
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Dissertations Electronic Theses and Dissertations

2012

Multi-Robot Auction Based Coordination Multi-Robot Auction Based Coordination

Eisa Hassan Osman
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/dissertations

Recommended Citation Recommended Citation
Osman, Eisa Hassan, "Multi-Robot Auction Based Coordination" (2012). Dissertations. 16.
https://digital.library.ncat.edu/dissertations/16

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/16?utm_source=digital.library.ncat.edu%2Fdissertations%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

MULTI-ROBOT AUCTION BASED COORDINATION

by

Eisa Hassan Mohamed Osman

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Department: Electrical & Computer Engineering
Major: Electrical Engineering

Major Professor: Dr. Abdollah Homaifar
Co-advisor: Dr. Albert Esterline

North Carolina A&T State University
Greensboro, North Carolina

2012

ABSTRACT

Osman, Eisa Hassan Mohamed. MULTI-ROBOT AUCTION BASED
COORDINATION. (Major Advisor: Dr. Abdollah Homaifar) North Carolina
Agricultural and Technical State University. (Co-advisor: Dr. Albert Esterline) North

Carolina Agricultural and Technical State University.

This dissertation studied the coordination problem for a Task Initiator (TI) with

multiple ground stations (GSs). Each GS has a team of unmanned aerial vehicles (UAVs)

that frequently collected data from a set of unattended ground sensors (UGSs) and

delivered it to the source ground station (GS). The GSs made the information available

to the TI. This problem formulated into a continuous, time-constrained version of the

multi- travelling salesmen problem. A market-based coordination mechanism is presented

that uses the concepts of price, revenue, cost, and a sequence of first-price, one-round

auctions between the TI and GSs from one side, and double auction between GSs and

UAVs from another side to distribute data collection tasks efficiently among team

members. In a dynamic environment, this approach promises robustness, adaptation, and

graceful degradation. Tasks from GS-to-UAV are double first-price sealed-bid

sequential procurement auctions possibly with (additional) subcontracting (negotiation)

and TI as a market matcher. To the author‘s knowledge, this is the first occurrence of

using double auction as a coordination method in robot industries.

ii

School of Graduate Studies
North Carolina Agricultural and Technical State University

This is to certify that the Doctoral Dissertation of

Eisa Hassan Mohamed Osman

has met the dissertation requirements of
North Carolina Agricultural and Technical State University

Greensboro, North Carolina
2012

Approved by:

_________________________________ ________________________________

Dr. Adollah Homaifar Dr. Marwan Bikdash
Major Advisor Committee Member

_________________________________ ________________________________
Dr. Albert Esterline Dr. Numan Dogan

Co-Advisor Committee Member

_________________________________ ________________________________
Dr. Christopher Doss Dr. John Kelly
Committee Member Department Chairperson

Dr. Sanjiv Sarin

Associate Vice Chancellor for Research and Graduate Dean

iii

 Copyright by

Eisa Hassan Mohamed Osman
2012

iv

DEDICATION

My dissertation dedication and my most wholehearted thanks go to my grand

family in Sudan. To my soul Awab, Rawiah and Ali you are the light of my eyes, source

of the hope who lived in me and the base of my happiness, which accompanied me in my

life. Without their unconditional love, patience, support and guidance, I would have

never come this far. I cannot thank them enough for all I have been through. Finally, my

most special thanks go to those who supported me with their prayers during my absence,

for those who see the light after darkness and their hope hanging on the doors of skies

and those who treat obstacles as a temporary period for taking their breath before they

continue their long journey. May ALLAH (SWT) accept us and Reward us Paradise in

the Hereafter.

v

BIOGRAPHICAL SKETCH

Eisa Hassan Mohamed Osman was born January 1, 1968, in Sudan. He received

the Bachelor of Science degree in Public Administration from the National School of

Public Administration, Rabat, Morocco in 1990, a graduate diploma in Technical Science

from the University of Manchester Institute of Science and Technology, Manchester,

U.K. in 1993, and a Master of Science degree in Computer Science from North Carolina

Agricultural and Technical State University, Greensboro, NC, USA. He is a candidate

for the Ph.D. degree in Electrical Engineering. While at North Carolina Agricultural and

Technical State University, Mr. Osman served as a teaching assistant for undergraduate

students. He also worked with a new group of engineering graduate students to revitalize

the Graduate Engineering Student Alliance. Mr. Osman was also active in the NC A&T

Chapter of the National Society of Black Engineers (NSBE). Additionally, he served as

an active member of the Institute of Electrical and Electronics Engineers (IEEE). Mr.

Osman‘s research includes project collaboration with the Wright Patterson Air Force

Base, Dayton, Ohio. Currently, Mr. Osman works as a research scientist at the

Detonation Science Branch, Naval Air Systems Command (NAVAIR), Naval Air

Warfare Center Weapons Division (NAWCWD), in China Lake, California.

vi

ACKNOWLEDGEMENTS

The work in this dissertation was possible because of the support, guidance, and

inspiration of so many individuals: family, friends, and colleagues. Their help and good

advice constituted the basis of this research. Thanks to all of them. Particularly, I would

like to thank my advisor, Professor A. Homaifar, for giving me the opportunity to work

on this topic. I learned a great deal from his motivation and clarity of purpose. Of

course, I am truly grateful to my co-advisor Dr. A. Esterline for his guidance, support,

hard work, and patience. This dissertation would not have come to the form and shape it

is today without him. I also acknowledge the rest of my doctoral committee, Dr. Marwan

Bikdash, Dr. Numan Dogan, and Dr. Christopher Doss for all the ir knowledge and

information they gave me over the duration of my doctoral degree.

vii

TABLE OF CONTENTS

LIST OF FIGURES ...x

LIST OF TABLES ..xi

CHAPTER 1. INTRODUCTION ...1

 1.1 Multi-UAVs and Data Collection ...2

 1.2 Dissertation Scope...5

 1.3 Overview of Chapters ...8

CHAPTER 2. LITERATURE REVIEW ..9

 2.1 Relevant Work ..9

 2.2 Market-based Coordination...12

 2.2.1 Overview ...12

 2.2.2 Instantaneous Assignment (IA) vs. Time-extended Assignment (TA)...13

 2.2.3 Auction Mechanisms...14

 2.2.3.1 Procurement Auction ...14

 2.2.3.2 Double Auction ...14

 2.2.3.3 Combinatorial Auction ..16

 2.2.3.4 Parallel Auction ...16

 2.2.3.5 Sequential Auction ..16

 2.2.4 Auction Types ...17

 2.2.4.1 Ascending-bid Auction (English Auction)17

 2.2.4.2 Descending-bid Auction (Dutch Auction).................................18

viii

 2.2.4.3 First-price Sealed-bid Auction ..18

 2.2.4.4 Second-price Sealed-bid Auction (Vickery Auction)................18

 2.2.5 Auction Approaches..19

 2.2.5.1 Centralized Approaches...19

 2.2.5.2 Distributed Approaches ...20

 2.2.5.3 Market-based Approaches ...21

 2.2.5.3.1 M+ Approach...26

 2.2.5.3.2 MURDOCH Approach ..26

 2.2.5.3.3 TraderBots Approach ..27

CHAPTER 3. PROBLEM FORMULATION AND METHODOLOGY.........................28

 3.1 Problem Formulation ..28

 3.2 Methodology ...31

 3.3 Market-based Coordination Framework ...33

 3.4 Policy of the Market..34

 3.4.1 Mth and (M+1)st Price Rules..35

 3.4.2 Auction Structure ..37

 3.4.2.1 Combined Auction Procedures ..37

 3.4.3 Cost Estimation ...38

 3.4.4 GSs Cost Estimation ...41

 3.4.5 UAVs Cost Estimation..45

 3.5 Robustness ..48

 3.5.1 UAV Malfunction ...48

ix

 3.5.2 Communication Failure...49

CHAPTER 4. MULTI-GROUND STATIONS TASK ALLOCATION
 WITH DOUBLE AUCTION ...51

 4.1 Market Setup ...51

 4.2 Simulation Setup ...53

 4.3 Interaction between TI and GSs..55

 4.3.1 Double Auction between GSs and UAVs ...55

 4.3.2 Results for increasing UAVs Communication Range58

 4.3.3 Results of Average Distance Travelled and Average Time
 to Perform Tasks ...61

 4.3.4 System Robustness..68

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS72

REFERENCES ..76

APPENDIX A. DOUBLE AUCTION TRACES ..81

APPENDIX B. CODE ..90

x

LIST OF FIGURES

FIGURES PAGE

 3.1. Schematic of bids in double auction with Mth and (M+1)st price36

 3.2. Flow diagram for the market policy..38

 4.1. Setup of TI, three GSs and nine UAVs for double auction54

 4.2. UAV1‘s trace of path time of tasks execution at different
 communication ranges ..59

 4.3. Execution time of same 12 tasks in double auction ..65

 4.4. Average distance travelled by six UAVs competing over a different
 number of tasks ...66

 4.5. GSs average profit from selling 12 tasks to nine UAVs67

 4.6. UAV1‘s average distance travelled to execute 12 tasks68

 4.7. Path for executing tasks by UAV1..69

 4.8. Path for executing tasks by UAV2 before and after validating robustness 71

 4.9. Data delivery time history for 12 tasks by six UAVs before and after
 re-auctioning ...71

xi

LIST OF TABLES

TABLES PAGE

 4.1 Run 1: Profit generated by GSs and six UAVs while auctioning
 12 random tasks at 250 meters ..56

 4.2 Run 2: Profit generated by GSs and six UAVs while auctioning

 12 random tasks at 250 meters ..57

 4.3 Run 3: Profit generated by GSs and six UAVs while auctioning

 12 random tasks at 250 meters ..57

 4.4 Run 4: Profit generated by GSs and six UAVs while auctioning
 12 random tasks at 250 meters ..57

 4.5 Run 5: Profit generated by GSs and six UAVs while auctioning
 12 random tasks at 250 meters ..58

 4.6 Average GSs profit while auctioning five sets of 12 random tasks
 to 6 UAVs ...59

 4.7 UAVs tasks execution time during different communication ranges60

 4.8 Data delivery statistics for 9 random tasks by 6 UAVs61

 4.9 Average GSs profit from selling 9 tasks to 6 UAVs...62

 4.10 Data delivery statistics for 12 random tasks by 6 UAVs62

 4.11 Data delivery statistics for 6 random tasks by 6 UAVs63

 4.12 Average GSs profit from selling 6 tasks to 6 UAVs...64

 4.13 Execution time of 12 tasks by UAVs during different
 communication ranges ..64

 4.14 Data delivery statistics for 12 random tasks by 9 UAVs65

 4.15 GSs average while auctioning five sets of 12 random tasks
 to 9 UAVs ...66

 4.16 UAVs coordinates at re-auctioning tasks..70

1

CHAPTER 1

INTRODUCTION

In today‘s dynamic environment, the need of mapping a wider operational area

gains significant attention due to the sensitivity of the information needed at real-time to

the control unit such as in rescue, reconnaissance, and real- time surveillance operations.

This issue is particularly relevant in military applications. In situations where unattended

aerial vehicles (UAVs) need to communicate with a control unit, many problems arise

such as sensor ranges and bandwidth. Distributing multiple ground stations (GSs)

geographically will reduce the communication bottleneck, and simplify computation of

deployed information. Interactions between many ground stations, a task initiator (TI),

and UAVs become paramount, and require a special design to complete the mission

effectively. Based on knowledge of the economic area, incorporating different auction

approaches in engineering fields has helped resolve such issues. In this problem, single

first-price sealed-bid sequential procurement auctions used between the TI and ground

stations and double first-price sealed-bid sequential procurement auctions possibly with

(additional) subcontracting (negotiation) from ground stations to UAVs.

This chapter provides a general overview of the research work, and an overview

of each chapter in this dissertation.

2

1.1 Multi-UAVs and Data Collection

The rapid growth of sensor technologies in recent years has enabled scientists to

solve complicated or difficult problems in many applications, such as the battlefield.

Various mission tasks, such as target detection, reconnaissance and surveillance, and

situation awareness include the major area of applications of unattended ground sensors

(UGS) technologies.

In the robotic field, scientists follow different approaches when dealing with task

allocation. There are three principal approaches to deal with task allocation, namely,

centralized, distributed, and market-base. In a centralized approach, the robotic team is

treated as a single system with many degrees of freedom. The leader or manager has the

ability to plan for the entire team that requires the follower to inform the leader with their

information to enable a manager to carry out actions. Since the leader has all the

knowledge about the environment, the leader can perfectly allocate tasks based on this

knowledge. The centralized approach produces optimal or near optimal results at the

expense of high computational overhead and is prone to malfunctioning.

Overcoming the shortcoming of the centralized approach has encouraged

scientists to come up with the idea of a distributed system. In this approach, distributing

the responsibility of planning to the whole team reduces the communication bottleneck,

and response to dynamic conditions is faster.

In general, this system is robust, and no single point of failure can occur.

Conversely, basing the decision only on local information the results in general are highly

sub-optimal. Preserving the advantages of centralized and distributed approaches,

3

scientists migrates ideas from economic areas to overcome the disadvantages of these

approaches, which led to the birth of market-based coordination. Market-based

coordination is based on the free market economic model. Essentially, the competition

between members is to maximize their profit. Members under this system usually

compete to achieve their goals and sometimes negotiation with other team members to

reach their goals.

A market-based approach accommodates multiple auctioneers who distribute an

incoming information load among themselves. There are three types of auctions for

acquiring a commodity, namely, English auction, Dutch auction, first-price sealed-bid

auction, and second-price sealed-bid auction. In an English auction, an ―ascending‖

movement of a potential buyer bids occur until the bidding stops. The winning bidder

receives the item at the highest price, which could be less than its maximum valuation;

however, is not always the case because bidders may tend to overbid, which causes the

item to exceed its true valuation (Fasli, 2007).

The Dutch auction is an open, ―descending,‖ bid auction designed to handle

multiple identical items (usually in a lot). In this auction, the seller sets an opening price.

If no bids are made, the price is lowered until a bid is received. The first bidder wins the

first option of buying all or part of the lot. The bidder may lose the item if he/she waits

too long to enter their bid.

In a first-price sealed-bid auction (FPSB), each bidder submits a sealed bid

without knowing other bidders' valuation of the item, which reflects a private valuation

4

for the auctioned item. In this auction, the highest bidder is the winner and pays the

amount of his/her bid (Fasli, 2007).

 In a second-price sealed-bid auction, each participant submits a sealed bid. The

highest bidder wins the auction, and only pays the price of the second highest bid.

Therefore, it is the bidder‘s advantage to bid his/her true valuation of the item.

A double auction is an environment where multiple buyers and sellers participate

to trade a commodity. In this environment, each buyer and seller submits a bid

representing his/her offer to sell or buy the auctioned commodity. Then, submitted bids

are matched, and afterwards the auction is cleared. Double auction, in this context, is a

two-sided auction; one side represents a centralized approach while the other side

represents a distributed approach, allowing the market to compute the information in an

efficient manner while providing quick responses.

As in battlefields, providing quick responses is a key factor when transmitting

data back and forward to the TI. A TI could also be a control room or an agent with the

ability to initiate tasks. Transmitting data are also a challenge when connectivity is an

issue or when there are limited communication ranges such as unmanned ground sensors

(UGSs) and large distances between UGSs and the TI. However, task allocation through

multiple ground stations (GSs) is more cost effective than single GSs for mapping wider

areas and acquiring better robustness.

To improve reliability, performance, and the cost of task allocation, logically one

should consider a market-based coordination mechanism such as a free market economic

5

model, which provides better results for optimizing distance data delivery from multiple

UGSs.

Multiple GSs, in this context, will provide an excellent opportunity to overcome

communication problems or sensor range limitations by forming a chain of

communication to receive information from a further distance, reduce communication

bottleneck, provide relief or reduce computation complexity for the control center (Moore

et al., 2005).

When using double auction, the TI, GSs, and UAVs formulate layers of

communications that provide quick responses in a robust environment to benefit from the

market-based mechanism.

1.2 Dissertation Scope

The focus of this research is two-fold:

1. The coordination problem of task initiator (TI), ground stations (GSs) and a team

of UAVs that is employed to frequently visit a set of remote UGSs, collect data

from them, and return to the ground station to deliver the collected data. As

mentioned earlier, the importance of time as a factor can be realized when GSs

receive this data. A time constraint on data delivery is one of the concerns of this

dissertation. The deadline limit on data delivery time should not exceed a specific

time in order to validate the accuracy of the data. In particular, to achieve any

task, the time between two successive tasks should not exceed a certain deadline

time. This constraint is imposed by the nature of the UGS applications (as in

6

target detection and situation awareness), in which late-delivered data will lose its

sensitive value and may not be useful anymore and may result in hazardous

situations, and

2. The problem of assigning tasks when the environment has multiple GSs and

multiple UAVs with full degree of freedom.

UAVs are responsible for accomplishing tasks such as tracking enemy targets in

battlefields or gathering information from UGS. In these scenarios, the UAVs must

coordinate their actions with GSs, usually through communication, in order to achieve

their goals. The UAVs must make independent decisions based on their perception of the

environment, and act in a manner that optimize the global utility.

Resources (utilities) or energy consumption is a constraint that the coordination

system should satisfy. Optimizing the average distance traveled of performing any task

should be part of the coordination methods. Under these conditions, this problem

formulated as a continuous and time constrained version of the multi- traveling salesmen

problem (MTSP).

 Recent studies showed that multi-agent systems operating in dynamic

environments such as surveillance, reconnaissance, and battlefields are highly prone to

failures of many kinds, and it is crucial that the coordination method that deals with such

kind of environment be robust to these failures (Ajorlou et al., 2007 and Dias et al.,

2004).

Introducing the distributed coordination system helps to understand operating in

this type an environment. Market based coordination is one mechanism that have an

7

effective usage in an environment in which frequent auctioning, time limited contracts,

and time-dependent prices ensure robustness in the face of loss of team members and

failures of individuals (Dias et al., 2004).

Stentz and Dias (2003) in TraderBots market-based coordination approach cited

the work of (Smith, 1980) in Contract Net Protocol, the implementation of contract net

protocol by (Sandholm, 1993), and an extension of it by (Sandholm and Lesser, 1995).

These concepts were used to control different dynamic environment systems. Stentz and

Dias (1999) proposed a market-based approach for multi-robot coordination, which aims

to exploit the desirable properties of both distributed and centralized approaches. In

order to take advantage of such approaches, (Dias et al., 2004) proposed a distributed task

allocation protocol that uses the concepts of cost, revenue, and profit that efficiently

distribute available tasks among team members through a sequence of multiple different

auctions. In this environment, each agent is self- interested in maximizing their personal

profit, which can lead to a near global optimal plan for the entire team provided the costs

and price functions are well defined. Generally, in this kind of task allocation, the cost of

the task will determine its priority among other tasks. Adding a new task will be

constrained to the due time of other tasks on the agent‘s current plan. So the lower the

cost, the more demand needed to perform it. It is clear that the task‘s cost is not always

the main factor. In some situations, a task will be given higher priority even though it has

a high execution cost compared to other tasks due to the sensitivity of task‘s information

at the time.

8

Negotiation between UAVs after clearing the auction will improve system

efficiency by reducing the cost to participating agents. Because of the agents‘ interest,

they will try to maximize their profit and reduce their cost. By design, the auction can

accommodate a situation where an agent auctioned a task earlier even when the agent was

not bidding during the auction time because this agent is deemed fittest to perform the

task. In a system-optimized model, different negotiations produce the same result.

Frequent auctioning will accommodate the recovery of task(s) timed out due to agent

failure or death; reallocating these tasks to new agents will cause the system to be robust

and guarantee the delivery of all auctioned tasks.

1.3 Overview of Chapters

Chapter 2 gives a general overview of the basic concepts in market-based

coordination including auction mechanisms, types, and approaches. It also provides a

literature review. Chapter 3 focuses on the problem formulation and methodology.

Particular emphasis is on different auction structures. Issues related to cost estimation

and robustness are also discussed. Presented in Chapter 4 are the simulation results, and

the performance of the double auction. The dissertation concludes with Chapter 5, which

provides concluding comments and possible improvements.

9

CHAPTER 2

LITERATURE REVIEW

2.1 Relevant Work

Multi-robot coordination has received much attention in the last few decades.

This is due to the demand for automation in application domains where multiple robots

can accomplish the same tasks more efficiently than a single robot. With a team of

coordinated robots, tasks achievement is faster, safer, better than a single robot, and can

accomplish operations that a single robot cannot execute alone (Lemair et al., 2004).

Accordingly, coordinating multiple robots to complete a task cooperatively is a difficult

problem that has attracted much attention from the robotics research community. Based

on the manner in which team members interact, multi-robot coordination mechanisms can

be categorized into two groups: intentional swarm type cooperation. Deneubourg, et al.,

(1991) mentioned that in swarm-type robotic systems, numerous homogeneous

autonomous robots interact directly by exchanging their information with one another or

by acting on their environment; this collective activity may produce coordinated

behavior. In contrast to this, there is an intentional coordination, in which agents

negotiate explicitly and exchange task related information. The motivation behind this

kind of coordination is to satisfy mutual interest.

Lemair et al., (2004) mentioned that the potential applications of this kind of

coordination range from mapping missions of buildings or in a natural environment,

rescue or intervention missions in hazardous areas to planetary explorat ion or deployment

10

of equipment without human intervention. A system supported with several robots to

perform a given mission should be flexible enough to allow robots to allocate tasks to

each other and build their plans accordingly to complete the mission. They should also

be able to modify the allocation dynamically and consequently to their plans to adapt to

changes in their environment or to new requests issued by the operator. However, the

system must also satisfy the limited constraints on energy resources and communication

ranges.

In their TraderBots, (Dias et al., 2004) mentioned that multi-agent systems

operating in dynamic environments such as battlefields must accommodate many kinds

of failures, frequent dynamical changes, and uncertain or imperfect information.

Therefore, it is crucial that any kind of coordination methods applied for multi-agent

systems be able to function well under such conditions. Market based coordination was

derived from a category of intentional coordination mechanisms, and is a promising

method for handling these conditions. Frequent auctioning, time limited contracts, and

time-dependent prices ensure robustness in the loss of team members and individual

failures, which also enable the team to get by with uncertainty and online tasks

introduced over time (Dias et al., 2004, and 2005). The distributed nature of market-

based coordination enables the team to rely on local knowledge so they can respond

quick and fast to dynamic changes within their environment without the need of a central

planner. Since information is decomposed into bids, the market-based coordination

systems can communicate efficiently and compute efficiently due to the parallelism.

11

During the last two decades, coordination mechanisms for multi-robot task

allocation have been developed that are based on market-base coordination. The M+

(Botelho and Alami, 1999) architecture, based on a greedy algorithm, was the first

market-based approach to multi- robot task allocation. The MURDOCH (Gerkey and

Mataric, 2002), as a completely distributed system, offers a distributed approximation to

a global optimum of resource usage, which is equivalent to an instantaneous greedy

scheduler. An online task assignment algorithm also assigns a newly created task to the

fittest available robot (Gerkey and Mataric, 2004). TraderBots models (Dias et al., 2004)

represent a multi-robot team as an economy of self- interested agents that try to maximize

their individual profits. In these models, reallocating tasks allow for solution

improvements over initial assignments, and for adapting task assignments as new

information is ascertained.

In this dynamic environment, agents who have the ability of planning for

themselves and negotiating may do so by swapping some tasks (as self- interested agents).

This redistribution of tasks and resources simultaneously at the end result in lower cost

solutions, which imply some profit, and therefore will improve efficiency. Given

appropriate costs and revenue functions, this method can lead to a near globally optimal

allocation. Constrained tasks will not be dealt with in TraderBots where interrelated

costs among the tasks are considered. Hoplites (Karla et al., 2005) seem to be the first

market based approach to constrained task execution. In Hoplites, passive coordination

produces locally developed solutions since agents frequently exchange information of

their intended actions and locally select their actions. In a situation where there is a

12

constraint violation, agents actively propose and bid on joint plans to resolve the

constraint. The performance of Hoplites is validated in perimeter sweeping (Karla et al.,

2005) and, more recently, in constrained exploration (Karla et al., 2006), during

exploration of a hazardous area, robots are restricted to remain in communication with

the base station directly or through a chain of teammates. Lemaire et al. (2004) put soft

time constraints on subtasks of a complex task to synchronize subtask execution. To

define the cost of a plan for tasks, needed are the sum of the distance cost of the plan and

a cost term corresponding to the quality of the time-constraint satisfaction. Agents,

therefore, will try to reduce the deviation from the expected execution time while trading

tasks.

The price of a task determines the cost the auctioneer will pay an agent that

accomplishes the task. Using time-varying prices, the auctioneer announces higher prices

for tasks that have become more important. Therefore, bids reflect not only the agents'

costs but also the importance of the tasks.

2.2 Market-based Coordination

This section briefly explains the basic concepts of market-based coordination

mechanisms.

2.2.1 Overview

In market-based coordination methods, participants form an economy that

allocates tasks to members through auctions. Normally, a user or team members that

have task creation capability (Dias, et al., 2005) generate tasks. An auctioneer offers all

13

its available tasks to other agents in its environment, collects their bids, evaluates the

collected bids, and assigns some or all of its tasks to them. As discussed in the previous

section, some market-based coordination systems allow reassignment of a task. This

means that an agent in charge of performing a task have the ability to rese ll that task to

another agent, e.g., TraderBots (Dias et al., 2004), M+ (Botelho and Alami,1999), the

system presented in (Ajorlou et al., 2007), and Sandholm's implementation of the contract

net protocol (Sandholm, 1993). In such systems, any team member can negotiate with

teammates to improve their personal profit as a self- interested agent. An agent who

offered a task may submit a bid on it. A submitted bid in this context represents the cost

to the agent for performing the offered task. The global objective of the application and

resource consumption are two main factors in bid valuation. By assigning the tasks to

team members through a bidding process, the auctioneer tries to lower the overall team

cost by allocating the tasks to team members with lower costs.

2.2.2 Instantaneous Assignment (IA) vs. Time-extended Assignment (TA)

Gerkey and Mataric (2002) categorized multi-robot task allocation mechanisms

based on instantaneous assignment (IA) and time extended assignment (TA). In IA,

robots do not have the ability to plan for their future activities, which mean the available

information concerning the robots, the tasks, and the environment permits only an

instantaneous allocation of tasks to robots, with no planning for future allocations.

Therefore, the agents can only buy or sell one task at a time, which indicates that there is

no room for parallelism. This type of allocation mechanism is useful for the applications

in which tasks are introduced to the system online such as MURDOCH (Gerkey and

14

Mataric 2002), first-price auctions (Dias et al., 2003), and dynamic role assignment

(Gerkey and Mataric, 2004).

In TA, agents have more information about the environment, such as the set of all

tasks that needs an assignment, or a model of how tasks are expected to arrive over time.

In this type of assignment, agents are allowed to make plans for the future by accepting

more than one task at a time.

2.2.3 Auction Mechanisms

This section describes various types of auctions. In particular, how auctions differ

and how auctioneers function within them.

2.2.3.1 Procurement Auction

A procurement auction, also called reverse auction, is a type of auction in which

the role of the buyer and seller are reversed. The primary objective here is to drive

purchase prices downward. In this kind of auction, sellers compete to obtain business. In

a procurement auction, a buyer puts up a request to purchase a particular item. Multiple

sellers bid to sell the requested item and the winner of the auction is the se ller who offers

the lowest price (www.wordiq.com/definition/Procurement_auction). In a procurement

auction, the bidders seek a higher clearing price, and the auctioneer seeks a lower one.

2.2.3.2 Double Auction

Dynamic pricing mechanisms, and especially auctions with multiple buyers and

sellers, are becoming popular in electronic commerce. ―Double auction‖ refers to a

market system where multiple buyers and sellers submit their bids for standardized units

of well-defined items or securities by stating how much and at what price they will trade.

15

In double auction, each trader can express the subjective preference for the traded goods

by using a utility function. Thus, properly defining the utility for representing each

trader's preference is an important issue for research on double auction. Double auctions

occur in an environment that has one commodity in the market with multiple buyers and

sellers each submitting a single bid to buy or sell one unit of the commodity. According

to (Fasli, 2007) the general process is as follows:

 Both buyer and sellers submit their bids.

 Bids rank from highest to lowest to generate demand and supply profiles.

 From the profiles, the maximum quantity exchanged can be determined by

matching selling offers with demands bids.

 The transaction price is set and the market clears.

In this auction, each GS will sell only one task at a time, and any UAV will bid

for only one task at a time. Each bidder has a private utility value for the item, which

represents its real cost to perform such a task. The utility value from buyers‘,

(respectively, sellers‘) point of view is the most (respectively, least) prices that they are

willing to pay to buy (respectively, sell) the task. Although all market agents are self-

interested, agents formulate their bids is based on the truthful value of the item.

A double auction could be either periodic or continuous. In a continuous double

auction, buyers and sellers are matched immediately on detection of compatible bids,

while in periodic double auction bids are collected over a specified period of time after

which the market will be cleared.

16

2.2.3.3 Combinatorial Auction

A combinatorial auction is one where buyers and sellers have preferences on

packages or bundles of commodities rather than only on one particular commodity at

time. In this auction, bids are considered for combinations of different commodities.

Consider a case where a set S of n tasks offered to the team members. Each agent

calculates the cost of performing each subset of S, and submits a bid on that subset. After

receiving all bids, the auctioneer evaluates them, and finds the partition of S with

minimum cost. Bid calculation and winner determination are NP hard, which makes the

combinatorial auctions intractable.

2.2.3.4 Parallel Auction

In parallel auctions, a set S of n tasks offered to the team members. Each agent

calculates the cost of performing any of the offered tasks individually and submits a bid.

The auctioneer then assigns each task to the agent that has submitted the lowest bid.

Parallel auctions do not account for the dependencies among the tasks.

2.2.3.5 Sequential Auction

In sequential auctions, the set S of n tasks assigned through a sequence of n

auctions, where only one task is sold in each auction. During each auction, each agent

computes the cost of adding each unsold task to its current plan. Then, the task with the

lowest cost is assigned to a corresponding bidder. Clearly, submitting bids for all the

tasks offered will create communication complexity; but, since only one task is assigned

during each auction cycle, it is in the best interest of each bidder to submit a bid only for

the task that cost less among all auctioned tasks. This will have an impact of reducing the

17

communication bottleneck and increase the bidder‘s chance of winning the auctioned

task.

Calculating marginal cost (the cost of adding a new task to the current plan) is NP

hard in the MTSP case since it requires re-planning for the new set of tasks. In the

heuristic used by (Ajorlou et al., 2007), a new task will be inserted between each two

successive tasks into the agent plan to find the minimum cost of the new generated plan,

which is the current plan. The difference between the current plan and the old one is the

cost of performing the new task.

2.2.4 Auction Types

In a single attribute or a one-side auction, agents negotiate over one item, which is

available by itself as a whole and not in combination. The negotiation has one

dimension, usually price, and the relationship between buyers and sellers takes the form

of one-to-one, one-to-many or many-to-many relationships.

2.2.4.1 Ascending-bid Auction (English Auction)

The English auction is the most common type of auction where the winning

bidder receives the item at the highest price. The auction uses upward or ―ascending‖

movement of potential buyer bids until the bidding stops. Bids may be oral, signaled,

written or by third-party proxy in which one item or groups of items can be auctioned.

Auction periods vary but are generally short. Items are frequently displayed to potential

bidders prior to the auction with the reserve prices cited. E-Bay is a good e-commerce

application of this type auction.

18

2.2.4.2 Descending-bid Auction (Dutch Auction)

The Dutch auction is an open, ―descending‖ bid auction designed to handle

multiple, identical items (usually in a lot). In this type auction, the seller sets an opening

price. If no bids are made, the price is lowered until a bid is received. This first bidder

wins the first option of buying all or a part of the lot. Other bidders have an opportunity

to buy once the demand at that price is exhausted. Additional bidders may bid a lower

price. This cycle continues until the lot is gone.

2.2.4.3 First-price Sealed-bid Auction

In a first price sealed bid auction (FPSB), each bidder submits a sealed bid that

reflects its private valuation for the auctioned item without knowing other bidders‘

valuations of the item. In this auction, the highest bidder is the winner and pays the

amount of his/her bid. There are two distinctive phases (Fasli, M. 2007):

1. The bidder phase in which participants submit their bids.

2. The resolution phase in which the bids are opened and the winner is determined.

2.2.4.4 Second-price Sealed-bid Auction (Vickery Auction)

The second-price sealed-bid auction was named after William Vickery, a 1996

Nobel Prize recipient (Economics). In this type auction, each participant submits a sealed

bid. The highest bidder wins the auction but only pays the price of the second highest

bid. This auction fosters a bid strategy that reflects the buyer‘s true valuation of the item.

The Vickery approach gives all competing buyers an incentive to disclose their true best

price since they can safely bid a price that would yield zero profit. The process can be

used in a reverse auction method with the cheapest price winning but paying the second

19

lowest bid price.

2.2.5 Auction Approaches

Normally, targets are scattered in the environment and the number of UAVs may

be more or less than the number of targets available. In either case, an efficient task

allocation method is needed for assigning UAVs to the targets. An efficient task

allocation strategy should complete the mission (that is, delivering the target information

to the GSs) in minimum time by direct assignment from the GSs or through negotiation

with other UAVs in communication range. The classical solution for a task allocation

problem would be to apply a centralized task allocation algorithm that generates the

necessary commands for UAVs. However, centralized task allocations have well known

limitations. Hence, there is a necessity to develop a decentralized task allocation

algorithm. Here, briefly discussed are the concepts of centralized and distributed task

allocation to assign tasks to UAVs.

2.2.5.1 Centralized Approaches

With centralized approaches, one agent (the leader) is responsible for planning for

the entire team, while simultaneously taking into account the environment and the

interactions of all team members at all times. All agents report to the leader and execute

the plan. Although the centralized approach generates an optimal solution under the

assumption that the information from the agents is available, it is intractable for a team of

UAVs due to the complexity of operations (Karla et al., 2006, Sariel et al., 2006).

Coordinating more than a few agents in the centralized approach causes a heavy

communication load, and a problem with the bandwidth due to restrictions on the

20

network. This approach is slow to incorporate new environmental information since new

information must be sent back to the planner who re-computes the entire team‘s plan,

usually at significant computational expense. Finally, a centralized approach does not

allow a quick adaptation to change and tends to be brittle to failure. Primarily,

centralized approaches have been used loosely in coordinated systems for task allocation

(Sariel et al., 2006). Thus, centralized approaches are best suited for applications where

teams are small and the environment is static or global state information is easily

available.

2.2.5.2 Distributed Approaches

In a distributed approach, agents act independently and make decisions with local

information about their state and their environment. For example, the UAV work with

the ground stations or the central units such as TI to conduct their own plans based on

available information. Here the role of the central control or ground station is for

auctioning the task to the agents, evaluating received bids and awarding the winner agent.

This approach tends to be more robust to failure, allowing for greater flexibility and

tractability, and efficient for computation and communication. However, the solution

remains sub-optimal. To emphasize the benefits of centralized approaches in distributed

systems, market-based approaches have been designed to centrally plan over small

subsets of the team where time and resources permit (Dias et al., 2004 and 2003).

In market-based frameworks, agents model an economy of self- interested

individuals that buy and sell tasks and resources to maximize personal profit (Dias et al.,

2005). This redistribution of tasks and resources simultaneously results in lower cost

21

solutions for the team. Most of the distributed task allocations use an explicit

communication message, which means that agents make decisions based on inter-agent

communications transmitted at different times. This characteristic makes the algorithms

more efficient, and with a higher level of fault tolerance than a centralized approach due

to its distributed nature.

Negotiation over the distributed system generates a step-wise improvement.

Negotiation techniques based on market rules (i.e., market-based approaches) fall within

the distributed algorithms that make use of explicit communication. These techniques

have received significant attention (Dias et al., 2006) since they offer a good compromise

between communication requirements and the quality of the allocation.

2.2.5.3 Market-based Approaches

A task allocation algorithm can be a method of distributing common resources.

Humans have dealt with similar problems for thousands of years with increasingly

sophisticated market economies in which the individual pursuit of profit leads to the

redistribution of resources and an efficient production of output. Therefore, market based

approaches make use of the principles of the market economy and apply them to multi-

agent coordination. This idea started with the Contract Net Protocol or CNP (Smith,

1980), which allocates tasks through negotiation of contracts. In this virtual economy,

agents are traders, tasks are traded commodities, and virtual money acts as currency.

Agents compete, despite being teammates in reality, to win tasks by part icipating in

auctions that produce efficient distributions based on specified preferences. When the

system is designed appropriately, each agent acts to maximize its individual profit, and

22

simultaneously improves the efficiency of the team. This is the foundation of the success

of the market-based approach; one engineers the costs, revenues, and auction

mechanisms in such a way that individual self- interest leads to global efficient solutions.

Generally, a multi-agent coordination approach is a market-based approach if it

satisfies the following requirements (Dias et al., 2006):

 The team is given a number of tasks that are achievable by individuals or sub-

teams. To execute these tasks, the team has at its disposal a limited set of

resources (robot capacities) that the team distributes among its members.

 A global objective quantifies the system designer‘s preferences for all possible

solutions.

 An individual utility function specified for each agent quantifies that agent‘s

preferences for its individual resource usage and contributions towards the

team objective. Evaluating this function cannot require global or perfect

information about the state of the team or team objective.

 A mapping is defined between the team objective function and individual or

sub-team utilities. This mapping addresses how the individual production and

consumption of resources and individuals‘ advancement of the team objective

affect the overall solution.

 Resources and individual or sub-team objectives can be redistributed using a

mechanism such as an auction.

The core of market-based approach can be observed from where the auction

mechanism is. This mechanism can be divided in two phases, namely, a bidding phase

23

and the winner determination phase. In the former, tasks are evaluated using a utility

function, which does not require the use of global information. In the latter phase, after

receiving the different bids, a task awarding mechanism is applied in order to choose the

most suitable agent for the task under auction. Moreover, these two phases consider the

participation of two roles: auctioneer and bidders. The bidding phase starts with either TI

or GS offering a task to the rest of the bidders. After receiving the announcement, they

should reply with their bids based on their capacity to execute that task (utility function).

The bidding phase is finish when the auctioneer receives all the bids. Next, the winner

determination phase starts. The auctioneer applies a mechanism that awards the task to

one of the bidders. Finally, the winner will add the task to his/her execution list. Market-

based task allocation algorithms do not limit the number of auctioneers and more than

one can operate at the same time. The main concepts that define a task allocation

mechanism based on auctions are: global objective, utility function, and task awarding

mechanism.

The global objective defines the team‘s goal to be optimized by coordinating all

agents. Different global objective functions can be considered (Tovey et al., 2005)

described the sum of the utilities, the maximum of all the utilities, and the average of the

utilities. The sum of utilities is used in scenarios where it is important to minimize the

total energy consumed by the team of agents. The maximum of all the utilities is used in

scenarios where it is fundamental to minimize the time needed to execute all tasks. Both

objectives have been used in multi-agent exploration scenarios. On the other hand, the

24

average of the utilities used in search-and-rescue scenarios where it is important to

minimize how long on average it takes to execute a task.

The utility function is used to evaluate tasks and calculate bids. This function is

composed of the reward and cost functions as indicated in Chapter 3. The reward

function indicates the benefit of executing a task, and the cost function gives an estimate

of the effort to accomplish the same task.

The most common task awarding mechanism is to allocate a task to the agent with

the highest utility or lowest cost considering all received bids. As mentioned before,

there is a connection between the individual utility function, the task awarding

mechanism and the global objective. The system designer‘s responsibility is to choose a

utility function, and an awarding mechanism that leads to an efficient global solution.

Tovey et al., 2005 explained the systematic methods for deriving appropriate utility

functions and awarding mechanisms for each of the global objectives.

Finally, other properties that allow for characterization of a market-based task

allocation algorithm are described:

 Multiple Robot Single Task (MRST) algorithms and Multiple Robots Multiple

Tasks (MRMT) algorithms: MRST algorithms do not make use of local

execution plans, and therefore, they are suited for applications where task

costs may change through time. However, the allocations are usually less

efficient allocations than MRMT algorithms, which use local plans to increase

the information used in the bid calculation. It can be said that MRST and

25

MRMT algorithms have a capacity constraint equal to one and greater than

one respectively (Koenig et al., 2007).

 With and without reallocations: when reallocations are not considered, the

same robots that initially allocated tasks execute tasks. On the other hand,

when a task allocation algorithm considers reallocations, it means that in order

to increase the efficiency of the final allocation, a robot could re-announce its

already allocated task or tasks.

 Combinatorial or single- item auctions: in most of the task allocation

algorithms, each auction process only considers a single task. In

combinatorial auctions, each auction can involve more than one task.

Therefore, bids are calculated for bundles of tasks (Zheng et al., 2007).

 Coordinated or loosely coupled tasks: when the execution of tasks is

completely independent from the rest, this is termed loosely coupled.

However, if the execution of tasks depends on others, tasks are coordinated.

This fact should be taken into account in the task allocation algorithm in order

to avoid execution deadlocks.

 Sequential and parallel auctions: when only one auction runs at a time, the

task allocation algorithm is sequential. On the other hand, if more than one

auction can be performed simultaneously, they are executed in parallel. When

parallel auctions are used, the system‘s designer must be aware of the biding

process since bids used in one auction process are no longer valid due to the

result of another parallel auction.

26

2.2.5.3.1 M+ Approach - M+ (Botelho and Alami, 1999) could be, the first distributed

market-based system defined within a general architecture for the cooperation among

multiple robots. In this system, when a robot calculates the cost of a task, it considers

one task ahead for each robot that allowed, whenever possible, an overlapping between

the execution of the current task for a robot and the planning and task allocation of the

next one, which increases the efficiency of the solution. In order to synchronize subtask

execution, the M+ approach imposes soft time constraints on subtasks for a complex task.

Costs are also associated with the quality of time-constraint satisfaction. In a multi-robot

context, robots negotiate with one another to adapt its plan incrementally. Since each

task has a different execution time, for future negotiations, agents optimize deviation for

different execution times. Along the way, tasks can be moved from one UAV (agent) to

another through negotiation.

2.2.5.3.2 MURDOCH Approach - MURDOCH is a general task allocation system based

on principled, resource centric, published/subscribe communication model that makes

extensive use of explicit inter-robot communication (Gerkey and Mataric, 2002).

Therefore, Murdoch is a MRST task allocation algorithm, in which robots do not take

part in auctions while they are executing a task. Therefore, a new task announced

dynamically will be allocated to idle robots. If all robots are executing a task; the task is

either discarded or re-announced after a period. Therefore, Murdoch appears as a version

of Contract Net Protocol (CNP) of Smith (1980), which uses simple auctions to allocate

tasks. Murdoch‘s approach is considered the first proven application of auction methods

for the coordination of physical multi-robot systems that applied multiple tasks.

27

2.2.5.3.3 TraderBots Approach - TraderBots is price-based approach in which robots are

considered as self- interested agents and the team of robots as an economy. Its goal is to

complete tasks successfully while minimizing overall costs. The individual goal for each

robot is to maximize its individual profit, which at the end will contribute to overall good.

Robots have the ability to make plans and perform task assignment. Re-assignment is

allowable and dependencies are taken into account.

28

CHAPTER 3

PROBLEM FORMULATION AND METHODOLOGY

3.1 Problem Formulation

In this research environment, multiple buyers and sellers exchange a single item

at a time; the TI creates n sensor-visit tasks corresponding to n random UGSs and assigns

them to GSs via auctioning. The GSs (and later on the UAVs) calculate the incremental

cost for specific tasks and submit their sell (respectively, buy) bids to the TI

(respectively, GS). The market system consists of multiple buyers and sellers that submit

their bids for standardized units of well-defined items by stating the amount and the price

they will trade, referred to as a ―double auction.‖ Each bidder expresses its subjective

preference for the traded item using a utility function, which represents its estimate of its

real cost to perform such a task.

 Consider a set of n UGSs scattered in a remote area. A team of m UAVs

designated to frequently visit these sensors collect their data and deliver it to the ground

stations (GSs). Therefore, the objective of the coordination problem is to apply double

auctions to reduce the overall cost while satisfying time constraints. The TI is located at

the origin of a 3D-space bounded by the following ranges:

 -2CommUAVMax ≤ x ≤ 2CommUAVMax

 -2CommUAVMax≤ y ≤ 2CommUAVMax, and

 0 ≤ z ≤ 2CommUAVMax,

29

where, CommUAVMax is the maximum communication radius admissible by a UAV. The TI

computes the cost and the deadline for each task as indicated by Equations (3.1) and

(3.2).

 TITaskCost(t) = P0(1+up*t/tH) (3.1)

 TItH(TK) = 2*||Tk – TI||2/
i

UAV _Speed + t (3.2)

where, t is the time elapsed between the times the task is created until the time the task is re-

auctioned, up is a parameter to determine the increment in the price, tH is the deadline time for

the task (TK) to be received by the auctioneer, and
i

UAV _Speed is the speed of the
i

UAV ,

as also used in Equation (3.3).

P0= 2*(|| Tk – TI||2*(udc + utcost/
i

UAV _Speed)) (3.3)

Ideally, as soon as a task is created it is auctioned immediately to the GSs. The TI

broadcasts its tasks one at a time. Each GS broadcasts the announced task to the UAVs in its

connectivity range and submits its sell bid paired with the minimum buy bid received from

the UAVs to the TI. The TI ranks all received bids in descending order from maximum to

minimum to generate a supply and demand profile. Then, the TI evaluates its received bids

and assigns the task to the GS with the minimum sell bid, which is paired with a UAV‘s

minimum buy bid. The GS that was paired with the winner UAV (
iWin

UAV) prior to ranking the

bids (denoted by
jUAV
GS) will tell

iWin
UAV to execute the task. The

jUAV
GS will receive profit equal

to the difference between its bid price and the announced winner GSs (denoted by
jWin
GS) bid

price. The winner UAV (
iWin

UAV), and the winner GS (
jWin
GS) will receive the profit calculated

30

using Equation (3.4).

ProfitGSi = ProfitUAV = 0.5*((
jWin
GS _SBid -

iWin
UAV _BBid)+ (TI_P0-

jWin
GS _SBid)- (

jUAV
GS _SBid -

jWin
GS _SBid)) (3.4)

If at any time a UAV does not deliver the task to the original GS, a penalty is incurred

that reduces its profit as in Equation (3.5).

Penalty = 0.5*(
jUAV
GS _SBid -

jWin
GS _SBid) (3.5)

Further, the UAVs submit bids reflecting the incremental cost of the data-delivery task,

and the GS allocates the task to the UAV submitting the minimum bid. This procedure is

repeated until all tasks are sold. However, allocation of data delivery tasks to UAVs

must continue to optimize the overall distance traveled and to satisfy the deadline time

constraint on data delivery time as denoted by Equation (3.6).

njNitTT H

j

i

j

i 1,1 (3.6)

Let Tj
i be the ith data delivery time for the jth sensor, tH be the deadline time for data

deliveries for any sensor, and n be the number of unattended ground sensors. In this case,

we are dealing with a continuous task allocation mechanism that satisfies the constraint

on data delivery time while optimizing the team‘s average distance traveled per data

delivery.

To obtain a solution, we describe sensor-visit tasks. Each sensor-visit task

consists of visiting a sensor, collecting its data, and returning to the GS to deliver the

collected data. A task created or renewed is the task creation time. The data delivery

time for a task is also the time passed from the task's creation time to the time the TI

receives the task's data. By using the task creations and data delivery times, the problem

31

statement reformulated as a problem of continuously allocating sensor-visit tasks to the

UAVs so the data delivery times of all sensor-visit tasks remain lower than tH.

3.2 Methodology

In this dynamic research environment, off- line methods are not appropriate

because new UGSs maybe added to or removed from the mission. Further, the team of

UAVs is prone to changes since we may lose some UAVs due to communication failure

or death, and a UAV maybe added to the mission at any time. Additionally, continuously

updating task allocations will produce more allocations that are efficient because

allocations depend on the UAVs‘ positions when tasks are refreshed, and efficient

allocations may change from round to round. Therefore, in this auction, the following

assumptions are considered:

1. Tasks are created every two seconds.

2. Since the auction happen so quickly, UAVs wait until all tasks are auctioned before

they start moving towards their tasks; otherwise, they hover around the GSs they

communicate with.

3. The space is constrained to

 -2CommUAVMax ≤ x ≤ 2CommUAVMax,

 - 2CommUAVMax ≤ y ≤ 2 CommUAVMax, and

 0 ≤ z ≤ 2CommUAVMax.

4. Three GSs are scattered around the TI and communicate with one another.

32

5. A UAV‘s tasks are not delivered unless that UAV communicates with the GS it is

supposed to deliver the tasks to.

A market-based approach uses communication efficiently since the UAVs

compress information into bids. The role of the TI is limited to task creation and to

holding auctions as well as matching sell bids with buy bids. In a double auction, each

bidder has a private utility value for an item, which represents its real cost to perform

such a task. In dealing with a minimization problem, we are trying to find a way to

reduce the overall cost. Therefore, in this auction, the TI broadcasts its tasks one at a

time, each GS broadcasts the announced task to UAVs in its connectivity range and

submits its sell bid, paired with the minimum buy bid received from the UAVs, to the TI.

GSs use the TI‘s reservation price to generate their own price for the auctioned task,

which is based on their linear distance to the auctioned task and the time needed for the

task to be executed by a prospective UAV, which is also based on its known speed.

The UAV inserts its awarded task into its current plan where the task remains

until the UAV delivers the corresponding data to the GS. When a GS receives the task's

data, the TI‘s information will be updated accordingly. Transaction determinations and

winners (buyers and sellers) who are going to transact in the double auction are

completely based on the bid price subject to the following constraints:

 The bid price must be less than or equal to the announced reservation price,

 A UAV that has a task from a previous auction cycle may submit a new buy bid if

and only if executing the current bid will not make any previous won tasks in his

task list time out.

33

The GS places a bid equal to the
j

GS Cost for this task if and only if the constraint prescribed

by Equation (3.7) is met.

j
GS Cost(Tk) ≤ TITaskCost (Tk) (3.7)

Each GS auctions the task to all UAVs in its communication range. In other words, if the

constraint prescribed by Equation (3.8) is met, a UAV qualifies to place a bid for that task

from that GS.

||UAV – GS||2 ≤ CSUAV-GS*(CommUAV + CommGS) (3.8)

where CSUAV-GS, in [0, 1], is the communication strength between the UAV and GS,

CommUAV is the communication radius of the UAV, and CommGS is the communication

radius of the GS.

3.3 Market-based Coordination Framework

UAVs, GSs and the TI trade tasks continuously via double auctions. The TI

creates some tasks for bidding by the GSs. At this point, each GS starts broadcasting an

availability message containing its ID to determine available agents within its

communication range. When a GS detects a UAV inside its communication range, it sets

an available flag for that UAV and adds it to its auction list. A GS offers its tasks only to

members within its communication range. When a GS immediately detects an available

agent within its communication range, auctioning of its task starts. Each UAV sends a

bid representing its most profitable deal to the source GS. A GS, as auctioneer, evaluates

all received bids, and sends its cost accompanied by the minimum buy bid to the TI.

34

3.4 Policy of the Market

Based on the description of our market given in Section (3.3), the market policy

is introduced as follows:

 The accepting policy states that, in order for an incoming bid to be accepted, it

must be less than or equal to the reservation price announced by the auctioneer.

The purpose of such policy is to maintain a successful rate of transactions, and to

signal to traders the current market prices.

 The matching policy defines how to match a buy bid with a sell bid. For any

auctioned task, the minimum sell bid will be matched with the minimum buy bid.

 The clearing policy determines what matched bids are being executed.

 The clearing price will be equal to the won bid (Mth) price.

For any GS that auctions a specific task that it has paired with a UAV offering a

minimum bid, the bids from all the GS-UAV pairs are ranked in ascending order of

magnitude. Suppose the number of GSs submitting bids is M. Counting from the top

ranked bids, the value in the Mth position is the clearing price that task is sold for, and the

that GS and the UAV making the bid becomes the seller and the buyer (winner),

respectively, for that task. Then the UAV delivers the task to that GS. A task not sold

during the auction round is re-auctioned at a higher cost as determined by Equation (3.1).

This procedure is repeated until all tasks are sold.

Generally, the TI can determine ‗what‘ and ‗how‘ an incoming bid is transacted.

Briefly, we can say, for a given set of incoming orders, that the accepting policy

determines what bids are to be accepted. The matching policy determines whose bid can

35

be matched with whom, and the clearing policy specifies the transaction that should be

executed.

Transaction determinations and winners (buyers and sellers) that are going to

transact in double auctions have two issues that need to be well defined. For instance,

given the buy and sell bids for the following example, which of these is going to transact

and at what clearing price? Which will lead us to the Mth and the (M+1)st price?

3.4.1 Mth and (M+1)st Price Rules

Let X denotes the set of all buy and sells bids for a single task; M of these bids are

the sell offers, and N represents the buy offers. The Mth price rule sets the clearing price

at the Mth lowest price among all X bids. The (M+1)st price rule sets the clearing price at

the (M+1)st lowest price among all X bids. In order to determine the bids that are going

to be transacted, the transaction set proceeds as follows:

While the lowest remaining buy bid is less than or equal to the lowest sell bid,

remove these bids from the set of outstanding bids and add them to the set of

matched bids (transaction set).

Note that the Mth price is undefined if there are no sellers, and the (M+1)st price is

undefined if there are no buyers.

Consider the set of bids in the double auction shown in Figure 3.1. The number

of total bids is X = 6, of which M (number of sell offers) = 3 and N (number of buy

offers) is X – M = 3. The Mth clearing price is the Mth bid among all submitted bids while

the (M+1)st price is the (M+1)st bid among all bids X = {30, 27, 25, 24, 18, 15}.

36

Figure 3.1. Schematic of bids in double auction with M th and (M+1) st price

 To determine the transaction set, the lowest buy bid is matched with the lowest

sell bid, providing the constraints in Section 3.2 are met. This process continues until the

buy bid is higher than the sell bid. The transaction set will be {(15, 24), (18, 25)}.

Matched bids are removed from the outstanding bids and placed in the matched bids

profile where the lowest sell bid and the lowest buy bid are transacted. For instance, the

sell bid 25 cannot be transacted since only one task will be sold, which is the lowest buy

and sell bids. The transaction price can either be set at 25 (the Mth) or at 24 (the (M+1)st)

price.

 For instance, take the first set of bids in the transaction set (24, 15). If the Mth

price is used, then each buyer and seller will make a profit equal to ½*((24-15) + (30-

24)), which is $7.5, assuming the TI‘s reservation price (P0) is $30, using Equation (3.4).

26

25

24
15

27

18

B

i

n

Bout

S

ou

t

Sin

Mth
price

(M+1)st

price

Sell Bids Price Buy Bids

37

3.4.2 Auction Structure

This implementation consists of two different kinds of auctions:

1. Auctions held by the TI, and

2. Auctions held by the GSs

3.4.2.1 Combined Auction Procedures

The auction proceeds as follows; see also the flow diagram in Figure 3.2:

1. Task Announcement: Each auction starts with an offer message sent by the

auctioneer (TI) to all GSs (TI  GSs). The message contains the task‘s id, sensor

location, task‘s creation times, task‘s deadline, and task‘s prices.

2. GS Call for Bid: Upon receipt of the offer message from the TI, each GS

broadcasts the task and calculates its cost for that task.

3. GS’s Buyers Bid Evaluation: Each GS evaluates the buy bids received from the

UAVs for validity according to the accepting policy and chooses a bid with the

minimum price.

4. Bid Submission: Each GS submits its bid with the winner UAV‘s buy bid to the

TI.

5. Matching Result: The auctioneer (TI) evaluates all received bids and finds the

one with the most profit. Then it matches a GS with the minimum sell bid with

the ID of the minimum buy bid and the clearing price.

6. Win Confirmation: Each winner (GS or UAV) receives the result and sends a

confirmation message to the auctioneer indicating notification about the result.

7. Offer End: The auctioneer sends an Offer End message to the auction participants

38

 when it successfully receives the Win Confirmation message and closes the

 auction.

Figure 3.2. Flow diagram for the market policy

3.4.3 Cost Estimation

As previously mentioned, tasks are traded between the TI, GSs and UAVs. In

order to define the allocation problem for such environments, it is necessary to specify

the cost functions, as given by Equation (3.9).

Task Announcement

Buyers & Sellers
Submit Bids

Bid ≤ Task

Price?

Select Min. of
Sale Bids

Select Min. of

Buy Bids

Min Buy Bid ≤

Sell Bid?

Reject Bid
Match Seller

& Buyer

No

No

Yes

Yes

39

P(Tl
, GSk) = R(Tl

 , GSk) − C(Tl
 , GSk) (3.9)

where P is the profit generated by the ground station GSk by accepting the task Tl and R

and C are revenue and cost functions, respectively. The revenue function indicates the

benefit of executing a task, and the cost function provides an estimate of the cost to

accomplish the same task. In this dissertation, rewards associated with tasks are not

considered; therefore, the utility functions equal the cost of the tasks. Further, tasks are

waypoints, and costs define an amount that reflects the distance between each GS or

UAV and the location of interest, such as the traveled Euclidean distance.

The global objective of the task allocation algorithm is to minimize overall costs.

An important term used in the following chapters is global cost, which is the sum of the

allocated task costs. Therefore, the global objective used for this dissertation is the

minimization of the global cost. The multi-ground station task allocation problem stated

in terms of global costs is as follows:

Given a set of tasks, T = {T1, T2, ..., Tt}, a set of GSs {GS1, GS2, ..., GSr}, and a

function P(Ti, GSi) that specifies the cost of executing a subset Ti of the set of tasks T

by GSi, find the allocation of tasks to GSs that minimizes the global cost as given by

Equation (3.10).

),(
1 i

r

i

i
GSTP (3.10)

where r is the number of GSs and the subset of tasks Tj
 is assigned to GSj.

40

The TI issues and renews tasks, and each GS submits bids for the newly issued tasks; a

task is assigned to the GS with the minimum bid. The TI‘s algorithm for this allocation is

as follows:

if a task is created then

announce task
while timer is running do

receive bids
end while
calculate best bid

match buyer with seller
award task to best match

remove task from announcement list
end if

For each auction cycle, there is only one awarded task. Upon winning a task, the

winning GS broadcasts the same task(s) to the UAVs within its connectivity range. The

UAVs then calculate the cost for adding the new task to their current plan. Then, the

difference between the two plans (current plan and old plan) is the cost for
i

UAV to

execute the auctioned task.

 The algorithm for the GS task allocation is as follows:

if a task-list is not empty then

announce task
while timer is running do

calculate cost

receive bids
end while

calculate best bid
send cost and best bidder
remove task from task-list

end if

41

When a GS assigns a task to the winning UAV, it keeps the winner‘s id, task id, winner‘s

cost, and the task due time in different lists to maintain control of its awarded task(s).

 In this problem, two types of costs contribute to the marginal cost of adding a new

task to a plan:

1. The distance cost is the cost due to the additional distance that the UAV should

travel, and

2. The time cost is the cost due to latency that performing this task will cause in the

data delivery time of the other tasks already in the plan.

3.4.4 GSs Cost Estimation

In the set up simulated in this work, there are three GSs located 120˚ apart from

each other around the TI. The GSs communicate with the TI all the time. When a task is

created at the TI level, each GS submits a bid for that task. The bid is based on the linear

distance to that task and uses the task‘s information provided by the TI (i.e., id, price,

location, and creation time), which has a different price for each task. First, the TI

computes the cost and the deadline time for that task according to Equations (3.11) and

(3.12):

TITaskCost(t) = P0(1+up*t/tH) (3.11)

where tH is the deadline time for task TK to be received by the auctioneer, as given by

Equation (3.12).

tH(TK) = 2*||Tk – TI||2/
i

UAV _Speed + t (3.12)

42

where t is the time elapsed from the time the task is created until the time the task is re-

auctioned, up is a parameter to determine increments in the price, tH is the deadline time

for the task TK to be received by the auctioneer, udc is the distance unit cost, and

i
UAV _Speed is the speed of

i
UAV , as used in Equation (3.13).

P0 (Tk) = 2*|| Tk – TI||2*(udc + utcost/
i

UAV _Speed)) (3.13)

By the time the task reaches its deadline, if up is chosen to equal 1, the price of the

task will have doubled since its creation time. This will motivate the GSs to bid for the

task that was not profitable during previous auction cycles. When a task Tk is created at

the TI level, all GSs will use the same TI‘s price function to generate a new bid for the

auctioned task. The GS will place a bid equal to GSTaskCost for this task if and only if the

constraint prescribed by Equation (3.14) is met.

GSTaskCost≤ TITaskCost(t) (3.14)

Therefore, the GS‘s bid will be the GS‘s linear distance to Tk and back; in addition to the

time the UAV needs to execute the task.

First, the GSs calculate their cost as given by Equation (3.15).

j
GS distCost = 2*(||dist(

j
GS , Tk)||2*udc 1 ≤ j ≤ 3, (3.15)

where Tk is a new auctioned task to be added to
j

GS current plan, and udc is the unit

distance cost. Second, since the speed of the UAVs is known to the GSs, any
j

GS can

predict the execution time for the newly auctioned task. Therefore, the time cost to

execute a new auctioned task is calculated using Equation (3.16).

43

j
GS t imeCost = 2*(

j
GS dist / SpeedUAV)*utcost, (3.16)

where utcost is the time unit cost, which is known to all GSs, and
j

GS t imeCost is the cost of

the time for
j

GS to receive the task‘s data, which is based on the task‘s distance to
j

GS ,

GSdist, and the UAV‘s speed, SpeedUAV. The sum of Equations (3.15) and (3.16) yields

the GS‘s estimated cost, as given by Equation (3.17).

j
GS Cost =

j
GS distCost +

j
GS t imeCost (3.17)

And the GSs bids were calculated using Equation (3.18).

j
GS Bid =

j
GS Cost (3.18)

Since a GS bids according to its true valuation for a task, a bid in Equation (3.18)

will be the actual cost of the auctioned task to the GS that will submit it to the TI. P0 is a

new term that the GS will use to determine the price of task(s) later. Therefore, the GS

will use the P0 from the TI, as given by Equation (3.3), in order to generate its cost for

newly auctioned tasks.

As previously mentioned, the auctioneer uses a time- increasing function P(t) for

assigning prices to tasks. In order for any seller to maximize all profit made, the seller

must sell tasks won as soon as possible. Further, a GS is not assured of selling a task

within a fixed time because bidders will only bid when assured a profit. This is the main

reason for using the increasing varying price function, which encourages buyers to bid for

unsold tasks in the near future. Therefore, the GS will make the task price function an

44

increasing function of time, which will guarantee that UAVs will be encouraged to buy

tasks that were not profitable to them during previous auction cycles. The price function

is given by Equation (3.19).

GS_P(t) = P0*(1+up*t/tH) (3.19)

The price function also motivates bidders to bid on those tasks for which more

time has passed since their creation and so have become more profitable. Clearly, the

most profitable task is not necessarily the task with the lowest cost. Ajorlou et al. (2007)

suggested that, since price is time varying and profit is price minus cost, this time varying

function will have an important effect on the balance between a task‘s cost and the

importance of a task in the task allocation process. Assume that the price of task Tk,

offered by the TI at time t is P(t - tT), where, tT is the creation time of Tk. The difference

in price, with regard to time, should be large enough to overcome the extra cost that an

expensive important task may have compared to other offered tasks, which can improve

the performance by decreasing the probability of successive timeouts for a given task.

 Clearly, the auctioneer associates a price with each offered task, and upon

appropriate completion of the task, it pays revenue equal to the task's price to the agent

that performed the task. Agents' bids reflect the profit they can make by accepting and

performing tasks. In this case, the GSs and UAVs share the profit evenly after task

completion. Equation 3.4 is presented again here as Equation (3.20) for clarity.

ProfitGS = ProfitUAV = 0.5*((
jWin
GS _SBid -

iWin
UAV _BBid)+ (TI_P0-

jWin
GS _SBid)- (

jUAV
GS _SBid -

jWin
GS _SBid)) (3.20)

45

Adding any task to the bidder‘s current plan will result in an additional distance

an executing agent needs to travel, and the delivery time of tasks will be pushed back, as

expressed by Equation (3.21).

H
ttP

otherwise

tR

0

0

)(
 (3.21)

where t is the elapsed time since the task creation and P0 is the price of the task. Note

that P0 may be different for different tasks and is equal to the price the auctioneer

announced while selling that task. If a GS offers a task, its price is determined by the

time-varying price function, as in Equation (3.11). As previously mentioned, for any

auctioned task, constraints must be satisfied in order for the task bid to be accepted.

The auctioneer, TI, knows the price function and uses it to calculate the price

announced to the GS when offering the task. However, the revenue that a UAV will

receive upon performing a task depends on both the time when it accepts the task and the

time when it delivers the data. Clearly, any GS will receive its revenue for any task it

won and executed in a time not exceeding the task‘s deadline time.

3.4.5 UAVs Cost Estimation

The initial locations of the UAVs are generated randomly such that each UAV

communicates with at least two GSs. In this dissertation, a given
i

UAV can participate in

an auction with a given
j

GS if and only if
i

UAV is within
j

GS ‘s range and
j

GS is

46

within
i

UAV ‘s range. Whichever range is smaller will determine how close
i

UAV must

be to
j

GS for them to participate together. We make the simplifying assumptions that all

UAVs and GSs have the same range. Call the area around a
j

GS within which it can carry

on an auction with a UAV its domain; a UAV‘s domain is defined similarly but with

respect to a GS. Whether the UAV‘s range is smaller than the GS‘s range or vice versa,

the domains of all GSs will be the same size and shape.

An interesting case is where the GSs‘ domains overlap. When the TI announces

its task(s), each GS checks for availability of UAVs before announcing a task. When a

GS receives a response from any UAV in its connectivity range, the GS starts to

broadcast the announced task. The UAV should deliver the data to the GS for which it

sold the corresponding data-delivery task because that GS will count on that UAV

returning it within a certain time. As previously stated, if it delivers the data to another

GS, it incurs a large penalty. Recall that Equation (3.5) is

Penalty = 0.5*(
jUAV
GS _SBid -

jWin
GS _SBid)

Upon receipt of a task announcement, the UAV computes its first bid and the

estimated time taken to deliver the task to the GS according to Equations (3.22) and

(3.23).

UAVTaskCost = DistUAV- Tk*udcost + DistUAV- Tk*utcost/*
i

UAV _Speed (3.22)

i
UAV tH = DistUAV- Tk /

i
UAV _Speed (3.23)

47

Then, the UAV places a bid for an amount equal to its cost to that GS for the task if the

constraints prescribed by Equations (3.24) and (3.25) are met.

i
UAV TaskCost(Tk) ≤ TITaskCost(t) and (3.24)

i
UAV tH(TK) ≤ TItH(TK) - tUAVstart (3.25)

where tUAVstart is the time the UAV starts executing the task in its task list.

If the UAV already has at least one task in its task list, then calculating the marginal

cost is NP hard and requires re-planning for a new set of tasks. For simplicity, we use a

heuristic in which we inserted the new task in all possible positions in the current plan and

chose the one that minimized the distance cost of the new plan. In addition to Equation

(3.26), the constraints denoted by Equations (3.27) and (3.28) have to be met.

TItHnew ≤ TItHold (3.26)

tUAVstart + tPathNew ≤ TItHnew (3.27)

UAVTaskCostExtra ≤ TITaskCost(TK) (3.28)

where

UAVTaskCostExtra = UAVCostCurrentPath - UAVCostPreviousPath.

TItHold and TItHnew are the task deadlines for the immediate previous and the new task to bid

for, respectively; UAVTaskCostExtra is the extra cost for adding on an additional task. If all

these constraints are met, then the UAV places a bid for the new task according to Equation

(3.29).

48

UAVTaskCost(TK) = UAVTaskCostExtra (3.29)

3.5 Robustness

3.5.1 UAV Malfunction

In this dynamic research environment of market-based mechanisms, recall that, in

order for a UAV to submit a bid, the UAV must first is able to deliver the task on time,

meaning that the UAV's contract is time- limited, and the UAV is responsible for

delivering its won task in a timely fashion. During task execution, in the event a UAV

malfunction, the tasks may not be delivered as desired. All undelivered tasks are re-

auctioned to existing UAVs when the UAV never recovers to complete the task in its task

list. To plan for any uncertainties, undelivered tasks from a disconnected UAV are not

immediately re-auctioned. First, the GS allocates an extended time. Then, after this time

has elapsed, undelivered tasks are re-auctioned. This extended time is computed using

Equation (3.30).

tReauction = (1+γ) * min(TItH-
i

UAV) 0 ≤ γ ≤ 1 (3.30)

where TItH-
i

UAV contains task deadlines for all the tasks that are in the task list for a

specific
i

UAV .

Since the route information for each UAV is known, the location of the UAV can

easily be found. Since the re-auction happens very frequently (every 2 secs), all UAVs

hover around their current locations until announced re-auctioned tasks are sold. A GS

49

will assume a UAV malfunction if a certain amount of time has passed since task(s)

deadline has elapsed and the GS did not yet receive their corresponding data. γ is a

constant number chosen between zero and one, which is multiplied by the deadline to

allow latency in delivering data due to possible estimation errors. The task deadline

triggers a UAV malfunction detection and recovery. When a GS experiences a situation

where needed task data was not received for a period of at least equal to the threshold

time, it auctions all tasks won by the malfunctioned UAV. Additionally, the fact that the

price is an increasing function of time accelerates the recovery process by providing more

profit for timed out tasks compared to the corresponding profit of its regular price.

When the re-auction begins, all the remaining tasks (undelivered tasks) from each

UAV become the previous task list. Consequently, the route starting from the current

location of that UAV becomes the immediate previous route. As a result, the procedures

described for GS and UAV bidding for a new task still apply except the new task

deadline for any re-auctioned task is determined by Equation (3.31).

TItHnewj = TItHoldj + tjReauction – max(tMalfunctioned, tUAVstart) (3.31)

where

TItHnewj is the new task deadline for a given task j,

TItHoldj is the old task deadline for a given task j,

tMalfunctioned is the time at which the UAV get malfunctioned, and

tjReauction ≥ tReauction is the time at which task j is re-auctioned.

3.5.2 Communication Failure

A UAV might also fail to communicate during the auction process. Frequent

50

auctioning allows the UAV to regain its ground and is an essential part of this

coordination method designed to accelerate the recovery of such a problem. As soon as a

UAV recovers from the communication failure by being able to communicate with any

GS, the UAV will start observing the auction rules and participate in new auctions.

Dias et al. (2003) suggested the following strategies to improve robustness:

 monitoring the communication connectivity to robots that have subcontracted

tasks,

 frequent auctioning and bidding, which help reallocate tasks among robots more

efficiently,

 the absence of assumptions that all agents will participate in any auction, and

 continuous scheduling of assigned tasks for execution as tasks are completed.

51

CHAPTER 4

MULTI-GROUND STATIONS TASK ALLOCATION WITH

DOUBLE AUCTION

This chapter studies the performance of market-based coordination methods to

demonstrate how a double auction can influence the quality of the solution. Double

auction consists of multiple buyers and sellers participating to trade a commodity. Each

buyer and seller submits a bid representing its offer to buy or sell the auctioned

commodity. Submitted bids are matched, and the auction is cleared thereafter. A double

auction, then, is a two-sided auction. One side represents a centralized approach while

the other represents a distributed approach. This enables the market to compute the

information in an efficient manner while providing quicker responses.

This study investigated the effect of increasing the UAVs‘ communication ranges

on the distance travelled, and the time of task delivery using a different number of tasks

while the UAVs participated in double auction coordination. Therefore, the global

objective used in this dissertation is the minimization of the global cost (distance

travelled).

4.1 Market Setup

The market setup consists of an allocation of a set T of tasks among a set of GSs

partitioning T among the GSs, where T = {T1, T2, . . . , Tn} and GSs = { GS1, GS2, . . . ,

GSm}. This is denoted by a tuple [T1, T2 , ... , Tn-1, Tn] where:

52

 Each subset of tuples represents tasks assigned to a GS, i.e., a ground station GSi

is assigned the tasks represented by Ti = {Ta, Tb, . . . , Tt}, which is a subset of

the set T.

 The union of the sets of tasks in the tuple is equal to the complete set of tasks, i.e.,

Tl
 Tk ... Tn = T

 The sets in the tuple are pairwise disjoint, i.e., Tl Tk = Ø; for all i k.

The purpose of using a task allocation algorithm is to minimize overall costs, which are

defined as the sum of the allocated task costs. Hence, a task allocation problem for

multiple GSs can be stated as follows:

Given a set of tasks, T = [T1, T2, . . . , Tn], a set of GSs = [GS1, GS2, . . . , GSm], and a

function P(Ti , GSk) that specifies the utility of executing a subset of tasks Ti by GSi, i

= 1, 2, …, n, find the allocation of tasks to GSi that optimizes the overall objective.

Tasks are issued by the TI to the GSs for bidding, and allocated to the GSs with the

minimum bid. In defining the allocation problem, it is important to specify the cost

function given in Chapter 3, Equation 3.2, repeated here as Equation 4.1.

 P(Ti, GSk) = R(Ti , GSk) − C(Ti , GSk), (4.1)

where P is the profit generated by the ground station GSk for accepting tasks Ti, and R

and C are the revenue and cost functions, respectively. The revenue function, R(Ti, GSk),

represents the cost benefit to GSk for executing task Ti, and the cost function, C(Ti , GSk),

represents a cost estimate for GSk for accomplishing the same task. Tasks are waypoints,

and costs are numbers that reflect the distance between each GS and a waypoint of

interest, such as the Euclidean travelled distance.

53

4.2 Simulation Setup

This section describes the simulation environment that consists of one TI, three

GSs, and a different number of UAVs. The TI, GSs, and UAVs interact over tasks issued

by the TI. The TI is located at the origin of a 3D-space bounded by the following ranges:

 -2CommUAVMax ≤ x ≤ 2CommUAVMax,

 -2CommUAVMax≤ y ≤ 2CommUAVMax, and

 0 ≤ z ≤ 2 CommUAVMax,

where CommUAVMax is the maximum communication radius admissible by a UAV during

the design of that UAV, and x, y, and z are the coordinate axis.

As shown in Figure 4.1, the three GSs are located 120˚ apart from each other

around the TI, and can communicate with the TI at all times. The initial locations of the

UAVs are generated randomly such that each UAV communicates with at least two GSs.

A given
i

UAV can participate with a given
j

GS if and only if
i

UAV is within
j

GS ‘s range

and
j

GS is within
i

UAV ‘s range. Whichever range is smallest determines how close

i
UAV must be to

j
GS for them to participate together. The simplifying assumption is

that all UAVs and GSs have the same range. The area around
j

GS in which it can carry

on an auction with a UAVi is its domain. Whether the UAV‘s range is smaller than the

GS‘s range or vice versa, the domains of all GSs are the same size and shape.

The TI‘s and GSs‘ communication ranges are 100 meters, and 200 meters,

respectively. Any GS has at least one UAV within its communication range before the

start of the initial auction. Any UAV can communicate with at least two GSs at the

54

beginning of the auction. To enhance the design‘s quality of solution, the UAVs‘

communication ranges fell between 250 meters to 2,500 meters, and their speed is 10

m/s. The unit distance cost (udcost) is set at $0.1 / m, the time unit cost (tucost) at $0.1 /s,

and up, a parameter to determine an increase in price, is set at 1. Each task has a different

value, which is determined by its distance from the TI. This implies that, using the time

varying price function, the price for a task will double when it reaches its deadline, tH,

from its creation time and has not been sold.

-400
-200

0
200

400
600

-500

0

500
0

200

400

600

800

1000

GS1GS2

GS3

TI

Z

1 2 3

4
5

6

7
89

XY

UAV

GS

TI

Figure 4.1. Setup of TI, three GSs and nine UAVs for double auction

Each GS submits bids for newly issued tasks. A task is assigned to a pair of GSs

and the UAV with the minimum bid. A task is an act of visiting and collecting data from

a specific sensor location by a UAV and delivering the collected data to the TI through a

55

GS later. In a practical sense, a TI could be a control room or any agent (including

humans) with the ability to initiate and re-allocate tasks to the fittest pair of GSs and

UAVs through double auction. In this scenario, the UAVs have the ability to buy from

more than one GS and deliver tasks to a source GS.

4.3 Interaction between TI and GSs

This section describes the interaction between the TI and GSs with emphasis on

optimizing task allocation in double auction. Presented are the results of five runs with

relative statistics and associated profits.

4.3.1 Double Auction between GSs and UAVs

All GSs compete as self- interested agents to maximize their profits, and the

UAVs aim to minimize their overall distance travelled in order to execute tasks. The

distance cost of adding a new task to any GS‘s current plan is double the linear distance

from the GS to the task location in addition to the time needed for task(s) execution.

Since the UAVs‘ speed is known, the GSs can predict the time cost for an auctioned task.

Based on this information, the GSs submit their bids to the TI (refer to Chapter 3).

Task performance is measured using the averages of at least five runs for each

communication range. Initially, Tables 4.1 through 4.5 summarizes the results for each

run for the GSs and UAVs, and the profits each made during the auction cycles. Table

4.1 presents the data for twelve random tasks for six UAVs at 250 meters and the

transactions between the UAVs and GSs for exchanging task(s) during each run.

Randomly generated tasks do not necessarily mean tasks will be bought by the same

56

UAV from the previous run. Instead, the cost of any task might change during each run

depending on how far the task is from the UAV, and the time needed for execution.

Table 4.1. Run 1: Profit generated by GSs and six UAVs while auctioning 12

 random tasksat 250 meters

Task TI Price

Seller (GS)

Bid

Seller(GS)

ID

Buyer

(UAV) ID

Buyer

(UAV) Bid

Buyer/Seller

Profits

T1 $1117 $1084 2 2 $1023 $47

T2 $310 $268 1 4 $215 $48

T3 $1271 $1233 2 1 $1172 $50

T4 $1136 $1107 2 1 $368 $384

T5 $1502 $1466 1 3 $1410 $46

T6 $832 $799 1 3 $336 $248

T7 $842 $819 1 1 $410 $216

T8 $508 $460 3 1 $216 $146

T9 $630 $612 3 2 $167 $231

T10 $1318 $1289 3 5 $1215 $51

T11 $1235 $1202 3 5 $277 $479

T12 $1702 $1664 2 6 $1616 $43

Since delivery cost is assumed to be at the intersection of the UAVs‘

communication range and the target sensor location, tasks executed by each UAV might

also change from one run to the next, depending on whether the task(s) on the UAV‘s list

permits executing a newly auctioned task without making any of its previous won task(s)

timeout. The profit each UAV and GS generates during a double auction relies on how

well the UAVs are positioned during the auctioned task with respect to the task‘s location

and the UAV‘s communication ranges. The program ran for at least five times to

generate profit, as denoted by Equation 4.2.

57

1

_ _ (_ Pr) 1 3
m

j
i

GS average profit Average UAVi ofit j (4.2)

where m is the number of UAVs that paired with
j

GS during the auction and

j
GS _average_profit is the average profit made by that specific GS. The data in Tables

4.2 through 4.5 show the profit for each GS and a list of corresponding UAVs for runs 2

through 5.

Table 4.2. Run 2: Profit generated by GSs and six UAVs while auctioning 12

 random tasks at 250 meters

Seller (GS) ID GS Total Profit GS Task List Buyer (UAV) ID

1 $462 4, 5, 11, 12 1, 2, 4, 6

2 $255 3, 6 1, 2

3 $873 1, 2 ,7, 8, 9, 10 1, 4, 5, 6

Table 4.3. Run 3: Profit generated by GSs and six UAVs while auctioning 12

 random tasks at 250 meters

Seller (GS) ID GS Total Profit GS Task List Buyer (UAV) ID

1 $736 1, 7, 8, 9 1, 3, 4

2 $1578 2, 3, 4, 5, 6, 11, 12 2, 4, 1, 5

3 $444 10 1

Table 4.4. Run 4: Profit generated by GSs and six UAVs while auctioning 12

 random tasks at 250 meters

Seller (GS) ID GS Total Profit GS Task List Buyer (UAV) ID

1 $1258 2, 3, 6, 9, 10 3, 4, 5

2 $935 7, 8, 11, 12 3, 4

3 $648 1, 4, 5 3, 5

58

Table 4.5. Run 5: Profit generated by GSs and six UAVs while auctioning 12

 random tasks at 250 meters

Seller (GS) ID GS Total Profit GS Task List Buyer (UAV) ID

1 $606 3, 5, 6, 10, 12 2, 3, 4

2 $202 1, 7 1, 4

3 $809 2, 4, 8, 9, 11 1, 2, 5, 6

4.3.2 Results for increasing UAVs’ Communication Range

The impact of increasing the UAVs‘ communication ranges was investigated to

enhance the quality of the solution for each GS. Profits are divided evenly between

participating GSs and UAVs. Therefore, each GS‘s profit influenced the total distance

travelled by the UAVs on the GS‘s / UAV list and the total execution time for its task(s),

which affected the UAV‘s ability to reach and execute tasks at an earlier time. Further,

since all UAVs‘ speed is constant, the only factor that affected a task‘s reachability is

their communication ranges.

The average GSs profit generated from these runs is the profit made by all UAVs

on its UAV list. The profit for the GSs at each communication range during the five runs

was summed to give the average profit. As shown in Table 4.6, each GS‘s profit

continued to increase as the UAVs‘ communication ranges increased. Because the UAVs

share profits evenly with their GSs, they also benefitted from increasing their

communication range.

As depicted in Table 4.6 and Figure 4.2, increasing the UAVs‘ communication

range affected not only the profit each buyer and seller generated, but also the task‘s

execution time as well. The UAV‘s constant speed contributed to the decrease in the

59

distance travelled to execute a task, which was a direct result of increasing the UAV‘s

communication range. Thus, the decrease of distance travelled automatically affected the

task execution time.

Table 4.6. Average GSs profit while auctioning five sets of 12 random tasks to six

 UAVs

UAVs
Communication

Range (m)

250

500

750

1000

1250

1500

1750

2000

2250

2500

GS1 $724 $749 $774 $801 $837 $961 $981 $1070 $1081 $1101

GS2 $699 $719 $739 $758 $917 $940 $962 $984 $1001 $1025

GS3 $736 $754 $771 $788 $791 $876 $898 $903 $939 $959

Figure 4.2. UAV1’s trace of path time of task execution at different

communication ranges

Figure 4.2 shows UAV1‘s path of tasks execution during different communication

ranges that depicts the impact of increasing the UAV‘s communication ranges over the

tasks‘ execution time, which reduced the UAV‘s ability to deliver its tasks earlier since it

60

travelled less distance to its intended GS and target sensor. Figure 4.2 also shows a large

drop in UAV1‘s path execution time when its communication range increased from 1250

meters to 1500 meters. At 1250 meters, UAV1 won tasks 10 and 6; while at 1500 meters

UAV1 won tasks 11 and 4. Therefore, the reason for the drop in path execution time is

that they have different coordinates.

Tasks must also be delivered on time such that any UAV will not bid for any

auctioned task that will cause any of its current task(s) to timeout. Since tasks are

generated randomly, their IDs and number of tasks won by an individual UAV may

change from one run to the next; therefore, the time required to execute the task(s) may

change accordingly. Table 4.7 shows the tasks path execution times and their tasks for

UAV1 with varied communication ranges. The results show it took less time when the

UAV‘s communication range increased for the same task(s) to be delivered to the same

destination.

Table 4.7. UAV1’s tasks execution time during different communication ranges

UAV Communication

Range (m)

Tasks Path Execution Times

(sec)

Task List

250 2056 11, 6, 10

500 2033 11, 6, 10

750 2011 11, 6, 10

1,000 1930 6, 10

1,250 1907 6, 10

1,500 708 11, 4

1,750 685 11, 4

2,000 663 11, 4

2,250 640 11, 4

2,500 618 11, 4

61

4.3.3 Results of Average Distance Travelled and Average Time to Perform Tasks

In a double auction, UAVs may submit their bids to more than one GS to increase

their chances of winning an auctioned task as self- interested agents. Different cases were

investigated to show the effect of increasing the buyers‘ communication ranges during a

double auction. A base case involves nine random tasks auctioned to three GSs to sell to

six UAVs bidding to execute these tasks. Table 4.8 shows the average total distance

travelled to execute the tasks and the average time required to perform the tasks.

The data in Table 4.8 shows that the average time needed to execute tasks

improved as the UAV‘s communication range increased. When the UAVs

communication ranges increased from 250 meters to 2500 meters, the average distance of

data delivery decreased by 16.8%. As shown in Table 4.9, this decrease resulted in all

the GSs receiving a profit increase. GS1, GS2, and GS3 realized an increase in their

average profit up to 39.8%, 57.9% and 20.9%, respectively.

Table 4.8. Data delivery statistics for nine random tasks by six UAVs

UAV Communication

Range(m)

Mean Data Delivery

Distance (m)

Mean Tasks Execution Time

(sec)

250 9871 987

500 9625 962

750 9445 944

1,000 9264 927

1,250 9085 909

1,500 8905 890

1,750 8725 872

2,000 8545 855

2,250 8371 837

2,500 8213 821

62

Table 4.9. Average GSs profit from selling nine tasks to six UAVs

UAV

Communicati

on Range (m)

250

500

750

1000

1250

1500

1750

2000

2250

2500

GS1 $431 $454 $474 $493 $513 $533 $553 $573 $590 $602

GS2 $458 $504 $532 $559 $586 $613 $640 $668 $696 $723

GS3 $535 $548 $560 $573 $585 $597 $610 $622 $634 $647

This research used two cases to investigate the scalability of the market-based

coordination. In Case-1, the number of tasks was increased from 9 to 12, and in Case-2,

decreased from nine to six, respectively, while the number of UAVs that carried out the

job remained unchanged at six. The task execution time decreased for each UAV

delivering to the same destination as its communication range increased. As shown in

Table 4.10, the average data delivery distance travelled by all six UAVs decreased.

Table 4.10. Data delivery statistics for 12 random tasks by six UAVs

UAV Communication

Range(m)

Mean Data Delivery

Distance (m)

Mean Tasks Time

Execution (sec)
250 12676 1268

500 12489 1249

750 12301 1230

1,000 12104 1210

1,250 11821 1182

1,500 11119 1119

1,750 10924 1092

2,000 10572 1057

2,250 10341 1034

2,500 10131 1013

Even though the market is scaled up, it still benefitted from double auction, and is

better off by 3% in the distance travelled when tasks are scaled up to twelve as compared

63

to the base case; see Table 4.8. This improvement accompanied an improvement in the

quality of the solution since the decrease in the average time of task execution showed

the same result for the reduction in the distance travelled.

Computing the profit generated by each GS in the double auction provides a

better view of these results. As the number of auctioned tasks increased for the same

UAVs, the probability of increasing the profit for each participating UAV increased. By

scaling the number of auctioned tasks to twelve, GS1, GS2 and GS3 received an increase

in their profit by 52%, 46.6% and 30.2%, respectively.

In Case-2, the number of tasks was scaled down to six tasks to be bought by the

same six UAVs who participated in double auction in Case-1. The data in Tables 4.11

and 4.12 show the results from increasing the UAVs communication range.

Table 4.11. Data delivery statistics for six random tasks by six UAVs

UAV Communication
Range(m)

Mean Data Delivery
Distance (m)

Mean Tasks Execution Time
(sec)

250 8080 808

500 7937 794

750 7783 778

1,000 7640 764

1,250 7420 742

1,500 7258 726

1,750 6958 696

2,000 6793 679

2,250 6595 659

2,500 6430 643

To investigate the matter further, using the same tasks, the numbers of buyers

were increased from six to nine to buy twelve tasks that were sold in Case-1. As in Case-

64

1, increasing the UAV‘s ranges affected the average data delivery time for an auctioned

task by allowing it to be performed in a shorter time as data delivery will be completed

earlier due to the increase in the UAVs‘ communication range. Table 4.13 and Figure 4.3

show the effect on average time of tasks execution when the UAVs‘ ranges increased.

Table 4.12. Average GSs profit from selling 6 tasks to 6 UAVs

UAV

Communication

Range (m)

250

500

750

1000

1250

1500

1750

2000

2250

2500

GS1 $130 $148 $165 $182 $200 $217 $234 $251 $278 $292

GS2 $291 $303 $320 $353 $370 $387 $465 $482 $502 $521

GS3 $192 $209 $226 $244 $261 $280 $284 $304 $324 $343

Table 4.13. Execution time of 12 tasks by UAVs during different

 communication ranges

UAV Communication

Range(m)

Average Time Travelled by 6

UAVs

Average Time

Travelled by 9 UAVs

250 1268 836

500 1249 824

750 1230 811

1,000 1210 798

1,250 1182 785

1,500 1119 740

1,750 1092 725

2,000 1057 700

2,250 1034 685

2,500 1013 670

 Increasing the communication ranges also improved the quality of the solution by

reducing the execution time, thus increasing each participant‘s profit. Table 4.14 shows

that increasing a UAV‘s communication range led to a decrease in the t ime travelled and

a decrease in the average distance travelled. Accordingly, the decrease in the distance

65

travelled or the time of execution yielded an increase in the profit generated by

participating UAVs, as shown in Table 4.15. This meant that the increase in profit would

be divided evenly between the GSs and their UAVs.

Figure 4.3. Execution time of same 12 tasks in double auction

Table 4.14. Data delivery statistics for 12 random tasks by nine UAVs

UAV Communication

Range(m)

Mean Data Delivery

Distance Cost

Mean Task Execution

Time(sec)
250 $8364 836

500 $8239 824

750 $8114 811

1,000 $7981 798

1,250 $7854 785

1,500 $7398 740

1,750 $7253 725

2,000 $6997 700

2,250 $6851 685

2,500 $6699 670

66

Table 4.15. GSs average profit while auctioning five sets of 12 random tasks

 to nine UAVs

UAV

Communication

Range(m)

250

500

750

1000

1250

1500

1750

2000

2250

2500

GS1 $751 $774 $796 $822 $845 $968 $988 $1088 $1090 $1112

GS2 $832 $854 $877 $899 $921 $944 $966 $989 $1016 $1033

GS3 $722 $739 $756 $774 $792 $879 $901 $905 $948 $985

 This reduction in tasks execution time meant that the distance travelled also

reduced as observed earlier since the UAV‘s speed is constant. In fact, the decrease in

the average execution time is a direct result of the decrease in the average distance

travelled as depicted in Figure 4.4, where six UAVs compete to buy a different number of

auctioned tasks.

Figure 4.4. Average distance travelled by six UAVs competing over a different

number of tasks

67

Since the average task execution time decreased as a result of increasing the

UAVs‘ communication ranges, the profit generated by the UAVs increased as well. The

increase in the UAVs‘ profit led to an increase in the average profit generated by GSs as

their profit is the summation of all profit made by each participant UAV that bought

task(s) from that specific GS, as mentioned before in Equation 4.2. As an example, refer

to Figure 4.5 and Table 4.15.

Figure 4.5. GSs average profit of selling 12 tasks to nine UAVs

Scaling up the number of UAVs from six to nine competing over the same

number of tasks resulted in the same improvement as the reduction in the average of task

execution time and the distance travelled (Figures 4.3 and 4.4, respectively) as well as the

profit generated due to increasing the UAVs‘ communication ranges (Figure 4.5).

68

Scaling up the number of tasks to twelve resulted in a decrease of 31.8% in the

average task execution times, while the UAVs ranges increased from 250 meters to 2500

meters; see Table 4.13.

Increasing the number of UAVs competing for the same number of tasks resulted

in finding the fittest UAV, and a quicker response, which decreased the average distance

travelled as well as the average task execution times, as depicted by Figure 4.6.

Figure 4.6. UAVs average distance travelled to execute 12 tasks

4.3.4 System Robustness

 In a dynamic research environment, system robustness is one of the most

important criteria for reliability. The availability of task data to the TI is very crucial,

particularly in military operations or rescue missions; therefore, the system must be

69

robust. To validate the system‘s robustness, UAV1, which had four tasks in its current

plan, {9, 10, 11, and 12} assumed to fail before delivering any of its tasks to GS2, as

shown in Figure 4.7.

-4000

-2000

0

2000

4000

-2000

0

2000

4000

6000
0

500

1000

1500

2000

2500

3000

11

x

UAV1
GS2

10

12

y

 9

z

Figure 4.7. Path for executing tasks by UAV1

As a result, GS2 detected the absence of UAV1‘s task data after time passed

because the deadline due time, tH, for the first task was due by UAV1. To recover from

this failure, using the time-increasing function with higher prices to accelerate recovering

these tasks, GS2 re-auctioned the undelivered tasks to the UAVs within its

communication range. The eligible UAVs submitted their bids for those tasks from

where they were at the beginning of re-auctioning, as shown in Table 4.16. During re-

auctioning, UAV2 won tasks 9 and 12 in addition to those delivered earlier, and on time.

For clarity, the execution path of tasks won by UAV2 before and after re-auctioning is

70

shown in Figure 4.8. While UAV4 won task10 and delivered it to GS1 and the fourth re-

auctioned task was delivered by UAV1, it recovered from its failure and was able to win

this task during re-auctioning because at that time the task was already on its task list.

Table 4.16. UAVs coordinates at re-auctioning tasks

UAVi x y z

1 313 -61 315

2 -115 200 0

3 -115 200 0

4 219 13 139

5 -115 -180 134

6 -115 -200 0

This robustness affected the time of data delivery due to the extended time due to

tasks not delivered on time. Therefore, the average time for tasks delivered increased

from 1005 seconds to 1095 seconds. The difference in these two numbers represents the

cost for making the system robust to uncertainty, and is the cost for assuring data

delivery.

Since re-auctioning in this case takes place only when tasks are not delivered at

their expected due time, re-auctioning undelivered tasks will cause some delay on the

average data delivery time. As shown in Figure 4.9, when 12 tasks was delivered by six

UAVs, at a range of 250 meters, re-auctioning caused a 295 seconds delay in data

delivery; while at a range of 2500 meters, re-auctioning caused the same data to be

delivered 127 seconds late.

71

-4000

-2000

0

2000

4000

-5000

0

5000
0

500

1000

1500

2000

2500

3000

 4

x

 7

UAV2
GS2UAV2

 3

12

y

 9

z

Figure 4.8. Path for executing tasks by UAV2 before and after validating

robustness

Figure 4.9. Data delivery time history for 12 tasks by six UAVs before and after re-

auctioning

72

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This dissertation studied the problem of collecting data from a series of unmanned

ground sensors (UGSs) using a team of unmanned aerial vehicles (UAVs), and delivering

the information to a task initiator (TI) through the ground stations (GSs). The problem

formulated into a procurement auction between the TI and GSs and a double auction

between the GSs and UAVs, which was formalized as a continuous time-constraint

version of a multi-traveling salesperson problem.

A market-based coordination method was simulated using double auction

methods applying concepts of price, revenue, and cost to trade task allocations between

the UAVs and GSs. A double auction enabled the TI to benefit from 1) having different

ground stations reach farther locations in a timely manner, and 2) cost efficiency by

allowing task executions through a different agent in the system, which led to a decrease

in time and cost.

The market-based method used communication efficiently because it compressed

the UAVs‘ data into bids. The role of the TI, in addition to task creation and holding

auctions, was as a market matcher that matched the sell bids and purchased bids during

the double auctions. The GSs are buyers that participated with the TI and sellers in the

double auctions. This allowed the UAVs to control the allocation process by the bids

they submitted. All GSs participated in auctioning tasks received from the TI to UAVs

that submitted bids to one or more GSs. This gave the UAVs more chances to win the

73

auctioned tasks. Therefore, the buyer's cost for executing the task was considered in a

bid that reflected the maximum price the buyer can pay for that task. Thus, the seller‘s

bid is considered the minimum price acceptable to trade the task.

As a global objective, this dissertation used double auctions to minimize the

overall cost. During the auctioning process, the UAV's cost for executing tasks was

considered a bid that did not exceed the auctioneer‘s reserve price. Therefore, more than

one agent may submit the same bid, and the auctioneer‘s role was as tiebreaker. GSs

were bounded by the TI‘s reservation price when submitting their bids to the TI; hence,

they benefitted from the buyers that bid for less in case they did not win the task. Yet

there was still an opportunity for them to receive partial profit in case their buyer agent

became the winner. The GSs used the TI‘s reserve price to come up with their own price

for the auctioned task that was based on their linear distance to the auctioned task, and

the time needed to execute a task by a prospective winner, which was based on the

known speed of the UAVs. UAVs submitted their buy offers to the market (GS in this

situation) according to the market rules; the seller‘s decision was based on the minimum

bid.

For any auctioned task, there is a deadline time for the task data to be received by

the auctioneer. When execution of a candidate task would cause the execution of any

task in the UAV‘s current plan to miss its deadline, the UAV did not submit a bid for that

auctioned task. Thus, data delivery time affected the amount of profit a UAV could earn;

the sooner the task(s) were delivered to the auctioneer, the more profit the UAV

74

generated, which was a direct result of the UAV‘s communication range. Increasing the

UAVs‘ communication ranges enabled them to deliver the needed data sooner.

This double auction operated differently than a regular double auction. The

overall objective was to minimize overall costs. Bids were ranked from minimum to the

maximum; the agent with the minimum bid was awarded the task assuming all

constraints were met.

Using the increasing price function, re-auctioning the GSs‘ tasks improved the

quality of the solution because all tasks at the end were bid on and thereafter assigned.

Re-auctioning made the system robust and maintained strong control over all auctioned

tasks regardless of any uncertainty agents might have faced (e.g., UAV communication

malfunction) during task execution. When a UAV was unable to perform its tasks, these

tasks were assigned to other agents through a new auction held by the GS that was

supposed to receive the data on time.

This double auction generated a random number of tasks to be executed by a

different number of UAVs to determine the effect on the quality of the solution. For the

same number of tasks, having more UAVs participate in the auction resulted in a quicker

response by reducing the average distance traveled, and the average time of tasks

execution decreased as well. Increasing the communication ranges also improved the

quality of the solution by reducing the execution time and increasing the profit for each

participant.

Assuming each UAV is self- interested, the total time to complete all the tasks

assigned to it was minimized. Tasks were assigned through bidding according to double

75

auction rules. Additionally, communication malfunctions of the UAVs were simulated.

In this research, UAVs could become disabled and so fail to deliver their task(s).

Therefore, UAV malfunctioning introduces new challenges for this system. Since each

UAV is responsible for delivering its won tasks, it will have to assure delivering the

completed tasks to the source GS without any delay to maximize its won profit.

Otherwise, the UAV suffers a severe penalty. The robustness issue was addressed by

introducing a point of failure for some UAVs during task execution. This was done by

disconnecting a UAV before it delivered all or some of its tasks to their final destination.

Since the tasks are time limited, the system‘s robustness was validated by re-auctioning

undelivered tasks(s) by the prospective receiver GS after gamma () time passed since

their due time. However, a disabled UAV could recover from its failure during re-

auctioning, and if it participated in the bidding of any task(s) on its task list, the UAV

wins those tasks if the UAV was already on its way to deliver the tasks‘ data when it was

disabled.

The GS malfunctioning issue is an area for future research, since the current

constraints made it difficult to handle at this time. Going forward, UAVs may have

different capabilities such as different speeds and different communication ranges;

therefore, research is needed to explore the effect of these on the quality of the solution

and the profit that can be generated. To address relevant issues in double auctions, future

research can also expand on this research by exploring double auctions between GSs in

addition to the combinations (GSs and UAVs) investigated in this research.

76

REFERENCES

Ajorlou, A., Homaifar, A., Esterline, A., Moore, J. G., and Bamberger, R. J. Market-

based coordination of UAVs for time-constrained remote data collection and

relay. In Proceedings of the International Conference on Intelligent Systems

(2007).

Ajorlou, A., Homaifar, A., Esterline, A., Moore, J. G., and Bamberger, R. J. Robust

multi-UAV data collection. In Proceedings of the AIAA Infotech@Aerospace

Conference and Exhibit (2007).

Botelho, da Costa, S. S., and Alami, R. M+: A scheme for multi-robot cooperation

through negotiated task allocation and achievement. In Proceedings of the

International Conference on Robotics and Automation (1999).

Deneubourg, J.-L., Theraulaz, G., and Beckers, R. Swarm-made architectures. In

Proceedings of the European Conference on Artificial Life (1991).

Dias, M. B., and Stentz, A. T. Traderbots: A market-based approach for resource, role,

and task allocation in multi-robot coordination. Tech. Rep. CMURI -TR-03-19,

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August 2003.

Dias, M. B., Zlot, R. M., Kalra, N., and Stentz, A. T. Market-based multi-robot

coordination: A survey and analysis. Tech. Rep. CMU-RI-TR-05-13, Robotics

Institute, Carnegie Mellon University, Pittsburgh, PA, April 2005.

77

Dias, M., Zlot, R., Karla, N., and Stentz, A. (2006). Market-based Multirobot

Coordination: A Survey and Analysis. Proceedings of the IEEE, 94(7):1257–

1270.

Dias, M., Zlot, R., Zinck, M., and Stentz, A. Robust multi-robot coordination in dynamic

environments. In Proceedings of the International Conference on Robotics and

Automation (2004).

Fasli, Maria, ―Agent Technology for e-Commerce.‖ John Wiley & Sons Ltd, The Atrium,

Southern Gate, Chester, West Sussex PO19 8SQ, England (2007).

Gerkey Brian P. and Maja J. Mataric´, ―Sold!: Auction methods for multi-robot

coordination.‖ IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 18,

5(2002), 758–768.

Kalra, N., Ferguson, D., and Stentz, A. T. Constrained exploration for studies in

multirobot coordination. In Proceedings of the IEEE International Conference on

Robotics and Automation (2006).

Kalra, N., Stentz, A., and Ferguson, D. (2005). Hoplites: A Market Framework for

Complex Tight Coordination in Multi-Agent Teams. In Proceedings of the

International Conference on Robotics and Automation (ICRA), pages 1170–1177,

New Orleans, USA.

Koenig, S., Tovey, C., Zheng, X., and Sungur, I. (2007). Sequential Bundle-Bid Single-

Sale Auction Algorithms for Decentralized Control. In Proceedings of the

International Joint Conference on Artificial Intelligence, pages 1359–1365.

78

Kube, C. R., and Zhang, H. Collective robotic intelligence. In Proceedings of the Second

International Conference on Simulation of Adaptive Behavior (1992).

Lemaire, Thomas, Rachid Alami, Simon Lacroix. A Distributed Tasks Allocation

Scheme in Multi-UAV Context. In Proceedings of the 2004 IEEE International

Conference on ROWW h Automation (2004)

Moore, K. L., White, M. J., Bamberger, R. J., and Watson, D. P. Cooperative UAVs for

remote data collection and relay. In Proceedings of AUVSI Unmanned Systems

Conference and Expo (2005).

Parker, L. Alliance: An architecture for fault-tolerant multi-robot cooperation. IEEE

Transactions on Robotics and Automation 14, 2 (1998), 220 - 240.

Retrieved from http://www.wordiq.com/definition/Procurement_auction on April 15,

2010.

Sandholm Thomas, ―An Implementation of the Contract Net Protocol Based on Marginal

Cost Calculations.‖ Proceedings of the 12th International Workshop on

Distributed Artificial Intelligence, 1993, pp. 295—308.

Sandholm, T. An implementation of the contract net protocol based on marginal cost

calculations. In Proceedings of the Eleventh National Conference on Artificial

Intelligence (1993).

Sandholm, T., and Lesser, V., ―Issues in Automated Negotiation and Electronic

Commerce: Extending the Contract Net Framework.‖ Proceedings of the first

International Conference on Multiagent Systems (ICMAS-95), 1995.

http://www.wordiq.com/definition/Procurement_auction

79

Sariel, S., Balch, T., and Erdogan, N. (2006). Robust Multi-Robot Cooperation Through

Dynamic Task Allocation and Precaution Routines. In The 3rd International

Conference on Informatics in Control, Automation and Robotics (ICINCO),

Minneapolis, USA.

Smith, G. (1980). The Contract Net Protocol: High-Level Communication and Control in

a Distributed Problem Solver. IEEE Transactions on Computers, C-

29(12):1104–1113.

Smith, R., ―The Contract Net Protocol: High-Level Communication and Control in a

Distributed Problem Solver.‖ IEEE Transactions on Computers, Vol. C-29, No.

12, 1980.

Steels, L. Cooperation between distributed agents through self-organization In

Proceedings of the IEEE International Workshop on Intelligent Robots and

Systems '90 (1990).

Stentz, A. and Dias, M. B., ―A Free Market Architecture for Coordinating Multiple

Robots.‖ Technical Report, CMU-RI-TR-99-42, Robotics Institute, Carnegie

Mellon University, 1999.

Tovey, C., Lagoudakis, M. G., Jain, S., and Koenig, S. (2005). Multi-Robot Systems.

From Swarms to Intelligent Automata Volume III, Proceedings from the 2005

International Workshop on Multi-Robot Systems, chapter The Generation of

Bidding Rules for Auction-based Robot Coordination, pages 3–14. Springer

Netherlands.

80

Zheng, X., Koenig, S., and Tovey, C. (2006). Improving Sequential Single-Item

Auctions. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), volume 2, pages 2238–2244, Beijing,

China.

81

APPENDIX A

DOUBLE AUCTION TRACES

Actual GS communication radius for the overlap case is: 400
TI communication radius: 231

GSs and UAVs bid pairs:

 GS GS_Bid UAV UAV_Bid
 1 475 3 406
 2 Inf 3 433

 3 Inf 3 447

GSs and UAVs bid pairs:
 GS GS_Bid UAV UAV_Bid
 1 1105 1 1034

 2 1101 1 1032
 3 Inf 1 1069

GSs and UAVs bid pairs:
 GS GS_Bid UAV UAV_Bid

 1 1077 1 907
 2 Inf 1 945

 3 1085 1 911

GSs and UAVs bid pairs:

 GS GS_Bid UAV UAV_Bid
 1 Inf 1 307

 2 524 1 307
 3 Inf 1 307

GSs and UAVs bid pairs:
 GS GS_Bid UAV UAV_Bid

 1 Inf 2 766
 2 805 2 735
 3 Inf 2 764

GSs and UAVs bid pairs:

 GS GS_Bid UAV UAV_Bid
 1 407 2 64

82

 2 380 2 64
 3 Inf 2 64

GSs and UAVs bid pairs:

 GS GS_Bid UAV UAV_Bid
 1 Inf 5 939
 2 980 5 920

 3 Inf 5 942

GSs and UAVs bid pairs:
 GS GS_Bid UAV UAV_Bid
 1 561 5 285

 2 586 5 297
 3 Inf 5 297

GSs and UAVs bid pairs:
 GS GS_Bid UAV UAV_Bid

 1 Inf 9 1343
 2 Inf 9 1331

 3 1374 9 1304

GSs and UAVs bid pairs:

 GS GS_Bid UAV UAV_Bid
 1 1158 9 947

 2 1179 9 957
 3 Inf 9 970

GSs and UAVs bid pairs:
 GS GS_Bid UAV UAV_Bid

 1 599 9 133
 2 Inf 9 133
 3 602 9 133

GSs and UAVs bid pairs:

 GS GS_Bid UAV UAV_Bid
 1 1077 4 993
 2 Inf 4 1014

 3 1052 4 981

UAV_TaskList =

 Columns 1 through 5
 [1x3 double] [1x2 double] [1] [12] [1x2 double]

83

 Columns 6 through 9

 [] [] [] [1x3 double]

Ground Stations coordinates (in rows):
 231 0 0
 -115 200 0

 -115 -200 0

UAVs Initial Coordinates (in rows):
 -114 219 121
 -78 199 106

 218 28 132
 -65 -151 144

 -24 -127 169
 -52 -144 111
 -115 -180 106

 -115 -180 119
 -115 -180 132

Tasks Coordinates (in rows):
 2073 832 759

 2297 4431 1144
 2802 -3897 1470

 -2120 1407 433
 -1624 2492 2422
 261 1538 1028

 -1035 2227 3860
 1926 1837 503

 -4385 -3825 2759
 2814 2401 3910
 1079 -1712 1941

 567 -3680 3210

RECORDS FOR UAV1:
Tasklist:
 2 3 4

Minimum Route:

 1 4 2 3 1

StartTime DeliveryTime PathTime LatestDeliveryTime

 22 2063 2041 2581
RECORDS FOR UAV2:

84

Tasklist:
 5 6

Minimum Route:

 2 6 5 2
StartTime DeliveryTime PathTime LatestDeliveryTime
 22 749 727 1868

RECORDS FOR UAV3:
Tasklist:

 1

Minimum Route:

 3 1 1

StartTime DeliveryTime PathTime LatestDeliveryTime
 22 391 369 2359

RECORDS FOR UAV4:
Tasklist:

 12

Minimum Route:

 4 12 3

StartTime DeliveryTime PathTime LatestDeliveryTime
 22 914 892 4916

RECORDS FOR UAV5:
Tasklist:

 7 8

Minimum Route:

 5 7 8 1

StartTime DeliveryTime PathTime LatestDeliveryTime
 22 1117 1095 2709

RECORDS FOR UAV9:
Tasklist:

 9 10 11

Minimum Route:

 9 9 11 10 1

85

StartTime DeliveryTime PathTime LatestDeliveryTime
 22 2189 2167 2804

UAV LIST FOR GS1:

 3 1 5 9 9

UAV LIST FOR GS2:

 1 1 2 2 5

UAV LIST FOR GS3:
 9 4

 AvgDist(m) AvgTime(s) Dist_std(m) Time_std(s)
 8101 810 8378 838

RESULTS FROM THE ROBUSTNESS
Records for the disconnected UAV:
UAV Disconnected = 1

Time it got eliminated = 50
Time it recovered = 4400

Its latest task delivery time = 2581
Tasks in its tasklist are:
 4 2 3

Tasks delivered are:

None
Tasks undelivered are:
 4 2 3

TIME AT WHICH THE REAUCTION OF TASKS FROM THE DISCONNECTED
UAV BEGINS: 2586

THE REMAINING TASKS TO BE DONE BY ALL THE OTHER UAV JUS T
BEFORE THE REAUCTION OF TASKS FROM THE DISCONNECTED, UAV1:

The remaining tasks for UAV 2 are: None
The remaining tasks for UAV 3 are: None
The remaining tasks for UAV 4 are: None

The remaining tasks for UAV 5 are: None
The remaining tasks for UAV 6 are: None

86

The remaining tasks for UAV 7 are: None
The remaining tasks for UAV 8 are: None

The remaining tasks for UAV 9 are: None
UAVs current coordinates just before the reauction of tasks from the eliminated UAV:

 -353 361 158
 -115 200 0
 232 1 1

 -115 -200 0
 232 1 0

 -52 -144 111
 -115 -180 106
 -115 -180 119

 232 1 2

GSs and UAVs bid pairs:
 GS GS_Bid UAV UAV_Bid
 1 Inf 2 503

 2 524 1 425
 3 Inf 1 450

GSs and UAVs bid pairs:
 GS GS_Bid UAV UAV_Bid

 1 1105 2 1038
 2 1101 2 1036

 3 Inf 2 1074

GSs and UAVs bid pairs:

 GS GS_Bid UAV UAV_Bid
 1 1077 2 907

 2 Inf 2 945
 3 1085 2 911

RECORDS FOR UAVs WHICH WON REAUCTIONED TASK(S):
(Note: Those UAVs which did not win any reacuctioned tasks have the same records as

shown before)
UAV1:
TASKLIST:

Task completed before REAUCTION:
Task completed after REAUCTION:

 4

Minimum Route from start to end:

 1 4 2

87

StartTime DeliveryTime PathTime LatestDeliveryTime
 22 2977 415 5117

UAV2:

TASKLIST:
Task completed before REAUCTION:
 6 5

Task completed after REAUCTION:
 2 3

Minimum Route from start to end:
 2 6 5 2 3 1

StartTime DeliveryTime PathTime LatestDeliveryTime

 22 4356 2493 1868

UAV LIST FOR GS1:

 3 5 9 9 2

UAV LIST FOR GS2:
 2 2 5 1 2

UAV LIST FOR GS3:
 9 4

 AvgDist(m) AvgTime(s) Dist_std(m) Time_std(s)
 8257 826 9407 941

Ground Stations coordinates (in rows):

 231 0 0

 -115 200 0

 -115 -200 0

UAVs and Tasks coordinates:

9 UAVs

UAVs Initial Coordinates (in rows):

 69 114 138

 -97 210 100

 -89 205 146

 -8 -118 136

 -58 -147 155

 68 -74 160

88

 -115 -180 143

 -115 -180 166

 -115 -180 112

20 Tasks
Tasks coordinates (in rows):

 3148 -613 4615

 4706 -544 2990

 -3731 2547 3855

 4134 1551 405

 4158 2655 1679

 2922 853 2995

 4058 -3374 1985

 4595 -102 702

 469 2094 4694

 1324 4598 2906

 -4025 -3132 954

 -2215 -1185 3973

 4576 2952 1917

 3003 -2762 2119

 -146 -3810 2533

 -782 1463 2818

 4572 -16 600

 -3581 -2240 3871

 -3424 1797 3072

 4649 -1596 4214

Ground Stations coordinates (in rows):

 231 0 0

 -115 200 0

 -115 -200 0

6 UAVs

UAVs Initial Coordinates (in rows):

 17 144 115

 37 132 139

 131 -38 113

 146 -29 153

 -115 -180 177

 -115 -180 127

12 Tasks

Tasks coordinates (in rows):

 2073 832 759

 2297 4431 1144

89

 2802 -3897 1470

 -2120 1407 433

 -1624 2492 2422

 261 1538 1028

 -1035 2227 3860

 1926 1837 503

 -4385 -3825 2759

 2814 2401 3910

 1079 -1712 1941

 567 -3680 3210

90

APPENDIX B

CODE

File CalUAVDistance
function DistTravelled = CalUAVDistance(UAV_Speed,

TimeTaskStart,NegTIME,TaskDeliveryTime)
 % Computes the instaneous distance travelled by UAV
 % NegTIME is the instance at which negotiation is to happen

 if NegTIME<=TimeTaskStart
 DistTravelled = 0;
 else
 DistTravelled =

UAV_Speed*(min(NegTIME,TaskDeliveryTime)-TimeTaskStart);
 end
 %%%%%%%%%%%%%%%%%%%%

File CalUAVsNegBids
function [UAVNegPath,PathCostNeg] =

CalUAVsNegBids(DistTravel_UAVi,UAVi_MovingTo,...

UAVj_MovingTo,GS_UAVi_RouteCords,GS_UAVj_RouteCords,UAVi_NewLocation,..

.

UAVj_NewLocation,DistUnitCost,TimeUnitCost,UAV_Speed,TimeHistory,ROUTEi

d_j,Deadlines,GS_UAViRoutes)

%%% UAVi negotiating a task

global TaskName
UAVNegPath = [];
PathCostNeg = inf;

if DistTravel_UAVi>0
 TaskToNeg_i = GS_UAVi_RouteCords(UAVi_MovingTo,:);
 TaskName = GS_UAViRoutes(UAVi_MovingTo);
 %%% compute the cost of the UAVs to the tasks
 UAVi_NegBid = norm(TaskToNeg_i-UAVi_NewLocation)*DistUnitCost +

norm(TaskToNeg_i-UAVi_NewLocation)*TimeUnitCost/UAV_Speed; % in USD
 UAVj_NegBid = norm(TaskToNeg_i-UAVj_NewLocation)*DistUnitCost +

norm(TaskToNeg_i-UAVj_NewLocation)*TimeUnitCost/UAV_Speed; % in USD
 if UAVj_NegBid<UAVi_NegBid
 TempUAVjRoute = [GS_UAVj_RouteCords(1:UAVj_MovingTo-

1,:);UAVj_NewLocation;TaskToNeg_i;GS_UAVj_RouteCords(1:UAVj_MovingTo,:)

];
 %%% computing the cost of the new path

91

 NegPathDist_j = ComputeNegPathDistance(TempUAVjRoute); %% a

function called to compute path distance

 PathTimeNeg_j = NegPathDist_j/UAV_Speed;
 PathCostNeg = NegPathDist_j*DistUnitCost +

PathTimeNeg_j*TimeUnitCost; % in USD
 TaskCompletionTimeNeg_j = TimeHistory(ROUTEid_j,1)+

PathTimeNeg_j;
 if

TaskCompletionTimeNeg_j<=TimeHistory(ROUTEid_j,3)&&TaskCompletionTimeNe

g_j<=Deadlines(TaskName)
 UAVNegPath = TempUAVjRoute;
 % GS_UAVi_RouteCords(UAVi_MovingTo,:) = [];
 end
 end
end
%%%

% %%% UAVj negotiating a task
% if DistTravel_UAVj>0
% TaskToNeg_j = GS_UAVj_RouteCords(UAVj_MovingTo,:);
% %%% compute the cost of the UAVs to the tasks
% UAVj_NegBid = norm(TaskToNeg_j-UAVj_NewLocation)*DistUnitCost +

norm(TaskToNeg_j-UAVj_NewLocation)*TimeUnitCost/UAV_Speed; % in USD
% UAVi_NegBid = norm(TaskToNeg_j-UAVi_NewLocation)*DistUnitCost +

norm(TaskToNeg_j-UAVi_NewLocation)*TimeUnitCost/UAV_Speed; % in USD
% if UAVi_NegBid<UAVj_NegBid
% TempUAViRoute = [GS_UAVi_RouteCords(1:UAVi_MovingTo-

1,:);UAVi_NewLocation;TaskToNeg_j;GS_UAVi_RouteCords(1:UAVi_MovingTo,:)

];
% %%% computing the cost of the new path
% NegPathDist_i = ComputeNegPathDistance(TempUAViRoute); %% a

function called to compute path distance
%
% PathTimeNeg_i = NegPathDist_i/UAV_Speed;
% PathCostNeg_i = NegPathDist_i*DistUnitCost +

PathTimeNeg_i*TimeUnitCost; % in USD
% TaskCompletionTimeNeg_i = TimeHistory(ROUTEid_i,1)+

PathTimeNeg_i;
% if TaskCompletionTimeNeg_i<=TimeHistory(ROUTEid_j,3)
% GS_UAVi_RouteCords = TempUAViRoute;
% GS_UAVj_RouteCords(UAVi_MovingTo,:) = [];
% end
% end
% end

File
function NegPathDist = ComputeNegPathDistance(TempUAVRoute)
% computes the distance of the new path formed by adding a new task

from
% another UAV

92

NegPathDist = 0;
for i =1:size(TempUAVRoute,1)-1
 NegPathDist = NegPathDist + norm(TempUAVRoute(i+1,:)-

TempUAVRoute(i,:));

end

File
function [RouteLenghts,CumRouteLenghts] =

ComputeSegmentDistance(GS_UAVRouteCordAll,GS_UAVRoutesAll)
global GS_UAVCommStrength GS_CommRange UAV_CommRange;
RouteLenghts = [];
CumRouteLenghts = [];
NumberOfRoutes = length(GS_UAVRoutesAll);
for u=1:NumberOfRoutes
 RouteLenghts{u}(:,1) = 0;
 NumOfPoints = size(GS_UAVRouteCordAll{u},1);
 %if NumOfPoints>2 % Avoid dealing with a route with no task
 for r = 1:NumOfPoints-1

 RouteLenghts{u}(:,r+1) = norm(GS_UAVRouteCordAll{u}(r+1,:)-

GS_UAVRouteCordAll{u}(r,:));
 end
 RouteLenghts{u}(:,NumOfPoints)= RouteLenghts{u}(:,r+1)-(1-

GS_UAVCommStrength)*(GS_CommRange+UAV_CommRange);
 CumRouteLenghts{u} = cumsum(RouteLenghts{u}); % zero included for

reference purposes
 %end

end

File
function GS_Cord = CreateAllGroundStations(NumberOfGS, TI,

TI_CommRange, GS_CommRange,Scenario)

GS_AngleChange = 2*pi/NumberOfGS; % Angular displacement between anay

two GS from TI
GS_Angle = [1:NumberOfGS].*GS_AngleChange; % The angles at which the

Manager distributes the GS

if Scenario ==1
 GS_Angle = [0,pi/2,pi];
 % FAR APART

 RADIUS = 0.9 *(TI_CommRange+GS_CommRange);
 GS_X = RADIUS.*cos(GS_Angle)+ TI(:,1);
 GS_Y = RADIUS.*sin(GS_Angle) + TI(:,2);
elseif Scenario ==2
 % INTERSECT
 GS_X = [0, GS_CommRange, -GS_CommRange]+ TI(:,1);
 GS_Y = [2*GS_CommRange, GS_CommRange, GS_CommRange] + TI(:,2);

93

elseif Scenario ==3
 % TANGENT
RADIUS = 2*GS_CommRange/sqrt(3);
 GS_X = RADIUS.*cos(GS_Angle)+ TI(:,1);
 GS_Y = RADIUS.*sin(GS_Angle) + TI(:,2);

end

GS_Z = zeros(1,NumberOfGS);
GS_Cord = [GS_X',GS_Y',GS_Z'];

File
function UAVsAll = CreateAllUAVs(NumberOfUAVs,TI_CommRange,

UAV_CommRange,UAVCommStrength,UAVAngleFromTI,TI)

% This function creates Unmanned Aerial Vehicles and displays them in

such
% a way that at each Ground Station(i.e. GS) has at least one UAV in

its

% communication range
%%%
%%%

 % The initial angles at which the UAVs are distributed from the TI
 ChangeInTeta_TI = 2*pi/NumberOfUAVs;
 Teta_TI_UAVs = [1:NumberOfUAVs].* ChangeInTeta_TI; % X-axis angle

 Dist_TI_UAVs = UAVCommStrength*(TI_CommRange + UAV_CommRange);

 UAV_X = cos(UAVAngleFromTI)*Dist_TI_UAVs.*cos(Teta_TI_UAVs) +

TI(1,1);
 UAV_Y = cos(UAVAngleFromTI)*Dist_TI_UAVs.*sin(Teta_TI_UAVs) +

TI(1,2);
 Z_Value = Dist_TI_UAVs.*sin(UAVAngleFromTI) + TI(1,3);
 UAV_Z(:,1:NumberOfUAVs) = Z_Value;
 UAVsAll = [UAV_X',UAV_Y',UAV_Z'];

File
function [GS_Cord, GS_CommRange,TI_CommRange] =

CreateGroundStations(NumberOfGS, TI,TangGS_CommRange,Scenario,

GS_GS_CommStrength)

GS_Angle = [0,2*pi/3, 4*pi/3];
RADIUS = 2*TangGS_CommRange/sqrt(3); % radius at which all three GSs

are tangential
GS_X = RADIUS.*cos(GS_Angle)+ TI(:,1);
GS_Y = RADIUS.*sin(GS_Angle) + TI(:,2);
GS_Z = zeros(1,NumberOfGS)+ TI(:,3);
GS_Cord = [GS_X',GS_Y',GS_Z'];

94

if Scenario ==1 % FAR APART
 GS_CommRange = GS_GS_CommStrength*TangGS_CommRange;
elseif Scenario ==2 % INTERSECT
 GS_CommRange = (1 + GS_GS_CommStrength)*TangGS_CommRange;

elseif Scenario ==3 % TANGENT
 GS_CommRange = TangGS_CommRange;
end

TI_CommRange = RADIUS; %(RADIUS/GS_TI_CommStrength) - GS_CommRange;

File
function [GS_UAVs_Route,UAVs_Route,UAVRouteCord,ID_UAVs,

UAVTaskStartTime, UAVTaskEndTime] =

DisplayUAVTaskList(WinnerUAV_Route,UAVs, GS_Cord,

Task,WinnerPathTime,TaskCreationTimes)
global UAVsNames Count GS_UAVRoutesAll Counter GS_UAVRouteCordAll

Deadlines TimeHistory
Route = [];

Count = 0;
UAVRouteCord = [];
TimeForTaskExecution = [];
ID_UAVs = [];
for m=1:length(WinnerUAV_Route)
 if ~isempty(WinnerUAV_Route{m})
 Count = Count + 1;
 Counter = Counter + 1;
 UAVs_Route{Count} = WinnerUAV_Route{m};

 Route = UAVs_Route{Count};
 GS_UAVs_Route{Count} = UAVs_Route{Count};
 GS_UAVs_Route{Count}(1,1) = UAVsNames(Route(1));
 GS_UAVRoutesAll{Counter} = GS_UAVs_Route{Count};
 TimeForTaskExecution(Count) = round(WinnerPathTime(Route(1),:));
 TaskList = Route(:,2:end-1);
 UAVTaskStartTime(Count,:) = TaskCreationTimes(TaskList(1)); % time

at which UAV begins executing task
 UAVTaskEndTime(Count,:) = UAVTaskStartTime(Count,:) +

TimeForTaskExecution(Count); % time at which UAV ends its task

 disp(sprintf('The Task List for UAV %s is: %s, Tasks start time is

%d and Task delivery time is %.0d'...
 ,num2str(UAVsNames(Route(1))),

num2str(TaskList),UAVTaskStartTime(Count,:), UAVTaskEndTime(Count,:)))
 UAVRouteCord{Count} = [UAVs(Route(1),:); Task(Route(2:end-

1),:);GS_Cord(Route(end),:)];
 ID_UAVs = [ID_UAVs;UAVsNames(Route(1))];

 LatestDeliveryTime = min(Deadlines(Route(2:end-1)));

 GS_UAVRouteCordAll{Counter} = UAVRouteCord{Count};

95

 TimeHistory(Counter,:) = [UAVTaskStartTime(Count,:),

UAVTaskEndTime(Count,:),LatestDeliveryTime];
 end
end

File
function [UAVNewLocation, PointMovingTo, LastTaskDone]=

FindUAVnewLocation(UAVCumRouteLenghts, GS_UAVRouteCords,

RouteLenghts,DistTravelled)

global GS_CommRange UAV_CommRange GS_UAVCommStrength

UAVNewLocation = [];
LastTaskDone = 0; % no task is done
if DistTravelled==0
 UAVNewLocation = GS_UAVRouteCords(1,:); % UAV initial coordinate
 PointMovingTo = 1;
else
for i =1:length(UAVCumRouteLenghts)

 if DistTravelled < UAVCumRouteLenghts(i)
 PointMovingTo = i;

 DistFromPreviousPoint = DistTravelled -

UAVCumRouteLenghts(PointMovingTo-1);
 DirectionVector = GS_UAVRouteCords(PointMovingTo,:)-

GS_UAVRouteCords(PointMovingTo-1,:);

 UAVNewLocation = GS_UAVRouteCords(PointMovingTo-1,:) +

(DistFromPreviousPoint/RouteLenghts(PointMovingTo))*DirectionVector;

 if PointMovingTo > 2
 LastTaskDone = PointMovingTo - 2; % number of tasks done (Note:

not necesarily task IDs)
 end
 break;
 end
end

if isempty(UAVNewLocation)

 DirectionVector = GS_UAVRouteCords(end,:)-GS_UAVRouteCords(end-

1,:);
 DistFromPreviousPoint = norm(GS_UAVRouteCords(end,:)-

GS_UAVRouteCords(end-1,:))-(1-

GS_UAVCommStrength)*(GS_CommRange+UAV_CommRange);

 UAVNewLocation = GS_UAVRouteCords(end-1,:) +

(DistFromPreviousPoint/DistFromPreviousPoint)*DirectionVector; % UAV

has finished its tasks and arrived at the GS

96

% UAVNewLocation = GS_UAVRouteCords(end,:); % UAV has finished its

tasks and arrived at the GS
 LastTaskDone = length(UAVCumRouteLenghts) - 2; % 2, because we

have one UAV and one GS coordinates
 PointMovingTo = length(UAVCumRouteLenghts);

end

end

File
function RandUAVs =

GenerateRandUAVs(NumberOfGS,NumberOfUAVs,GS_Cord,TangGS_CommRange,UAV_C

ommRangeMin)
Lines = nchoosek(1:NumberOfGS,2); % lines connecting the centre of the

GSs
NumOfLines = size(Lines,1);

NumOfRandUAV = zeros(1,NumOfLines);
NumOfRandUAV(1:NumOfLines-1) =

repmat(floor(NumberOfUAVs/NumberOfGS),1,NumOfLines-1);
NumOfRandUAV(NumOfLines) = NumberOfUAVs -

sum(NumOfRandUAV(1:NumOfLines-1)); %% Last GS pair takes the remaining

UAVs
TempUAVs = [];
for i=1:NumOfLines
 x1 = GS_Cord(Lines(i,1),1);
 y1 = GS_Cord(Lines(i,1),2);
 x2 = GS_Cord(Lines(i,2),1);

 y2 = GS_Cord(Lines(i,2),2);
 if max(x1,x2)-min(x1,x2)< NumOfRandUAV(i)
 UAV_X = repmat(min(x1,x2),1,NumOfRandUAV(i));
 else
 UAV_X = randsample(min(x1,x2):max(x1,x2),NumOfRandUAV(i));
 end
 UAV_Y = ((y2- y1)/(x2-x1)).*(UAV_X-x1)+ y1 + 0.1*TangGS_CommRange;
 UAV_Z = randsample(0.5*TangGS_CommRange:0.4*(TangGS_CommRange +

UAV_CommRangeMin),NumOfRandUAV(i));
 TempUAVs = [TempUAVs ;[UAV_X',UAV_Y',UAV_Z']];

end
RandUAVs = TempUAVs;
FileName =

strcat(num2str(NumberOfUAVs),'RandUAVs_',num2str(UAV_CommRangeMin));
save (FileName, 'RandUAVs')

%%%

UAVsCommWithGS{NumberOfGS} = [];
for g=1:NumberOfGS

DistOfUAVfromGS = sqrt(sum((bsxfun(@minus, GS_Cord(g,:),

RandUAVs)).^2,2));

97

% Temp = find(DistOfUAVfromGS<=(TangGS_CommRange + UAV_CommRangeMin));
for j=1:NumberOfUAVs
 if DistOfUAVfromGS(j)<=(TangGS_CommRange + UAV_CommRangeMin)
 UAVsCommWithGS{g} = [UAVsCommWithGS{g},j];
% break

 end
end
end

disp('COMMUNICATION BETWEEN GSs and UAVs')
for g=1:NumberOfGS
disp(strcat('UAV communicating with GS', num2str(g)))
disp(UAVsCommWithGS{g})
end

File
function RandTasks = GenerateTask()
UAV_CommRangeMax = 2500;
NumOfTasks = 20;

Xmin= -2*UAV_CommRangeMax;
Xmax= 2*UAV_CommRangeMax;
Ymin= -2*UAV_CommRangeMax;
Ymax = 2*UAV_CommRangeMax;
Zmin = 0;%TangGS_CommRange+UAV_CommRangeMin;
Zmax = 2*UAV_CommRangeMax;
X_Cords = randsample(Xmin:Xmax, NumOfTasks);
Y_Cords = randsample(Ymin:Ymax, NumOfTasks);
Z_Cords = randsample(Zmin:Zmax, NumOfTasks);

RandTasks = [X_Cords',Y_Cords',Z_Cords'];
FileName = strcat('RandTasks_',num2str(NumOfTasks));
save (FileName, 'RandTasks')

File
function GS_Bids = GS_Bidding(NumberOfGS, TI, Task,

GS_Cord,TI_CommRange,GS_CommRange,UAV_Speed,DistUnitCost,TimeUnitCost,

TI_TaskCost,Task_id)

% This function computes the the cost for Ground Station(GS) to perform

a given
% task and makes a list of the tasks won by each GS
GS_Bids = [];
Po = [];

Alpha = 0.5; % 0<Alpha<1
for i=1:NumberOfGS
 % CommCheck = norm(TI- GS_Cord(i,:)); % checking to see if GS

and TI are in communication range
 % if CommCheck<=(TI_CommRange + GS_CommRange)
% GS_TaskDist = norm(Task-GS_Cord(i,:)); % distance between the

task and the ground station

98

% GS_TaskDistCost = DistUnitCost*(GS_TaskDist); % (in USD) % Take

note
% GS_TaskTime = GS_TaskDist/UAV_Speed;
% TGS_TaskTimeCost = GS_TaskTime*TimeUnitCost; % (in USD)
% Po(:,i) = 2*(GS_TaskDistCost + TGS_TaskTimeCost); %2*norm(Task-

GS_Cord(i,:))*DistUnitCost; % price from the task
 Po(:,i) = 2*(norm(Task-GS_Cord(i,:))*DistUnitCost + norm(Task-

GS_Cord(i,:))*TimeUnitCost/UAV_Speed); % cost in USD

% GS_Cost = Alpha*Po(:,i) + (GS_TaskDistCost +

TGS_TaskTimeCost)*(1-Alpha); % GS bid for a task

 GS_Cost = Po(:,i);

 if GS_Cost<=TI_TaskCost(Task_id)
 GS_Bids(:,i) = GS_Cost; %GS_Bids(:,i); %GS_Cost;
 else
 GS_Bids(:,i) = Inf;
 end
end
% [Po TI_TaskCost(Task_id)]

File
function PlotTheSpaceWithTheAgents(GS_Cord, GS_CommRange,

NumberOfGS,TI_CommRange, TI,UAVs,NumberOfUAVs)
figure('Name','GS and TI communication ranges, Tasks and UAVs')
plot3(UAVs(:,1),UAVs(:,2),UAVs(:,3),'*')
uavnames = 1:NumberOfUAVs;
text(UAVs(:,1),UAVs(:,2),UAVs(:,3),num2str(uavnames'))
hold on
plot3(GS_Cord(:,1),GS_Cord(:,2),GS_Cord(:,3),'o')
hold on
plot3(TI(:,1),TI(:,2),TI(:,3),'s')
% hold on
% plot3(Task(:,1),Task(:,2),Task(:,3),'')
legend('UAV','GS','TI')
xlabel('x')
ylabel('y')
zlabel('z')
hold on

COL =['r';'b';'g';'m'];

for i =1:NumberOfGS
 % use to plot a circle for the GS communication ranges
 N =256;
t = (0:N)*2*pi/N;
Z = zeros(1,N+1);
plot3(GS_CommRange*cos(t)+GS_Cord(i,1),

GS_CommRange*sin(t)+GS_Cord(i,2),Z,COL(i,:))
hold on
plot(GS_Cord(i,1),GS_Cord(i,2),strcat(COL(i,:),'o'))

99

text(GS_Cord(i,1),GS_Cord(i,2),strcat('GS',num2str(i)))
hold on
end

plot3(TI_CommRange*cos(t)+TI(:,1),

TI_CommRange*sin(t)+TI(:,2),Z,COL(4,:))
plot(TI(:,1),TI(:,2),strcat(COL(4,:),'o'))
text(TI(:,1),TI(:,2),'TI')
grid on
hold on

File
% The function tries to distribute the tasks for a given UAV to other

UAVs
function Robustness(UAV_ID_Eliminate, UAV_Elimination_Time,

UAVRecoveryTime, GS_UAVRoutesAll,...
 TimeHistory, GS_UAVRouteCordAll,

UAVTasksCompletionDurations,AllTaskDeadlines)
% GS_UAVRoutesAll contains all the UAVs' routes (i.e. from UAV->Task-

>GS)
% TimeHistory contains the task start time , delivery time and the

latest
% time the task could be delivered without timeout
% UAV_ID_Eliminate is UAV to be eliminated due to injury
% UAVRecoveryTime > UAV_Disconnection_Time
global TI_CostScalar InitNumberOfTask CycleAuctionCloseTime
tH_Robust = AllTaskDeadlines;
% Making sure the UAVRecoveryTime and UAV_Disconnection_Time are valid

while (UAVRecoveryTime < UAV_Elimination_Time)
 disp('UAVRecoveryTime must be more than UAV_Elimination_Time and

both must be greater than zero')
 UAV_Elimination_Time = input('Please enter UAV_Elimination_Time:

');
 UAVRecoveryTime = input('Please enter the UAVRecoveryTime: ');
end
%%

global GS_CommRange NumberOfGS TI_CommRange TI UAV_CommRange GS_History

Task UAV_Speed WinnerUAV_RouteOld TangGS_CommRange

GS_UAVCommStrength...
 DistUnitCost TimeUnitCost NumberOfUAVs TaskAuctionTimesOld GS_Cord

Up AuctionTimeStep TI_id WinnerPathTimeOld GS_UAVList UAVs
 global SellAndBuyBids M_BuyBid SellAndBuyWinners SellAndBuyWinnerBids

TI_TaskCost GS_jUAV_SBids TaskCreationTime Scenario Gamma OriginalUAV

OriginalGS

% Note: Gamma is a fraction of latest delivery time of task by

eliminated UAV
NumberOfUAVsAll = NumberOfUAVs;
% Find the UAV to be disconnected
UAVs_CurrentLocations = zeros(NumberOfUAVsAll,3);

100

UAVsWithTasks = [];
RemainingPathTime = UAVTasksCompletionDurations;

%zeros(NumberOfUAVsAll,1);
DeadTimes = zeros(NumberOfUAVsAll,1);
UAV_TaskListRemaining = []; % tasks unvisisted prior to the UAV's

disconnection
 NumOfTasks = zeros(NumberOfUAVsAll,1);
for j = 1: length(GS_UAVRoutesAll)
 if ~isempty(GS_UAVRoutesAll{j})
 NumOfTasks(j,:) = length(GS_UAVRoutesAll{j}) - 2; % stores the

number of tasks in the tasklist of each UAV
% UAVsWithTasks = [UAVsWithTasks; GS_UAVRoutesAll{j}(1)]; % UAV

IDS basically

 DeadTimes(GS_UAVRoutesAll{j}(1),:) =

min(AllTaskDeadlines(GS_UAVRoutesAll{j}(2:end-1))); % stores the time

for the last auctioned tasks for each route
 % GS_id(j,:) = GS_UAVRoutesAll{j}(end);
 else
 UAVs_CurrentLocations(j,:) = UAVs(j,:); % UAV does not

move if it wins no task
 end
end

% Checking to make sure the UAV entered is valid and has some task(s)
ValidUAV_IDChecker = 0;
while (ValidUAV_IDChecker==0)
% ROUTEidToDelete = find(UAVsWithTasks == UAV_ID_Eliminate);
 if isempty(GS_UAVRoutesAll{UAV_ID_Eliminate})
 disp('The UAV you have entered does not exist or has no task;

taking it out has no impact on the system.')
 UAV_ID_Eliminate = input('Please enter another UAVid (any

number from 1 through 9): '); % There are 9 UAVs
 ValidUAV_IDChecker = 0;
 else
 ValidUAV_IDChecker = 1;
 ROUTEidToDelete = UAV_ID_Eliminate;
 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

RouteToDelete = GS_UAVRoutesAll{ROUTEidToDelete}; % contains the UAV,

its tasks, and the GS to deliver to

TasksForUAV_ID_Eliminate = RouteToDelete(2:end-1); % Task IDs from the

eliminated UAV
% NumOfTasks = length(TasksForUAV_ID_Eliminate);
LatestTasksDeliveryTime = TimeHistory(ROUTEidToDelete, 4);
TimeToReAuctionTasks = round((1 + Gamma)*LatestTasksDeliveryTime); %

time to restart auctioning taks from the eliminated UAV

101

TimeToBeginReAuctionTasks = TimeToReAuctionTasks;
% Compute the new location of the UAV prior to its elimination (i.e.

deletion)
DistByUAV_ID_Eliminate = CalUAVDistance(UAV_Speed,

TimeHistory(ROUTEidToDelete,1),UAV_Elimination_Time,TimeHistory(ROUTEid

ToDelete,2));
Temp1{1} = GS_UAVRouteCordAll{ROUTEidToDelete}; % take note of

{RouteToDelete};
Temp2{1} = GS_UAVRoutesAll{ROUTEidToDelete}; % take note of

{RouteToDelete};

[RouteLenghts,UAVCumRouteLenghts] = ComputeSegmentDistance(Temp1,

Temp2);

Temp3 = GS_UAVRouteCordAll{ROUTEidToDelete}; % take note of

{RouteToDelete};
Temp4 = UAVCumRouteLenghts{1};
Temp5 = RouteLenghts{1};
[UAVNewLocation1, PointMovingTo, LastTaskDone] =

FindUAVnewLocation(Temp4, Temp3, Temp5,DistByUAV_ID_Eliminate);

% Compute UAV new location after the UAV has recovered and moved

towards
% the remaining tasks
if UAVRecoveryTime < TimeToReAuctionTasks
 EarliestExpDeliveryTime =

TimeHistory(ROUTEidToDelete,2)+(UAVRecoveryTime-UAV_Elimination_Time);
 DistByUAV_ID_Eliminate2 = CalUAVDistance(UAV_Speed,

UAVRecoveryTime, TimeToReAuctionTasks,EarliestExpDeliveryTime);
 TotalDist = DistByUAV_ID_Eliminate + DistByUAV_ID_Eliminate2;
 [UAVNewLocation2, PointMovingTo, LastTaskDone] =

FindUAVnewLocation(Temp4, Temp3, Temp5, TotalDist);
 UAVs_CurrentLocations(UAV_ID_Eliminate, :) = UAVNewLocation2;
else
 UAVs_CurrentLocations(UAV_ID_Eliminate, :) = UAVNewLocation1;
 UAVNewLocation2 = UAVNewLocation1;
end

UAV_GS_CommChecker = UAV_CommRange + GS_CommRange;
Store1 = GS_UAVRouteCordAll{ROUTEidToDelete}(end,:); % GS co-ordinates
if (LastTaskDone>0) && (LastTaskDone < NumOfTasks(ROUTEidToDelete))

&&((norm(Store1- UAVNewLocation2)<=(UAV_GS_CommChecker))) % check

communication
 TasksUnDelivered = TasksForUAV_ID_Eliminate(LastTaskDone+1:end); %

these tasks have to be re-auctioned to the existing UAVs
elseif LastTaskDone < 1
 TasksUnDelivered = TasksForUAV_ID_Eliminate;
elseif (LastTaskDone==NumOfTasks(ROUTEidToDelete)) &&

((norm(GS_UAVRouteCordAll{ROUTEidToDelete}(end,:)-

UAVNewLocation2)<=(UAV_GS_CommChecker)))
 TasksUnDelivered = []; % all tasks are delivered.
else

102

 TasksUnDelivered = TasksForUAV_ID_Eliminate;
end

TasksDelivered =

TasksForUAV_ID_Eliminate(1:length(TasksForUAV_ID_Eliminate)-

length(TasksUnDelivered));

%TasksForUAV_ID_Eliminate(length(TasksUnDelivered)+1:end);

% Display some statistics for the disconnected UAV
disp('Records for the disconnected UAV:')

disp(sprintf('UAV Disconnected = %d', UAV_ID_Eliminate))
disp(sprintf('Time it got eliminated = %d', UAV_Elimination_Time))
disp(sprintf('Time it recovered = %d', UAVRecoveryTime))

disp(sprintf('Its latest task delivery time = %d',

LatestTasksDeliveryTime))
disp('Tasks in its tasklist are:')
disp(TasksForUAV_ID_Eliminate)
disp('Tasks delivered are:')
if isempty(TasksDelivered)
 disp('None')
else
 disp(TasksDelivered)
end

disp('Tasks undelivered are:')
if isempty(TasksUnDelivered)
 disp('none')
else
 disp(TasksUnDelivered)
end
disp(sprintf('\n'))
%%

%%

% Computing the remaining tasks to be done by the existing UAVs at the

point of reauctioning of the tasks undelivered by the disconnected UAV

% Initialize the task lists
 UAV_TaskListRemaining{NumberOfUAVsAll} = [];
% UAV_TaskListRemaining{UAV_ID_Eliminate} = TasksUnDelivered;
 RemainingPathTime = zeros(NumberOfUAVsAll,1); %initialization
% WinnerUAV_Route{NumberOfUAVsAll} = [];
 UAV_TaskListCompleted{NumberOfUAVsAll} = [];
 UAV_TaskListCompleted{UAV_ID_Eliminate} = TasksDelivered;
%%%%%%%%%%%%%%%%%%%%

103

% Find the remaining tasks for UAVs with tasks
 TaskAuctionTimes = zeros(InitNumberOfTask,1);
 WinnerPathTimeOld = zeros(NumberOfUAVsAll,1);
 last =[];

for j = 1: NumberOfUAVsAll %length(UAVsWithTasks)
 if j~=UAV_ID_Eliminate % avoid doing for eliminated UAV
 if ~isempty(GS_UAVRoutesAll{j})
 Distance = CalUAVDistance(UAV_Speed, TimeHistory(j,1),

TimeToReAuctionTasks,TimeHistory(j,2));

 Temp6{1} = GS_UAVRouteCordAll{j};
 Temp7{1} = GS_UAVRoutesAll{j};

 [RouteLenghts,UAVCumRouteLenghts] =

ComputeSegmentDistance(Temp6, Temp7);
% [j,Distance,UAVCumRouteLenghts{1}(end)]
 [UAVs_CurrentLocations(j,:), PointMovingTo, LastTaskDone] =

FindUAVnewLocation(UAVCumRouteLenghts{1}, GS_UAVRouteCordAll{j},

RouteLenghts{1},Distance);

 if LastTaskDone>0 && LastTaskDone <= NumOfTasks(j)
 UAV_TaskListCompleted{j} =

GS_UAVRoutesAll{j}(2:LastTaskDone+1);
 GS_UAVRoutesAll{j}(2:LastTaskDone+1) = []; % delete

tasks IDs visited
 UAV_TaskListRemaining{j} = GS_UAVRoutesAll{j}(2:end-1);

% UAV_TaskListRemaining contains remaining task to be done
 GS_UAVRouteCordAll{j}(2:LastTaskDone+1, :) = []; %

delete the coordinates of tasks visited
 WinnerPathTimeOld(j) =

min(TimeToReAuctionTasks,TimeHistory(j,2))-TimeHistory(j,1); % time

already travelled.
% last = [last; [j NumOfTasks(j) LastTaskDone

UAV_TaskListRemaining{j}]]
 elseif LastTaskDone==0
 UAV_TaskListRemaining{j} = GS_UAVRoutesAll{j}(2:end-1);

 UAV_TaskListCompleted{j} = [];
% WinnerPathTimeOld(j) = TimeToReAuctionTasks-

TimeHistory(j,1); % time elapsed.
 end

 if TimeToReAuctionTasks < TimeHistory(j,2) % less than

earliest delivery time
 RemainingPathTime(j,:) = TimeHistory(j,2) -

TimeToReAuctionTasks; % time remaining to be travelled.
 end

 else
 UAV_TaskListRemaining{j} = [];
 end

104

 end

end

% WinnerPathTimeOld(4)
RemainingPathTime(UAV_ID_Eliminate,:) =

TimeHistory(UAV_ID_Eliminate,2) - UAV_Elimination_Time; % time

remaining to be travelled.

UAV_TaskListRemaining{UAV_ID_Eliminate} = []; % the remaining tasks for

the deleted UAV are the undelivered tasks
WinnerPathTimeOld(UAV_ID_Eliminate) = UAV_Elimination_Time -

TimeHistory(UAV_ID_Eliminate,1); % time already travelled.

% WinnerPathTimeOld(UAV_ID_Eliminate) =

TimeHistory(UAV_ID_Eliminate,2) - TimeHistory(UAV_ID_Eliminate,1);

disp(sprintf('TIME AT WHICH THE REAUCTION OF TASKS FROM THE

DISCONNECTED UAV BEGINS: %s',

num2str(round(TimeToBeginReAuctionTasks))))
disp(sprintf('THE REMAINING TASKS TO BE DONE BY ALL THE OTHER UAV JUST

BEFORE THE REAUCTION OF TASKS FROM THE DISCONNECTED, UAV%s:',

num2str(UAV_ID_Eliminate)))

for i=1:NumberOfUAVsAll
 if i~=UAV_ID_Eliminate % avoid doing for eliminated UAV
 if isempty(UAV_TaskListRemaining{i})
 disp(sprintf('The remaining tasks for UAV %s are: %s',

num2str(i), 'None'))
 GS_UAVRoutesAll{i} = [];
 else
 disp(sprintf('The remaining tasks for UAV %s are: %s',

num2str(i), num2str(UAV_TaskListRemaining{i})))
 TaskAuctionTimes(UAV_TaskListRemaining{i}) =

TimeToReAuctionTasks + (0:length(UAV_TaskListRemaining{i})-

1).*AuctionTimeStep;
 end
 end
end
GS_UAVRoutesAll{UAV_ID_Eliminate} = []; % deleted UAV has no route

until it recovers and wins some tasks.
disp(sprintf('\n'))

disp('UAVs current coordinates just before the reauction of tasks from

the eliminated UAV:')
disp(round(UAVs_CurrentLocations))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

105

% The reauctioning of the undelivered tasks from the disconnected UAVs

PreviousGSTaskAuctionTimes = TaskAuctionTimes; % keeps the times the

tasks were originally sold to the UAVs.

for gs=1:NumberOfGS
 TempGS_UAVlist = GS_UAVList{gs};
 GS(gs).UAV_Route = GS_UAVRoutesAll;
 TempGS_UAVlist(find(TempGS_UAVlist==UAV_ID_Eliminate))=[];
 GS_UAVList{gs} = TempGS_UAVlist; % deleted UAV eliminated
end
WinnerUAV_Route = GS_UAVRoutesAll; % New UAV routes (initialization)
WinnerPathTime = RemainingPathTime; % initialization

UAV_TaskListNew = UAV_TaskListRemaining;

if isempty(TasksUnDelivered)
 ReauctionCloseTime = 0;
 disp('All the tasks have already been delivered by the disconnected

UAV before the reauctioning time')
else
 Start_t = TimeToBeginReAuctionTasks - AuctionTimeStep; %

initialization
% GS_UAVList{NumberOfGS} = []; % initialization
 WinnerUAVsIDs = [];
 UAVsBids = [];
 CycleCount = 0;

 UnsoldTaskIDs = TasksUnDelivered;
 InitReAuctioneTimes(UnsoldTaskIDs) = TimeToReAuctionTasks +

(0:length(UnsoldTaskIDs)-1).*AuctionTimeStep; % For initial undelivered

tasks
 while(1) % do until all tasks are re-auctioned
 CycleCount = CycleCount + 1;
 NumberOfTask(CycleCount) = length(UnsoldTaskIDs);
 UnsoldTaskIDsTemp = [];

 for i = 1: NumberOfTask(CycleCount)
 TaskID = UnsoldTaskIDs(i);
 NewTask_id = TaskID;
 Start_t = Start_t + AuctionTimeStep; % note, Start_t

starts from TimeToReAuctionTasks and it is basically task re-auctioned

time
 TaskAuctionTimes(TaskID) = Start_t; %

 AllTaskDeadlines(TaskID,:) = AllTaskDeadlines(TaskID) +

Start_t - max(UAV_Elimination_Time, TimeHistory(ROUTEidToDelete,1));

% task deadlines have been readjusted
 NewTaskDeadline = AllTaskDeadlines(TaskID);

 %Compute the cost of the task to be auctioned
 t = TaskAuctionTimes(TaskID)-InitReAuctioneTimes(TaskID);

106

 TI_Po(:,TaskID) = 2*(norm(TI-Task(TaskID,:))*DistUnitCost +

norm(TI-Task(TaskID,:))*TimeUnitCost/UAV_Speed); % initial price from

the task initiator

 TI_TaskCost(TaskID,:) = TI_CostScalar*TI_Po(:,TaskID)*(1 +

Up*t/tH_Robust(TaskID));
 GS_Bids{TaskID} = GS_Bidding(NumberOfGS, TI,

Task(TaskID,:),GS_Cord,TI_CommRange,GS_CommRange,UAV_Speed,DistUnitCost

,TimeUnitCost,TI_TaskCost,TaskID); % sell bids

 % Computing the UAVs Biddings and the optimize path as well
 UAVwinnerBids = zeros(1,NumberOfGS);
 WinnerUAVnames = zeros(1,NumberOfGS);
 GSs_UAVs_BidPairs = zeros(NumberOfGS,4);

 GSnames = 1:NumberOfGS;

 AllUAVNames = 1: NumberOfUAVsAll; % initialization
 if UAVRecoveryTime < Start_t
 for gs = 1:NumberOfGS
 UAV_Bids{TaskID}(UAV_ID_Eliminate) = inf;
 GS(gs).UAV_Route{UAV_ID_Eliminate} = [];
 GS(gs).PathTime(UAV_ID_Eliminate,:) = inf;
 end
 AllUAVNames(UAV_ID_Eliminate)=[]; % to prevent the

deleted UAV from bidding
 end

 for gs = 1:NumberOfGS
 UAV_Bid = [];
 for j=1: length(AllUAVNames) %NumberOfUAVsAll
 UAVID = AllUAVNames(j);

% if UAVID==UAV_ID_Eliminate && UAVRecoveryTime <

Start_t
% UAV_Bids{TaskID}(UAVID) = inf;

GS(gs).UAV_Route{UAVID} = []; GS(gs).PathTime(UAVID,:) = inf; % to

prevent the deleted UAV from bidding
% else

 if isempty(UAV_TaskListNew{UAVID})
 UAV_TaskListPrevious = [];
 NewLeastPathTime = 0;
 OldTaskDeadline = 0;
 oldGS_ID = 0;

[UAV_Bids{TaskID}(UAVID),GS(gs).UAV_Route{UAVID},GS(gs).PathTime(UAVID)

] = UAV_Bidding(UAV_TaskListPrevious, TI,

TI_id,UAVID,UAVs_CurrentLocations,Task,UAV_Speed,TI_TaskCost,...

TaskID,DistUnitCost,TimeUnitCost,NewLeastPathTime,NewTaskDeadline,...

107

OldTaskDeadline,GS_CommRange,UAV_CommRange,

TaskAuctionTimes,GS_Cord,gs,oldGS_ID);
 elseif ~isempty(UAV_TaskListNew{UAVID})
 UAV_TaskListPrevious =

UAV_TaskListNew{UAVID};
 NewLeastPathTime = WinnerPathTime(UAVID);
 % OldTaskDeadline =

DeadTimes(UAVID);
 oldGS_ID = WinnerUAV_Route{UAVID}(end);
% bb = GS(gs).UAV_Route{UAVID}(end-1)
 OldTaskDeadline =

min(AllTaskDeadlines(UAV_TaskListNew{UAVID}));

%AllTaskDeadlines(GS(gs).UAV_Route{UAVID}(end-1));

[UAV_Bids{TaskID}(UAVID),GS(gs).UAV_Route{UAVID},GS(gs).PathTime(UAVID)

] = UAV_Bidding(UAV_TaskListPrevious, TI,

TI_id,UAVID,UAVs_CurrentLocations,Task,UAV_Speed,TI_TaskCost,...

TaskID,DistUnitCost,TimeUnitCost,NewLeastPathTime,NewTaskDeadline,...

OldTaskDeadline,GS_CommRange,UAV_CommRange,

TaskAuctionTimes,GS_Cord,gs,oldGS_ID);
 end

% end
 end
 [UAVwinnerBids(gs), WinnerUAVnames(gs)] =

min(UAV_Bids{TaskID});
 end

 GSs_UAVs_BidPairs = [GSnames',round(GS_Bids{TaskID}'),

WinnerUAVnames',round(UAVwinnerBids')];
 disp('GSs and UAVs bid pairs:')
 disp(' GS GS_Bid UAV UAV_Bid')
 disp(GSs_UAVs_BidPairs)
 % UAV_Bids{i}

%%%

 % Matching the GS_Bids (i.e. sell bids) and the UAV_Bids

(i.e. buy
 % bids
 Sell_in_Bids = [];
 Buy_in_Bids = [];
 TransactionSet = [];
 UAV_Indx = [];
 GS_Indx = [];
 UAV_Indx1 = [];
 GS_Indx1 = [];

 % Determine eligible sellers and buyers

108

 for m=1:NumberOfGS
 if GS_Bids{TaskID}(m)~=Inf && UAVwinnerBids(m)~=Inf
 TransactionSet = [TransactionSet;

[GS_Bids{TaskID}(m),UAVwinnerBids(m)]];
 UAV_Indx1 = [UAV_Indx1; WinnerUAVnames(m)];

 GS_Indx1 = [GS_Indx1; m];
 end
 end
 %%%

 NumOfSellers = size(TransactionSet,1);
 if ~isempty(TransactionSet) % There are seller(s) and

buyer(s)
 [ignore1 OrigIndx] = min(TransactionSet(:,1));
 OriginalUAVtemp = UAV_Indx1(OrigIndx);
 OriginalGStemp = GS_Indx1(OrigIndx);

 Rank = sort([TransactionSet(:,1),

TransactionSet(:,2)],'ascend');
 M_BuyBid(TaskID,:) = Rank(NumOfSellers); % Mth bid
 M_nextBuyBid(TaskID,:) = Rank(NumOfSellers+1); % M+1st

bid

 [Sell_Bids{TaskID}, GS_IndxTemp{TaskID}] =

min(TransactionSet(:,1));
 GS_Indx(1) = GS_Indx1(GS_IndxTemp{TaskID}); % winner

GS(i.e. GS with minimum bid)
 UAV_Indx(1) = UAV_Indx1(GS_IndxTemp{TaskID}); % winner

UAV (i.e. UAV with minimum bid)

 Buy_Bids{TaskID} =

TransactionSet(GS_IndxTemp{TaskID},2);
 % GS_Winner =

GS_Indx1(GS_IndxTemp{TaskID}); % actual winner
 GS_jUAV_SBids(TaskID) =

GS_Bids{TaskID}(GS_Indx(1)); % cost of GS to which task is delivered
% GS_TaskDelivered(TaskID) = GS_Indx(1);

 %%%Determine the winner
 UAV_TaskListNew{UAV_Indx(1)} =

[UAV_TaskListNew{UAV_Indx(1)}, TaskID];
 GS_UAVList{GS_Indx(1)} = [GS_UAVList{GS_Indx(1)},

UAV_Indx(1)];
 WinnerUAV_Route{UAV_Indx(1)} =

GS(GS_Indx(1)).UAV_Route{UAV_Indx(1)};
 WinnerPathTime(UAV_Indx(1)) =

GS(GS_Indx(1)).PathTime(UAV_Indx(1));
 SellAndBuyBids(TaskID,:) =

SellAndBuyWinnerBids(TaskID,:); %winning sell and buy bids pair
 SellAndBuyWinners(TaskID,:) = [GS_Indx(1),

UAV_Indx(1)]; % UAVs and GSs that win the tasks
 SellAndBuyWinnerBids(TaskID,:) = [Sell_Bids{TaskID},

Buy_Bids{TaskID}];

109

 SellAndBuyBids(TaskID,:) =

SellAndBuyWinnerBids(TaskID,:);

 OriginalUAV(TaskID) = OriginalUAVtemp; % UAV with

minimum cost

 OriginalGS(TaskID) = OriginalGStemp; % GS paired with

UAV with minimu cost
 else % there are no sellers and/or buyers
 UnsoldTaskIDsTemp = [UnsoldTaskIDsTemp,TaskID];
 end
 end
 TransactionSet = [];

 % Check if all tasks are sold

 if isempty(UnsoldTaskIDsTemp)
 break; % break from the while loop
 else
 UnsoldTaskIDs = UnsoldTaskIDsTemp; % tasks unsolds
 end
% UnsoldTaskIDs
 end
 ReauctionCloseTime = Start_t; % time at which the reauction of

the tasks from the disconnected UAV is over
end

%Display the final routes for UAVs which won some reauctioned tasks
UAVTasksStartTimes = [];

% disp('THE ROUTES FOR THE BUSY (THOSE WHICH HAD TASKS) UAVs FROM THE

TIME THE UNDELIVERED TASKS ARE REAUCTIONED:')
% for i=1: NumberOfUAVsAll
% if ~isempty(WinnerUAV_Route{i})
% % UAVTasksStartTimes = [UAVTasksStartTimes;

GSTaskAuctionedTimes(WinnerUAV_Route{i}(2))];
% disp(WinnerUAV_Route{i})
% disp(sprintf('Tasks begin at %s, delivered at %s',

num2str(TaskAuctionTimes(WinnerUAV_Route{i}(2))),...
% num2str(round(WinnerPathTime(i)+

TaskAuctionTimes(WinnerUAV_Route{i}(2))))))
% disp(sprintf('\n'))
% end
% end

TaskAuctionTimesOld(TasksUnDelivered) =

TaskAuctionTimes(TasksUnDelivered); % Replace the aution times for the

re-autioned tasks

 %%% Detail Results

TaskNames = 1:InitNumberOfTask;
% Calculate the profit using the clearing price (i.e. M_BuyBid)

110

SellerProfit1 = 0.5*(SellAndBuyWinnerBids(:,1)-

SellAndBuyWinnerBids(:,2) + TI_TaskCost - SellAndBuyWinnerBids(:,1) -(

GS_jUAV_SBids-SellAndBuyWinnerBids(:,1)));
BuyerProfit1 = SellerProfit1;
OriginalGS_Profit = 0.5*(GS_jUAV_SBids - SellAndBuyWinnerBids(:,1)); %

profit of original GS that was paired with the winner UAV

AvgSellBid = mean(SellAndBuyWinnerBids(:,1));
AvgBuyBid = mean(SellAndBuyWinnerBids(:,2));
% AvgGS_DelivererBid = mean(GS_jUAV_SBids);
AvgOriginalGS_Bid = mean(GS_jUAV_SBids);
AllAvgBids = [AvgOriginalGS_Bid,AvgSellBid,AvgBuyBid];

AvgClearingPrice = mean(M_BuyBid);

AvgOriginalGS_Profit = mean(OriginalGS_Profit);
AvgSellProfit = mean(SellerProfit1);
AvgBuyProfit = mean(BuyerProfit1);
% AvgGS_DelivererProfit = mean(GS_Profit);
AllAvgProfits = [AvgClearingPrice,AvgOriginalGS_Profit,AvgSellProfit,

AvgBuyProfit];

% Compute the total profits for all GS

GS_TotalProfits = zeros(NumberOfGS,1);
GS_Names = 1:NumberOfGS;
for g = 1:NumberOfGS
 GS_Originalfrequency = find(OriginalGS==g); % how often GS

originally paired with the winner UAV
 GS_Sellfrequency = find(SellAndBuyWinners(:,1)==g); % how often GS

got tasks delivered to it

 if ~isempty(GS_Originalfrequency)
 GS_TotalProfits(g) = GS_TotalProfits(g)+

sum(OriginalGS_Profit(GS_Originalfrequency));
 end
 if ~isempty(GS_Sellfrequency)
 GS_TotalProfits(g) = GS_TotalProfits(g)+

sum(SellerProfit1(GS_Sellfrequency));
 end
end
%%%

% Compute the total for all UAVs

UAV_TotalProfits = zeros(NumberOfUAVs,1);
UAV_Names = 1:NumberOfUAVs;
for u = 1:NumberOfUAVs
 UAV_Buyfrequency = find(SellAndBuyWinners(:,2)==u); % how often UAV

buys tasks from Winner GS
 if ~isempty(UAV_Buyfrequency)

111

 UAV_TotalProfits(u) = UAV_TotalProfits(u)+

sum(BuyerProfit1(UAV_Buyfrequency));
 end
end
%%%

% Write the results into excel sheeet
TITLE = {'TaskName','Creation Time(sec)','Auction

Time(sec)','Deadline(sec)','Task Cost($) (from TI)', 'Original Seller

Bid($)','Winning Seller Bid($)', 'Winning Buyer Bid($)',...
 'Original_GS', 'Seller(GS)','Buyer(UAV)', 'Clearing Price($)',

'Original_GS Profit($)', 'Seller Profit($)','Buyer Profit($)'};

xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

TITLE, 'A1:O1')
BuySellRecords = [TaskNames',TaskCreationTime',TaskAuctionTimesOld,

AllTaskDeadlines,TI_TaskCost,GS_jUAV_SBids,SellAndBuyWinnerBids(:,1),Se

llAndBuyWinnerBids(:,2),...
OriginalGS, SellAndBuyWinners(:,1), SellAndBuyWinners(:,2),M_BuyBid,

OriginalGS_Profit,SellerProfit1,BuyerProfit1];
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

BuySellRecords, strcat('A2:O',num2str(InitNumberOfTask+1)))
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

{'AVERAGE'},

strcat('E',num2str(InitNumberOfTask+2),':','E',num2str(InitNumberOfTask

+2)))
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

AllAvgBids,

strcat('F',num2str(InitNumberOfTask+2),':','H',num2str(InitNumberOfTask

+2)))
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

AllAvgProfits,

strcat('L',num2str(InitNumberOfTask+2),':','O',num2str(InitNumberOfTask

+2)))

SubTitle = {'GS', 'GS Total Profit($)'};
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

SubTitle,

strcat('I',num2str(InitNumberOfTask+5),':','J',num2str(InitNumberOfTask

+5)))
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

GS_Names',

strcat('I',num2str(InitNumberOfTask+6),':','I',num2str(InitNumberOfTask

+6+NumberOfGS-1)))
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

GS_TotalProfits,

strcat('J',num2str(InitNumberOfTask+6),':','J',num2str(InitNumberOfTask

+6+NumberOfGS-1)))

SubTitle = {'UAV', 'UAV Total Profit($)'};
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

SubTitle,

112

strcat('M',num2str(InitNumberOfTask+5),':','N',num2str(InitNumberOfTask

+5)))
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

UAV_Names',

strcat('M',num2str(InitNumberOfTask+6),':','M',num2str(InitNumberOfTask

+6+NumberOfUAVs-1)))
xlswrite(strcat('BuySellResults_Robust_Scenario',num2str(Scenario)),

UAV_TotalProfits,

strcat('N',num2str(InitNumberOfTask+6),':','N',num2str(InitNumberOfTask

+6+NumberOfUAVs-1)))
%%%

%Display the UAV tasklists

% TimeHistory = zeros(NumberOfUAVs,4); %initialization
GS_UAVRouteCordAll{NumberOfUAVs} = []; % initialization
GS_UAVRouteCordAllTemp{NumberOfUAVs} = []; % initialization to hold

coordinates without UAV current locations
UAVTasksCompletionDurations = zeros(NumberOfUAVs,1);
GS_UAVRoutesAll{NumberOfUAVs} = [];
TaskCompletionTimes = [];
TaskCompletionDists = [];
 WinnerUAV_RouteNew = WinnerUAV_Route;
UAV_TaskList{NumberOfUAVsAll} = []; % initialization
 WinnerUAV_Route{NumberOfUAVsAll} = [];
 GS = 0;
 DelayTimes = zeros(1,NumberOfUAVsAll);
 DelayTimes(UAV_ID_Eliminate) = UAVRecoveryTime-UAV_Elimination_Time;
 disp('RECORDS FOR UAVs WHICH WON REAUCTIONED TASK(S): ')
 disp('(Note: Those UAVs which did not win any reacuctioned tasks have

the same records as shown before)')
 for UAVname=1:NumberOfUAVsAll
 UAV_TaskList{UAVname} = [UAV_TaskListCompleted{UAVname},

UAV_TaskListNew{UAVname}];
 if ~isempty(WinnerUAV_RouteNew{UAVname})
 GS = WinnerUAV_RouteNew{UAVname}(end);
 elseif ~isempty(WinnerUAV_RouteOld{UAVname})
 GS = WinnerUAV_RouteOld{UAVname}(end);
 end

 if ~isempty(UAV_TaskList{UAVname})&&

~isempty(UAV_TaskListNew{UAVname})
 WinnerUAV_Route{UAVname} = [UAVname,

UAV_TaskListCompleted{UAVname},WinnerUAV_RouteNew{UAVname}(2:end-

1),GS]; % from beginning to end
 disp(strcat('UAV',num2str(UAVname),':'))
 disp('TASKLIST:'),
 disp('Task completed before REAUCTION:')
 disp(UAV_TaskListCompleted{UAVname})
 disp('Task completed after REAUCTION:')
 disp(UAV_TaskListNew{UAVname})
 disp('Minimum Route from start to end:'),

disp(WinnerUAV_Route{UAVname}) % from start to after reauction

113

 disp('StartTime DeliveryTime PathTime LatestDeliveryTime')

 DeliveryTime = round(ReauctionCloseTime) +

round(WinnerPathTime(UAVname));
% DeliveryTime = round(CycleAuctionCloseTime)+

round(WinnerPathTimeOld(UAVname))+ round(WinnerPathTime(UAVname));
 LatestDeliveryTime =

min(AllTaskDeadlines(UAV_TaskList{UAVname}));
 UAVPathTime = round(WinnerPathTimeOld(UAVname))+

round(WinnerPathTime(UAVname)); % time taken by UAV from start to end
 TimeHistory(UAVname,:) =

round([CycleAuctionCloseTime(end),DeliveryTime, UAVPathTime,

LatestDeliveryTime]);
%

% DeliveryTime =

round(TaskAuctionTimes(WinnerUAV_Route{UAVname}(2)))+

max(round(WinnerPathTime(UAVname)), round(WinnerPathTimeOld(UAVname)))+

DelayTimes(UAVname);
% LatestDeliveryTime =

min(AllTaskDeadlines(UAV_TaskList{UAVname}));
% UAVPathTime = DeliveryTime -

round(TaskAuctionTimes(WinnerUAV_Route{UAVname}(2)))-

DelayTimes(UAVname);
% TimeHistory(UAVname,:) =

round([TaskAuctionTimes(WinnerUAV_Route{UAVname}(2)),DeliveryTime,

UAVPathTime, LatestDeliveryTime]);
%

 disp(TimeHistory(UAVname,:))
 GS_UAVRouteCordAll{UAVname} =

[UAVs(UAVname,:);Task(UAV_TaskListCompleted{UAVname},:);

UAVs_CurrentLocations(UAVname,:);...

Task(WinnerUAV_RouteNew{UAVname}(2:end-1),:);GS_Cord(GS,:)];
 GS_UAVRouteCordAllTemp{UAVname} =

[UAVs(UAVname,:);Task(UAV_TaskListCompleted{UAVname},:);...

Task(WinnerUAV_RouteNew{UAVname}(2:end-1),:);GS_Cord(GS,:)];
 TaskNames = WinnerUAV_Route{UAVname}(2:end-1);
 UAVTasksCompletionDurations(UAVname) = WinnerPathTime(UAVname);
 GS_UAVRoutesAll{UAVname} = WinnerUAV_Route{UAVname};
 TaskCompletionTimes = [TaskCompletionTimes,

WinnerPathTime(UAVname) + WinnerPathTimeOld(UAVname)];
 figure('Name', strcat('Robustness: Path for executing task by

UAV', num2str(UAVname)))

plot3(GS_UAVRouteCordAll{UAVname}(:,1),GS_UAVRouteCordAll{UAVname}(:,2)

,GS_UAVRouteCordAll{UAVname}(:,3),'*-')

text(GS_UAVRouteCordAll{UAVname}(1,1),GS_UAVRouteCordAll{UAVname}(1,2),

GS_UAVRouteCordAll{UAVname}(1,3), strcat('UAV',num2str(UAVname)))

114

 text(GS_UAVRouteCordAllTemp{UAVname}(2:end-

1,1),GS_UAVRouteCordAllTemp{UAVname}(2:end-

1,2),GS_UAVRouteCordAllTemp{UAVname}(2:end-1,3), num2str(TaskNames'))

text(UAVs_CurrentLocations(UAVname,1),UAVs_CurrentLocations(UAVname,2),

UAVs_CurrentLocations(UAVname,3), strcat('UAV',num2str(UAVname)))

text(GS_UAVRouteCordAll{UAVname}(end,1),GS_UAVRouteCordAll{UAVname}(end

,2),GS_UAVRouteCordAll{UAVname}(end,3), strcat('GS',num2str(GS)))
 grid on
 xlabel('x')
 ylabel('y')
 zlabel('z')
 else

 TaskCompletionTimes = [TaskCompletionTimes,

WinnerPathTime(UAVname) + WinnerPathTimeOld(UAVname)];
 end
 end

TaskCompletionDists = UAV_Speed.*TaskCompletionTimes;
% Display the GS and the UAVs it solds tasks to
for GS=1:NumberOfGS
 if ~isempty(GS_UAVList{GS})
 disp(strcat('UAV LIST FOR GS',num2str(GS),':'))
 disp(GS_UAVList{GS})
 end
end

disp(' AvgDist(m) AvgTime(s) Dist_std(m) Time_std(s)')
disp(round([mean(TaskCompletionDists), mean(TaskCompletionTimes),

std(TaskCompletionDists), std(TaskCompletionTimes)]))

% plot the space just before negotiation
% UAVs_CurrentLocations
PlotTheSpaceWithTheAgents(GS_Cord, GS_CommRange,

NumberOfGS,TI_CommRange, TI,UAVs_CurrentLocations,NumberOfUAVsAll)

File
function [UAV_Bid,UAV_Route,PathTime] = RouteOptimizer(UAV_TaskList,

GS_Cord, GS_id, UAV_id, UAVs, Task,UAV_Speed,Task_Cost,...

NewTask_id,DistUnitCost,TimeUnitCost,NewLeastPathTime,NewTaskDeadline,.

..

OldTaskDeadline,GS_CommRange,UAV_CommRange,TASK_auctionTime,

GSTaskAuctionedTimes, GS_WinningCosts)

 global GS_UAVCommStrength
 UAV_Bid = [];
 UAV_Route =[];

115

 PathTime = [];
if ~isempty(UAV_TaskList)
 PreviousLeastPathTime = NewLeastPathTime;
 Task_Order = perms([UAV_TaskList,NewTask_id]);
 [NumOfPath,NumOfCordPerPath] = size(Task_Order);

 UAV_Path = [repmat(UAV_id,NumOfPath,1),

Task_Order,repmat(GS_id,NumOfPath,1)];

 NumOfCordPerPath = NumOfCordPerPath + 2;
 Path_Cost = [];
 for m = 1:NumOfPath
 Path_Dist(m,:)= 0;
 UAV_Path_Cord = [UAVs(UAV_id,:); Task(Task_Order(m,:),:);

GS_Cord(GS_id,:)];
 for n = 1:NumOfCordPerPath-1
 Path_Dist(m,:) = Path_Dist(m,:) +

norm(UAV_Path_Cord(n+1,:)-UAV_Path_Cord(n,:));
 end
 end
 Path_Dist = Path_Dist -

GS_UAVCommStrength*(GS_CommRange+UAV_CommRange);
 Path_Cost = Path_Dist*DistUnitCost; % in USD
 PathTime = Path_Dist./UAV_Speed; % (in seconds)
 PathTime_Cost = PathTime *TimeUnitCost; % in USD

 [Path_LeastCost,Path_Idx] = min(Path_Cost + PathTime_Cost);
 UAV_Route = UAV_Path(Path_Idx,:);
 NewLeastPathTime = PathTime(Path_Idx,:);
 PathTime = NewLeastPathTime;
 FirstTaskAuctionTime = GSTaskAuctionedTimes(UAV_Route(2)); % the

time at which the first task in that UAV task list is auctioned
 UAV_BidCost = UAV_BidChecker(NewLeastPathTime,

Task_Cost,PreviousLeastPathTime,NewTaskDeadline,

FirstTaskAuctionTime,...
 OldTaskDeadline,DistUnitCost,UAV_Speed,TimeUnitCost);

 UAV_Bid = UAV_BidCost;
elseif isempty(UAV_TaskList)
 [UAV_Bid,PathTime] = UAV_LocalBid(GS_Cord,UAVs,GS_id,

NewTask_id,Task,UAV_id,DistUnitCost,UAV_Speed,TimeUnitCost,GS_CommRange

,UAV_CommRange,NewTaskDeadline,TASK_auctionTime,GS_WinningCosts);
 UAV_Route = [UAV_id,NewTask_id,GS_id];
end

File
function [UAV_BidCost,PathTime] = UAV_BidChecker(NewLeastPathTime,

Task_Cost,PreviousLeastPathTime,NewTaskDeadline,FirstTaskAuctionTime,Ol

116

dTaskDeadline,DistUnitCost,UAV_Speed,TimeUnitCost,NewTask_id,PathTime1.

..
 ,GS_Cord,GS_ID,UAV_id, UAVs,GS_CommRange,UAV_CommRange)

UAV_ExtraTime = NewLeastPathTime - PreviousLeastPathTime;

NewLeastPathDueTime = NewLeastPathTime+FirstTaskAuctionTime; % Expected

time for UAV to deliver its tasks

ExtraDistCost = UAV_ExtraTime*UAV_Speed*DistUnitCost;
ExtraTimeCost = UAV_ExtraTime*TimeUnitCost;
UAV_CostCheck = ExtraDistCost + ExtraTimeCost;

 UAVCommCheck = norm(UAVs(UAV_id,:)- GS_Cord(GS_ID,:)); % checking to

see if UAV and GS are in communication range

if (NewTaskDeadline<=OldTaskDeadline) &&(NewLeastPathDueTime<=

NewTaskDeadline)&& (UAV_CostCheck<=Task_Cost(NewTask_id)) &&

UAVCommCheck <=(GS_CommRange + UAV_CommRange)
% if (NewLeastPathDueTime<= OldTaskDeadline)&&(NewTaskDeadline<=

OldTaskDeadline)&&(UAV_CostCheck>=Task_Cost(NewTask_id))
 UAV_BidCost = UAV_CostCheck;
 PathTime = PathTime1;
else
 UAV_BidCost = Inf;
 PathTime = Inf;
end
% [(NewTaskDeadline-OldTaskDeadline),(NewLeastPathDueTime-

NewTaskDeadline), (UAV_CostCheck-Task_Cost(NewTask_id)), (UAVCommCheck

-(GS_CommRange + UAV_CommRange))]

File
function [UAV_BidCost,PathTime] = UAV_BidChecker(NewLeastPathTime,

Task_Cost,PreviousLeastPathTime,NewTaskDeadline,FirstTaskAuctionTime,Ol

dTaskDeadline,DistUnitCost,UAV_Speed,TimeUnitCost,NewTask_id,PathTime1.

..
 ,GS_Cord,GS_ID,UAV_id, UAVs,GS_CommRange,UAV_CommRange)

UAV_ExtraTime = NewLeastPathTime - PreviousLeastPathTime;
NewLeastPathDueTime = NewLeastPathTime+FirstTaskAuctionTime; % Expected

time for UAV to deliver its tasks

ExtraDistCost = UAV_ExtraTime*UAV_Speed*DistUnitCost;
ExtraTimeCost = UAV_ExtraTime*TimeUnitCost;
UAV_CostCheck = ExtraDistCost + ExtraTimeCost;

 UAVCommCheck = norm(UAVs(UAV_id,:)- GS_Cord(GS_ID,:)); % checking to

see if UAV and GS are in communication range

117

if (NewTaskDeadline<=OldTaskDeadline) &&(NewLeastPathDueTime<=

NewTaskDeadline)&& (UAV_CostCheck<=Task_Cost(NewTask_id)) &&

UAVCommCheck <=(GS_CommRange + UAV_CommRange)
% if (NewLeastPathDueTime<= OldTaskDeadline)&&(NewTaskDeadline<=

OldTaskDeadline)&&(UAV_CostCheck>=Task_Cost(NewTask_id))

 UAV_BidCost = UAV_CostCheck;
 PathTime = PathTime1;
else
 UAV_BidCost = Inf;
 PathTime = Inf;
end

% [(NewTaskDeadline-OldTaskDeadline),(NewLeastPathDueTime-

NewTaskDeadline), (UAV_CostCheck-Task_Cost(NewTask_id)), (UAVCommCheck

-(GS_CommRange + UAV_CommRange))]

File
function [UAV_Cost,PathTime] = UAV_LocalBid(TI,UAVs,TI_id,

Task_id,Task,UAV_id,DistUnitCost,UAV_Speed,...

TimeUnitCost,GS_CommRange,UAV_CommRange,NewTaskDeadline,TASK_auctionTim

es, Task_Cost,GS_Cord,GS_ID)

% This function computes the bid for UAV that communicates with a given

GS
% having a task list
%%%
global GS_UAVCommStrength
UAV_Cost = [];
PathTime = [];
Alpha = 0.5;
%
UAVCommCheck = norm(UAVs(UAV_id,:)- GS_Cord(GS_ID,:)); % checking to

see if UAV and GS are in communication range
if UAVCommCheck <=(GS_CommRange + UAV_CommRange)
%
 Dist = (norm(UAVs(UAV_id,:)-Task(Task_id,:)) +

norm(Task(Task_id,:)-GS_Cord(GS_ID,:)))-(1-

GS_UAVCommStrength)*(GS_CommRange+UAV_CommRange);

% Dist = 2*norm(UAVs(UAV_id,:)-Task(Task_id,:));
 DistCost = Dist*DistUnitCost;

 Time = Dist/UAV_Speed;
 TimeCost = Time*TimeUnitCost;
 Cost = DistCost + TimeCost; % measured in USD
 if Time<=(NewTaskDeadline-TASK_auctionTimes(Task_id))&&

Cost<=Task_Cost(Task_id)
% UAV_Cost = Alpha*Task_Cost(Task_id) + Cost*(1-Alpha); % the

bid from UAV for a task
 PathTime = Time;
 UAV_Cost = Cost;

118

 else
 UAV_Cost = Inf;
 PathTime = Inf;
 end
else

 UAV_Cost = Inf;
 PathTime = Inf;
% UAV_id
end

File
clear all;
close all;
clc;

global Task UAVsAll GS_Cord GS_CommRange NumberOfGS TI_CommRange TI

UAV_CommRange UAV_Speed WinnerUAV_RouteOld TangGS_CommRange

GS_UAVCommStrength...
DistUnitCost TimeUnitCost NumberOfUAVs GSTaskAuctionedTimes Up

AuctionTimeStep TI_id TaskAuctionTimesOld WinnerPathTimeOld GS_UAVList

UAVs
 global SellAndBuyBids M_BuyBid SellAndBuyWinners SellAndBuyWinnerBids

TI_TaskCost GS_jUAV_SBids InitNumberOfTask TaskCreationTime Scenario
global TI_CostScalar CycleAuctionCloseTime Gamma OriginalUAV OriginalGS
% load tasks from file
 load('RandTasks_12')
 Task = RandTasks; % Don't edit this line
% Task = load ('-ascii', 'TaskCord.DAT'); %// old

% %load randomized UAVs
% load('RandUAVs'); % 10 set of initial UAVs location
% SampleNumber = 1; % Choose from 1 through 10
% UAVs = RandUAVs{SampleNumber};

TangGS_CommRange = 200; % radius when GSs are tangent to each other
UAV_CommRange = 250;%750; %2500; %150; %2500; % 150, 250,750,1000,1500
UAV_CommRangeMin = 250;
Scenario = 2; % 1 =>GSs Disjoint, 2 => GSs Overlapped, 3 => GSs at

Tangency

NumberOfUAVs = 9;
UAV_Speed = 10; % in m/s
GS_UAVCommStrength = 0.1; % comm strength between GS and UAV. The

bigger this number the weaker the communication
GS_GS_CommStrength = 1; % comm strength between two GSs if they

intersect
% Note: (1)The bigger the communication radius, the stronger the
% communication. (2) This value lies between 0 and 1

Gamma = 0.002; % Note: Gamma is a fraction of latest delivery time of

task by eliminated UAV
% Cost constant
DistUnitCost = 0.1;

119

TimeUnitCost = 0.1;
Up = 1;
InitNumberOfTask = size(Task,1);
%%%

% Initiator's Coordinates
X_TI = 0;
Y_TI = 0;
Z_TI = 0;
TI = [X_TI, Y_TI, Z_TI];
TI_id = 1; % There is only one Task initiator
%%

% Generate the Ground Stations (GS)
NumberOfGS = 3;
[GS_Cord, GS_CommRange,TI_CommRange] = CreateGroundStations(NumberOfGS,

TI,TangGS_CommRange,Scenario, GS_GS_CommStrength);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(sprintf('Actual GS communication radius for the overlap case is:

%s', num2str(GS_CommRange)))
disp(sprintf('TI communication radius: %s',

num2str(round(TI_CommRange))))
disp(sprintf('\n')) % print an empty space for clarity purposes
%%

%Generate Randomized the Unmanned Aerial Vehicles (UAVs) such that each

communicate
% with at least two GS

% RandUAVs =

GenerateRandUAVs(NumberOfGS,NumberOfUAVs,GS_Cord,TangGS_CommRange,UAV_C

ommRangeMin);
% Note: comment the line above once you're satisfied with the initial

randomized locations of the UAVs
load(strcat(num2str(NumberOfUAVs),'RandUAVs_',num2str(UAV_CommRangeMin)

)) % don't edit this line
UAVs = RandUAVs; % Don't edit this line

% %%%

UAV_TaskList{NumberOfUAVs} = []; % initialization
GS_UAVList{NumberOfGS} = []; % initialization
SellAndBuyBids = [];
SellAndBuyBidsLimit = [];
TaskAuctionTimes = [];
tH = [];
AuctionTimeStep = 2; %in seconds
DeadLineScalar = 10; % To give good estimation of the task's deadline
TI_CostScalar = 1; % To give good estimation of the task's cost

120

TaskCreationTime = 0:AuctionTimeStep:(InitNumberOfTask-

1)*AuctionTimeStep; % Task is created every 2 seconds
UnsoldTaskIDs = 1:InitNumberOfTask; % all tasks are unsold initially
CycleCount = 0;
SellAndBuyBids = zeros(InitNumberOfTask,2);% initialization for winning

sell and buy bids pair
GS_jUAV_SBids = zeros(InitNumberOfTask,1); % initialization
M_BuyBid = zeros(InitNumberOfTask,1); % initialization
SellAndBuyWinners = zeros(InitNumberOfTask,2); % initialization
SellAndBuyWinnerBids = zeros(InitNumberOfTask,2); % initialization
GS_TaskDelivered = zeros(InitNumberOfTask,1); % initialization
WinnerUAV_Route{NumberOfUAVs} = []; % initialization
WinnerPathTime = zeros(NumberOfUAVs,1); % initialization
OriginalUAV = zeros(InitNumberOfTask,1);
OriginalGS = zeros(InitNumberOfTask,1);

tH_Original = DeadLineScalar*(sqrt(sum((bsxfun(@minus, TI,

Task)).^2,2)))/UAV_Speed;% all original task deadlines
while(1)
CycleCount = CycleCount + 1;
NumberOfTask(CycleCount) = length(UnsoldTaskIDs);
UnsoldTaskIDsTemp = [];
CycleAuctionCloseTime(CycleCount) = sum(NumberOfTask -

1)*AuctionTimeStep;

for i=1:NumberOfTask(CycleCount)
 TaskID = UnsoldTaskIDs(i);
 if CycleCount>1
 TaskAuctionTimes(TaskID) = i*AuctionTimeStep +

CycleAuctionCloseTime(CycleCount-1);
 else
 TaskAuctionTimes(TaskID,:) = TaskCreationTime(TaskID);
 end
 t = TaskAuctionTimes(TaskID) - TaskCreationTime(TaskID); % Time

ellasped before task gets sold
 tH(TaskID,:) = tH_Original(TaskID) + t; % Task deadline

 %Compute the cost of the task to be auctioned
 TI_Po(:,TaskID) = 2*(norm(TI-Task(TaskID,:))*DistUnitCost +

norm(TI-Task(TaskID,:))*TimeUnitCost/UAV_Speed); % initial price from

the task initiator
 TI_TaskCost(TaskID,:) = TI_CostScalar*TI_Po(:,TaskID)*(1 +

Up*t/tH_Original(TaskID));
 GS_Bids{TaskID} = GS_Bidding(NumberOfGS, TI,

Task(TaskID,:),GS_Cord,TI_CommRange,GS_CommRange,UAV_Speed,DistUnitCost

,TimeUnitCost,TI_TaskCost,TaskID); % sell bids

 %%
 %%% Compute the bids for the UAVs
 UAVwinnerBids = zeros(1,NumberOfGS);
 WinnerUAVnames = zeros(1,NumberOfGS);
 GSs_UAVs_BidPairs = zeros(NumberOfGS,4);
 GSnames = 1:NumberOfGS;

121

 for gs = 1:NumberOfGS
 UAV_BidsTemp = Inf*ones(1,NumberOfUAVs); % initialization
 for k=1:NumberOfUAVs
 if isempty(UAV_TaskList{k})

 UAV_TaskListPrevious = [];
 NewLeastPathTime = 0;
 OldTaskDeadline = 0;
 oldGS_ID = 0;

[UAV_Bids{TaskID}(k),GS(gs).UAV_Route{k},GS(gs).PathTime(k)] =

UAV_Bidding(UAV_TaskListPrevious, TI, TI_id, k, UAVs,

Task,UAV_Speed,TI_TaskCost,...

TaskID,DistUnitCost,TimeUnitCost,NewLeastPathTime,tH(TaskID),...
 OldTaskDeadline,GS_CommRange,UAV_CommRange,

TaskAuctionTimes,GS_Cord,gs,oldGS_ID);
 else
 UAV_TaskListPrevious = UAV_TaskList{k};
 NewLeastPathTime = WinnerPathTime(k,:);
 OldTaskDeadline = min(tH(UAV_TaskList{k}));

%tH(GS(gs).UAV_Route{k}(end-1));
 oldGS_ID = WinnerUAV_Route{k}(end);

[UAV_Bids{TaskID}(k),GS(gs).UAV_Route{k},GS(gs).PathTime(k)] =

UAV_Bidding(UAV_TaskListPrevious, TI, TI_id, k, UAVs,

Task,UAV_Speed,TI_TaskCost,...

TaskID,DistUnitCost,TimeUnitCost,NewLeastPathTime,tH(TaskID),...
 OldTaskDeadline,GS_CommRange,UAV_CommRange,

TaskAuctionTimes,GS_Cord,gs,oldGS_ID);
 end
 end
 % UAV_Bids{TaskID}
 [UAVwinnerBids(gs), WinnerUAVnames(gs)] =

min(UAV_Bids{TaskID});
 UAV_BidsTemp(WinnerUAVnames(gs)) = UAVwinnerBids(gs);
 end

 GSs_UAVs_BidPairs = [GSnames',round(GS_Bids{TaskID}'),

WinnerUAVnames',round(UAVwinnerBids')];
 disp('GSs and UAVs bid pairs:')
 disp(' GS GS_Bid UAV UAV_Bid')
 disp(GSs_UAVs_BidPairs)
 % UAV_Bids{i}

%%%

 % Matching the GS_Bids (i.e. sell bids) and the UAV_Bids (i.e. buy
 % bids
 Sell_in_Bids = [];
 Buy_in_Bids = [];

122

 TransactionSet = [];
 UAV_Indx = [];
 GS_Indx = [];
 UAV_Indx1 = [];
 GS_Indx1 = [];

 % Determine eligible sellers and buyers
 for m=1:NumberOfGS
 if GS_Bids{TaskID}(m)~=Inf && UAVwinnerBids(m)~=Inf
 TransactionSet = [TransactionSet;

[GS_Bids{TaskID}(m),UAVwinnerBids(m)]];
 UAV_Indx1 = [UAV_Indx1; WinnerUAVnames(m)];
 GS_Indx1 = [GS_Indx1; m];

 end
 end

 %%%

 NumOfSellers = size(TransactionSet,1);
 if ~isempty(TransactionSet) % There are seller(s) and buyer(s)

 [ignore1 OrigIndx] = min(TransactionSet(:,1));

 OriginalUAVtemp = UAV_Indx1(OrigIndx);
 OriginalGStemp = GS_Indx1(OrigIndx);

 Rank = sort([TransactionSet(:,1),

TransactionSet(:,2)],'ascend');
 M_BuyBid(TaskID,:) = Rank(NumOfSellers); % Mth bid
 M_nextBuyBid(TaskID,:) = Rank(NumOfSellers+1); % M+1st bid

 [Sell_Bids{TaskID}, GS_IndxTemp{TaskID}] =

min(TransactionSet(:,1));
 GS_Indx(1) = GS_Indx1(GS_IndxTemp{TaskID}); % winner GS(i.e.

GS with minimum bid)
 UAV_Indx(1) = UAV_Indx1(GS_IndxTemp{TaskID}); % winner UAV

(i.e. UAV with minimum bid)

 Buy_Bids{TaskID} = TransactionSet(GS_IndxTemp{TaskID},2);
% GS_Winner = GS_Indx1(GS_IndxTemp{TaskID}); % actual winner
 GS_jUAV_SBids(TaskID) = GS_Bids{TaskID}(GS_Indx(1)); % cost of

GS to which task is supposed to be delivered
 GS_TaskDelivered(TaskID) = GS_Indx(1);

 %%%Determine the winner
 UAV_TaskList{UAV_Indx(1)} = [UAV_TaskList{UAV_Indx(1)},

TaskID];
 GS_UAVList{GS_Indx(1)} = [GS_UAVList{GS_Indx(1)},

UAV_Indx(1)];
 WinnerUAV_Route{UAV_Indx(1)} =

GS(GS_Indx(1)).UAV_Route{UAV_Indx(1)};

123

 WinnerPathTime(UAV_Indx(1)) =

GS(GS_Indx(1)).PathTime(UAV_Indx(1));
 SellAndBuyBids(TaskID,:) = SellAndBuyWinnerBids(TaskID,:);

%winning sell and buy bids pair
 SellAndBuyWinners(TaskID,:) = [GS_Indx(1), UAV_Indx(1)]; %

UAVs and GSs that win the tasks
 SellAndBuyWinnerBids(TaskID,:) = [Sell_Bids{TaskID},

Buy_Bids{TaskID}];
 SellAndBuyBids(TaskID,:) = SellAndBuyWinnerBids(TaskID,:);

 OriginalUAV(TaskID) = OriginalUAVtemp; % UAV with minimum cost
 OriginalGS(TaskID) = OriginalGStemp; % GS paired with UAV

with minimu cost
 else % there are no sellers and/or buyers
 UnsoldTaskIDsTemp = [UnsoldTaskIDsTemp,TaskID];
 end
end
TransactionSet = [];

% Check if all tasks are sold
if isempty(UnsoldTaskIDsTemp)
 break; % break from the while loop
else
 UnsoldTaskIDs = UnsoldTaskIDsTemp; % tasks unsolds
end
% UnsoldTaskIDs
end

 UAV_TaskList % without robustness
TaskAuctionTimesOld = TaskAuctionTimes;
WinnerPathTimeOld = WinnerPathTime;
WinnerUAV_RouteOld = WinnerUAV_Route;
TaskNames = 1:InitNumberOfTask;
% Calculate the profit using the clearing price (i.e. M_BuyBid)
SellerProfit1 = 0.5*(SellAndBuyWinnerBids(:,1)-

SellAndBuyWinnerBids(:,2) + TI_TaskCost - SellAndBuyWinnerBids(:,1) -(

GS_jUAV_SBids-SellAndBuyWinnerBids(:,1))); % profit of GS to which task

is delivered to
BuyerProfit1 = SellerProfit1; %profit of the winner UAV
OriginalGS_Profit = 0.5*(GS_jUAV_SBids -

SellAndBuyWinnerBids(:,1)); % profit of original GS that was paired

with the winner UAV

AvgSellBid = mean(SellAndBuyWinnerBids(:,1));
AvgBuyBid = mean(SellAndBuyWinnerBids(:,2));
% AvgGS_DelivererBid = mean(GS_jUAV_SBids);
AvgOriginalGS_Bid = mean(GS_jUAV_SBids);
AllAvgBids = [AvgOriginalGS_Bid,AvgSellBid,AvgBuyBid];

AvgClearingPrice = mean(M_BuyBid);
AvgOriginalGS_Profit = mean(OriginalGS_Profit);
AvgSellProfit = mean(SellerProfit1);
AvgBuyProfit = mean(BuyerProfit1);

124

% AvgGS_DelivererProfit = mean(GS_Profit);
AllAvgProfits = [AvgClearingPrice,AvgOriginalGS_Profit,AvgSellProfit,

AvgBuyProfit];

% Compute the total profits for all GS

GS_TotalProfits = zeros(NumberOfGS,1);
GS_Names = 1:NumberOfGS;
for g = 1:NumberOfGS
 GS_Originalfrequency = find(OriginalGS==g); % how often GS

originally paired with the winner UAV
 GS_Sellfrequency = find(SellAndBuyWinners(:,1)==g); % how often GS

got tasks delivered to it

 if ~isempty(GS_Originalfrequency)
 GS_TotalProfits(g) = GS_TotalProfits(g)+

sum(OriginalGS_Profit(GS_Originalfrequency));
 end
 if ~isempty(GS_Sellfrequency)
 GS_TotalProfits(g) = GS_TotalProfits(g)+

sum(SellerProfit1(GS_Sellfrequency));
 end
end
%%%

% Compute the total for all UAVs

UAV_TotalProfits = zeros(NumberOfUAVs,1);
UAV_Names = 1:NumberOfUAVs;
for u = 1:NumberOfUAVs
 UAV_Buyfrequency = find(SellAndBuyWinners(:,2)==u); % how often UAV

buys tasks from Winner GS
 if ~isempty(UAV_Buyfrequency)
 UAV_TotalProfits(u) = UAV_TotalProfits(u)+

sum(BuyerProfit1(UAV_Buyfrequency));
 end
end
%%%

% Write the results into excel sheeet
TITLE = {'TaskName','Creation Time(sec)','Auction

Time(sec)','Deadline(sec)','Task Cost($) (from TI)', 'Original Seller

Bid($)','Winning Seller Bid($)', 'Winning Buyer Bid($)',...
 'Original_GS', 'Seller(GS)','Buyer(UAV)', 'Clearing Price($)',

'Original_GS Profit($)', 'Seller Profit($)','Buyer Profit($)'};

125

xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), TITLE,

'A1:O1')
BuySellRecords =

[TaskNames',TaskCreationTime',TaskAuctionTimes,tH,TI_TaskCost

,GS_jUAV_SBids, SellAndBuyWinnerBids(:,1),SellAndBuyWinnerBids(:,2),...

OriginalGS, SellAndBuyWinners(:,1), SellAndBuyWinners(:,2),M_BuyBid,

OriginalGS_Profit, SellerProfit1,BuyerProfit1];
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)),

BuySellRecords, strcat('A2:O',num2str(InitNumberOfTask+1)))
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)),

{'AVERAGE'},

strcat('E',num2str(InitNumberOfTask+2),':','E',num2str(InitNumberOfTask

+2)))
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)),

AllAvgBids,

strcat('F',num2str(InitNumberOfTask+2),':','H',num2str(InitNumberOfTask

+2)))
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)),

AllAvgProfits,

strcat('L',num2str(InitNumberOfTask+2),':','O',num2str(InitNumberOfTask

+2)))

SubTitle = {'GS', 'GS Total Profit($)'};
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), SubTitle,

strcat('I',num2str(InitNumberOfTask+5),':','J',num2str(InitNumberOfTask

+5)))
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)),

GS_Names',

strcat('I',num2str(InitNumberOfTask+6),':','I',num2str(InitNumberOfTask

+6+NumberOfGS-1)))
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)),

GS_TotalProfits,

strcat('J',num2str(InitNumberOfTask+6),':','J',num2str(InitNumberOfTask

+6+NumberOfGS-1)))

SubTitle = {'UAV', 'UAV Total Profit($)'};
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)), SubTitle,

strcat('M',num2str(InitNumberOfTask+5),':','N',num2str(InitNumberOfTask

+5)))
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)),

UAV_Names',

strcat('M',num2str(InitNumberOfTask+6),':','M',num2str(InitNumberOfTask

+6+NumberOfUAVs-1)))
xlswrite(strcat('BuySellResults_Scenario',num2str(Scenario)),

UAV_TotalProfits,

strcat('N',num2str(InitNumberOfTask+6),':','N',num2str(InitNumberOfTask

+6+NumberOfUAVs-1)))

%%%

disp('Ground Stations coordinates (in rows):')
disp(round(GS_Cord))

126

disp('UAVs Initial Coordinates (in rows):')
disp(round(UAVs))
disp('Tasks coordinates (in rows):')
disp(Task)

%Display the UAV tasklists
TimeHistory = zeros(NumberOfUAVs,4); %initialization
GS_UAVRouteCordAll{NumberOfUAVs} = []; % initialization
UAVTasksCompletionDurations = zeros(NumberOfUAVs,1);
GS_UAVRoutesAll{NumberOfUAVs} = [];
TaskCompletionTimes = zeros(1,NumberOfUAVs);
TaskCompletionDists = [];
for UAVname=1:NumberOfUAVs
 if ~isempty(UAV_TaskList{UAVname})
 disp(strcat('RECORDS FOR UAV',num2str(UAVname),':'))
 disp('Tasklist:'), disp(UAV_TaskList{UAVname})
 disp('Minimum Route:'), disp(WinnerUAV_Route{UAVname})
 disp('StartTime DeliveryTime PathTime LatestDeliveryTime')
 DeliveryTime = round(CycleAuctionCloseTime(end))+

round(WinnerPathTime(UAVname));
 LatestDeliveryTime = min(tH(UAV_TaskList{UAVname}));
 TimeHistory(UAVname,:) =

round([CycleAuctionCloseTime(end),DeliveryTime,

WinnerPathTime(UAVname), LatestDeliveryTime]);

 disp(TimeHistory(UAVname,:))
 GS_UAVRouteCordAll{UAVname} =

[UAVs(UAVname,:);Task(WinnerUAV_Route{UAVname}(2:end-1),:);

GS_Cord(WinnerUAV_Route{UAVname}(end),:)];
 TaskNames = WinnerUAV_Route{UAVname}(2:end-1);
 UAVTasksCompletionDurations(UAVname) = WinnerPathTime(UAVname);
 GS_UAVRoutesAll{UAVname} = WinnerUAV_Route{UAVname};
 TaskCompletionTimes(UAVname) = WinnerPathTime(UAVname);
 figure('Name', strcat('Path for executing task by UAV',

num2str(UAVname)))

plot3(GS_UAVRouteCordAll{UAVname}(:,1),GS_UAVRouteCordAll{UAVname}(:,2)

,GS_UAVRouteCordAll{UAVname}(:,3),'*-')

text(GS_UAVRouteCordAll{UAVname}(1,1),GS_UAVRouteCordAll{UAVname}(1,2),

GS_UAVRouteCordAll{UAVname}(1,3), strcat('UAV',num2str(UAVname)))
 text(GS_UAVRouteCordAll{UAVname}(2:end-

1,1),GS_UAVRouteCordAll{UAVname}(2:end-

1,2),GS_UAVRouteCordAll{UAVname}(2:end-1,3), num2str(TaskNames'))

text(GS_UAVRouteCordAll{UAVname}(end,1),GS_UAVRouteCordAll{UAVname}(end

,2),GS_UAVRouteCordAll{UAVname}(end,3),

strcat('GS',num2str(WinnerUAV_Route{UAVname}(end))))
 grid on
 xlabel('x')
 ylabel('y')
 zlabel('z')
 end
end

127

% WinnerPathTime(4)
TaskCompletionDists = UAV_Speed.*TaskCompletionTimes;
% Display the GS and the UAVs it solds tasks to
for GS=1:NumberOfGS
 if ~isempty(GS_UAVList{GS})

 disp(strcat('UAV LIST FOR GS',num2str(GS),':'))
 disp(GS_UAVList{GS})
 end
end

% TaskCompletionTimesNew = [TaskCompletionTimes,zeros(1, NumberOfUAVs-

length(TaskCompletionTimes))];
% TaskCompletionDists = UAV_Speed.*TaskCompletionTimesNew;

disp(' AvgDist(m) AvgTime(s) Dist_std(m) Time_std(s)')
disp(round([mean(TaskCompletionDists), mean(TaskCompletionTimes),

std(TaskCompletionDists), std(TaskCompletionTimes)]))

% plot the space
PlotTheSpaceWithTheAgents(GS_Cord, GS_CommRange,

NumberOfGS,TI_CommRange, TI,UAVs,NumberOfUAVs)

% % Running the robustness
 % Inputs required from the user:
 disp(sprintf('\n'))
 disp(sprintf('\n'))
 disp('RESULTS FROM THE ROBUSTNESS')
 UAV_ID_Eliminate = 1;
 UAV_Elimination_Time = 50;
 UAVRecoveryTime = 4400;
 Robustness(UAV_ID_Eliminate, UAV_Elimination_Time, UAVRecoveryTime,

GS_UAVRoutesAll,...
 TimeHistory, GS_UAVRouteCordAll,TaskCompletionTimes,tH)

File
function [UAV_GSRoutesNeg,UAV_GSRoutesCordNeg]=

UAVNegotiator(GS_UAVRouteCordAll,GS_UAVRoutesAll,UAV_CommRange,...

UAV_Speed,TimeHistory,Deadlines,NegoTimeStep,DurationForNegotiation,Dis

tUnitCost,TimeUnitCost)

global TaskName
%%%%%%%% Computes the segmental lengths of the UAVs routes
[RouteLenghts,UAVCumRouteLenghts] =

ComputeSegmentDistance(GS_UAVRouteCordAll,GS_UAVRoutesAll);
%%%

NumberOfRoutes = length(GS_UAVRoutesAll);

for k =1:NegoTimeStep:DurationForNegotiation % first 3 seconds

128

 for i=1:NumberOfRoutes
 RoutesIDs = 1:NumberOfRoutes;
 RoutesIDs(find(RoutesIDs==i))=[]; % avoid self-negotiation
 UAVNegPath{i} = [];

 PathCostNeg(i) = inf;
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 DistTravel_UAVi = CalUAVDistance(UAV_Speed,

TimeHistory(i,1),k);

 [UAVNewLocation(i,:),UAVi_MovingTo] =

FindUAVnewLocation(UAVCumRouteLenghts{i}, GS_UAVRouteCordAll{i},

RouteLenghts{i},DistTravel_UAVi);

 UAVNegPath = []; PathCostNeg = [];
 for kk=1:length(RoutesIDs)
 j = RoutesIDs(kk);
 UAVNegPath{j} = [];

 DistTravel_UAVj = CalUAVDistance(UAV_Speed,

TimeHistory(kk,1),k);
 [UAVNewLocation(j,:),UAVj_MovingTo, LastTaskDone] =

FindUAVnewLocation(UAVCumRouteLenghts{j}, GS_UAVRouteCordAll{j},

RouteLenghts{j},DistTravel_UAVj);
 NegoCommCheck = norm(UAVNewLocation(i,:)-UAVNewLocation(j,:));

% UAVs new locations used
 if (NegoCommCheck <= (UAV_CommRange

+UAV_CommRange))&&(length(RouteLenghts{i})>2&&

length(RouteLenghts{j})>2) % UAVs in comm range

% disp('Communicate')
 [UAVNegPath{j},PathCostNeg(j)] =

CalUAVsNegBids(DistTravel_UAVi,UAVi_MovingTo,...

UAVj_MovingTo,GS_UAVRouteCordAll{i},GS_UAVRouteCordAll{j},UAVNewLocatio

n(i,:),...

UAVNewLocation(j,:),DistUnitCost,TimeUnitCost,UAV_Speed,TimeHistory,j,D

eadlines,GS_UAVRoutesAll{i});
 else
 UAVNegPath{j} = [];
 PathCostNeg(j) = inf;
 end
 end
 %%%% Determine the winner from the negotiation
 [ignore, NegWinner]= min(PathCostNeg);
 if PathCostNeg~=inf
 GS_UAVRouteCordAll{NegWinner} = UAVNegPath{NegWinner};

% winner route updated by adding a task coordinate

129

 GS_UAVRoutesAll{NegWinner}=

[GS_UAVRoutesAll{NegWinner}(1:UAVj_MovingTo-

1),TaskName,GS_UAVRoutesAll{NegWinner}(UAVj_MovingTo:end)];

 GS_UAVRouteCordAll{i}(UAVi_MovingTo,:) = []; % delete

the task coordinate from tasklist
 GS_UAVRoutesAll{i}(UAVi_MovingTo) = []; % delete the

task id from tasklist

 % Uspdate the segmental lengths
 [RouteLenghts{NegWinner},CumRouteLenghts{NegWinner}] =

ComputeSegmentDistance(GS_UAVRouteCordAll{NegWinner},GS_UAVRoutesAll{Ne

gWinner});
 [RouteLenghts{i},CumRouteLenghts{i}] =

ComputeSegmentDistance(GS_UAVRouteCordAll{i},GS_UAVRoutesAll{i});

 end
 end
end

 UAV_GSRoutesNeg = GS_UAVRoutesAll;
 UAV_GSRoutesCordNeg = GS_UAVRouteCordAll;

File
function UAVsRoutePlot(UAVRouteCord,GS_ID,UAVs_Route)

global UAVsNames
% This function plots the routes for the UAVs
figure('Name',strcat('Ground Station',num2str(GS_ID)))
COLORS = ['r';'b';'g';'y';'k';'m';'c'];

for i = 1: length(UAVRouteCord)
 UAVRouteCord{i} =real(UAVRouteCord{i});
 if i<length(COLORS)+1

plot3(UAVRouteCord{i}(:,1),UAVRouteCord{i}(:,2),UAVRouteCord{i}(:,3),st

rcat(COLORS(i),'o-'))

text(UAVRouteCord{i}(1,1),UAVRouteCord{i}(1,2),UAVRouteCord{i}(1,3),str

cat('UAV',num2str(UAVsNames(UAVs_Route{i}(1,1)))))

text(UAVRouteCord{i}(end,1),UAVRouteCord{i}(end,2),UAVRouteCord{i}(end,

3),'GS')
 hold on
 else

plot3(UAVRouteCord{i}(:,1),UAVRouteCord{i}(:,2),UAVRouteCord{i}(:,3),'h

-')

130

text(UAVRouteCord{i}(1,1),UAVRouteCord{i}(1,2),UAVRouteCord{i}(1,3),

strcat('UAV',num2str(UAVsNames(UAVs_Route{i}(1,1)))))

text(UAVRouteCord{i}(end,1),UAVRouteCord{i}(end,2),UAVRouteCord{i}(end,

3),'GS')
 hold on
 end
end
grid on
hold off

	Multi-Robot Auction Based Coordination
	Recommended Citation

	CHAPTER 4

