVRoutesAll,... 
 TimeHistory, GS_UAVRouteCordAll,TaskCompletionTimes,tH) 
 

 

File 
function [UAV_GSRoutesNeg,UAV_GSRoutesCordNeg]= 

UAVNegotiator(GS_UAVRouteCordAll,GS_UAVRoutesAll,UAV_CommRange,... 
    

UAV_Speed,TimeHistory,Deadlines,NegoTimeStep,DurationForNegotiation,Dis

tUnitCost,TimeUnitCost) 

  
global TaskName 
%%%%%%%% Computes the segmental lengths of the UAVs routes 
[RouteLenghts,UAVCumRouteLenghts] = 

ComputeSegmentDistance(GS_UAVRouteCordAll,GS_UAVRoutesAll); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
NumberOfRoutes = length(GS_UAVRoutesAll); 

  
for k =1:NegoTimeStep:DurationForNegotiation % first 3 seconds 
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        for i=1:NumberOfRoutes 
            RoutesIDs = 1:NumberOfRoutes; 
            RoutesIDs(find(RoutesIDs==i))=[]; % avoid self-negotiation 
            UAVNegPath{i} = []; 

            PathCostNeg(i) = inf; 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             
            DistTravel_UAVi = CalUAVDistance(UAV_Speed, 

TimeHistory(i,1),k); 

             
            [UAVNewLocation(i,:),UAVi_MovingTo] = 

FindUAVnewLocation(UAVCumRouteLenghts{i}, GS_UAVRouteCordAll{i}, 

RouteLenghts{i},DistTravel_UAVi); 

             
            UAVNegPath = []; PathCostNeg = []; 
            for kk=1:length(RoutesIDs) 
                j = RoutesIDs(kk); 
                UAVNegPath{j} = []; 

                 
            DistTravel_UAVj = CalUAVDistance(UAV_Speed, 

TimeHistory(kk,1),k); 
            [UAVNewLocation(j,:),UAVj_MovingTo, LastTaskDone] = 

FindUAVnewLocation(UAVCumRouteLenghts{j}, GS_UAVRouteCordAll{j}, 

RouteLenghts{j},DistTravel_UAVj); 
        NegoCommCheck = norm(UAVNewLocation(i,:)-UAVNewLocation(j,:)); 

% UAVs new locations used 
        if (NegoCommCheck <= (UAV_CommRange 

+UAV_CommRange))&&(length(RouteLenghts{i})>2&& 

length(RouteLenghts{j})>2) % UAVs in comm range 

             
%             disp('Communicate') 
            [UAVNegPath{j},PathCostNeg(j)] = 

CalUAVsNegBids(DistTravel_UAVi,UAVi_MovingTo,... 
                                     

UAVj_MovingTo,GS_UAVRouteCordAll{i},GS_UAVRouteCordAll{j},UAVNewLocatio

n(i,:),... 
                        

UAVNewLocation(j,:),DistUnitCost,TimeUnitCost,UAV_Speed,TimeHistory,j,D

eadlines,GS_UAVRoutesAll{i}); 
        else 
            UAVNegPath{j} = []; 
            PathCostNeg(j) = inf; 
        end 
            end 
            %%%% Determine the winner from the negotiation 
            [ignore, NegWinner]= min(PathCostNeg); 
            if PathCostNeg~=inf 
                GS_UAVRouteCordAll{NegWinner} = UAVNegPath{NegWinner}; 

% winner route updated by adding a task coordinate 
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                GS_UAVRoutesAll{NegWinner}= 

[GS_UAVRoutesAll{NegWinner}(1:UAVj_MovingTo-

1),TaskName,GS_UAVRoutesAll{NegWinner}(UAVj_MovingTo:end)]; 

                 
                GS_UAVRouteCordAll{i}(UAVi_MovingTo,:) = []; % delete 

the task coordinate from tasklist 
                GS_UAVRoutesAll{i}(UAVi_MovingTo) = []; % delete the 

task id from tasklist 

                 
                % Uspdate the segmental lengths 
                [RouteLenghts{NegWinner},CumRouteLenghts{NegWinner}] = 

ComputeSegmentDistance(GS_UAVRouteCordAll{NegWinner},GS_UAVRoutesAll{Ne

gWinner}); 
                [RouteLenghts{i},CumRouteLenghts{i}] = 

ComputeSegmentDistance(GS_UAVRouteCordAll{i},GS_UAVRoutesAll{i}); 

           
            end 
        end 
end 

         
   UAV_GSRoutesNeg =    GS_UAVRoutesAll; 
   UAV_GSRoutesCordNeg  = GS_UAVRouteCordAll; 

    

                 

 

 

File 
function UAVsRoutePlot(UAVRouteCord,GS_ID,UAVs_Route) 

global UAVsNames 
% This function plots the routes for the UAVs 
figure('Name',strcat('Ground Station',num2str(GS_ID))) 
COLORS = ['r';'b';'g';'y';'k';'m';'c']; 

  
for i = 1: length(UAVRouteCord) 
    UAVRouteCord{i} =real(UAVRouteCord{i}); 
    if i<length(COLORS)+1 
    

plot3(UAVRouteCord{i}(:,1),UAVRouteCord{i}(:,2),UAVRouteCord{i}(:,3),st

rcat(COLORS(i),'o-')) 
    

text(UAVRouteCord{i}(1,1),UAVRouteCord{i}(1,2),UAVRouteCord{i}(1,3),str

cat('UAV',num2str(UAVsNames(UAVs_Route{i}(1,1))))) 
    

text(UAVRouteCord{i}(end,1),UAVRouteCord{i}(end,2),UAVRouteCord{i}(end,

3),'GS') 
    hold on 
    else 

    

plot3(UAVRouteCord{i}(:,1),UAVRouteCord{i}(:,2),UAVRouteCord{i}(:,3),'h

-') 
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text(UAVRouteCord{i}(1,1),UAVRouteCord{i}(1,2),UAVRouteCord{i}(1,3), 

strcat('UAV',num2str(UAVsNames(UAVs_Route{i}(1,1))))) 
    

text(UAVRouteCord{i}(end,1),UAVRouteCord{i}(end,2),UAVRouteCord{i}(end,

3),'GS') 
    hold on 
    end     
end 
grid on 
hold off 
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