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ABSTRACT 

Perkins, Jessica L. BIOFUNCTIONAL COATINGS USING DIRECT-WRITE 
FABRICATION TECHNIQUE FOR SURGICAL IMPLANT DEVICES. (Major 
Professor: Dr. Salil Desai), North Carolina Agricultural and Technical State University. 
 
 Surface modification of biomaterials is of critical value to attain desired 

functionality of biomedical devices and implants. Many of the conventional 

manufacturing methods used for the fabrication of thin film coatings lack the ability to 

precisely dispense biological compounds without compromising its chemical integrity. 

This research investigates the use of direct-write inkjet technique for the deposition of 

multi-layer coatings of biodegradable polymers. The Direct Write inkjet method provides 

selective deposition and patterning capability for depositing multi-material coatings on 

biomaterials for a vast array of surgical implant devices (e.g. stents for cardiovascular 

applications and orthopedic implants).  

 In the first phase of the research, an elastomeric polymer, namely polyester-

urethane urea (PEUU) was used to encapsulate an anti-proliferation drug paciltaxel 

(Taxol). The direct-writing process was employed to coat multiple layers of this 

polymeric formulation on a model titanium alloy surface. Characterization experiments 

were conducted to observe the influence of drug dosage and coating thickness on the 

release kinetics of the multilayer coatings. Drug release kinetics were characterized using 

an ultraviolet-visible spectrum (UV-Vis) spectrophotometer and surface morphology was 

assessed using optical microscopy and scanning electron microscopy (SEM). 

Biocompatibility tests were conducted to assess the smooth muscle cell inhibition and 

platelet adhesion properties of the coatings.  The effects of drug dosage and layer 



 
 

thickness were evaluated via statistical significance tests. Tunable drug release coatings 

can be developed for an intended application by manipulating a given set of input factors. 

In the second phase of the research, the direct-write printing process was utilized 

to deposit precise layers of multilayer polymeric coatings on magnesium alloy surface. 

Biodegradable magnesium alloys provide substitutes for permanent metal implant 

materials such as titanium or stainless steel. Polymeric coatings provide a barrier layer 

that can retard the corrosion process of the magnesium alloys for vascular and orthopedic 

applications. Poly(lactic-co-glycolic acid (PLGA), polycaprolactone (PCL),  and PEUU 

were chosen based on their varying degradation properties. Immersion studies were 

conducted in a simulated body fluid (SBF) to determine the corrosion behaviors of 

different sample types using inductively coupled plasma spectroscopy (ICP).  

Biocompatability tests such as the lactate dehydrogenase (LDH) assay were conducted to 

assess the cytotoxicity levels induced from magnesium ion exposure.  A reduction in 

magnesium ion content was observed from the polymer-coated samples.  Findings also 

showed correlation between the release of the magnesium alloy and the health of normal 

human bronchial epithelial cells evaluated using the COX-2 gene expression.  This 

research establishes a foundation for identifying candidate polymer coatings to control 

the corrosion of magnesium alloys.   
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The design of newer and more effective drug delivery systems have begun to 

emerge in the field of biomedical engineering, specifically pertaining to the development 

of biodegradable and bioabsorbable implant materials. Developments in metal alloying 

and surface modification processes are at the forefront of many research endeavors where 

the intent is to develop revolutionary biomaterials.  Concurrently, the study of temporal 

and spatial release kinetics of pharmaceutical reagents from drug-eluting surgical devices 

such as cardiovascular and tracheal stents and orthopedic implants is of growing interest 

[1-4].   Surface modifications via different coating techniques, can be applied to various 

biomaterials to enhance their biocompatabily and thus enhance their effectiveness in 

treating the various post operative effects associated with surgical implant procedures [5-

9].   

The use of metallic biomaterials for biomedical applications requires that a 

number of conditions be met.  The material must be biocompatible and corrosion resistant 

so as not to release undesired metal ions into the body [10].  It must posses an adequate 

mechanical strength, thus eliminating potential for fracture and must be free of toxic 

response within the body or host site [11].  Some commonly known materials used for 

fabrication of metallic stents include stainless steel [11], nickel [14], titanium alloys [10-

11], iron, and magnesium alloys [10-14].  Similarly, silicone and certain polyurethanes 

have been used for fabrication of cardiovascular and thoracic devices due to their 
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favorable biocompatible properties [15].  A comparison of the various implant materials 

with their respective advantages and disadvantages is provided herein.   

1.2 Biomaterials for Implant Manufacturing  

The most common stent materials include metallic, polymer, and silicone [15].  

Of the metallic group, materials can be further cateragorized into those that are toxic, 

non-toxic and bioinert, non-toxic and bioactive, and non-toxic and bioabsorbable [16].  

Metallic materials which have already been accepted for use as surgical implant materials 

such as stainless steel and titanium are considered as non-toxic, bioinert materials as they 

do not release any immediate toxic ions into the body, however materials in this category 

may result in the death of surrounding cells or tissues over time [17].  This is depicted in 

Figure 1.1.  The Wallstents generally used today are manufactured using these non-toxic, 

bioinert materials.   

 

Figure 1.1 L. Henchs' catergorization of tissue implant responses 
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The metallic stent (or Wallstent) generally consists of a wire-like, criss-cross, 

stainless steel mesh having a tubular shape and offers the mechanical strength necessary 

to prevent restenosis, or collapse of the arterial wall, after angioplasty [18].  The diameter 

of the metallic stents’ outerwall is also thinner, allowing for a larger inner diameter and 

increased blood flow through the arteries.  Another important advantage is the lack of 

migration that occurs once the device has been placed.  In contrast, the silicone design 

has a rather narrow inner diameter due to its thicker outer wall and issues with migration 

and dislodging have been observed [19].   

Disadvantages of the metallic, mesh-like design is that it is generally permanent 

due to partial or full integration into the airway or arterial wall, making the removal 

process difficult whereas the silicon stent is easily removable and may be exchanged 

frequently [19].  Environmental factors that inhibit the effectiveness of metallic tubular 

supports include in-stent granulation tissue formation, inflammatory disease, smooth 

muscle cell migration, stent thrombogenicity, and neointimal hyperplasia [20].  The 

presence of these factors are more prominent when bioinert materials are employed.  

Thus, they are identified as a foreign body object within the physiological environment 

and become encapsulated within a fibrous mesh.  Subsequently, this can bring about 

increased external forces causing the tubular mesh to collapse, also referred to as 

restinosis [21].  With the transition from bioinert to biodegradable and bioabsorbable, 

more and more research scientist are beginning to focus on magnesium and its alloys as 

ideal candidates for surgical implant materials.   
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Magnesium is the fourth most abundant mineral found in the body, thus it is 

necessary in order for the body to remain in good health [22].  What makes magnesium 

such the ideal candidate for surgical implant materials is its ability to perform an intended 

function, degrade and become absorbed by the body without leaving any trace or toxic 

effects [23].  In a study conducted on atherosclerosis risk in communities, the authors 

suggests that there exists a connection between patients who suffer from cardiovascular 

disease and magnesium deficiency [24].  Thus magnesium-based, bioabsorbable stents 

are of increasing interest for patients suffering from heart disease.  

 

Figure 1.2 Depiction of matching Mg degradation and bone growth processes 
 

Magnesium is also an ideal candidate for orthopedic implant devices for bone 

growth and fracture repair due to it similar mechanical properties to bone.  The material 

offers such advantages as more physiological and less invasive repairs, possibility of 

tissue growth, temporary support during tissue recovery, and gradual dissolution by the 

physiological environment after it has performed its intended purpose.  However 

magnesium alone tends to degrade at an accelerated pace in saline environments thus not 
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allowing enough time for the device to perform its intended purpose.  A depiction of this 

concept is shown in Figure 1.2.  Recent research being conducted at the Engineering 

Research Center for Revolutionizing Metallic Biomaterials has applied various metal 

alloying and surface modification techniques to control the corrosion of magnesium. 

In addition to the use of magnesium alloys for implant and stent manufacturing, 

these materials can be coupled with a multi-functioning polymeric coating that can 

extend magnesium corrosion rates long enough for the stent to serve its purpose as well 

as administer any necessary therapeutic drugs. These coatings also add several other 

benefits, which are described further in the upcoming sections.   

1.3 Polymers for Stent Coating  

Over the past decade researchers have examined a number of ways in which 

pharmaceuticals can be transported via stent-mediated drug delivery methods.  Some of 

the methods found in literature range from synthetic and organic biodegradable polymers 

to non-degradable polymers.  The perusal of non-degradable polymers for biomedical 

uses led to less than satisfactory results for stent coating applications [25].  It is believed 

that the presence of the foreign body causes inflation and infection at the implant site, 

thus magnifying an already complex situation.  Biodegradable polymers were studied for 

stent coating as they offered a decrease in the number of surgical procedures required for 

device removal and a significant reduction in the number of restinosis cases [21].  

Contrasting studies from other cases, however, claim that the use of polymers in general 

may be incompatible with the blood thus increasing the risk of thrombosis. This 
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conclusion caused experts to investigate other alternatives for achieving localized drug 

delivery using stents.   

The uses of degradable polymers as a mechanism for drug delivery was revisited  

(after considering a number of other coating materials and their associated effects).   

Materials  such as Sirolimus [26,28], Paclitaxel (Taxol) [25-28], and Phosphorylcholine 

(PC) have been used to directly coat bare metal stents (BMS).  In some cases these 

materials were used as mechanisms for the entrapment of other medicines within 

themselves.  The use of PC has been used as a binding mechanism to carry drugs to 

treatment sites [29].   

The employment of non-polymeric coatings showed great promise in the fact that 

in most cases 100% efficacy was observed in terms of the intended amount of drug 

required for healing [25-28].  There was, however, an essential limitation of this method.  

The rate at which these substances were released ranged from around 60% to 80% in the 

first two or three days with subsequent elution of the remaining drugs releasing over the 

next 28 to 35 days [30].  This phenomenon is commonly called as a burst effect or initial 

burst period.  However, a procedure for mediated delivery of pharmaceuticals over 

extended periods of time was desired.   

1.4 The Model Stent 

The model stent design would be one that contains select properties of both the 

metallic and biopolymer tubular support systems.  The selected material for stent 

manufacturing would be bioabsorbale, having the ability to dissolve into the surrounding 

tissue without toxic effect.  The metallic wire mesh covered with a biodegradable 
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polymer would offer the mechanical strength required to maintain an open airway or 

blood vessel and allow for a higher blood flow rate (cardiovascular).  A thin biopolymer 

coating would not only add a second dimension to the stenting device as a protective 

barrier to increase the time span in which the stent remains operative, but could also serve 

as a drug carrying device.   

In addition to the increased functionality of tubular support structures following 

coating and/or polymeric surface treatments, more case specific advantages are realized.   

For example, late-stage lung cancer patients facing acute tracheal restenosis due to the 

rapid in-growth of a malignant tumor would require rapid, site-specific, chemotherapeutic 

sessions over an extended period of time.  Local delivery of a drug to the cancerous site 

via a polymer-coated stent can reduce the exposure of toxins to the body, thus ridding the 

impaired site of only the unwanted cells.  Also, the polymer matrix grants sustained 

treatment over time, eliminating the need for repetitive surgical procedures and their 

associated risk as well as substantial medical costs [31].  Literature suggests that a 

biodegradable polymer matrix containing drugs such as Palcitaxel and Sirolimus, which 

inhibit the migration and proliferation of smooth muscle cells, could be used as a 

mechanism for treatment of neointimal hyperplasia [32].  

The study of sustained drug release has important implications in the biomedical 

arena.  Research in the field of tissue engineering has integrated the theory of sustained 

release to deliver Nerve Growth Factors (NGF) encapsulated in polycaprolactone (PCL) 

to preserve bioactivity for the construction of biofunctional tissue scaffolds [33].  

Sustained release of NGF was achieved for three months [33].  Research scientists at the 
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Wake Forest Institute of Regenerative Medicine have achieved sustained release of 

oxygen ions to facilitate cell survivability during the brief period between the 

implantation of tissue engineered organs and the establishment of neovascularization 

where eventual tissue and cell necrosis may occur [34]. 

The above-mentioned applications have demonstrated the success of achieving 

prolonged periods of release for biomaterials having a single polymer matrix layer in 

which the resulting release profiles are a function of degradation properties of the 

biopolymer (carrier) and the rheological properties of the eluting substance (drug). 

Careful consideration of controllable factors such as polymer type, layer thickness, 

drug/agent use, and spatial distribution can result in distinctly, defined temporal release 

patterns.   

1.5 Coating Technologies 

A number of technologies have been applied for the deposition of polymer thin 

films onto metallic substrates, each having their own advantages and disadvantages.  

Techniques such as sputter deposition use a physical vapor deposition (PVD) process, 

which involves the bombardment of the targeted coating material followed by the 

evaporation and transportation of the evaporated material to a particular substrate.  

Sputtering offers great surface adhesion properties, a variety of grain sizes and 

orientations, and easy control of coating thicknesses. This process usually takes place 

inside a vacuum with line of site deposition making it difficult to coat substrates, such as 

stents, designed with undercuts and special features [35].  An important limitation with 

this process is the restricted amount of control over the vaporized coating material as 
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they are transported to the substrate resulting in wasted material.  Lastly, some of the 

targeting coat materials are susceptible to premature degradation due to the ionic 

material used during the bombarding process [35].   

The electro-spinning and -spraying techniques both use electricity, or an applied 

voltage as the source for carrying out deposition processes.  The electro-spinning 

requires a high voltage to be applied to the coating solution, which has been previously 

loaded into a spinneret [39].  Once a voltage is applied to the spinneret it is subjected to 

a whipping motion and a continuous jet is ejected.  This continuous jet is collected on an 

oppositely charged substrate.  This process is more appropriate where a mesh-like 

coating with high porosity is desired. 

Dissimilarly, the continuous jet emitted from a stationary metallic or glass 

capillary during the electro-spraying process is subject to electrostatic forces, which 

result in a cloud of positively charged particles.  The particles are then deposited onto an 

oppositely charged substrate [36-39].  Both the electro-spinning and spraying processes 

are able to deposit highly porous films using a variety of different materials.  They each 

have displayed high tensile strength and tunable mechanical and degradation properties.  

Neither of the two methods requires the use of heat, making them ideal for the use of 

biomaterials.  However, they do result in high amount of wasted materials and lack 

precision abilities for patterning.   

 The dip coating and spin coating deposition processes are less complex yet they 

provide a more uniform coatings.  The dip coating process is good for coating more 

complex structures and has a high deposition and processing rate [40].  This process, 
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however, does not provide variance as far as spatial control and is also inflexible in terms 

of switching out coating materials.  The spin coating process is also an extremely fast 

paced process, however it is limited to possessing only one substrate at a time.  It also 

lacks in the areas of material efficiency (only two to five percent of deposited material 

left on the substrate), repeatability, and thin film deformity.  Lastly, this technique cannot 

accommodate the need for coating two or three-dimensional structures [41].   

A newer and more complex technique is one known as Layer-by-Layer self-

assembly [42-44].  This is a process in which thin films are deposited by alternating 

layers of positively and negatively charged coating materials incorporating a wash step 

in between. This technique might offer a high degree of controlled thickness (atomic 

thickness), ability to coat a variety of materials such as biomaterials, the coating of 

difficult geometries.  In contrast, this method also has its limitations.  This process 

produces excess film build up, hence the need for a washing process in between layers 

and further study is required regarding the reaction between the charges coating 

materials and blood containing ions and polyelectrolyte (proteins).  This process is 

usually performed in combination with another deposition method (e.g. dip coating, 

spraying) and so one might also notice some similar advantages and limitations to those 

already discussed [42-44]. 

As implicated, all of the processes mentioned allow for the manipulation of 

coating thickness and surface morphology to some degree, therefore providing some 

control over the fabrication procedure.  Each process is capable of depositing varying 

types of materials such as metallics, polymers, and other organic materials for a range of 
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different applications.  It has also been noted that the achievable film (or layer) depth for 

this set of deposition processes range from atomic to nano thicknesses. Though the 

aforementioned techniques all possess some desired features of a deposition process to 

be utilized for the manufacture of biodegradable coatings, they all commonly lack the 

ability to deposit precise and localized coatings of three-dimensional complex structures.   

Inkjet printing techniques have been studied and applied as a method of drug 

delivery.  The technique produces droplets of ink through a jetting process via a small 

aperture, such as a nozzle or glass tip, onto a media.  Inkjet printing can be achieved 

using either of two methods [45].  The first, being continuous inkjet printing process.  

Continuous inkjet printing yields a continuous stream of ink that is broken down into 

droplets of uniform size and spacing.  An electric charge is selectively applied to the 

droplets passing through an electric field and are retained and recycled into the system, 

whereas the droplets free of the electric charge are deposited onto the media to form and 

image [45].   

1.6 Drop-on-Demand Inkjet Printing Technologies 

 More appropriately used is Drop-on-Demand (DOD) Inkjet printing process.  This 

method produces droplets of ink as they are needed as opposed to a continuous stream.  

The need for electrical charge in a magnetic field as well as the complex and unreliable 

recirculation systems required in the Continuous Inkjet System are eliminated, making 

this system more desirable for coating of complex structures (picoJet technology).  

Jetting is observed through one of the following approaches: thermal, piezoelectric, 

electrostatic, and acoustic.  The two most popular are thermal and piezoelectric.   
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The piezoelectric method is named after the deformation ability of the 

piezoceramic material used in the inkjet device.  In it there are four different methods in 

which the piezoceramic material can function.  The four methods include squeeze, bend, 

push, and shear.  Squeeze mode ink jet can be designed with a thin tube of piezoceramic 

surrounding a glass nozzle. In a typical bend mode design, the piezoceramic plates are 

bonded to a diaphragm forming an array of bilaminar electromechanical transducers. In a 

push mode design as the piezoelectric rods expand; they push against the ink to eject the 

droplets. The shear mode design deforms the piezoelectric against ink to eject the 

droplets. In this case the piezo becomes an active wall in the ink chamber. Interaction 

between ink and piezoceramic is one of the key parameters of a shear mode print head 

design.  For the purposes of this research, the piezoelectric approach would be more 

suitable as the thermal approach is expected to alter the properties of the biological agents 

used [45-48].   

1.7 Research Objectives 

This dissertation focuses on the application of a novel surface modification 

technique for developing functional coatings for metallic biomaterials.  Inkjet printing 

offers several advantages such as the capability to produce coatings on extremely 

complex structures, deposition onto the outer surfaces only, and flexibility to change 

coating design and materials.  This technique also allows for the adjustment of coating 

thickness with the objective of obtaining desired release patterns.   

Direct write inkjet printing techniques were used develop multilayer coatings 

laced with a pharmaceutical reagent for the purpose of studying controlled release 
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kinetics.  The coatings types were varied in concentration and thickness to determine how 

manipulating the two would affect the drug release profile.  The reagent chosen, 

Paclitaxel, has been proven to inhibit accelerated cell proliferation in cancerous 

environments, thus biological testing was conducted to relate the drug release profiles to 

cell inhibition.  Hemocompatability test were also conducted to relate drug release to 

blood coagulation on the functionalized surfaces.   

In a second study, the direct write techniques were used to develop polymer 

coatings that would aid in corrosion retardation of magnesium alloys for orthopedic and 

vascular applications.  It was believed that by manipulating droplet sizes and pitch 

distance as well as polymer type and thickness, that desirable corrosion rates based upon 

a given application could be obtained.  Cell viability and surface interaction of the 

magnesium alloy and various coating types were also explored.  The main objectives of 

this research are plainly stated: 

1. Develop controlled release coatings using direct write inkjet technologies. 

2. Study the relationship of drug release profiles to cell growth inhibition and 

hemocompatability of coated and uncoated metallic surfaces. 

3. Develop polymeric coatings for corrosion retardation of magnesium alloys using 

direct write inject technologies. 

4. Assess the corrosion behavior magnesium alloys (AZ31) with modified coating 

surfaces. 

5. Assess the cell viability and biocompatibility of Normal Human Bronchial 

Epithelial cell after controlled magnesium exposure. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Surface Modification and Functionalization 

The surface modification and functionalization of metallic materials is being 

proven to be an essential step in making materials more biologically compatible with the 

human physiological environment. Its relevance has become intensely important in the 

medical field as different materials are explored for their use and performance in the 

development of transplant and surgical devices.  As the need for more biocompatible 

surfaces arise, research scientist have began to focus their efforts on ways to enhance the 

physical, chemical, and biological properties of surfaces which they do not originally 

possess.  The uses for multi-functional surfaces can increase the life span of implant 

devices and reduce the need for surgical procedures.   

A number of processes that are employed for use in surface modification 

procedures are explained.  These procedures are necessary to inhibit the profound 

environmental reactions to surfaces causing wear, corrosion, and fatigue.  Biochemical 

modification through physical vapor deposition [49], self-assembly modification [50], 

and radio frequency glow discharge [51] are a few of the most popular techniques used.   

Ferretti et al.  argued that the advancement of self-assembled monolayers (SAM) 

could be sufficiently used for the development of monomolecular layered bionsensor 

devices [52].  By fabricating layers of biomolecular agents, which could simulate 

reactions with natural bodies, these devices could eventually be used to facilitate natural 
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functions [52].  An in depth review of processes to be used for this application 

accompanied by the advantages and disadvantages of each were described.   

With an effort to improve thromboresistance, or blood compatibility, of a titanium 

alloy (TiAl6V4) for ventricular devices, recent research efforts have been focused on 

possible chemical surface modification techniques [53].  A silane-coupling agent (APS) 

was used to covalently attach a phospholipid polymer (PMA) through radio frequency 

glow discharge.  The coupling agent was used to tightly bond together the PMA to the 

titanium alloy, where typically a reaction would not occur.  PMA was chosen due to its 

excellent ability to reduce platelet adhesion and coagulation of the blood at the medical 

implant site [53].  Modification of the Ti alloy surface added functionalization to the 

surface, which would have otherwise been biologically incompatible.  Characterization 

by X-ray photoelectron spectroscopy showed success of the surface modification 

procedures and thereby a reduction in adsorption of ovine sheep blood platelets [53].   

2.2 Controlled Degradation of Magnesium for Surgical Implant Materials 

 Towards the study of Magnesium (Mg) and its alloys for its application in implant 

materials, it has been noted that the material exhibits excellent biocompatible properties 

(similar to that of the bone structure) [54].  Its high tensile and yield strength as well as 

its density makes it an ideal material for biomedical implant devices [54].  However, its 

position on the galvanic chart is an undeniable indication of its susceptibility to corrosion 

in certain environments.  Several studies have been conducted in efforts to control the 

corrosion rates of magnesium-based implants long enough for the device to carry out its 
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intended purpose.  Two of the major mechanisms found in literature include metal 

alloying and surface modification for controlled degradation of magnesium.   

2.2.1 Alloying for Controlled Degradation of Magnesium 

 In a recent study, Gu et.al. studied the in vitro corrosion and biocompatibility of 

binary magnesium alloys.  Nine binary magnesium alloys containing 1% weight, X, of a 

proposed alloying component (X=Al, Ag, In, Mn, Si, Sn, Y, Zn, Zr) was tested for their 

potential use as biomedical alloying materials [55].  Each of the proposed materials was 

subjected to preliminary testing to characterize its microstructural and tensile properties.  

Electrochemical and immersion tests were conducted to understand corrosion potential of 

each material.  Finally, cytotoxicity and hemocompatibility test were conducted to 

determine the suitability of the materials for more specific biomedical applications (e.g. 

bone and blood vessel related cellular responses).  Gu et. al were able to conclude that 

Mg-Al showed positive response for nearly all of testing [55].   

 Aluminum as a potential magnesium-alloying candidate showed improved 

strength of the material, reduced corrosion, acceptable cell viability and toxicity on 

fibroblast, osteoblast and blood vessel cells.  However, other recent studies have proven 

aluminum to have neurotoxicant effects which have been associated with such 

neurological disorders as dementia, senile dementia, and Alzhiemer disease.  In the same 

study zinc, as major magnesium alloying component, also showed similar and favorable 

characteristics as aluminum [55].   

 In another study conducted at the Laboratory of Metal Physics and Technology, 

scientist proposed two new Mg-Y-Zn alloys (ZW21 and WZ21) for use as implant 
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materials for blood vessel repair (Hanzi et al, 2010).  The study focused on in vitro and in 

vivo electrochemical and biological responses through electrical impedance spectroscopy 

and standard immersion testing [56].  New alloys were compared to the first generation 

ZQ30 (Mg-Zn alloy) and a reference alloy, WE43 (Mg-Y-RE alloy) to characterize grain 

structure, corrosion potential, and degradation performance [56].  This reference alloy has 

been used in clinical trial settings as a stent was developed from this material and inserted 

into the aorta of a newborn patient.  Upon characterization of the proposed alloys, the 

authors conducted animal testing in which sample disks of the WZ21 alloy (chosen 

because of its more favorable mechanical performance) were implanted into two 

Gottingen minipigs.  The samples and surrounding tissues were extracted after 27 and 91 

days and results proved that there was a significant reduction in foreign body reaction 

activity after more extended implant periods [56].    

 Many efforts have been made to develop magnesium alloy specifically for bone 

regeneration and repair.  Li et al. propose a binary Mg-Ca alloy for use as biodegradable 

materials with the bone structure [57].  In this study Mg-Ca alloys of various calcium 

percentages (Mg-1Ca, Mg-2Ca, Mg-3Ca) were tested to determine structural and 

mechanical advantages to bone repair and its potential environmental behaviors.  

Immersion tests proved that the Mg-1Ca samples were protected from increasing 

corrosion rates due a protective layer formed on its surface from the electrolyte solution.   

 The findings of the preliminary mechanical and immersion tests led the authors to 

select Mg-1Ca to conduct further cytocompatibility and animal testing [57].  Mg-1Ca 

pins were manufactured and implanted into the left femoral shaft of 18 New Zealand 
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rabbits.  The pins were removed after one, two, and three months and characterized by 

weight and degradation.  Results showed that the pin had completely dissolved at three 

months post operation and that newly formed bone was detected using radiographic 

examination.  However, the issue of premature degradation still remains and further effort 

must be made to synchronize rate of degradation with the rate of bone formation [57].   

2.2.2 Surface Modification for Controlled Degradation of Mg Alloys 

The research group at the Tsinghua University in Beijing, China reports that the 

appropriate application of surface modification techniques can be employed to increase 

corrosion resistance of Mg and Mg alloys, thus making this material one that could be 

used for bone replacement as well as a delivery mechanism to benefit human metabolism 

[58].  In addition, Gao and his research group used the heat-self-assembled monolayer 

(HSAM) technique to modify the surface of 4N-Mg biomaterials.  This group conducted 

in vivo studies in which the treated and untreated magnesium materials were implanted 

into the thighbone of white rabbits to induce bone growth.  They found that the modified 

surfaces were beneficial in reducing the rate of corrosion and that corroded magnesium 

content in the blood remained within a normal range [50].     

2.3 Drug Delivery 

Drug delivery is the idea of administering pharmaceuticals to patients needing 

medical treatment in specified dosages.  There are several methods in which drugs have 

been delivered such as orally (through the mouth), topical (through the skin), 

transmucosal (through the nose), inhalation, and injection.  These methods encompass the 

ability to delivery various types of drugs and biological compounds as vaccines, proteins, 
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and other therapeutic systems.  Over the past few decades localized, or targeted delivery 

has become a favorable drug delivery method in that it limits toxicity to the human body 

by only treating the infected site [59].  This type of drug delivery system (DDS) also 

increases bioavailability of drugs [59].   

An earlier inception of localized drug delivery involved the use of drug-eluting 

nanoparticles for the treatment of restenosis.  Insertion of the nanoparticles was 

administered through a catheter apparatus.  Researchers investigated the effect of two 

different agents, dexamethasone and an aminochromone antriproliferative agent, on 

restenois in a rat carotid and porcine coronary model [60-61].  The results showed 

promising signs towards the inhibition of restenosis.  Furthermore, herparin anti-

coagulation drugs were incorporated into the nanoparticles for testing in pig coronary 

arteries for the reduction of platelet deposits and desirable results were achieved [62].  

The findings proved to be even more promising as it was observed that the nanosized 

particles could be dissolved into the arterial walls without damage to the treated site.   

Another study integrated the use of a rat model to deliver the growth factors IGF-I 

and TGF-B1 from a biodegradable matrix previously coated onto a titanium plate to treat 

the instability of long bone fractures [63].  Biomechanical testing was incorporated to 

determine if the growth factors effectively enhanced the healing process.  The results 

showed that complete healing of the fracture had not taken place 42 day after surgical 

implantation, however biomechanical strength was restored with two days of surgery.  

The results obtained from the coated group were significant compared to the controlled 

(uncoated) group [63].   
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2.4 Temporal Release 

Recent studies have introduced complex biphasic/triphasic and tetra-layered 

systems when a series of treatments are required over an extended period of time.  

Careful consideration of controllable factors such as polymer type, layer thickness, 

drug/agent use, and spatial distribution can result in distinctly, defined temporal release 

patterns.  Okuda et al. were able to develop tetra-layered nanofibrous meshes for in vivo 

testing to obtain timed-programmed release patterns [64].  Timed release was achieved 

by setting the parameters for fiber diameter, mesh layer thickness, polymer concentration, 

and the use of a barrier mesh with controlled thickness. Each layer was fabricated using 

electrospinning technique and a polymer solution doped with two different types of dyes 

to simulate the release of pharmaceutical compounds [64].   

Li et al.  present a method for achieving well-defined spatial and temporal release 

profiles for a drug-eluting MEMS device loaded with various compounds to be released 

sequentially [65].  Fabrication of the MEMS devices requires the use of an etching 

process and a silicon substrate to etch strategically placed, well containing reagents.  The 

wells were covered with a gold membrane expected to corrode based on electrochemical 

principles [65].  In the article titled “Modeling and Simulation of drug release from 

Multi-layered Biodegradable Polymer Microstructure in Three Dimensions,” cellular 

automa 3D modeling software was used to describe the dynamic behavior of multi-

layered polymer structures with uniform and nonuniform chambers [66].  The article 

presents a novel method for modeling drug delivery microstructures.  Polyanhydride was 

employed to create structures with various micro chamber shapes capable of 



21 
 

encapsulating a variety of different agents.  The structures were stacked using glue to 

create a single multi-layered structure.  The outer boundary was expected to degrade over 

time to promote sustained release [66].  A Monte Carlo based two dimensional model 

developed in the late 90’s has been able to predict prolonged release rates of encapsulated 

drugs; however, the authors determined that a three dimensional model was needed for 

more valid characterization.  The 3-D model was compared to that of the 2-D model 

using the same suggested parameters and findings were analogous.  The authors then 

optimized the parameters and formulated a hypothesis that would test the models 

performance on two different types of multi-layered systems [66].  Results showed that 

cellular automa could be used as an accurate predicting model to characterize release 

behaviors.   

2.5 Current Coating Technologies 

The coating technique proposed for surface modification and/or functionalization 

of metallic surfaces is one that is unique to a specific application.  In some cases it may 

be necessary to perform two or more different methods successively to achieve the 

desired results.  This section presents a few of the widely used methods for coating 

metallic surfaces along with their advantages and disadvantages.  Desirable 

characteristics for application of coating biological agents are also highlighted.   

2.5.1 Electrospinning 

The electrospinning process uses an applied voltage as its main source.  The 

equipment setup can either be one that is vertically or horizontally mounted [39].  

Electrospinning requires that the coating solution be loaded into a spinneret apparatus 



22 
 

where a high voltage is applied. Following the application of the voltage, the nozzle 

portion of the spinneret is subject to a whipping motion and a continuous jet is ejected 

(Figure 2.1).  The collector, or substrate, having an opposite charge is placed opposite of 

the nozzle capillary where the coating material is deposited and the thin film is formed 

[39].  

 

Figure 2.1 Schematic of the electrospinning process [43] 

 
The process parameters having a profound effect on such measures as fiber 

diameter, pore size, film porosity, and film thickness include: electric potential; flow rate; 

concentration of the coating material; target motion; and the distance between the 

spinneret and the target substrate.   

The process offers a number of advantages making it an ideal process for 

depositing bio thin films.  For instance, the process provides a high surface-to-volume 

ratio, good tensile strength and the use of a wide variety of coating materials.  It does not 

involve the use of heat and so it is ideal for the deposition of biological agents.  Also, 

tunable mechanical and degradations properties can be achieved.  Limitations of this 

process are subjective depending on thin film application [39].   
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2.5.2 Dip-Coating 

The dip coating process can accommodate flat or cylindrical substrates.  The 

substrate is submerged into the coating solution.  It is during this step that deposition 

takes place.  Withdrawal occurs at a constant speed and this is what determines the thin 

film thickness (Figure 2.2).  For instance, the faster the withdrawal speed, the thicker the 

thin film layer [40].  Any excess liquid is drained from the surface and the solvent begins 

to evaporate.  This process is repeated for each additional layer that is desired.   

 

Figure 2.2 Schematic of dip-coating process 
 

The goal throughout the deposition process is to obtain a uniform coating 

thickness with desirable film thickness and surface characteristics tailored to a specific 

application.  The tunable process parameters include the withdrawal speed, gravitational 

acceleration, rate of solvent evaporation, number of dipping cycles, dwell time, and fluid 

properties.   

Like many other thin film fabrication techniques, this process also has its 

advantages and disadvantages.  For instance, dip coating is more suitable for coating 

substrates with complex shapes and undercuts.  The production rate is extremely high as 
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multiple collectors can be processed at a single time.  Contrarily, coatings cannot be 

spatially controlled and the changeover time is extended making the process one that is 

inflexible for coating layers of various materials.   

2.5.3 Layer-by-Layer (Self-Assembly) 

A newer and more controllable thin film fabrication technique is layer-by-layer 

deposition.  This process involves the growth of thin films by depositing alternating 

layers of positively and negatively charged layers with a washing procedure in between.  

The bonding of the two charged layers is termed as a bilayer.  Deposition of each layer is 

usually performed by a more simplified deposition technique (e.g. dip coat or spray) [43].  

Measures of the film thickness, roughness, and porosity are usually a function of pH, 

ionic strength, and polyelectrolyte concentration (Figure 2.3).   

Due to the compositions of ionic bonding layers, one might be able to insinuate 

that a great advantage of this coating process is the fine control of drug loading and layer 

thickness.  With this process atomic monolayers of the coating materials are achievable.  

Concurrently, a wide variety of coating materials from biological agents to metallics can 

be deposited onto complex geometries.  This process does, however, pose several 

limitations in that an extra washing step required is due to excess film build up, also 

implicating a high volume of wasted material.  In addition, it was mentioned that further 

studies must be conducted to study the reaction between the charged coating materials 

and blood containing ions and polyelectrolytes in proteins [44].   
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Figure 2.3 Schematic of layer-by-layer assembly process [45] 

 
2.5.4 Sputter Deposition 

 Sputter deposition is a physical vapor deposition process in which a discharge of 

sputter gas, usually argon, is directed at a target containing the coating material [35].  The 

reaction between the gas (or ions) and the target materials brings about a sputtering 

reaction, which initiates the transport of atoms from the target to the substrate (Figure 

2.4).  The sputtered atoms are condensed on the substrate resulting in a thin film coating.   

 A great advantage to the application of depositing biomaterials is that this process 

does not require the use of heat, which could possibly alter the biological properties of 

the substrate.  In contrast, the bombardment of the ions may introduce impurities to the 

collector, or substrate, thus resulting in its premature degradation.  Use of this technique 

also provides the enhancement of adhesion to surface and easy control of film thickness.  

Nevertheless, the transportation of atoms is non-directional so consequently they may be 
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deposited on any surface within the vacuum chamber [35].  This can result is elevated 

amounts of waste.   

 

Figure 2.4 Schematic of electron sputtering process [46] 

 
2.5.5 Spin Coating 

Spin coating techniques have been used to apply thin films with less than 10 

nanometer thicknesses.  The procedure involves discharge of the bulk coating material 

from a nozzle onto the substrate, previously loaded onto a rotational tool.  The loaded 

substrate containing the coating material is then subjected to high centrifugal forces 

causing the fluid to be directed to its edges [41].  During the rotation process the solvent 

begins to evaporate resulting in a thin film coating (Figure 2.5).   

Spinning is a rapid process and the variables required to adjust the coating 

thickness is limited [41].  The primary process parameters include spin speed, viscosity 

of the coating solution, and spin time.  The use of this process, however, is limited in that 

it can only coat flat surfaces one substrate at a time resulting in a low production rate.  

Literature also suggests that after completion of deposition only two to five percent of the 

loaded coating solution remains on the substrate.  It seems, however, that the greatest 
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drawback is low repeatability and difficulty to maintain a uniform film despite 

consistency of the processing parameters.  This issue results in a number of unusual 

deformities that may be undesirable for certain applications.   

 

Figure 2.5 Schematic of spin coating process [47] 

 
2.5.6 Electro-Spraying 

 Electro-spraying deposition is another apparatus that employs the use of 

electricity to coat thin films.  The electrostatic forces applied to a continuous stream of 

the coating materials aids in the deposition process [36].  During this process, the liquid 

at the capillary becomes unstable to the point were it can no longer hold the charge and 

disperses into a cloud of highly charged particles (Figure 2.6).   

The process parameters having a profound effect on such output measures as film 

thickness, morphology, uniformity, and porosity include the following: growth rate, 

solvent evaporation rate, concentration, spray temperature, and deposition time.  This 

process, however, is extremely sensitive to the physical properties of the fluid and is 

limited to the use of solutions with low conductivity.  Advantages of the electro-spraying 

techniques are that it does not cause damage to the deposited biomaterials.  Also, high 

definition efficiency can be achieved (about 80%) [36-38].   
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Figure 2.6 Schematic of electro-spraying process [48] 

 
2.5.7 Coating Processes for Drug-Eluting Stents 

Careful consideration is required when determining the appropriate technique to 

be used for the fabrication of biological materials and thin films.  Processing that 

involves the altering of biological agents and/or their characteristics such as those that 

require the excessive use of heat or elevated pH or acidity levels should be avoided.  

When coating surfaces of drug eluting stents the drug containing solution should not be 

subjected to processes in which excessive heat or inappropriate pH levels would alter the 

performance characteristics of the device in vivo.   

Researchers at the National Cardiovascular Center Research Institute developed a 

multi-drug-eluting stent with micropores to reduce neointimal hyperplasia and minimize 

coagulation of blood platelets at the implant site.  The dip coat method was used to 

deposit a layer of segmented polyurethane (SPU) onto the inner and outer surfaces of a 

Palmaz-Schatz stent manufactured by Johnson and Johnson.  A excimer laser apparatus 
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was used for micropore fabrication and then again to ensure immobilization of the 

heparin coating (inner surface) and FK506 immunosuppressant (outer surface) coatings 

that were applied [67]. 

The coating method that was chosen aided in the prevention of plaque build-up 

within the struts of the stent, limiting thromboresistance.  The technique resolved the 

issue of the undesired structure of the luminal surface resulting in the flat surface needed 

for experimental success.  The irradiation process used for the immobilization process did 

not pose any threat to the functionality of the chosen biological agents.   In vivo results 

showed that the multi-drug coating did reduce neointimal hyperplasia and thrombosis 

[67].   

Another study claims the development of a novel biodegradable polymeric 

matrix-coated cardiovascular stent for controlled drug delivery through the use of an 

individualized drug-eluting stent system to abrogate restenosis (ISAR).  The authors here 

use a modified air suspension coating technique in which the wire mesh-like stent is 

suspended vertically between two hooks that are linked to the coating device.  The 

coating solution reaches the 0.2mm diameter nozzle while under gravitational influence 

and is eventually ejected from the capillary and subjected to a pressure drop atomizing 

the liquid into fine droplets.  Multiple layers (4) of coating solutions were collected on 

the rotating stent [68]. 

 It was observed that the coated stent in this study maintained a standard uniform 

coating free from impurities following the successful optimization of parameters such as 

gas pressure, flow rate of the solution, and distance between the nozzle and stent.  
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Mechanical properties of the coating were also tested at stent site and subjected to the 

maximum permissible stress.  The results of SEM imaging and the findings of film 

stability confirmed complete adhesion of the film.  Finally, processing of the coating 

materials through the use of gravitational forces and air pressure did not result in the 

alteration of either the biological components or substrate [68].   

 In a research study published by the American Heart Association, an on-site 

coating apparatus is used to apply pharmaceuticals for the direct use of drug eluting 

stents.  The process maintains sterility throughout the duration of the application period.  

The drug-eluting stent fabrication design allows for individual doses of a specified drug 

in a drug reservoir to be connected to a disposable stent cartridge under sterile conditions.  

The stent, mounted onto a balloon catheter is positioned inside of the disposable cartridge 

and is ultimately motioned horizontally through a ring containing three nozzles.  Upon 

application of the coating solution via spray coating mechanism, the stent is dried by 

sterilized air pressure and is removed for immediate use [69].   

 A process such as this was necessary to ensure that materials are free from 

contamination.  Given that the deposited solutions are bare drugs, appropriate precautions 

were taken to ensure that the functionality of the drugs is not disturbed.  The coated drug-

eluting stents were immediately used for inhibition of neointima, or accelerated growth of 

unwanted cells.   

The recent application of this method was carried out for the fabrication 

rapamycin-eluting stents [70].  The systematic release of probucal was also reviewed.  

This non-polymeric coating technique was sought as a method to deliver drugs in a way 
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that does not introduce unnecessary cardiac events into the healing process.  To assess the 

effectiveness and safety of these newly developed stent coating techniques, rapamycin 

and polymer coated stents as well as a control (bare metal stents) were placed in a porcine 

model where the effects of fibrin deposition was closely monitored [70].  Results showed 

that fibrin deposition was significantly higher in biodegradable polymer-based stents.   

2.6 Uses of Ink-jet Printing Technologies  

The use of inkjet printing technologies for the deposition of biological materials is 

becoming more relevant for applications in biomanufacturing.  The non-contact printing 

technique has been used for the fabrication of solid and multilayered microspheres, 

deposition of biopolymeric materials for uses in tissue engineering, and bioMEMS and 

microfluidic applications [71].  Inkjet printing, also referred to as a direct-write process, 

offers several advantages in the deposition of biological agents such and DNA, proteins, 

and growth factors for tissue engineering applications.  A primary advantage is that 

during the deposition process, the coating materials are not subjected to elevated 

temperatures that could potentially alter both the biological and fluidic properties [71].  

Other advantages of this technique are its ability to produce highly uniform microdroplets 

as well as a precise deposition tool to fabricate very small and complex structures.  A full 

list of advantages can be found in Table 2.1. 

 In an article released from MicroFab Technologies, Cooley et al. presents inkjet 

printing as a suitable technique for manufacturing biological micro-electromechanical 

systems (bioMEMS) [72].  The current technique for the fabrication of these devices 

consists of photolithographic process that requires exposure and/or etching of 
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biomaterials to create a pattern or coating. The etching process lacks control, which 

affects the thickness of the applied coatings. The direct-write technique is a safe 

procedure that does not introduce harmful chemicals.  It is a three-dimensional printing 

process that allows for easy manipulation and achievement of uniform coating 

thicknesses [72].    

Table 2.1 Advantages of Direct-write inkjet technique 

Advantages of Direct-Write Inkjet Printing 

1. Non-contact, reduced cross-contamination of substrates 
2. No thermal influence 
3. Precise and accurate printing 
4. Prints a variety of materials and biomaterials on a variety of substrates 
5. Fast Process 
6. Low start-up cost 
7. Data-driven and safe process 
8. No chemical waste  

 
 The inkjet printing process may be achieved using one of three different methods: 

thermal, continuous, or piezoelectric drop-on-demand.  For reasons mentioned above, the 

use of the first two methods have been discouraged for printing biological agents onto 

small, complicated structures.   

 In a recent study, also conducted in conjunction with MicroFab Technologies, 

Inc., a standard JetLab system was used to fabricate PLGA microspheres, which had been 

loaded with paclitaxel drug and thin films of fenofibrate for stent coating applications. 

The materials selected were required to meet four specific criteria: 1) the ability of the 

material to degrade after performing its drug delivery function 2) the ability to sustain 

cell viability 3) the ability to sustain proper cell functioning and 4) the ability to be jetted 

at high concentrations for extended time periods [73].  



33 
 

Drug release and bioactivity of the drug containing microspheres and thin films 

were observed using UV spectroscopy and MTT assay respectively.  The results obtained 

showed that the drug containing microspheres were able to sustain release of the 

paclitaxel drug for at lease 50 days with 80% of the loaded drug being released.  The 

results of the MTT assay proved that the inkjet printing techniques did not alter the 

functional properties of the drug [73].  Attesting to the claims of high speed and accurate 

deposition, release profiles from the coated stents demonstrated that this technique could 

be used to improve drug-loading efficiency as compared to other coating techniques.   

A more recent study was conducted to revisit the use of commercial inkjet 

printers and ink cartridges, which have been modified for bioprinting applications [74].  

Khan et al.  sought to prove that when using a modified inkjet printer, the short period of 

time in which bio-inks containing proteins are subject to elevated temperatures are 

negligible and, in fact, enzymatic activity was present after printing[74].   

 The need for a more suitable deposition technique for stent coating applications is 

desired that can achieve high drug loading efficiency through accurate and localized 

printing methods and maintain extended drug release periods.  A review of current 

deposition methods for biofunctional surface modification applications has been 

presented, each with their parameters, benefits, and limitations.  It has been shown that, 

while each technique has its list of advantages, they are relevant only for certain 

applications.  The use of other more conventional deposition methods has been 

discouraged whether it be for issue with substrate contamination, lack of control during 
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the deposition process, or the possibility of decreasing bioactivity upon being subjected 

to heat or some harsh chemical.   

Many techniques have been used to coat drug-eluting cardiovascular stents for 

drug delivery and a combination of techniques have been used to grow multilayer thin 

films.  However, none have employed the use of piezoelectric direct-write systems to 

develop polymeric coatings for corrosion retardation of magnesium alloys and drug 

release of antiproliferative cancer drugs.   
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CHAPTER 3  

METHODOLOGY 

3.1 Overview 

 Direct-write printing is a novel method that is currently being considered for the 

development of targeted and precise polymer coatings for a vast number of biomedical 

applications.  More specifically, these coatings can serve as protective barriers when 

applied to the surface of an implant device and/or be used as a mechanism for the 

delivery of anti-proliferative drugs via a coated stent model system.  The device or stent 

model system consists of the substrate, or biomedical device, in which the coating is 

applied, and the coating itself.  The nature of the coating can take a variety of forms with 

the ultimate goal of achieving a specific release profile.   

 In the sections to come, a system of experiments is described that will provide an 

understanding of the factors which have a profound impact on drug release profiles from 

biodegradable thin films fabricated using direct-write printing technologies.  A second set 

of experiments will describe the effectiveness of polymeric coatings, applied using this 

same novel technique, for the retardation of magnesium corrosion.  Details of the 

experimental design and process description will be provided followed by a mention of 

the possible challenges.   

3.2 General Approach  

 Titanium and its alloys are among the list of metallic biomaterials used to 

manufacture surgical implant devices (i.e. stents, orthopedic implants).  Other noted 

metals include stainless steel and cobalt-based alloys.  Metallics as biomaterials are ideal 
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due to their ability to resist the fatigue, wear, and fracture sustained from the daily forces 

present in the body.  The inert presence of these materials also makes them ideal for use 

within the body, as they do not present any obvious adverse effects when implanted into 

the host site.  Many of the cardiovascular stents on the market are made using stainless 

steel; however, this dissertation will employ the use of polymer-coated titanium alloy 

substrates as a model system to simulate the behavior of drug-eluting stents because of 

their strength and biocompatibility in biological environments. 

 Despite the excellent strength and corrosion resistance properties of titanium for 

the manufacture of biomedical devices, there exist some limitations.  The most important 

is that the surface oxidized layer, which forms after the natural reaction between the 

titanium atoms and the oxygen atoms present in body fluids, can also be disrupted by the 

metallic ions.  Extensive research has been conducted that suggest different ways in 

which surface modification of titanium can enhance its biocompatibility.  Also, since the 

introduction of synthetic and biodegradable polymers for biomedical uses in the early 

1900’s, they have been successfully applied in a number of ways to advance the 

properties of metallic biomaterials.   

 Hwal Suh, suggests three classifications of polymeric biomaterials in an article 

titled, “Recent Advances in Biomaterials” [75]. The use of biodegradable polymers to 

coat metallic materials not only add flexibility to the metal but also provides the 

additional benefit of mimicking the functionality of the surrounding tissues present at the 

host site.  As a result the implanted material is able to remain at the implant site for 

extended periods and not pose any immunological threat.  Biodegradable polymers have 
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the ability to absorb within the body, and in some cases, regenerate lost tissue and or 

cells.   

 An added dimension to the use of biodegradable polymers for coating medical 

devices is their ability to sustain and transport medicinal drugs for prolonged drug 

release.  This is possible due to the natural characteristics associated with a specific 

polymer type.  The degradation properties of a given polymer type is one factor that has a 

significant effect on the time in which it is capable of sustaining drug release.  A second 

factor is the physiological environment in which the degradation process takes place.  

Some commonly used biodegradable polymers for drug delivery include poly-(lactic-co-

glycolic acid) (PLGA) [76-78], polycaprolactone (PCL) [77,78], and poly(ether urethane) 

urea (PEUU) [78].   

 The listed polymeric biomaterials all possess exceptional biocompatible and 

biodegradable properties.  As such, they have been approved for use in the human body 

specifically for drug delivery applications.  However, research is currently being 

conducted to improve its biostability.  The degradation rates of these polymers have the 

ability to be manipulated such that a desirable rate of release may be achieved [78].  For 

instance, PLGA, which consist of the natural monomers lactic and glycolic acid, can be 

manufactured in such a way that the ratio of lactic acid to glycolic acid is 75:25 resulting 

in a faster degradation rate.  Several other advantages to the use of these polymers 

support the decision for its use.   

 Drug release rates not only depend on the polymer type, but also the 

pharmaceutical agent and a specified dosage.  The types of drugs chosen to deliver drugs 
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from cardiovascular stents are numerous, yet they are dependent on the application.  For 

instance, if the main purpose is to prevent coagulation of blood platelets or increase blood 

compatibility of the device then the choice of drug may be Heparin.  Chemotherapeutic 

drugs have also been used to treat late stage lung cancer patients [79]. A common drug 

that is used to inhibit the increased growth or proliferation of unwanted cells around the 

stent device is Paclitaxel, also referred to as Taxol [80].   

 Paclitaxel is an antimicrotubule agent that is used to treat an array of cancers (e.g. 

breast cancer, lung cancer, ovarian cancer).  This drug is usually used after other 

treatments have been explored and have resulted in failure.  Uses of this drug in excess 

can lead to depletion of the white blood cells needed to fight infection thus resulting in 

fatality.  Ideally, this drug would be delivered in small amounts over extended periods of 

time, making it the perfect candidate for testing release from biodegradable polymers 

[80].   

 The use of bioinert metallics can eventually lead to foreign body reaction 

following implantation due to the body’s inability to recognize the material as one that 

compliments normal physiological processes.  Thus, magnesium and its alloys have been 

identified as a lightweight metallic biomaterial that can withstand the daily forces 

imposed by natural body function.  It is also the fourth most abundant element found in 

the human body making it essential for many of the physiological processes.  Magnesium 

is an ideal candidate for surgical implant materials because of its ability degrade after 

performing its intended purpose without posing any toxic effect to the body.   
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 Although, magnesium has been identified as an ideal candidate for surgical 

implants such as cardiovascular stents, the issue of its fast corrosion rate still remains.  

Thus, in a second study we propose that the application of biodegradable polymeric thin 

films can be used as a method for retardation of the corrosion process.   

 The deposition process for loading the drug containing polymer matrix onto the 

titanium substrate is one that should also be carefully chosen, particularly for coating 

complex structures such as stents.  A description of the commonly used deposition 

processes for surface coating and modification is found in preceding chapters.   

 Direct-write inkjet printing offers several advantages to the process of coating 

metallic devices such as stents for biomedical applications.  One main advantage is the 

ability to print local and precise patterns onto three-dimensional structures.  With stent 

coating the ability to print precise patterns is ideal because of its complex, helical, mesh-

like design.  This technique also prevents webbing of the coating materials, which has 

been known to alter the stents functionality.  Direct-write printing techniques also permit 

biological agents such as drugs and proteins to be deposited without altering their 

physical and chemical compositions.   

 The present research uses the direct-write inkjet printing technique to 1) deposit 

biodegradable polymer thin films, laced with the antiproliferative paclitaxel drug, to coat 

bioinert titanium substrates and 2) apply polymeric thin films to a magnesium alloy as a 

protective barrier for corrosion retardation.    

 

 



40 
 

3.3 Governing Facilities and Equipment 

 This research is conducted in conjunction with the National Science Foundation 

Engineering Research Center (ERC) located in the Interdisciplinary Research Center at 

North Carolina Agricultural and Technical State University.  The present study is only a 

small segment of the ongoing research within the ERC which consists of three 

Engineered Systems: (I) Craniofacial and Orthopedic Applications, (II) Cardiovascular 

and Thoracic Devices and, (III) Responsive Biosensors and Neural Applications.  

Research at the center relies on four enabling technologies: biodegradable metals, 

biofunctional surface modification, sensing and controlled degradation and, controlled 

release.  This dissertation will focus on the ES-II component driven by biofunctional 

surface modification and controlled release technologies.   

3.4 Fundamental Challenges 

 Several challenges have been noted, however they are not expected to have a 

significant impact on the validity of this research.  The first challenge is that, although we 

are using planar titanium substrates as the model stent (which are actually three 

dimensional), the direct-write system used in this research is not actually capable of 

printing on these types of structures.  A second challenge is that the consistency between 

batches of biological agents and polymers could see small variations in their physical 

properties, which could have an effect on the outcome of the experimental results.  These 

variations can be taken into account in the analysis portion of the research to ensure that 

this research effort remains valid.   
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 Pertaining to the direct-write inkjet printing technique that will be used to coat the 

titanium substrate, there are several challenges that may be encountered.  For instance, 

this technique is limited in the fluids that can be jetted.  Fluids having non-Newtonian 

properties, which are highly viscous, may not be appropriate for deposition by this 

technique.  Thus, drug loaded carriers or thin films may not be loaded with a realistic 

dosage of drugs needed for treatment.  Also, this process is sensitive to the properties of 

the fluids being jetted making it difficult to obtain the optimal jetting parameters for a 

given fluid concentration.  As a result, the jetting optimization process can be time 

consuming making it sometimes infeasible to obtain a large number of samples as might 

be suggested from conducting a statistical power analysis.  Moreover, the optimal jetting 

parameters obtained for a given fluid varied from one user or jetting session to the next.  

Though not able to be completely eliminated, these challenges were minimized by 

designing a protocol for reaching optimal jetting parameters as well as equipment training 

sessions.    

3.5 Methods and Materials 

 This section will provide a description of the processes and factors, which are 

expected to have a significant effect on the output parameters.  The output parameters are 

also stated with a description of each to follow.     

3.5.1 Direct-write Equipment and Jetting Optimization Process 

 The deposition technique chosen for this research is a modified inkjet printing 

technique designed by MicroFab Technologies Drop-On-Demand Test Stand inkjet 

system (MicroFab Technologies, inc., Plano TX).  This system consists of a pneumatic 
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controller, a MicroFab JetDrive III external waveform generator with heat source, 

JetServer software with waveform amplifier, horizontal- and vertical-plane optics system 

and a piezoelectric nozzle tip with a 50-micron orifice diameter [48].  The schematic of 

the MicroFab test stand is pictured in Figure 3.1.  

 

(a) 

 

(b) 

Figure 3.1  (a) Depiction of MicroFab JetLab 4 inkjet printing machine  (b) nozzle 
printing apparatus and motion panel 

 
Direct-write inkjet printing can be accomplished using one of two different inkjet 

technologies, Continuous (CIJ) and Drop-on-Demand (DOD) inkjet printing.  More 
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suitable for this research is the DOD (or direct-write) technology.  This method requires 

electromechanical pulses (or an applied voltage) over a piezoelectric material that causes 

the material to deform.  The deformation of this material causes an increased pressure 

within the nozzle after which a single droplet is ejected [48].   

After the droplet is ejected, there is an obvious reduction of fluid volume within 

the solution-containing reservoir, thus the solution must be replaced.  As the piezoelectric 

crystal returns back to its resting state, a negative pressure forces the replacement of the 

ejected fluid [48].  A list of the input parameters required to characterize the above 

described process is in Table 3.1. 

   Table 3.1 List of piezoelectric Direct-write parameters 

Piezoelectric Direct-Write Process Parameters 

1. Frequency 
2. Jetting Voltage 
3. Waveform (driving signal) 
4. Print head Design 
5. Jetting Fluid Properties 

 
It is desired to optimize the jetting process to achieve a steady stream of 

uniformly shaped droplets for the deposition of thin film coatings onto prepared titanium 

substrates.  The parameters, which influence this optimization process, include: pulse 

waveform, print head design, and jetting fluid properties (Figure 3.2).  A description of 

the print head design has been discussed previously.  It is designed to include a nozzle 

orifice as low as 10 micrometers in diameter where it is expected that the variations of the 

droplet size (diameter) distribution from the orifice diameter may be neglected.   
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Figure 3.2 Direct-write process parameter relationship 
 

The pulse waveform requires its own set of parameters that can be optimized for 

the manipulation of drop size and speed, jetting sustainability, drop placement and drop 

uniformity. The waveform parameters include the frequency, positive/negative jetting 

voltage, rise time, dwell time, fall time, and final rise time denoted by f, +V/-V, TR, TD, 

TF, and TFR, respectively.  Where the jetting voltage is the optimal voltage (+V) applied 

causing deformation of the piezoelectric material. –V is usually set at 0, setting the 

voltage back to 0 and returning the material back to its initial resting state [81].   

The rise and fall times with respect to the characterization of the pulse waveform 

are the time for the driving signal to reach the optimal amplitude (voltage) and the time 

for which it takes to decrease the voltage back to its original state.  The dwell time that 

the optimal voltage is applied to the piezo material and the frequency refers to the 

number of drops jetted over a given time span.  Figures 3.3 (a) and (b) below depicts the 

resulting waveform for piezoelectric direct-write processes and the MicroFab JetServer 

interface used to vary these parameters respectively.   
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(a) 

 

(b) 

Figure 3.3 (a) Depiction of JetLab interface (b) pulse waveform formation 
 

Much research has been conducted on the manipulation of the waveform shape 

and parameters to determine their effects on the jetting process.  Such a parameter that 

contributes greatly to the success of the jetting process is jetting stability.  The jetting 

stability is greatly affected by the retraction of the meniscus (fluid surface at the nozzle 

tip), which is directly related to the reservoir pressure resulting from TF.  Polymer 
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buildup at the nozzle tip negatively affects the success of the jetting process.  In literature 

this is referred to as puddling and is directly related to the frequency of droplet 

accumulation.   

A final parameter having a significant effect on the jetting process is the jetting 

fluid chosen and its associated fluid properties [82].  The fluid properties significantly 

affects the jettability of a substance, which is the fluid’s ability to maintain a jet stream of 

droplets for an extended period of time (e.g. two to three hours).  Jettable fluids can be 

broken down into two categories: Newtonian and Non-Newtonian fluids [82].  This 

research deals with polymeric solutions, which display Non-Newtonian properties, that 

is, fluids with high viscosity, density, and surface tension values.   

The manipulation of fluid properties can be obtained by varying fluid 

concentration (in this case, polymer concentration) given a solid polymer percentage 

(weight, %) and solvent (volume, mL) to obtain a weight/volume solution.  More 

specifically, the concentration of a given polymer such as poly(lactic-co-glycolic acid) 

(PLGA) used in our experiments, can be altered by adjusting its ratio of lactic and 

glycolic acid to obtain a higher concentration of solution thus resulting in a higher 

viscosity.  The effects of the fluid properties directly relate to tail break-off of the jetting 

solution. Also, a more viscous solution will have a longer tail (break-off period), which 

will slow the drop speed.   

 Residual vibrations may occur even after a single drop has been ejected and could 

influence the nature in which the resulting drops are ejected.  Robustness against 

disturbance deals with the optimal parameter settings and system abilities in dealing with 
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such disturbances as dust and air bubbles that could stop the jetting process.  Lastly, 

aging of the piezo material could have a profound effect on the optimal achievable jetting 

process parameters. There are many other operational issues that could limit the 

optimality of the direct-write printing process, however, these issues were controlled to 

the best extent possible. 

3.5.2 Characterization of Coating Morphology and Thickness 

Surface morphologies were characterized using optical and scanning electron 

microscopy.  The use of this technique allowed for monitoring any changes regarding the 

coating surface, not only before and after optimal release has occurred, but also to track 

any possible changes in thickness during sample collection periods.  This is due to the 

non-destructive nature of the imaging process.  For further characterization, SEM 

imaging may be used before and after sample testing periods but only for general 

characteristics across groups of samples at the same stage in the testing process.  This is 

attributed to the destructive nature of SEM sample processing. The film thicknesses of 

the drug loaded polymeric coatings were evaluated by using both scanning electron 

microscopy and optical profilometer, respectively where the polymer film was cut to 

reveal the cross-section areas and thickness profiles.  The SEM technique was also used 

for qualitative characterization of surface interaction between blood platelets and drug 

loaded polymer coatings.  Images resulting from this technique were also used to quantify 

adhesion of the platelets to the surface. 
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3.5.3 Characterization of Drug Release 

Release kinetics for the characterization of release profiles were measured using 

Ultra-Violet Spectrophotometry techniques.  This technique is generally used to detect 

traces of a given substance within a sample by transmitting a source of light through its 

contents to measure its absorbance.  The absorbance is measured over a given wavelength 

where a maximum absorbance is said to exist.  For example, literature states that the 

wavelength for which the maximum absorbance reading for Paclitaxel may be obtained is 

somewhere in the realm of 227 nm.  This wavelength value for achieving the optimal 

absorbance readings for the samples were validated using a Shimadzu UV-2450 

Spectrophotometer to ensure repeatability.  Performing serial dilutions on concentrated 

paclitaxel solutions and gaining absorbance readings from the UV spectrophotometer, we 

were able to develop a standard curve.  The process described allowed us to calibrate and 

compare the release values on the standard curve to determine total concentration of the 

drug, which was released.  

3.5.4 Selection of Materials  

  The placement of foreign bodies, specifically bare metal stents (BMS), within the 

human body can pose serious threats at the implant site.  Moreover, the rapid growth of 

undesirable smooth muscle cells triggered by the presence of the foreign body is found to 

be a main cause of late-stage restenosis.  The collapsing of the cardiovascular stent, due 

to excessive forces is caused by neointimal hyperplasia.  Generally cardiovascular stents 

and other surgical implant devices are manufactured using metallic materials, such as 
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stainless steel, nickel, and titanium, which are not recognized within the physiological 

environment.  

 This research focuses particularly on the manufacturing and design aspects of 

drug delivery systems (DDS’s).  Thus, an actual cardiovascular stent will not be used.  A 

bare titanium substrate will be used as a substitute.  For the characterization of the 

controlled release coatings, 10x10 mm coupons were used primarily to scale up the drug 

concentration so that absorbance detection was possible.  For biological testing, the 

titanium substrates used were round having an approximate diameter of 6 mm.  The 

round shape of the substrates is necessary to conduct an MTT assay for the determination 

of cell proliferation later on in this study. 

 For the characterization of polymer coatings for corrosion inhibition, a 

magnesium alloy with the composition (Mg:90%, Zn:8.9%, Ca:0.5%, rest impurities) was 

smelted as ingots within an inert environment (argon) in our laboratory. The Mg alloy 

was used as-cast without further processing such as cold work or heat treatment. A flat 

piece (10mmx10mmx2mm) of this Mg alloy was casted into a disc-shaped epoxy resin so 

that only the top surface of the Mg alloy was exposed. This is because we are interested 

in studying the corrosion behavior of Mg alloy with different polymeric coatings on only 

the top surface without affecting the corrosion of the other sides. The sample top surface 

was then polished to eliminate the magnesium oxide layer.  

 The general expectations of a biopolymer suitable for coating cardiovascular 

stents is that 1) it must be biocompatible; 2) it must demonstrate selective permeability; 
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3) it must have the ability to biodegrade; and 4) it must demonstrate high mechanical 

strength.  A depiction of the aforementioned (Figure 3.4) and a brief description follows.   

 

 
Figure 3.4 Characteristics of biopolymer for stent coating applications 

 
Biocompatability of a polymer can be measured in a number of ways.  One 

common measurement is to count the number of plasma protein, or blood platelets, that 

accumulate at the surface of the polymer over a period of time.  If amassing is excessive 

than it can be concluded that that the polymer is biologically incompatible.  A second 

qualitative measure is excessive tissue growth at the implant site.  This leads to a 

discussion of mechanical strength.   

 In keeping perspective of the excessive tissue build up around the bare metal 

stent, the remaining requirements of a biodegradable polymer is further discussed.  The 

application of a thin film biopolymer coating displaying high mechanical strength could 

aid in maintaining the structural vigor of the of the stenting device for lengthier periods 

of time.  Alongside good mechanical strength is selective permeability.  The polymer 
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membrane should maintain some level of control over what is allowed to cross it and the 

rate at which any substance (or drug) is allowed to do so.  In a practical sense, the drug, 

paclitaxel, is expected to permeate through the polymer membrane at a controlled rate to 

slow the growth of the smooth muscle cells.  The decreased rate of cell growth due to the 

controlled release of paclitaxel along with increased mechanical strength is said to 

decrease the probability that restinosis will occur. 

 The preparation stages are expected to be one of the most vital segments of the 

series of components involved.  This is due in part to the extremely high volatility of the 

materials that will be used.   Aside from that, the dosages of paclitaxel to be embedded 

into the polymer are so small that special care must be taken in making sure that all 

materials are measured accurately in order to decrease variations of the results obtained. 

 Recall that paclitaxel has been chosen to simulate release profiles for alternative 

drug-polymer systems.  Paclitaxel (taxol) is a cancer treatment compound, which is 

derived from the bark of taxus brevifolia found in the Pacific.  Taxol is commonly used 

to treat breast, ovarian, and late stage lung cancers as well as occurrences of restenosis 

within the arterial wall.   

 Though recently there has been much controversy to the use of this drug, its use 

as an inhibitor of the rapid division of undesirable cells has proven effective for the 

treatment of rapidly growing tumors and neointimal hyperplasia.  The compounds 

effectiveness can be attributed to its ability to inhibit the breakdown process of 

microtubules, a major component of the cell division process. The molecular breakdown 

of paclitaxel is depicted in Figure 3.5 below.   
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Figure 3.5 Breakdown of a single molecule of paclitaxel 
 
 The uses of paclitaxel for the drug-loaded polymer thin film coating is desirable 

for stent coating applications mainly because it has demonstrated properties such as anit-

proliferative and anti-inflammatory on cell interaction.  Drug-eluting stents, using 

paclitaxel, are necessary to inhibit unwanted cell growth that will prevent the re-

narrowing of the arterial wall due to this growth.   

 Preceding the discussion of Taxol’s dissolution mechanism, the mention of the 

difficulties in characterizing these properties is deemed necessary.  It is important to 

understand the process by which this drug is obtained and how drug development can 

contribute to variations of its dissolution properties.  For instance, a recently reviewed 

article attributes the challenges of describing the dissolution of paclitaxel to variations 

between batches of the drug resulting from the different environmental factors of which 

the drug was subjected.  Examples of factors that influence these variations include; 

weather, soil composition, water and sun.  It is inferred that these factors could indirectly 

impact the repeatability of dosages required to treat tumor growth and, in our case, 

neointimal hyperplasia.   
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 Aside from possible variations between batches of the drug, paclitaxel has 

demonstrated low solubility within the physiological environment.  This phenomenon 

been demonstrated in vitro, via studies of dissolution after incubation in phosphate buffer 

saline (PBS) solution at 37 degrees Celsius to simulate physiological environments as 

well as in vivo in numerous rat models.  Taxol is generally mixed with harsh solvent to 

relax its dissolution.  It has been noted in recent in vitro studies characterizing the 

insolubility of paclitaxel that increased concentrations of the drug between 1% and 5% 

w/v, homogeneously dispersed in aqueous polymer solution, begin to crystallize 

following polymerization after a period of days.  This is a phenomenon that was realized 

in the preliminary studies of this research.  Figures 3.6 (a) and (b) below depict the 

spherical shape of crystallized paclitaxel by scanning electron microscopy (SEM) 

technique (courtesy of the Engineering Research Center at North Carolina A&T State 

University).  Images were taken at 800 x and 4,000 x magnification respectively.  The 

reduction of drug particle size is a good aim in future studies of taxol release towards the 

improvement of solubility.   
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(a) 

 

(b) 

Figure 3.6 (a) Precipitated taxol beads of PEUU surface 800X (b) 4,000X 
 

For each of the proposed systems variations of polymer and drug concentration, 

as well as thickness may be applied to achieve the critical viscoelastic and mechanical 

properties desired for optimal drug release.  It is important to note that the optimality of a 

given drug release profile is dependent on the application.  A list of parameters affecting 

the viscoelasticity of a given polymer solution is provided in the Table 3.2 below 
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followed by a diagram (Figure 3.7) depicting the influence of viscoelasticity in drug 

release.   

                      Table 3.2 List of viscoeleastic parameters 

Parameters of Viscoelastic Polymer Solutions 

1. Temperature 
2. Pressure 
3. Time 
4. Polymer Chemical Composition 
5. Molecular Weight 
6. Crystallinity 
7. Solvent Dilution 
8. Polymer/Mixture Composition 

 

 

Figure 3.7 Influence of viscoelastic properties on drug release 
 

The viscoelastic properties strongly influence the polymer systems ability to 

maintain structural and mechanical drug efficiency.  However, there are other factors that 

contribute the integrity of these designed systems.  Some of the most influential factors 

include particle size distribution, physical state and concentration profile of the drug with 

the polymer thin film, and dissolution and diffusion properties of the drug. An effort to 

maintain structural and functional integrity has been considered in the design of the 

proposed polymer thin film systems. 

 A review of literature regarding the dissolution and diffusion properties of taxol in 

PCL and PLGA, two other biocompatible polymeric materials, is presented.  S. Dordunoo 

et al.  characterized the release of taxol from PCL microspheres (Dordunoo et. al, 1995).  
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It was determined that crystallinity of the polymer is said to be lower with increased taxol 

loading which resulted in reduced times for degrading.  Furthermore, accumulated 

crystallized taxol particles resulted from increased drug loading (5% to 10% w/v), again, 

a phenomenon that was validated in our studies.  This is said to provide a pathway, 

initiating at the polymer surface, which could be responsible for the fast paced dissolution 

of the drug.  This is an indicator that the drug loading exceeds the capacitated efficiency 

of the polymer solution (saturation) or a lack of homogeneity of the drug-polymer 

solution.  The findings for taxol release from PLGA nanoparticles demonstrated similar 

results, with the exception that faster release rates were obtained. 

 The present study uses a biodegradable polymer, polyetherurethane urea (PEUU) 

coating, for characterizing the release of a chosen drug, namely paclitaxel for simulating 

drug release.  PEUU is chosen as a candidate polymer for testing due to its excellent 

biocompatibility and high mechanical strength. 

The use of drug-loaded polymers as thin film coatings for the purposes of 

conducting therapeutic sessions is eminent for cardiovascular stenting applications.  The 

combination of the biopolymer and curative drug work together as a drug delivery system 

(DDS) to administer treatment for ailments such as neointimal hyperplasia, the fast-pace 

growth of unwanted cells, restenosis, as well as late-stage lung cancer patients.  It is 

desired to achieve a DDS, via cardiovascular stent device, that can maintain compatibility 

within the physiological environment yet retain its ability to achieve drug release over 

extended time periods.  
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Along with PEUU, PLGA and PCL were chosen to coat alloyed magnesium 

substrates to study the controlled corrosion mechanism.  PLGA is chosen here because of 

its excellent biodegradability and biocompatibility properties.  It has already been 

approved for applications in developing therapeutic and implant devices due to the notion 

that it poses little to no toxic by-products to the body.  In fact, PLGA undergoes 

hydrolysis within the body to produce the natural monomers, lactic and glycolic acid, 

which are by-products of various metabolic pathways found in the body.   An added 

benefit of its use is that degradation rates can be manipulated by changing the monomers 

ratio (lactic: glycolic acid).  For example, PLGA 70:30 consists of 70% and 30% of lactic 

and glycolic acid respectively.  It is known that higher amounts of glycolic acid decrease 

the time for degradation.   

 The second polymer, PCL, is polyester, which degrades by hydrolysis of its ester 

linkages.  The degradation rates here are said to be much slower than that of the other 

two; however, this polymer also demonstrates excellent biodegradable and 

biocompatibility.  PCL has also been approved for uses in the human body by the FDA 

for applications such as drug delivery devices and adhesion barriers.  An added benefit is 

that PCL is less viscous as a solution compared to the others making it an ideal candidate 

for printing using our novel direct-write printing technique.  Lastly, as mentioned earlier, 

PEUU is chosen as a candidate polymer for testing due to its excellent biocompatibility 

and high mechanical strength. 

PCL as well as PLGA were not only chosen because of their excellent 

biocompatible and biodegradability, but also because they provide other advantages to 
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the development of polymer thin film layers.  For example, the FDA has approved PCL 

for barrier uses in biological components and PLGA degradation rates can be altered 

through systematic manipulation of its molar ratio. 

3.6 Controlled Release Coatings (Phase 1) 

 Controlled release coatings are fabricated to suit a variety of different 

applications.  More specifically, the controlled release of various biological agents from 

biodegradable polymer coatings to treat a vast number of physiological ailments is of 

particular interest.  The use of the Direct-Write inkjet technique as a mechanism for 

developing controlled release coatings offers a variety of advantages for coating surfaces 

containing biological and pharmaceutical reagents [48].  For instance, this technique uses 

a data-driven pressure source for deposition of material onto a given substrate, where 

other fabrication techniques use electricity, which may compromise the integrity of the 

biological substances [48].  Other techniques such as spin coating and dip coating are not 

able to accommodate the complex structures that are usually required by surgical implant 

devices.  None of the deposition techniques discussed earlier offer the ability to deposit 

target specific coatings, maintain the integrity of the deposition material, and eliminate 

cross-contamination of materials.   

 The need for a coating technique that encompasses all of the benefits mentioned 

above is necessary to develop controlled release coating where spatial requirements can 

be specified to develop coatings with specified porosity and degradation features.  In this 

research, the intent was achieve a variety of drug release profiles that could be tailored to 

support the needs of a given drug delivery application.  Here, the drug concentration and 
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layers of coating material were varied to assess coating specifications resulting in a 

steady state release throughout its intended time of function.  This result would be 

desirable for ailments requiring extended therapeutic sessions such as neointimal 

hyperplasia, using an anti proliferative such as Paclitaxel, following placement of a 

cardiovascular stent device [6].  Coatings having a more profound initial burst phase were 

also attempted.  These coatings would be more suitable for applications such as 

antimicrobial and/or antifibrotic therapy were the majority of the reagent is required in 

the initial stages of treatment to treat infection at the implant site and promote healthy 

wound healing [83-84]. 

3.6.1 Materials Synthesis  

 Traditionally, cardiovascular stents are fabricated from stainless steel (SS) or 

titanium (Ti) materials. In this research, a metallic substrate (Titanium) was used to 

mimic the surface properties of the Ti stent. A 10mm x10mm Ti sheet was deposited with 

drug loaded polymeric formulation to evaluate the drug release kinetics and coating 

morphology as described herein.  

Biodegradable polyester urethane urea (PEUU) was synthesized at a proprietary 

source (University of Pittsburgh) and obtained for the experiments. The PEUU was 

dissolved in hexiflouroisopropanol (HFIP) solvent (Sigma Aldrich) and shaken 

vigorously until homogenous polymer solutions of 1%, 1.5%, and 2% w/v were obtained. 

These polymer concentrations were chosen based on the rheological properties of fluids 

to ensure that they were “jettable” from the direct-write inkjet system. Paclitaxel (Taxol) 

drug (LC Laboratories) was added at 5% and 10% w/w of the respective PEUU 
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concentrations within the biopolymer solutions. The drug paclitaxel is an inhibitor of the 

rapid division of malignant cells and has been proven effective for the treatment of 

rapidly growing tumors (cancer cells) and neointimal hyperplasia. Prolonged release of 

the drug from multilayered thin film coatings on cardiovascular stents is proven to be 

beneficial against this malady.  

3.6.2 Sample Fabrication 

Biopolymer solutions with varying concentrations of PEUU and Taxol were 

deposited on titanium (Ti) substrates using a customized direct-write system (MicroFab 

Technologies Inc., Plano, TX). The unit consisted of a pneumatic controller, a JetDrive 

III external waveform generator, JetServer software with waveform amplifier, horizontal 

and vertical plane optic system, and a piezoelectric microvalve nozzle with a 50 micron 

orifice. Figure 3.3 (b) shows the pulse waveform applied to the nozzle to generate 

monodisperse droplets. Optimal jetting parameters for consistent deposition were chosen 

by adjusting the voltage, frequency and pulse waveform. A CCD camera with 

microscopic zoom lens was used to characterize droplet formation. Further, a motion 

controller was programmed to create a raster pattern that coats the titanium substrate 

uniformly. Each layer was allowed to dry before the next layer was deposited. Samples 

with 10 and 20 layers respectively, were deposited to obtain surface morphology data and 

release kinetics profiles.  

3.6.3 Characterization of Release 

Drug release profiles were characterized using an ultraviolet-visible spectrum 

(UV-Vis) spectrophotometer (Shimadzu UV-2450). Samples were placed in 3mL of 
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Dulbecco’s Phosphate Buffer Saline (DPBS) to initiate drug release. 10% v/v of ethanol 

was mixed in the DPBS (Fisher Scientific) to obtain accelerated release kinetics of the 

drug. The solution was shaken for several minutes to ensure a homogenous mixture. The 

peak absorbance of paclitaxel was confirmed at 230nm. Coated Ti sample readings were 

obtained at this wavelength after being shaken in an incubator shaker bath at 37°C for 2 

hours. DPBS solutions from the Ti samples were extracted into a micro-cuvette to 

observe the absorbance readings for different polymer and Taxol concentrations. 

Readings were taken every two to three hours for the first twenty-four hours and daily 

thereafter.  Release kinetics results were recorded for a period of 35 days.  

3.7 Controlled Release Coatings (Phase 2) 

3.7.1 Experimental Design and Analysis  

 Release profiles were to be obtained for a total of four different drug-loaded 

polymer systems using Polyester urathane urea (PEUU) and the bioreactive agent 

Paclitaxel (Taxol).  Two primary factors were controlled to determine their effects on the 

release profiles obtained.  The first factor was drug concentration.  Concentration was 

tested at two levels, 5% and 10% weight per volume. Lastly, the layer thickness, which 

corresponds to the number of passes, was tested at two levels, ten (10) and twenty (20) 

passes, respectively Table 3.3.   
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  Table 3.3 Phase 2 descriptions of experiment types for controlled release coatings 

 

 A total of three samples were coated for each experiment.  A single experiment 

consisted of a specified drug concentration having a certain layer thickness.  For 

example, 0.5% PEUU loaded with 5% taxol at 10 passes describes one experiment where 

0.5% PEUU loaded with 10% taxol at 20 passes describes another. 

 The dependant variables in the study of release profiles are identified as the 

percentage burst release and the total amount of the drug released at the end of the sample 

collection period.  The initial rate of release corresponds to the slope of the release profile 

in the initial stages.  This initial rate is relevant to the speed at which the initial burst 

takes place from the time the release period is initiated until the time it reaches a steady 

rate of release.  The percentage burst release corresponds to the ratio of drug that is 

released and drug loaded during the initial burst period.  The total release remains as 

stated above.   

The basic research question is as follows, “Can direct-write inkjet printing 

technique be used as a mechanism for depositing uniformly distributed layers of drug-

loaded polymer thin films and furthermore, can tunable drug release profiles be obtained 

over extended time periods by varying the two main input factors (drug concentration 

and coating thickness)?”  A set of more specific research questions was extracted that 
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was expected to help answer the basic research question.  These questions are stated 

below followed by their respective null and alternative hypothesis statements.   

1. Does drug dosage and coating layer thickness have a significant effect on the drug 

release profile? (Phase 2a) 

2. Does drug dosage and coating layer thickness have a significant effect on cell 

inhibition? (Phase 2b) 

3. Does drug dosage have a significant effect on blood compatibility? (Phase 2c) 

 For Phase 2a, a 2x2 factorial design was used to determine the main and 

interaction effects of the two experimental factors (i.e. drug dosage and coating 

thickness) on the response variables.  There were a total of four experiment combinations 

and each was replicated twice to assess error.  Thus, giving a total of 8 experiment trials.  

The following null and alternative hypotheses were formed:  

H01 = the sample means for drug dosage are equal 

H02= the sample means for number of layers are equal 

H03 = there is no interaction effect 

H11 = at least one of the sample means for drug dosage is different 

H12= at least one of the sample means for number of layers is different 

H13 = an interaction effect is present 

 In Phase 2b, a one-way ANOVA was conducted to determine if there was a 

difference in means between each experiment type and its respective control.  There were 

a total of 8 treatment conditions (4 controls and 4 treated surfaces) and each was 

replicated 4 times giving a total of 32 runs.  The metabolic means of samples containing 
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10 and 20 layers with a 5% w/w drug loading were compared to the metabolic means of 

samples having 10 and 20 layers of PEUU with no drug respectively.  Also, the metabolic 

means of samples containing 10 and 20 layers with a 10% w/w drug loading were 

compared to the metabolic means of samples having 10 and 20 layers of PEUU with no 

drug respectively.  Lastly, the metabolic means of each of the experiment groups was 

compared with the mean metabolic index of cells cultured on Tissue Culture Polystyrene 

(TCPS).  The following null and alternative hypotheses were formed: 

H0 = the sample means for all experiment condition are equal 

H1= at least one of the sample means is different 

 For Phase 2c, a one-way ANOVA was used to determine if drug concentration 

has a significant effect on the blood platelet count.  For this experiment each of the 

samples were coated with 20 layers of PEUU and only the drug concentration were 

varied.  There were three levels, which were 5% w/w, 10% w/w and no drug (low 

control).  The experiment was replicated three times for considering error resulting in a 

total of nine replications. The following null hypothesis was formed to state that there is 

no difference between the mean platelet count of each sample group.  The associated 

alternative hypothesis states that there exists a difference between means of the sample 

groups:  

H0 = the sample means for drug dosage are equal 

H1= at least one of the sample means for drug dosage is different 

3.7.2 Experimental Procedure  

3.7.2.1 Materials Synthesis 
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Polyester urethane urea (PEUU) and the metallic substrate (titanium) were 

generously donated by Wagner Laboratory at the McGowan Institute for Regenerative 

Medicine.  Paclitaxel, >99.5% (taxol) was obtained from L C Laboratories and 

hexaflouor-2-propanol, >99.8% (HFIP) was obtained from Sigma-Aldrich. Under a hood, 

20 milliliters of HFIP solvent were measured by micropipette and placed into a glass 

vessel.  For experiment sets one and three, 0.5% w/v (0.1 grams) of solid PEUU polymer 

was weighed using a Metler Toledo AX DeltaRange digital scale and fully dissolved in 

the previously measured HFIP to obtain a homogenous HFIP/PEUU solution.  A 5% w/w 

(0.005 grams) dosage of paclitaxel was then weighed using a digital scale and dissolved 

into the HFIP/PEUU solution.   

For experiment sets two and four, 0.5% w/v (0.1 grams) of solid PEUU polymer 

was weighed using the Metler Toledo AX DeltaRange digital scale and fully dissolved in 

a separate glass vessel containing a previously measured 20 milliliters of HFIP to obtain a 

homogenous HFIP/PEUU solution.  A 10% w/w (0.01 grams) dosage of Paclitaxel was 

then weighed using a digital scale and dissolved into the HFIP/PEUU solution.  The 

solutions were shaken vigorously in a mini shaker to ensure that a homogeneous 

HFIP/PEUU/Paclitaxel solution was obtained.  The solutions were filtered using 0.22-

micron micropore Teflon filters into two milliliter jetting reservoirs and refrigerated until 

ready for use.   

A third solution was prepared consisting of 0.5% w/v HFIP/PEUU mixture.  This 

solution did not contain the drug, paclitaxel and was stored for use as a control for the 

cell inhibition and blood compatibility testing samples.   
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 As a release media, DPBS containing 10% ethanol was chosen to simulate 

accelerated release.  One package containing 9.6 grams of Dulbecco’s Phosphate Buffer 

Saline (DPBS) powder (Fischer Scientific) was dissolved in 900 milliliters of deionized 

water to make a 900-milliliter DPBS solution. 100 milliliters of pure ethanol was then 

measured and mixed with the DPBS solution to obtain a 10% DPBS plus ethanol 

solution. The solution was shaken for one minute to ensure a homogenous mixture. 

3.7.2.2 Sample Preparation and Coating 

 Titanium sheets cut into 10x10 mm coupons.  The samples were submerged into a 

glass vessel containing pure acetone and sonicated in a bath sonicator for ten minutes.  

After ten minutes the coupons were removed from the acetone and submerged into 

ethanol.  The samples were again sonicated for another ten minutes for cleaning.  The 

sample coupons were removed and air-dried.  Each sample was assigned a sample 

number and weighed for its initial starting weight.   

The customized direct-write system (MicroFab Technologies Inc., Plano, TX) 

described above was used to determine the appropriate jetting parameters for each of the 

biopolymer solutions. The unit consisted of a pneumatic controller, a JetDrive III external 

waveform generator, JetLab software with waveform amplifier, horizontal and vertical 

plane optic system, and a piezoelectric microvalve nozzle with a 50-micron orifice. Using 

the JetLab interface, the appropriate pulse waveform for consistent droplet formation was 

characterized by manipulating the rise, dwell, and fall times, as well as the voltage and 

pressure.  The JetLab interface includes a motion control component as well as a pattern 

monitor, which allows us to control length, width and thickness of the coating pattern by 
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adjusting the step size between droplets.  A CCD camera with microscopic zoom lens 

was used to characterize droplet formation.  

 Thin films were deposited onto the 10x10 titanium substrates using the direct-

write inkjet printing technique.  The drop-on-demand (DOD) procedure is a non-contact 

technique that employs the application of electrical pulses to a piezoelectric material in 

order to create uniform droplets of a desired solution.  A schematic of the deposition 

pattern (not drawn to scale) can be seen in Figure 3.8 below. 

 

(a) 

 

(b) 

Figure 3.8 Deposition pattern using array of array command (a) top (b) iso view 
 

An array of arrays command, using the newly acquired Jetlab 4 interface, was 

used to deposit the printed droplets onto the substrates.  Figure 3.9 depicts the interface 

with input parameters that result in associated pattern, which accompanies it.  The step 

(distance between drops) and pitch (drop diameter) sizes can be optimized to obtain more 

evenly distributed coating layers.  This is depicted in Figure 3.10.  The input parameters, 
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which are required, are the origin of the array which is essentially the starting point of the 

pattern based on an absolute coordinate system, the step size within arrays (x,y), number 

of steps per array (x,y), offset between arrays (xy), number of arrays (x,y) and angle.  A 

0.05 mm step size was employed when coating our samples. The number of layers was 

input in the “number of arrays” and the offset between origins was set to zero.   

 

Figure 3.9 Depiction of JetLab print pattern interface 
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Figure 3.10 Schematic of step and pitch distance 
 

3.7.2.3 Characterization of Release 

To initiate accelerated release of the taxol drug, each sample consisting of the 

titanium alloy coated with the PEUU and Paclitaxel thin film was placed into a glass 

vessel containing two milliliters of Delbuco’s Phosphate Buffer Saline (DPBS) + 10% 

Ethanol solution.  The vessel and its contents were then placed into a Thermo Scientific 

Shaking Bath (Figure 3.11), set at 37 degrees Celsius and rotating at 50 rpm (mimicking 

conditions of the human body).  After the first 2 hours, the first reading was obtained to 

determine release of the anti-proliferative cancer drug. Following the first sample reading 

at two hours, readings were obtained four more times during the course of the first 24-

hour period at 4, 6, 22, and 24 hours.  Sample readings were again obtained at 26, 48, 72, 

98, 170, 242, and 338 hours.  Further readings were taken every 2-3 days based on 

release trends. 
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Figure 3.11 Depiction of thermo scientific shaker bath 
 

 

Figure 3.12 Depiction of Shimadzu UV-2450 spectrophotometer 
 

Release kinetics for the characterization of release profiles were measured using 

Ultra-Violet spectrophotometry techniques.  This technique is generally used to detect 

traces of a given substance within a sample by transmitting a source of light through its 

contents to measure its absorbance.  The absorbance is measured over a given 

wavelength.  Literature states that the wavelength for which the maximum absorbance 

reading for paclitaxel may be obtained is around 227 nm (Willey et. al, 1993).  The 

wavelength values found in literature for achieving the optimal absorbance readings for 

the samples were validated to ensure repeatability.  Performing serial dilutions of the 

concentrated substances and gaining sample readings from the UV spectrophotometer 
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resulted in the development a standard curve.  The release values obtained were then 

compared to the release values on the standard curve. 

As described in earlier sections the Shimadzu UV-2450 Spectrophotometer 

(Figure 3.12) was used for our sample data collection.  During these periods, sample 

aliquots from each of the vessels containing the titanium samples were extracted and 

pipetted into a microcuvette.  The microcuvette was then placed into spectrophotometer 

and the absorbance peaks were detected and recorded. 

3.7.2.4 Blood Collection and Compatibility Test 

The care and use of laboratory animals was performed according to NIH 

guidelines (Wagner Lab, University of Pittsburgh).  Fresh ovine blood was collected from 

healthy ovines by jugular venipuncture into a syringe containing heparin (Hep 6U/ml).   

Each of the samples, PEUU containing no taxol, PEUU containing 5% taxol, and PEUU 

containing 10% taxol, were placed into blood collection tubes and containing the 

heparinized ovine blood and incubated at 37º C on a hematology mixer with continuous 

rocking.  This is depicted in Figure 3.13.   

Following the blood contact procedure, the samples were rinsed with PBS.  To fix 

the samples surface containing the adhered platelets, the samples were immersed in a 

2.5% glutaraldehyde solution for two hours at 4ºC.  The samples were then serially 

dehydrated by increasing ethanol concentrations and coated using sputter deposition with 

gold/palladium.  Each sample was then observed using scanning electron microscopy. 
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Figure 3.13 Blood platelet deposition in hematology mixer 
 

The number of platelets deposited on the samples surfaces was quantified by a 

lactate dehydrogenase (LDH) assay with an LDH Cytotoxicity Detection Kit.  The 

number of cells/mm2 was determined for each sample in the sample group and the 

average and standard deviation obtained.  The statistical significance between the sample 

groups was determined using ANOVA followed by post-hoc Newman-Keuls testing of 

specific differences based on the hypothesis formally stated. 

3.7.2.5 Cell Growth Inhibition 

All coated titanium disks (6 mm diameter) were placed in a 96-well cell culture 

plate and then sterilized under UV irradiation for three hours in a biological hood. Tissue 

cultured polystyrene (TCPS) and uncoated titanium disks were set as controls. 2*103 rat 

smooth muscle cells (RSMCs) per well were seeded on the sample surface, and cell 

culture medium (DMEM supplemented with 10% FBS and 1% antibiotics) was 

exchanged every two days. MTT assay was performed to detect cellular viability at one, 

four and seven days. Briefly, 20 uL MTT solution (3 mg/mL) was added into the culture 
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medium in a well. After 4 hours in an incubator at 37ºC, the medium was completely 

removed and 200 uL of DMSO was added to dissolve the produced blue crystal. The 

absorbance was detected using a 150 uL dye solution at 540 nm on a UV spectrometer. 

Four samples were used at each time point for each group. 

3.8 Polymer Coatings for Controlling the Corrosion of Mg Alloys (Phase 1) 

 Biofunctional coatings are necessary to suit a variety of different medical 

applications. The use of the direct-write inkjet technique as a mechanism for enhancing 

the structural integrity of a given biomaterial via biofunctional coatings, namely 

magnesium and its alloys, is of growing interest.  Uses for magnesium as a biomaterial 

offers several advantages and can spread across a number of applications.  For instance, 

magnesium is essential to over 300 physiological functions within the body [85] and has 

also been identified as a potential biomaterial to facilitate bone growth and repair due to 

proven similarities of mechanical strength with the cortical bone [86]. 

 Direct-write deposition can be used to fabricate coatings where spatial 

requirements can be specified to develop coatings with specified porosity and 

degradation features for inhibiting the corrosion of magnesium alloys.  In this study, the 

intent was to investigate a variety of polymer coatings having various rates of 

degradation.  Here, the polymer type and layers of coating material were varied to assess 

coating specifications for applications in corrosion protection and controlled release of 

magnesium alloys.  Corrosion protection is essential to ensure that a polymer coating is 

applied, which can extend the life of the surgical device until its intended function is 

completed [86].  The controlled release of magnesium in the trachea can be beneficial in 
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relaxing airway cells when exposed to an environment causing inflammation [87].  

Magnesium deficiencies have also been linked to cardiovascular disease.  Thus, 

controlled release of magnesium via controlled release coatings can offer some benefit 

when applied to tracheal and cardiovascular stent devices [88].   

3.8.1 Sample Preparation 

 A magnesium alloy with the composition (Mg:90%, Zn:8.9%, Ca:0.5%, rest 

impurities) was smelted as ingots within an inert environment (argon) at our laboratory. 

The Mg alloy was used as-cast without further processing such as cold work or heat 

treatment. A flat piece (10mmx10mmx2mm) of this Mg alloy was casted into a disc-

shaped epoxy resin so that only the top surface of the Mg alloy was exposed. This 

process is because we are interested in studying the corrosion behavior of Mg alloy with 

different polymeric coatings on only the top surface without affecting the corrosion of the 

other sides. The sample top surface was then polished to eliminate the magnesium oxide 

layer. Two biodegradable polymer types, poly(lactic-co-glycolic acid) (PLGA) and 

polycaprolactone (PCL), were chosen based on their desired chemical and mechanical 

properties as corrosion barriers.  They offer advantages that include tunable degradation 

rates based on the adjustable chemical composition of lactic and glycolic acids in PLGA 

to lengthen or shorten degradation periods, lack of toxic response at the implant sites, and 

their ability to be metabolized by the body.  PCL is a tough biodegradable polyester with 

applications in tissue engineering and drug delivery. Both polymers were dissolved at 1% 

w/v in appropriate solvents to possess suitable viscoelastic properties for the coating 

process.     
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3.8.2 Sample Coating Procedure 

A custom direct-write inkjet setup (Jetlab4 - MicroFab Technologies, Plano, TX) 

was used to coat the samples. A 50 µm nozzle was used to deposit twenty (20) layers of 

polymer coating at different pitch distances (inter-drop distance). A single layer consisted 

of a raster pattern of continuously deposited droplets as shown in Figure 4.14 a and b. 

Both polymers (PLGA and PCL) were coated with different pitch distances (50µm and 

100µm) as shown in Table 3.4. One sample was left uncoated (bare Mg alloy) and used 

as the control. It was hypothesized that the coatings with larger pitch distances (100µm) 

would result in porous structure and higher corrosion rates when exposed to the media.  

 

(a) 
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(b) 

Figure 3.14 (a) Schematic of magnesium cast in epoxy resin material (b) schematic 
of deposition pattern 

 
                Table 3.4 Phase 1 description of experiment types 

Sample No. Polymer Type Pitch Distance (m) 

1 Bare (uncoated) N/A 

2 PLGA 50 

3 PLGA 100 

4 PCL 50 

5 PCL 100 
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3.8.3 Sample Immersion Test (Weight Loss) 

A 0.9% (NaCl) simulated body fluid (SBF) solution was prepared to mimic the 

human physiological environment.  For each of the five samples, 30 ml of the sodium 

chloride solution was added to a small vessel. The vessels containing the samples and the 

solution were covered with parafilm and kept inside a CO2 incubator at 37°Celsius to 

simulate human body temperature. The samples were removed from incubation at 6 hours 

and analyzed using optical microscopy and weight loss measurement.  The samples were 

removed from the sodium chloride solution and placed in a desiccator for several hours to 

undergo dehydration. After the samples were completely dry, they were weighed and 

imaged.  The samples were then replaced in a new vessel containing 30 ml of fresh SBF 

solution and incubated. This process was repeated for 12, 16, and 21hour time points. 

3.9 Polymer Coatings for Controlling the Corrosion of Mg Alloys (Phase 2) 

3.9.1 Experimental Design and Analysis 

 The question is posed, “Can direct-write inkjet printing be used as a mechanism 

for depositing uniformly distributed protective thin films?”  Furthermore, “Can these thin 

films aid in retardation of the corrodible magnesium alloy in physiological solutions?”  

More specifically, we seek to answer the following questions: 

1. Does polymer type and coating thickness have a significant effect on the rate of 

metal ion release? (Phase 2a) 

2. Does polymer-coating type have a significant effect on the percentage of LDH 

activity from Human Bronchial Epithelial Cells? (Phase 2b) 
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 In Phase 2a, three polymer types (polyetherurethane urea, polycaprolactone, and 

poly(lactic-co-glycolic acid) have been identified, each having their own unique 

molecular structure and degradation properties.  The samples were coated at varying 

thicknesses (10 and 20 passes).  Thus the independent variables are stated as being the 

polymer type (PEUU, PCL, PLGA, Uncoated) and thickness, and the dependent variable 

is the metal ion release over time.  A 2x3 factorial design was used to assess any 

differences among the means of the factor groups as well as the interaction effects 

between factors.  There were seven experiment conditions and was replicated twice to 

asses error.  Thus, there was a total of 14 experiment runs.  The following null and 

alternative hypotheses were formed: 

H01 = the sample means for polymer type are equal 

H02= the sample means for number of layers are equal 

H03 = there is no interaction effect 

H11 = at least one of the sample means for polymer type is different 

H12= at least one of the sample means for number of layers is different 

H13 = an interaction effect is present 

 A one-way ANOVA was conducted to determine any significant differences 

amongst treated coating combinations.  The means of the uncoated samples were 

excluded from this analysis. There were six experiment conditions and was replicated 

twice to asses error.  Thus, there was a total of 12 experiment runs.  The following null 

and alternative hypotheses were formed: 

H0 = the sample means for the coating combinations are equal 
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H1= at least one of the sample means for coating combination is different 

 For phase 2b, a one-way ANOVA was conducted to determine if there are 

significant differences between the sample treatment types.  In this phase of experiments 

each of the treated samples were coated with 20 layers of the various polymer types.  

Thus, this experiment contains one factor (i.e. polymer type) and 5 different levels (PCL, 

PLGA, PEUU, Uncoated, Cells only) including the low control with no magnesium 

exposure.  Each of experiment was replicated three times to assess error.  Thus, there 

were a total of 15 runs.  The following null and alternative hypotheses were formed:  

H0 = the sample means for polymer type are equal 

H1= at least one of the sample means for polymer type is different 

 The LDH samples also underwent inductively coupled plasma analysis to 

determine if there was any correlation between cytotoxicity percentage and magnesium 

ion content.  The following null and alternative hypotheses were formed: 

H0 = the sample means for polymer type are equal 

H1= the sample means for number of layers are equal 

3.9.2 Experimental Procedure 

3.9.2.1 Material Synthesis 

Polyetherurethane urea (PEUU) was generously donated by the Wagner Lab at 

University of Pittsburgh Institute of Regenerative Medicine and mixed with HFIP to 

make a 0.5% w/v solution.  Polycaprolactone (PCL), and poly(lactic-co-glycolic acid) 

(PLGA) were both donated by the Wake Forrest Institute of Regenerative Medicine.  The 

PCL arrived as a 10% w/v PCL and dichloromethane (DCM) solution and was further 
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diluted with DCM to obtain a 1% w/v solution.  A 1% w/v PLGA solution dissolved in 

acetone was prepared.   

3.9.2.2 Sample Preparation and Coating 

5x5 mm coupons of the bulk magnesium alloy were cut and polished.  The 

coupons were then set into an epoxy resin so that only the top surface of the magnesium 

sample was exposed. The surface of the sample was polished again to remove the 

magnesium oxide layer.  The samples were labeled and imaged using optical microscopy 

technique.  Samples were stored in a desiccator until it was time for the coating process. 

The custom direct-write inkjet setup (Jetlab4 - MicroFab Technologies, Plano, TX) 

was used to coat the samples. A 50µm nozzle was used to deposit twenty (20) layers of 

the polymer materials named above. A single layer consisted of a progressing back and 

forth pattern of continuously deposited droplets as shown in Figure 3.14 (b).  The 

samples were then used to conduct two different experiments, in vitro cell compatibility 

and immersion test.   

3.9.2.3 Immersion Testing 

 5x5 mm magnesium coupons were cast in epoxy resin as above.  Three polymer 

types were chosen as coating materials, PEUU, PCL, and PLGA.  For each of the 

polymer types two samples were coated with ten layers and two were coated with 20 

layers.  Two samples were left uncoated as a control.  The samples were fully immersed 

in 2 ml of DMEM + 10% fetal bovine serum + 1% penicillin strip (Figure 3.15).  

Aliquots were collected for each of the samples at 6 and 12 hours and then again at 1, 2, 

4, 5, 6, 7, and 8 days.  At the end of each time point, the old media was collected and 
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stored.  The vesicle containing the immersed sample was then cleaned and replaced with 

fresh media.  When the immersion testing process was completed, a 0.5 ml aliquot of 

each sample for the various time points was added to 9.5 ml of Tris buffer solution to 

achieve a 20 times dilution sample. 

 

Figure 3.15 Depiction of magnesium samples immersed in SBF solution 
 

 

Figure 3.16 Depiction of inductively coupled plasma equipment 
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3.9.2.4 Cell Culture 

 Normal Human Bronchial Epithelial (NHBE) cells were cultured in complete 

media, which consisted of a 50:50 mixture of BEBM/DMEM supplemented with 

antibiotics and growth factors.  The cells were rapidly thawed from liquid nitrogen in a 

37oC water bath and seeded in 6-well culture dishes fitted with rat tail collagen-coated 

polycarbonate membrane Transwell® inserts (0.4 µm pore).  Complete media (500 mL) 

was prepared by combining 250 mL of BEBM and 250 mL of DMEM into a flask with 

SingleQuot® components.  The cells were fed apically and basolaterally every other day 

until they reached 100% confluency (at approximately 7 days).  Figure 3.17 (a)-(c) shows 

cultured in cells in air-liquid interface at 100% confluency.  At that point, an air liquid 

interphase (ALI) was established by removing medium from the apical chamber and cells 

were fed basolaterally everyday for 14 days to allow full differentiation of the airway 

epithelial phenotype.  The cells were cultured at 37°Celcius in humidified air and 5% 

CO2. 

 

(a) 
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(b) 

 

(c)  

Figure 3.17 Depiction of healthy normal human bronchial epithelial cells in air 
liquid interface 

 
3.9.2.5 Cell – Surface Interface Testing 

 The Mg samples (n=3 per coating) were coated with 20 layers of polymer and 

sterilized under a laminar flow hood with a UV sterilization bulb for 15 minutes on each 

side.  Each of the samples were then assigned a well number and placed face down such 
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that the coated magnesium surface was in direct contact with the epithelial cell layer.  

Three wells were labeled as the low control, thus they were cells, which were untreated.  

Initial media samples were collected from each well at time zero and stored at -20°C for 

lactate dehydrogenase (LDH) assay and elemental analysis via inductively coupled 

plasma mass spectrometry (ICP-MS).    Fresh medium was placed in the lower chamber 

of each well and the plates were placed in incubation at 37°C and 5% CO2.   

Balolateral medium samples were collected again at one hour, four hours, six 

hours, 24 hours, and 29 hours.  During the sample collection period, 1.5 mL of the 

sample media was collected from each of the wells and placed into a small tube.  The 

tubes were labeled and frozen at -20°C.  Any remaining media was aspirated from the 

cell well and two mL of fresh media was reapplied to the lower chamber.  During this 

period, selected wells were imaged by phase contrast microscopy using an Evos xl 

inverted microscope (AMG).  After the final sample collection, the wells containing the 

untreated cells were lysed such that all LDH activity would be released.  These samples 

were then labeled as the high control and used for LDH analysis.   

3.9.2.6 LDH Assay 

Following exposure to coated Mg samples, reactions were terminated by 

removing materials from the apical surface, collection of basolateral culture medium and 

plates were wrapped in foil and stored at -80o C until needed for gene expression analysis.  

The Roche cytotoxicity detection kit was used to determine LDH release by the cells at 

the indicated time points.  This cytotoxicity detection kit measures cytotoxicity and cell 

death through the detection of LDH activity which has been released from damaged cells.  
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The low control consisted of the untreated cells (n=3) and the high control consisted of 

the lysed cells, which provided information about the maximum amount of released LDH 

activity in the cells.  The assay was performed according to manufacture’s 

recommendation and samples (in triplicate) were transferred into a 96-well plate 

according to the template found in Table 3.5 below.  

Table 3.5 96 -well sample template for LDH assay 

  

 Absorbance measurements were taken for each time point at 492 nm on a 

VersaMAX microplate reader (Molecular Devices).  To determine the percentage 

cytotoxicity, the average of the triplicates were obtained and the following equation was 

applied where exp. is the experimental value (i.e. absorbance value) obtained and high 

and low are in regards to the controls, respectively (Equation 1).  

 

Equation 1 Determination of cytotoxicity obtained from LDH absorbance values 
 

3.9.2.7 PCR Analysis 

3.9.2.7.1 RNA Extraction 

 The cell wells were thawed after being preserved at -80° C following the cell 

culture experiments.  The RNeasy RNA Extraction Kit (Qiagen, Valencia, CA) was 
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utilized for RNA extractions according to manufacturer’s instructions.   Briefly, to extract 

RNA from the NHBE cells 350 µl of RTL buffer was added to each of the 24 wells to 

lyse the cells.  Using a rubber policeman apparatus, the cells were detached from the 

membrane of the wells.  Each lysate sample was transferred into a microfuge tube and 

vortexed to remove any clumps.  Each of the samples were then homogenized by passing 

the lysate through 20-gauge (0.9 mm diameter) fitted RNase-free syringe 4-5 times.  

Next, 350 µl of 70% EtOH was added and mixed with the lysate by pipetting.  The lysate 

was then transferred into an RNeasy spin column fitted with a 2 ml collection tube and 

spun for 30 seconds at 10,000 rpm, at room temperature.  The resulting flow through 

from the collection tube was discarded.   

 The spin column was then transferred into a second collection tube and 350 µl of 

RW1 buffer was added.  The sample was spun again for 30 seconds at 10,000 rpm.  Next, 

80 µl of DNase solution was added to the center of the silica-gel membrane in the spin 

column and left to incubate at room temperature for 15 minutes.  Another 350 µl of RW1 

buffer was added to the column and spun at 10,000 rpm for 30 seconds to wash.   

 The samples were then washed twice by adding 500 µl of buffer RPE onto the 

column and spinning for 30 seconds at 10,000 rpm.  The samples were then spun at 

maximum speed for one minute to dry the columns.  RNA was then eluted by transferring 

the spin columns into a 1.5 ml microfuge tube and adding 50 µl of RNase-free water 

directly to the sample columns.  Finally, the samples were spun at 10,000 rpm for one 

minute.   
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3.9.2.7.2 Determination of RNA concentration and purity 

 Each of the RNA samples were diluted by adding one part RNA and 49 parts 

RNase-free water to obtain a 1/50 dilution. For each sample, 2 µl of diluted RNA was 

placed on to the center of a nanoplate reader. The RNA concentration was determined by 

measuring the absorption over a UV light at 260 and 280 nm.  The purity of RNA was 

calculated by determining the ratio A (260/280).  The RNA concentration (ng/µl) was 

calculated Equation 2.    

 

Equation 2 Determination of RNA concentration 
 

3.9.2.7.3 Complementary DNA (cDNA) Synthesis 

 Synthesis of cDNA was conducted according to the iScript cDNA Synthesis Kit 

(BIO-RAD, Hercules, CA) protocol.  A reaction mixture was prepared for a total volume 

of 15 µl per sample reaction.  Each reaction mixture consisted of 4 components, 4 µl of 

5x iScript Reaction Mix, 1 µl of iScript Reverse Transcriptase enzyme, X µl of Nuclease-

free water, and X µl of the RNA sample (Table 3.6).  The amount of Nuclease-free water 

and RNA sample required for each reaction were calculated based on the RNA 

concentration per sample.  The RNA concentrations and the calculated values for X µl of 

Nuclease-free water and X µl of the RNA are shown in Table 3.7 below.  Each reaction 

mix was spun for 3 seconds and incubated using an iCycler Thermal Cycler (BIO-RAD) 

for 5 minutes at 25° C, followed by 30 minutes at 42° C, 5 minutes at 85° C, and finally 

cooled at 4° C for at least 5 minutes.  Figure 3.18 shows the thermal cycler apparatus.   
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Figure 3.18 Depiction of iCycler thermo cycler from BIO-RAD 
 
            Table 3.6 Specified amounts for cDNA reaction mixture 

Reagent Amount 

5x iScript Reaction Mix 4 µl 4µl 
Total RNA Template** 1 µl Refer to Table 3.7  
iScript Reverse Transcriptase 1 µl 4µl 
Nuclease-free water q.s. 20 µl Refer to Table 3.7  

 

Table 3.7 Calculated RNA and nuclease free water required based on RNA 
concentration 

Sample Concentration Desired, µg RNA needed H20 Needed 
1 148.2 400 2.70 12.30 
2 81.5 400 4.91 10.09 
3 71.5 400 5.59 9.41 
4 48.5 400 8.25 6.75 
5 61.6 400 6.49 8.51 
6 92.3 400 4.33 10.67 
7 77.7 400 5.15 9.85 
8 71.1 400 5.63 9.37 
9 112.9 400 3.54 11.46 
10 132.9 400 3.01 11.99 
11 124 400 3.23 11.77 
12 70.3 400 5.69 9.31 
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13 140.3 400 2.85 12.15 
14 107.6 400 3.72 11.28 
15 59.8 400 6.69 8.31 
16 78 400 5.13 9.87 
17 64.6 400 6.19 8.81 
18 57.1 400 7.01 7.99 
19 49.3 400 8.11 6.89 
20 58.4 400 6.85 8.15 
21 61.7 400 6.48 8.52 
22 38.5 400 10.39 4.61 
23 34.1 400 11.73 3.27 
24 n/a n/a n/a n/a 

 

3.9.2.7.4 Measurement of Cyclooxygenase-2 (COX-2) Gene Expression  

 PCR was used to measure the COX-2 gene expression in NHBE cells exposed to 

polymer coated magnesium samples.  RNA was extracted and synthesized into cDNA as 

described above.  COX-2 primer suspended in GoTaq (23 µl) was mixed with 2 µl of the 

synthesized cDNA sample.  Beta-actin primer suspended in GoTaq (23 µl) was mixed 

with the synthesized cDNA sample and used as a reference (Table 3.8).  The PCR 

protocol was set for an initial 95°C for 4 minutes, followed by 35 cycles at 95°C for 30 

seconds, 60°C for 30 seconds and 72°C for 3 minutes.  The synthesized cDNA was 

separated on 0.8% agarose gel at 80 V for one hour.  The gel was then stained for 20 

minutes in 0.01% ethidium bromide.  The gel was imaged using Biorad Chemi-doc 

(Figure 3.19) and Image Lab interface to visualize band density.  The densitometry 

results were analyzed in order to calculate the relative expression of COX-2 against the 

beta actin genes.    
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 Table 3.8 Synthesis of Cox-2 and beta actin primers 

 

 

Figure 3.19 Depiction of BIO-RAD chemi-doc 
 

3.9.2.7.5 Statistical Analysis for Cyclooxygenase-2 (COX-2) Gene Expression 

The average volume intensity of the beta actin genes was used to obtain 

normalized values for the COX-2 expression gene.  The normalized values (n=6) were 

used to conduct statistical analysis.  A one-way analysis of variance was conducted to 

determine statistical differences between the mean cyclooxygenase-2 (COX-2) gene 

expressions of cells for each experiment type.  After determining the statistical 

differences between the experimental means, Tukey’s post hoc analysis was performed to 

determine the specific differences between mean pairs.   
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Jetting Optimization 

Direct Write Inkjet printing can be employed as a mechanism for depositing non-

newtonian biopolymer fluids to modify the surfaces of surgical implant devices. The 

optimal jetting parameters for 0.5% w/v PEUU were obtained by determining the 

appropriate frequency, positive/negative jetting voltage, rise time, dwell time, fall time, 

and final rise time denoted by f, +V/-V, TR, TD, TF, TFR, respectively, and the reservoir 

pressure as described above.  These obtained values are approximate values.  This is 

because of the level of difficulty in obtaining the exact value for the reservoir pressure, 

thus the remaining input values needed to be adjusted.  The final jetting parameters 

obtained at a reservoir pressure of approximately -16 psi were f = 500Hz, +V/-V = 58 V/-

58 V, TR = 51 µs, TD  = 50 µs, TF = 51 µs, and TFR = 51 µs. 

4.2 Controlled Release Coatings (Phase 1) 

Drug release kinetics and surface morphology and thickness were analyzed to 

evaluate the possible factors that might affect the release behaviors of the multilayer 

coatings. The factors of interest included: (1) polymer concentration, (2) drug loading and 

(3) the number of overprint passes.  

4.2.1 Characterization of Release   

The measured release kinetics profiles represent an accelerated curve with respect 

to time. Thus, samples under in vivo conditions would release over a longer period of 

time than those observed here. Figure 4.1 shows the release profiles for samples with 
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varying polymer, drug (taxol) and number of overprint passes as tabulated in Table 4.1. 

The nomenclature (1-5-10P-S2) corresponds to 1% PEUU, 5% taxol, 10 Passes, Sample 

2. Samples with smaller film thickness and lower drug loadings resulted in longer and 

steady rates of drug release. While, samples with higher drug loadings resulted in a high 

percentage of release during the initial burst release period. This situation was attributed 

to the burst release of crystallized taxol particles (beads) within the polymer matrix. 

Figure 4.2 (a) and (b) shows the (a) top view and (b) side view of the taxol beads with 

average diameters of 5 to 8 microns. These beads are a result of reaching the saturation 

limit of the taxol within the biopolymer solution and they indicate the upper limit for 

possible drug amount to be loaded. 

Table 4.1 Factor levels for multilayered controlled release coatings 
No. Factor Low level High level 
1 Polymer concentration (%w/v) 1 1.5 
2 (Drug) paclitaxel concentration 

(%w/w) 
5 10 

3 Number of overprint passes 10 20 
 

The higher polymer concentrations and film thicknesses (20 passes) resulted in an 

early dislodgement of the polymer thin film. This situation was due to the lack of 

adhesion between the polymer and the titanium substrate. Release readings were 

discontinued after partial dislodgement of these coatings after day 5 to eliminate 

erroneous data. However, the dislodged coatings released approximately double the taxol 

based on the higher surface area of exposure to the DPBS as compared to the adhered 

coatings. (Nomenclature: 1-5-10P-S2 stands to 1% PEUU, 5% taxol, 10 Passes, Sample 

2) 
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Figure 4.1 Phase 1 taxol release profiles for determining candidate experiment types 
 

 

(a) 
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(b) 

Figure 4.2 (a) Top view (b) Side view of crystallized taxol particles precipitated from 
polymer matrix 

 
4.2.2 Surface morphology and film thickness evaluation 

The surface morphology and film thickness of the drug loaded polymeric coatings 

were evaluated using scanning electron microscopy and the optical profilometer, 

respectively. The polymer film was cut to reveal the cross-section areas and thickness 

profiles. Figure 4.3 shows the (a) top view and (b) cross-section view of the polymer film 

with 10 passes of coatings. As can be seen from the top and cross-section views, there are 

whiskers of polymer that adhered to the Ti substrate for the lower number of passes (10). 

The average thickness for a 20-pass film obtained from the optical profilometer testing 

varied between 18 to 22 microns. However, the thickness obtained from the SEM 
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measurements was around 20 microns in thickness. The approximate coating thickness 

for each print pass was around 1 micron in thickness.  

 

(a) 

 

(b) 

Figure 4.3 (a) Top view (b) cross-section of drug loaded polymer film on Ti 
substrate 
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4.3 Controlled Release Coatings (Phase 2) 

4.3.1 Characterization of Release 

The two factors studied were taxol concentration and the number of layers.  The 

levels of taxol concentration were 5% and 10% w/v and the two levels of layer thickness 

were 10 and 20 layers.  Thus, there was a total of four experiment types (5% taxol and 10 

layers, 10% taxol and 10 layers, 5% taxol and 20 layers, 10% taxol and 20 layers).  The 

absorbance values obtained from the spectrophotometer were compared to the values of 

the standard curve and the final concentration (µg/ml) of taxol present in the samples was 

derived.  The average concentration of taxol present in the samples having 10 layers and 

containing 5% and 10% w/w of the polymer content was 26.07 µg/ml and 49.09 µg/ml, 

respectively.  For the samples coated with 20 layers and containing 5% and 10% w/w of 

taxol, the final concentrations were 31. 29 µg/ml and 83.19 µg/ml, respectively.  This 

condition is depicted in Figure 4.4.  

The experimental data were assessed to ensure that the assumptions of normality 

and randomness were satisfied.  It was determined that the data were normally distributed 

and did not exhibit any obvious trends or patterns; thus the data was, in fact, random in 

nature.  A depiction of the normality and randomness of the data sets can be found in 

figures 4.5a and 4.5b, respectively.  The statistical relevance of the independent variables 

on the total taxol concentration after 21 days was thus suitable for the application of 

analysis of Variance (i.e. ANOVA) statistical testing. 
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Figure 4.4 Taxol concentration release profile for 21-day period  
 

 

(a) 
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(b) 

Figure 4.5 (a) Normality plot (b) randomness plot for taxol release data 
 

A 2x2 factorial design was conducted to determine the main effects of the given 

factors on the total drug concentration released at the end of the sample collection period 

(i.e. 21 days). The findings showed that the variations in drug dosage and number of 

layers had strikingly significant effects (p = 0.00) on the total drug concentration released 

at p < 0.05. More specifically, the difference in data means for an increasing drug loading 

percentage was approximately 50 µg/ml and nearly 40 µg/ml for increasing the number 

of coating layers (Figure 4.6a).  The interaction plot from the DOE analysis showed that 

the combined factors were also significant (p = 0.00) with regards to the drug release 

concentration at the end of the 21 days (Figure 4.6b).  Details of the statistical output 

analysis can be found in Appendix A.  The difference in data means for the samples 

having 5% w/w drug dosage showed a slight increase (approx. 10 µg/ml) as the number 
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of passes increased from 10 to 20 layers.  Samples having 10% w/w drug dosage showed 

a more profound increase (approximately 60 µg/ml) among data means as the number of 

layers increased from 10 to 20 layers. 

 The percentage of drug released at the various time points was also obtained.  It 

was evident that the burst period for each of the sample categories fell between t = 0 and t 

= 24 hours (i.e. after 24 hours the percentage of drug reached a steady state of release).  

Thus the percentage of the total drug released after 24 hours for the samples containing 

5% and 10% w/w and 10 layers was 60.60% and 61.33%, respectively.  For samples 

containing 5% and 10% w/w having 20 layers, the percentage of total drug release was 

51.69% and 49.37%. It appeared that the samples, which contained the thinner coatings, 

had a more profound initial burst period.  The samples having the thicker layer of 

coatings appeared to have a steadier rate of release during the initial burst period.  

However, a test of statistical significance was required to determine any real differences 

(Figures 4.7 a-d). 

 

(a) 
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(b) 

Figure 4.6 (a) Main affect and (b) interaction plot for total drug release after 21 
days 

 

 

(a) 
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(b) 

 

(c)  
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(d) 

Figure 4.7 Percentage of total drug release over time for (a) 5 % taxol and 10 passes 
(b) 10 % taxol and 10 passes (c) 5 % taxol and 20 passes (d) 10 % taxol and 20 

passes 
 
 The experimental data were assessed to ensure that the assumptions of normality 

and randomness were satisfied.  It was determined that the data were normally distributed 

and did not exhibit any obvious trends or patterns. Therefore the data was random in 

nature.  A depiction of the normality and randomness data is shown in figure 4.8 (a) and 

4.8 (b), respectively.  As a result, the statistical relevance of the independent variables on 

the percentage burst release was suitable for the application of analysis of Variance (i.e. 

ANOVA) statistical testing. 
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(b) 

 

(b) 

Figure 4.8 (a) Normality plot and (b) randomness plot for percentage burst release. 
 

A 2x2 factorial design was conducted to determine the main effects of the given 

factors on the percentage of drug released during the burst period.  The burst period 

identified for analysis was between 0 and 24 hours.  The results showed that for both 
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factors (drug concentration and number of passes) there was a strikingly significant effect 

(p = 0.00) on the drug released during the burst phase at p < 0.05.  Therefore, the null 

hypothesis was rejected.  More specifically, by increasing the drug concentration from 

5% w/w to 10% w/w a visibly higher difference in the data means was realized.  

Although increasing the number of layers from 10 to 20 showed a relatively lower 

difference in data means, the differences were still significant (Figure 4.9a).  The 

statistical output pertaining to the main and interaction effects on burst release percentage 

can be found in Appendix A.   

Interactions between the two factors also had significant effects (p = 0.00) on the 

burst release percentage.  Thus any combination of the factors tested could be employed 

to achieve the desired drug release behaviors during the initial release period.  Results 

showed that for the samples containing 5% w/w of drug loading, the data means showed 

a marginal decrease in the percentages the drug released during the burst period as the 

number of layers was increased from 10 to 20.  For the samples with a 10% w/w drug 

loading, the samples showed a significant increase in the percentage drug release during 

the burst period as the number of layers was increased from 10 to 20 (Figure 4.9b).   

4.3.2 Blood Collection and Compatibility Test 

SEM micrographs taken at 500X and 2,000X show that evenly distributed clusters 

of platelets have attached to only the sample control surfaces containing PEUU only.  

Micrographs were also obtained for the samples containing 5% and 10% w/w of the taxol 

drug.  One can visually see the decrease in adhering platelets as the taxol concentration is 

increased.    
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(a) 

 

(b) 

Figure 4.9  (a) Main and (b) interaction affects plot for percentage of total drug 
released during the burst release period 
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Platelet deposition onto the sample surfaces was determined by LDH assay. 

Samples containing PEUU with no taxol drug were fabricated as a control (Figures 4.11a 

and b).  The data was presented as means with standard deviation.  The average number 

of platelets was 10,191 cells/mm2 with a standard deviation of 1,194. The sample with 

PEUU containing 5% taxol visually showed a decrease in platelet deposition compared to 

the control and the sample containing 10% taxol showed more sparse platelet deposition 

compared to the control (Figure 4.12-4.13a and b).  The average platelet count with 

standard deviations for the 5% and 10% sample were 4,637 cells/mm2 (1,339) and 3,933 

cells/mm2 (3,933), respectively.   

 

Figure 4.10 Statistical significance of drug concentration of blood platelet deposition 
 

The statistical significance among sample groups was determined using One-way 

Analysis of Variance (ANOVA).  Post-hoc Newman-Keuls testing was performed to 

determine specific differences.  Statistical significance among the samples containing 
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only PEUU (control) and both sets of samples containing 5% and 10% taxol embedded in 

PEUU were found to exists at p < 0.05.  Thus, the p- value to determine statistical 

significance between the control and the sample containing 5% taxol was 0.016376.  This 

value is below 0.05. Therefore, the addition of a 5% w/w taxol drug loading had a 

statistically significant effect on platelet adhesion.  The resulting p-value to determine 

statistical significance between the control and the sample containing 10% was 0.022789 

(Figure 4.10).  This value was also lower than the standard p < 0.05.  Thus, the addition 

of a 10% w/v taxol concentration also had a significant effect on platelet adhesion (Table 

4.2).  The results also showed that the difference between the additions of 5% taxol 

versus the addition of 10% taxol was insignificant.   

Table 4.2 Specific significance between groups for blood platelet deposition 

 

4.3.3 Inhibition of Rat Smooth Muscle Cells  

 The metabolic means of samples containing 10 and 20 layers with a 5% w/v drug 

loading were compared to the metabolic means of samples having 10 and 20 layers of 

PEUU with no drug, respectively.  In addition, the metabolic means of samples 

containing 10 and 20 layers with a 10% w/v drug loading were compared to the 

metabolic means of samples having 10 and 20 layers of PEUU with no drug respectively.  

Lastly, the metabolic means of each of the experiment groups were compared with the 

mean metabolic index of cells cultured on Tissue Culture Polystyrene (TCPS). 
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(a) 

 

(b) 

Figure 4.11 Platelet deposition for control, PEUU with no drug loading (a) 500x (b) 
2,000x 
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(a) 

 

(b) 

Figure 4.12 Platelet deposition on PEUU coating with 5% taxol concentration (a) 
500x (b) 2,000x 
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(a) 

 

(b) 

Figure 4.13 Platelet deposition on PEUU with 10% drug loading (a) 500x (b) 2,000x 
 
 The TCPS materials were used in the cell culture to encourage cell proliferation 

across the substrate.  Thus, the metabolic index here is the natural metabolic index from 

cells as they were cultured over a 1, 4, and 7 day period.  As compared to the cells 
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cultured on bare titanium substrate there was a slight increase in metabolic index.  The 

TCPS samples were also compared to samples coated with 10 and 20 passes of PEUU 

without any drug loading and results showed an even further increase in metabolic 

activity for the 20 layer coatings.  This fact indicates that there was an increase in cell 

count where a 20-layer coating was present, which means that the cells can adapt to the 

polymer coating itself.  A description of this situation is shown in Figure 4.14.   

 

Figure 4.14 Statistical significance of controlled release experiment types on cell 
inhibition 

 
 In this research, it was hypothesized that taxol-loaded PEUU coatings would be 

used to inhibit cell proliferation of undesired cancer cells based on increased coating 

material and drug dosage.  The results showed that there was a statistically significant 

difference between the control groups (i.e. TCPS, bare Ti, 10 layers of PEUU, and 20 

layers of PEUU) when compared to each of the respective experiment groups.  For 
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example, after 4 and 7 days there was a significant decrease in metabolic activity when 

5% and 10% w/w of taxol were added to 10 layers of PEUU.  The same finding is true 

when 5% and 10% w/w of taxol was added to 20 layers of PEUU.  However, there does 

not appear to be a significant difference between the various experimental groups.   

 We proposed that the direct-write technique could be used to deposit a variety of 

other non-newtonian biopolymer fluids encompassing a variety of therapeutic agent for 

drug delivery.  However, studies must be conducted to study the release profile of a given 

agent from a given polymer coating type.   
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Jetting Optimization 

The direct-write inkjet technique was used to deposit non-newtonian biopolymer 

fluids for controlling the corrosion of magnesium alloys. The optimal jetting parameters 

were obtained by determining the appropriate frequency; the positive/negative jetting 

voltage, rise time, dwell time, fall time, and final rise time denoted by f, +V/-V, TR, TD, 

TF, TFR, respectively, and reservoir pressure.  These obtained values are approximate 

values.  This is because of the level of difficulty in obtaining the exact value for the 

reservoir pressure. Thus the remaining input values needed to be adjusted.  The final 

jetting parameters obtained for PEUU at a reservoir pressure of approximately -16 psi 

were f = 500Hz, +V/-V = 58 V/-58 V, TR = 51 µs, TD  = 50 µs, TF = 51 µs, and TFR = 51 

µs.  For PCL, the final jetting parameters obtained at a reservoir pressure between -8 psi 

and -12 psi were f = 500Hz, +V/-V = 42 V/-42 V, TR = 22 µs, TD  = 25 µs, TF = 38 µs, 

and TFR = 22 µs. For PLGA, the final jetting parameters obtained at a reservoir pressure 

between -8 psi and -12 psi were f = 500Hz, +V/-V = 32 V/-32 V, TR = 22 µs, TD  = 32 µs, 

TF = 24 µs, and TFR = 22 µs. 

5.2 Polymer Coatings for Controlling the Corrosion of Mg Alloys (Phase 1) 

 Immersion testing was terminated at 21 hours, as the bare Mg alloy surface 

showed severe pitting and corrosion, thus was defunct for implantable conditions. It is 

important to note that the corrosion conditions for samples are at an accelerated pace as 

compared to the actual implant conditions. This situation occurs because implants are in 
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prominent contact with tissue and bone structures with relatively lower liquid interface 

from the site blood vessels. In contrast, the tests were conducted in complete liquid 

immersion to simulate longer durations in actual implant conditions. 

 

Figure 5.1 Cyclic corrosion mechanism in magnesium alloy samples 
 

5.2.1 Cyclic Corrosion Mechanism in Mg Alloy Samples 

In a typical corrosion reaction, the Mg alloy reacts with water leading to 

magnesium hydroxide and the release of hydrogen gas. This process is shown in Equation 

(3).  The uncoated magnesium sample showed a cyclic corrosion mechanism as seen in 

figure 5.1. During the initial six hours exposed magnesium alloy surface underwent 

corrosion with the formation of magnesium hydroxide Mg(OH)2 products on the surface.  
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Equation 3 Chemical reaction for magnesium hydroxide 
 

The corrosion products resulted in an increase in the weight of the sample. 

Further, at 12hrs duration the corrosion products detached from the underlying sample 

into the SBF resulting in weight loss of the sample. The freshly exposed surface of the 

sample underwent subsequent corrosion and formation of Mg(OH)2 products at 16hrs. 

Finally, at 21hrs these corrosion products detached resulting in severe pitting and 

degradation of the underlying sample as seen in Figure 5.2 (right). Though, the bare 

sample has incremental weight gains during corrosion, it is evident from the Figure 5.1 

that the overall trend is downward (weight loss) indicating cumulative weight loss of Mg 

alloy. 

The PLGA based polymeric coating with 100-micron deposition spacing shows 

weight loss at 6 and 12 hours, respectively. This fact was attributed to the degradation of 

the PLGA coating during the initial period. The larger spacing of the deposited 

microdroplets formed a porous coating allowing media to infiltrate within the layers. At 

16hrs the PLGA-100 coating shows weight gain due to the formation of corrosion 

products within the film when in contact with the entrapped media. Further, at 21hrs a 

particular region within the coating film detaches (Figure 5.3) allowing the corrosion 

products to escape. Thisprocess results in a weight loss from the PLGA-100 sample. 

The PLGA-50 sample with tighter deposition pattern showed lower weight loss 

and corrosion behavior as compared to the PLGA-100 coating. This fact is due to PLGA-
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50 coating is less porous and offers resistance to media infiltration. During the initial 

12hr period, there was weight loss due to the degradation of the PLGA film. Further, at 

16hrs corrosion products are formed within the PLGA-50 film at specific locations 

resulting in weight gain. This process is followed by a release of Mg alloy degradation 

product through the porous sections of the PLGA-50 film (Figure 5.4) at 21hrs and 

subsequent weight loss. 

PCL (Polycaprolactone) is a tough biodegradable polymer with enhanced 

mechanical properties and chemical stability as compared to PLGA. Similar trends of 

initial weight loss (12hrs) due to polymer degradation were observed with the PCL-50 

coating. This process was followed by Mg alloy degradation and weight gain as shown in 

Figure 5.1. Finally, at 21hrs duration, the degradation products were released to the 

media resulting in weight loss. It is important to note that the corrosion mechanism for 

PCL-50 is analogous to PLGA-50 the overall weight loss was lower in the former case. 

This is due to the enhanced film stability of PCL-50 as shown in Figure 5.5. 

 

 

Figure 5.2 Uncoated magnesium alloy (left) before t=0 and (right) after t=21 hours 
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Figure 5.3 PLGA-100 Mg alloy (left) t=0 and (right) t=21 hours 
 
 
 

 

 

Figure 5.4 PLGA-50 Mg alloy (left) t=0 and (right) t=21 hours 
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Figure 5.5 PCL-50 Mg alloy (left) t=0 and (right) t=21 hours 
 

 

  

Figure 5.6 PCL-100 Mg alloy (left) t=0 and (right) t=21 hours 
 

The PCL-100 coating had higher porosity and resulted in media infiltration during 

the initial 6hr period. However, because the PCL film has better adhesion properties to 

the Mg substrate, the corrosion products were retained within leading to a weight gain.  
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During the next 10hrs (6 to 16hrs) there was weight loss due to PCL degradation and the 

release of corrosion products through the porous film. This situation led to exposure of 

the underlying Mg alloy surface to fresh media resulting in corrosion products (Figure 5.6 

right) and subsequent weight gain at 21hrs.  

5.2.2 Total Weight Loss/Gain in Mg Alloy Samples 

 

Figure 5.7 Weight loss/gain of various sample types 
 

It is important to note the caveat that the polymeric coatings show higher weight 

loss as compared to bare Mg alloy. This situation is attributed to the combination of the 

weight loss of the polymer and Mg corrosion products, with the former being a 

significant proportion of the total weight loss. As can be seen from Figure 8 the sample 

PLGA-100 has the highest weight loss due to high corrosion rate and degradation of 

porous PLGA film. PLGA-50 and PCL-50 show comparable weight loss due to lower 

corrosion rates. PCL-100 shows weight gain at 21 hrs due to the retention of corrosion 
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products within the PCL film. It is important to note, that corrosion cycles for different 

samples may not coincide at the same time point. For example, PLGA is a fast degrading 

polymer and may gain and lose weight at frequent intervals as compared to PCL.  

5.2.3 Corrosion Metrics Based on Polymer Type and Pitch Distance 

Table 5.1 Corrosion impeding properties of polymer coatings 
Polymer Type Degradation Properties Corrosion 

Rate of Mg 
alloy 

PCL Tough biodegradable polyester with slower 
dissolution characteristics 

Low 

PLGA Tunable degradation rates based on the 
adjustable chemical composition of lactic and 

glycolic acids within polymer 

 
High 

 
Table 5.2 Relationship between pitch distance and corrosion rate 

Pitch Distance Porosity Corrosion 
Rate of Mg 

alloy 
50 Dense polymer microstructure with close 

overlap 
Low 

100 Lower overlap and presence of permeable 
polymer layers 

High 

 

Table 5.1 shows differences in the corrosion behavior of the Mg alloy surface 

based on the polymer type. PCL serves as a more robust polymer to protect the 

underlying Mg alloy surface from corrosion as compared to PLGA. However, the PLGA 

polymer may have tunable degradation rates, which are obtained by varying the ratio of 

lactic and glycolic acids within the polymer. Thus, depending on the application intent, 

one can employ either of these polymers to obtain controlled corrosion behavior. Table 

5.2 shows the relationship between pitch distance (interspacing of deposited polymer 

microdroplets on substrate) and the corrosion rate of the Mg alloy surface. As shown in 
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Table 5.2, larger pitch distances (100µm) lead to porous polymer layers resulting in 

infiltration of the biological media to the Mg alloy surface. Thus, higher corrosion 

products are formed at this pitch distance for both the polymer types. On the contrary, 

tighter pitch distances (50µm) form dense and homogeneous polymer microstructures 

prolonging the life of the polymer coatings and lowering the corrosion of the underlying 

Mg alloy surface. These metrics play an important role in determining the choice of 

polymer type and pitch distance to control Mg alloy corrosion for specific implant 

applications.   

5.3 Polymer Coatings for Controlling the Corrosion of Mg Alloys (Phase 2) 

5.3.1 Immersion Testing (ICP) 

The samples were immersed in simulated body fluid (SBF) to initiate the 

corrosion process.  Sample aliquots taken at each of the specified time points were then 

tested for magnesium ion presence by inductively coupled plasma (ICP) elemental 

analysis.  The immersion test was stopped after 8 days due to peeling of the polymeric 

coating.  The effect that coating thickness (10 versus 20 layers) had on magnesium ion 

presence was compared among all polymer types.  For example, a comparison between 

10 layers of PEUU and 20 layers of PEUU was made to determine the effects of layer 

thickness for this polymer type on the magnesium presence.   

For the PEUU sample coated with 10 and 20 layers, 0.0010 mol/L and 0.0028 

mol/L of magnesium was present in the SBF solution, respectively (Figure 5.9).  Samples 

coated with 10 and 20 layers of PLGA showed a 0.004 mol/L and 0.0016 mol/L 

magnesium presence in SBF, respectively (Figure 5.10). For the PCL sample coated with 
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10 and 20 layers, 0.0026 mol/L and 0.0059 mol/L of magnesium was present in the SBF 

solution, respectively (Figure 5.8).  Therefore, it is shown that coating thickness does 

have some effect on magnesium presence.  However statistical analysis was necessary to 

determine if the differences were significant. 

It is apparent through the data analysis that for the PCL coating, an increase in the 

polymer material resulted in an adverse effect on the magnesium ion content that was 

ultimately released into the SBF solution after the 8-day immersion period (Figure 5.8).  

This phenomenon is explained because of the materials tendency to adhere to the surface 

of the magnesium alloy. Thus, maintaining any fluid and corrosion byproduct that may 

have seeped through the polymer coating.  The fluid entrapped within the polymer 

coating causes increased corrosion of the magnesium alloy material.   

 

Figure 5.8 Magnesium content comparison of layer thickness for PCL coating 
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Figure 5.9 Magnesium content comparison of layer thickness for PEUU coating 
 

 

Figure 5.10 Magnesium content comparison of layer thickness for PLGA coating 
 

A comparison between the uncoated magnesium sample and the samples coated 

with 10 layers of each polymer type was noted after an 8-day immersion period.  For the 

uncoated sample, the amount of magnesium present in the SBF solution was 0.0078 
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mol/L.  For the coated samples, both PCL and PEUU offered the best protective coatings 

having 0.0026 mol/L and 0.0028 mol/L magnesium presences respectively.  The PLGA 

coating was shown to be the least protective coating with 0.0040 mol/L.    

A comparison between the uncoated magnesium sample and the samples coated 

with 20 layers of each polymer type was also noted.  This is shown in figure 5.11.  For 

the uncoated sample the amount of magnesium present in the SBF solution was 0.0078 

mol/L.  For the coated samples, PEUU offered the best protective coating and a more 

consistent rate of corrosion having 0.0010 mol/L mg presences.  The PLGA coating was 

also found to be a good protective coating with 0.0016 mol/L.   The corrosion rate of the 

PCL coating was more comparable to that of the uncoated sample.  It was evident that 

varying the levels of each of the identified factors did have some effect on the 

magnesium content present in the SBF solution, however statistical analysis was 

necessary to determine tany significant differences.   

 

Figure 5.11 Magnesium content comparison between all treatment types 
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 The experimental data were assessed to ensure that the assumptions of normality 

and randomness were satisfied.  It was determined that the data were normally distributed 

and did not exhibit any obvious trends or patterns, thus the data was, in fact, random in 

nature.  The normality and randomness plots for data comparing the polymer coating 

types amongst each other are depicted in figures 12a and 12b, respectively.  As a result, 

the statistical relevance of the independent variables on magnesium ion content was 

suitable for the application of analysis of Variance (i.e. ANOVA) statistical testing. 

 A 3x2 factorial analysis was conducted to compare the effects of the polymer type 

and number of printed layers on the magnesium ion presence after the 8-day immersion 

period.  Therefore, the uncoated samples were omitted from this analysis.  The results of 

the analysis revealed that there is no actual significant effect amongst the polymer 

coating types.  However, the main effects plot is consistent with the results, which shows 

that between the three coating types differences do exists although they may not be 

significant (Figure 5.13a).  Here again, it is shown that PEUU offers the best protective 

coating followed by PLGA and PCL.   

The interaction plot reveals also that increasing the number of layers of PLGA 

and PEUU offers better corrosion protection whereas increasing the number of PCL 

layers from 10 to 20 results in an increase in corrosion byproduct when fully immersed in 

the SBF solution (Figure 5.13b).  For matching magnesium degradation to bone growth 

or repair, PCL should be eliminated as a possible surface coating material, as it does not 

significantly reduce the rate of corrosion.  Details of the factorial design for magnesium 

ion content are shown in Appendix C. 
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(a) 

 

(b) 

Figure 5.12 (a) Normality plot and (b) Randomness plot for data comparison 
amongst polymer coating types 
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(a) 

 

(b) 

Figure 5.13 (a) Main and (b) interaction affect plots for polymer type and layer 
thickness amongst polymer coating types 
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 The experimental data were assessed to ensure the assumptions of normality and 

randomness were satisfied.  It was determined that the data were normally distributed and 

did not exhibit any obvious trends or patterns, thus the data was, in fact, random in 

nature. Normality and Randomness for data comparisons between all sample treatment 

types were validated and can be found in figures 5.14a and b, respectively.  As a result, 

the statistical relevance of the independent variables on magnesium ion content was, 

again, suitable for the application of analysis of Variance (i.e. ANOVA) statistical 

testing. 

A One-way ANOVA was conducted to compare each experiment type against the 

control (uncoated) for statistical significance.  The results of this analysis showed that 

there was a statistical difference between at least two of the sample means given p = 

0.036 which is less than the specified alpha level of 0.05 (Appendix C).  A Tukey’s post 

hoc analysis was conducted to determine exactly which of the data means were 

statistically different.  A depiction of the differences between the data means is shown in 

figure 5.15.  The result from the Tukey analysis showed that the difference in the data 

mean for the uncoated samples was statistically different from the mean samples coated 

with 20 passes of PEUU.  This finding was consistent wit the hypothesis that the PEUU 

coating would provide the most corrosion protection for the magnesium alloy.  This 

coating could be applied for controlled release of magnesium for cardiovascular and 

tracheal stent applications.  There was no significant affect on the magnesium content for 

all other experiment categories.   



129 
 

 

(a) 

 

(b) 

Figure 5.14 (a) Normality plot and (b) randomness plot for data comparison of all 
samples types 
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(b) 

Figure 5.15 Box plot for ICP data depicting differences in data means 
 

5.3.2 Biocompatibility of Polymer Coated Magnesium Alloys 

 LDH activity was assessed as previously described.  Due to the variation between 

the cultured cells in each well, the cytotoxicity levels from the LDH assays were 

converted to percentage of the high control values.  This was so that each of the samples 

could be compared to the total possible LDH activity.  The treated samples were also 

compared to the percentage LDH activity of the low control samples, which saw no 

exposure to the magnesium alloy.   

 LDH activity was collected over the course of a 24 hour period at t = 0, 1, 4, 6, 

and 24 hours.  The sample data collected at time zero represents two distinct events.  The 

first was that this sample was collected at the end of a 24-hour period prior to initiation of 

the experiment.  This was to gauge LDH release over a one-day period.  This is apparent 

in the graph shown below which depicts a sample reading that shows significantly higher 
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LDH activity when compared to subsequent readings.  Also, at time zero fresh media was 

added to each of the sample wells to initiate the new testing period.  Thus, it is taken that 

each time point represents the end of a sample collection period.   

 First it is necessary to describe the pattern of LDH activity of the low control 

samples (i.e. samples unexposed to the magnesium alloy).  From t = 0 to t = 1 hour, an 

apparent decrease in LDH activity was observed.  During the one-hour period the cells 

seemed to be undisturbed thus not much LDH release had occurred.  At t = 4 the media 

captured LDH activity for a slightly longer time period (i.e. three hours) and as a result 

slightly higher levels of LDH activity was recorded.  After 24 hours, the cell media 

collected LDH activity for 18 hours thus there is a large spike in LDH activity.  It is 

important to note that the cultured NHBE cells were cultured for 23 days, which included 

conversion into air liquid interface.  Thus, the cells were expected to show some signs of 

stress irrespective of magnesium exposure around 24 hours after reaching confluency.   

 For the cultured wells containing the various treated sample types, results show 

that between t = 1 hour and t = 6 hours the cells seem to be responding in a similar 

manner irrespective of the treatment type.  However, the cultures containing polymer 

coated samples showed decreasing LDH activity as compared to the samples containing 

no magnesium exposure (cells only), which showed increases in LDH release.  This is an 

indication that the cells are responding positively to magnesium exposure.  At the next 

sample collection, t = 24 hours, all of the well containing the various treated samples 

show an increase in LDH release.  The data analysis was cut of at the 24-hour time period 

due to the naturally declining health of the cells in air-liquid interface.  Also, the 
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difference of time between the 24-hour time point and the 29-hour time point was not 

enough time to collect relevant amounts of LDH activity.  A depiction of LDH activity 

collected for each time point is shown in figure 5.16.   

The cells, which were exposed to the uncoated magnesium surface, showed the 

least amount of LDH activity. To explain this phenomenon, one could say that more 

magnesium exposure contributed positively to the overall health of the cells.  In addition, 

it could be said that a given polymer type is more compatible than others when placed in 

the physiological environment. However, further testing to study the cell activity at the 

various time points was required. 

Although the results showed varying levels of LDH release, cytotoxicity levels 

had not reached a toxic range (i.e. > 30%) after 24 hours of exposure (Figure 5.17a).  For 

LDH activity over a 24-hour period, cytotoxicity levels were expected to increase slightly 

over time due to the natural death process.  However, at the end of the 24-hour period, the 

greatest difference existed between the cells only (i.e. low control) and the uncoated 

magnesium alloy cultures (Figure 5.17b).  This indicates that any apparent toxicity that 

was present in the cultures was unlikely due to the polymer coating materials.  These 

findings seem to be consistent with the results from the ICP tests in which it was 

concluded that there were no significant differences between polymer coating materials.  

However, an analysis of statistical significance for percentage LDH activity among the 

treatment types was necessary. 
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Figure 5.16 Depiction of fluctuating LDH activity for all time points 
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(a) 

 

(b) 

Figure 5.17 (a) Depiction of trends in LDH activity over 24 hours (b) increasing 
LDH activity over 24 hours  
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The experimental data were assessed to ensure the assumptions of normality and 

randomness were satisfied.  It was determined that the data were normally distributed and 

did not exhibit any obvious trends or patterns, thus the data was, in fact, random in 

nature.  A depiction of the normality and randomness plots for the LDH data set is shown 

in figure 5.18a and b, respectively.   As a result, the statistical relevance of the 

independent variables on percentage LDH activity after 24 hours was suitable for the 

application of analysis of Variance (i.e. ANOVA) statistical tests. 

A one-way analysis of variance was conducted on the percentages of LDH 

activity after a 24-hour period. The differences between the mean LDH release for each 

sample treatment type are depicted in figure 5.19.  The results showed that significant 

differences between at least one of the means for LDH release were present given p = 

0.041, amongst the experiment groups at p < 0.05 (Appendix D).  Therefore it was 

necessary to reject the null hypothesis that there were no significant differences between 

the means of the identified experiment groups.   

A follow-up post hoc analysis was performed to determine specific differences.  

Findings from the Tukey’s post hoc analysis showed that there were significant 

differences between the low control (cells only) samples and the uncoated samples.  It is 

important to note that the results of this analysis confirm also that the presence of 

magnesium does show that the LDH activity decreases significantly following 

magnesium exposure.  Differences between all other experiment groups were found to be 

insignificant.  Thus, these findings are consistent with the results from the immersion 

tests.   
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(a) 

 

(b) 

Figure 5.18 (a) Normality plot and (b) randomness plot for LDH data collection set  
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Figure 5.19 Box plot for LDH data depicting differences in data means 
 

The samples from the LDH release experiment were preserved so that the 

magnesium ion content of the sample media collected could also be measured. The 

experimental data were assessed to ensure the assumptions of normality and randomness 

were satisfied.  It was determined that the data were normally distributed and did not 

exhibit any obvious trends or patterns, thus the data was, in fact, random in nature.  The 

normality and randomness data plot for magnesium content in the LDH samples are 

shown in figures 5.20a and b, respectively.  As a result, the statistical relevance of the 

independent variables on magnesium ion content in the LDH samples was, again, suitable 

for the application of analysis of Variance (i.e. ANOVA) statistical testing. 

A one-way ANOVA was also conducted on the magnesium content present 

within the samples cell wells to determine if there was a difference of means between at 
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least two of the experiment groups.  The results of this analysis confirmed that there were 

highly significant differences given p = 0.005, between at least two of the groups at p < 

0.05 (Appendix D).   The differences between mean magnesium content for the LDH 

sample treatment types are depicted in figure 5.21.  Here again, the null hypothesis was 

rejected and Tukey’s post hoc analysis was conducted to determine specific differences.   

The results showed that the difference in means between the low control (cell 

only) and the uncoated samples was significant.  There was also a significant difference 

between the low control and the samples containing the PCL coating.  Lastly, statistical 

differences were found between the samples containing the PEUU coating and both the 

uncoated and PCL coated samples.  This is also consistent with the ICP results from the 

immersion test in which both the uncoated and PCL coated samples displayed similar 

corrosion behaviors.  Also, from the immersion test, the PEUU coated samples released 

the lowest magnesium ion content, which is shown here to be comparable to the low 

control.  Therefore, the statistical differences occur between the groups that were 

expected from the ICP results to have the highest and lowest magnesium content.  In the 

following section we conduct a PCR analysis to determine if whether the LDH release is 

a result of the polymer coating type or increases in magnesium content. 

Here again, these results confirm that although, PCL seems to offer the least 

protection from corrosion, the cells showed a positive reaction to the increased exposure 

to the magnesium.  This again indicates that controlled magnesium exposure promotes 

good health in airway cells.   



139 
 

 

(a) 

 

(b) 

Figure 5.20 (a) Normality plot and (b) randomness plot for LDH data  
 



140 
 

 

Figure 5.21 Box plot for LDH data depicting differences in data means 
 

5.3.3 PCR Analysis 

A polymerase chain reaction (PCR) analysis was performed to measure the Cox-2 

gene expression in NHBE cells exposed to different sample conditions. The Cox-2 gene 

expression is indicative of the inflammatory response of the cells. This analysis was an 

end point analysis that allowed us to understand the health of the cells at the end of 29 

hours.  The corrosion of magnesium alloy samples resulted in release of magnesium ions 

within the media. The presence of magnesium ions within the media was measured using 

the ICP analysis. Thus, depending on their presence, it was hypothesized that higher 

magnesium ions resulted in higher Cox-2 gene expression based on the cell distress.  

The PCR results for the different samples were labeled below as follows, 1-6 

PCL, 7-12 PLGA, 13-18 PEUU, 19-21 Uncoated, 22-23 Cells only. The PCR for both 

Beta Actin and COX-2 were analyzed where Beta Actin was used as an internal control. 



141 
 

The average intensity of 6 bands was used to normalize the Cox-2 data sets. Base pair 

150 was used to analyze intensity of Cox-2. The PCR image was inverted to measure 

darker intensities at base pair 150 for the different sample groups noted above. The 

darkness intensities were integrated to obtain volumetric intensities for further statistical 

analysis.   

 

Figure 5.22 Normalized Cox-2 gene expression 
 

The higher Cox-2 gene expression in both uncoated (bare) and PCL polymer 

coating, shown in Figure 5.22, is due to the corresponding higher presence of magnesium 

ions within the media. The PCL polymer coating resulted in the formation of pockets that 

entrap media leading to higher corrosion rates. The two polymers PLGA and PEUU 

offered higher protection to the underlying Mg alloy surface resulting in lower 

magnesium ion release and corresponding Cox-2 gene expression. The Cox-2 gene 

expression values for PEUU and PLGA are comparable to those of natural cells (low 

control). These results seemed to be consistent with the magnesium ion content within 

media for different sample types as explained previous sections.  However, test for 

statistical differences was necessary.   
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The experimental data were assessed to ensure the assumptions of normality and 

randomness were satisfied.  It was determined that the data were normally distributed and 

did not exhibit any obvious trends or patterns, thus the data was, in fact, random in 

nature.  As a result, the statistical relevance of the independent variables on Cox-2 gene 

expression was suitable for the application of analysis of Variance (i.e. ANOVA) 

statistical testing. 

A one-way ANOVA was conducted to test if significant differences existed 

among the different experiment types. Based on a p-value of 0.0266 from the results of 

the ANOVA it was concluded that significant differences exist for the Cox-2 gene 

expression. Thus, the null hypothesis was rejected.  Further, a Tukey’s post-hoc analysis 

was performed to identify significant differences between different sample types. As can 

be seen from Table 5.3, the uncoated (bare) sample and PCL polymer coating show 

statistically significant higher gene expression as compared the cells (low control). Also, 

PCL polymer exhibited statistically significant difference as compared to PEUU polymer.   

 Table 5.3 Tukey's post hoc analysis for Cox-2 gene expression 

 

From the results of the PCR analysis it was determined that the cell response 

exhibited through inflammation was due to the increase in magnesium ion content.    It 
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was also determined that the differences between polymer materials when compared 

amongst each other were insignificant and showed no negative influences on cell health.  

Lastly, when the desire is to decrease the rate of corrosion for magnesium alloys, PCL 

was not the best candidate as its performance was similar to the uncoated samples.  The 

PLGA and PEUU coatings offered better protective coatings.  
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CHAPTER 6 

CONCLUSIONS 

6.1 Overview 

The objective of this research was to apply a novel surface modification technique 

namely Direct-Write Inkjet printing, to develop functional coatings for metallic 

biomaterials.  Inkjet printing offers several advantages such as the capability to produce 

coatings on extremely complex structures, deposition onto the outer surfaces only, and 

flexibility to change coating design and materials.  This technique also allows for the 

adjustment of coating thickness with the objective of obtaining desired release patterns.   

6.2 Controlled Release Coatings  

Controlled release coatings are fabricated to suit a variety of different 

applications.  More specifically, the controlled release of various biological agents from 

biodegradable polymer coatings to treat a vast number of physiological ailments is of 

particular interest.  The use of the Direct Write inkjet technique as a mechanism for 

developing controlled release coatings offers a variety of advantages for coating surfaces 

containing biological and pharmaceutical reagents [48].  For instance, this technique uses 

a data driven pressure source for deposition of material onto a given substrate, where 

other fabrication techniques use electricity, which may compromise the integrity of the 

biological substances [48].  Other techniques such as spin coating and dip coating are not 

able to accommodate the complex structures that are usually required by surgical implant 

devices.  None of the deposition techniques discussed earlier offer the ability to deposit 
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target specific coatings, maintain the integrity of the deposition material, and eliminate 

cross-contamination of materials.   

The need for a coating technique that encompasses all of the benefits mentioned 

above is necessary to develop controlled release coating where spatial requirements can 

be specified to develop coatings with specified porosity and degradation features.  In this 

research, the intent was achieve a variety of drug release profiles that could be tailored to 

support the needs of a given drug delivery application.  Here, the drug concentration and 

layers of coating material were varied to assess coating specifications resulting in a 

steady state release throughout its intended time of function.  This result would be 

desirable for ailments requiring extended therapeutic sessions such as neointimal 

hyperplasia, using an anti proliferative such as Paclitaxel, following placement of a 

cardiovascular stent device [6].  Coatings having a more profound initial burst phase were 

also attempted.  These coatings would be more suitable for applications such as 

antimicrobial and/or antifibrotic therapy were the majority of the reagent is required in 

the initial stages of treatment to treat infection at the implant site and promote healthy 

wound healing [83-84]. 

The coating process required that various concentrations of the synthesized 

biopolymer fluids were tested to determine their “jettability”.  In this research, the term 

jettability was defined as being able to maintain a steady jet for a time period of at least 

2-3 hours.  Thus, a steady jet was achieved for non-newtonian fluids.  This process was 

known as the jetting optimization process.  In a preliminary study jetting optimization 

was attempted for PEUU at 2% w/v, 1.5% w/v, 1% w/v, and 0.5% w/v.  It was concluded 
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that the concentration for which a steady jet was obtained for PEUU was 0.5 % w/v.  The 

specific jetting parameters for this material were provided in Chapter 4.   

The non-contact, data-driven deposition process showed suitability for depositing 

drug-loaded polymer (Paclitaxel and PEUU) on to a titanium substrate simulating stent-

coating applications. The coatings types were varied in polymer and drug concentration 

and thickness to determine how manipulating the three would affect the drug release 

profile.  Preliminary studies revealed that drug release could be achieved for a period of 

35 days, which was comparable to release periods of using other notable coating 

techniques found in literature.  After 5 days, the samples with thicker coatings began to 

peel from the substrate and thus characterization release was not obtained after that time 

period.  The thinner coatings with lower drug concentrations showed a steady release 

pattern.  

Further studies were conducted in which the polymer concentration remained 

constant (0.5% w/v) and only the drug concentration and layer thickness were varied to 

determine their effect on the drug release profile as well as hemocompatibility and cell 

inhibition.  The titanium substrates underwent standard cleaning procedures to improve 

polymer surface adhesion.   

Drug release profiles were obtained for a 21-day period. A design of experiment 

(DOE) was used to determine the main and interaction affects of each factor on the total 

drug release as well as the percentage released during the burst release period.  Higher 

percentages of drug release during the burst phases were observed for the samples with 

thinner coatings and vice versa.  The overall drug concentrations observed at the end of 
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21 days where significantly lower for samples with lower drug loading.  In terms of the 

coating thickness, an increased coating layer generally showed higher final 

concentrations then samples coated with fewer layers. The P-values obtained from the 

DOE were highly significant (p < 0.01).   It was concluded that tunable drug release 

coatings could be fabricated to suit various therapeutic requirements.   

The reagent chosen, Paclitaxel, has been proven to inhibit accelerated cell 

proliferation in cancerous environments, thus biological testing was conducted to relate 

the drug release profiles to cell inhibition.  MTT assay was performed on rat smooth 

muscle cells after being cultured on the surfaces of taxol-loaded polymer coatings for 1, 

4, and 7 days.  Cells were also cultured on TCPS material, uncoated titanium, and 10 and 

20 layers of PEUU with no drug as controls.  A one-way ANOVA was performed to 

determine any significant differences within each of the experiment types and the 

controls.  Significant differences were determined for each of the experiment types as 

compared to the controls.   

Hemocompatibility test were also conducted to relate drug release to blood 

coagulation on the functionalized surfaces. Platelet deposition onto the sample surfaces 

was determined by LDH assay. The statistical significance between sample groups was 

determined using One-way Analysis of Variance (ANOVA) and post-hoc Newman-Keuls 

testing was performed to determine specific differences.  Statistical significance between 

the samples containing only PEUU (control) and both sets of samples containing 5% and 

10% taxol embedded in PEUU were observed.  However, although differences were 
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observed when increasing drug concentration from 5% w/v to 10% w/v, the effect on 

blood platelet deposition was found to be insignificant.   

6.3 Polymer Coatings for Controlling the Corrosion of Mg Alloys 

Biofunctional coatings are necessary to suit a variety of different medical 

applications. The use of the Direct Write inkjet technique as a mechanism for enhancing 

the structural integrity of a given biomaterial via biofunctional coatings, namely 

magnesium and its alloys, is of growing interest.  Uses for magnesium as a biomaterial 

offers several advantages and can spread across a number of applications.  For instance, 

magnesium is essential to over 300 physiological functions within the body [85] and has 

also been identified as a potential biomaterial to facilitate bone growth and repair due to 

proven similarities of mechanical strength with the cortical bone [86]. 

Direct Write deposition can be used to fabricate coatings where spatial 

requirements can be specified to develop coatings with specified porosity and 

degradation features for inhibiting the corrosion of magnesium alloys.  In this study, the 

intent was to investigate a variety of polymer coatings having various rates of 

degradation.  Here, the polymer type and layers of coating material were varied to assess 

coating specifications for applications in corrosion protection and controlled release of 

magnesium alloys.  Corrosion protection is essential to ensure that a polymer coating is 

applied, which can extend the life of the surgical device until its intended function is 

completed [86].  The controlled release of magnesium in the trachea can be beneficial in 

relaxing airway cells when exposed to an environment causing inflammation [87].  

Magnesium deficiencies have also been linked to cardiovascular disease.  Thus, 



149 
 

controlled release of magnesium via controlled release coatings can offer some benefit 

when applied to tracheal and cardiovascular stent devices [88]. 

The direct-write inkjet technique was used to develop polymer coatings that 

would aid in controlling corrosion of magnesium alloys for orthopedic and vascular 

applications.  It was hypothesized that by manipulating droplet sizes and pitch distance as 

well as polymer type and thickness, desirable corrosion rates based on a given application 

could be obtained.  The jetting optimization process was carried out to determine the 

highest printable concentration for both PCL and PLGA.  It was determined that both 

polymers could be printed at 1% w/v concentration (provided in Chapter 4).  The 

concentration for PEUU remained at 0.5% w/v.   

In a preliminary study, the direct-write printing process was utilized to deposit 

precise layers of multilayer polymeric coatings on Mg alloy surface (Mg: 90%, Zn: 8.9%, 

Ca: 0.5%, rest impurities). PLGA and PCL polymers coatings displayed distinct 

corrosion characteristics based on their varying degradation properties. The uncoated 

(bare) Mg alloy sample showed incremental weight gain and loss due to formation and 

release of Mg(OH)2 corrosion products, respectively. The coating types were classified 

based on polymer type (PCL and PLGA) and pitch distance (50 µm, 100 µm).  Coatings 

with larger deposition pitch (100µm) had higher porosity in both polymer types. This 

resulted in media infiltration and corrosion of local regions on the substrate. The 

corrosion behavior of PCL-50 and PLGA-50 was analogous, though PCL-50 showed 

slower corrosion rate. The PCL-100 film retained corrosion products due to better 

adhesion properties with the Mg substrate.  The results showed that by varying polymer 
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type and printing conditions one could adjust the corrosion rate of magnesium alloys for 

its intended uses.  Manipulation of the step and pitch sizes allowed for added control of 

coating degradation based on one of the given applications provided above.   

In a further study, the pitch distance remained constant (50 µm) to achieve more 

protective coatings with a third polymer type (PEUU).  Immersion testing was conducted 

to determine the affect of polymer type and coating thickness on the presence of 

magnesium released in simulated body fluid (SBF).  Uncoated samples were also tested 

as a control and sample aliquots were collected over an 8-day period.  Magnesium ion 

content was measured using inductively coupled plasma (ICP) spectroscopy technique.   

Statistical analysis was conducted to determine the main and interaction effects 

amongst the treated samples.  Though there were visible trends from the data, the 

differences of means amongst the coating types were not significant. A analysis was 

conducted to compare each experiment type against the control (uncoated). The results 

from this analysis showed that the difference in the data mean for the uncoated samples 

was statistically different from the mean samples coated with 20 passes of PEUU.  This 

suggests that PEUU with increased coated materials would be ideal for applications such 

as bone growth and repair where slower corrosion rates is required to match the rate of 

bone growth. 

The controlled release of magnesium in the trachea can be beneficial in relaxing 

airway cells when exposed to an environment causing inflammation [87].  Cell viability 

and surface interaction between NHBE (airway) cells and the magnesium alloy with 

various coating types were also investigated in culture.  LDH activity was assessed to 



151 
 

determine the effect of magnesium exposure from different samples on cytotoxicity. 

Although the results showed varying levels of LDH release for the coated samples, 

cytotoxicity levels were within permissible physiological limits (i.e. < 30%) after 24 

hours of exposure. ANOVA results concluded that there was a significant difference 

between the mean LDH release from cells containing uncoated magnesium samples and 

the cells having no magnesium exposure.  The analysis also revealed that, compared to 

the cells with no magnesium exposure, the cells exposed to magnesium showed increased 

health during the testing period.  This confirms that airway cells would benefit from the 

controlled release of magnesium to promote good health within the trachea.   

ICP analysis was conducted to evaluate the magnesium content present within 

samples. The low control (cell only) had statistically significant lower Mg ion presence as 

compared to the uncoated samples.  There was also a significant difference between the 

low control and the samples containing the PCL coating.  Statistical differences were 

found between the samples containing the PEUU coating and both the PCL and uncoated 

samples. 

From the results, it was determined that the PCL-coated samples produced 

equivalent magnesium content in SBF when compared to uncoated.  Thus, the PCL 

polymer is not an ideal polymer material if the intent is to retard the corrosion process.  

The magnesium content observed in the sample media from the PEUU-coated 

magnesium was similar to the amount observed from the low control (cells only).  PLGA 

offered slightly lower protection than the PEUU.  Because the PCL coating was similar to 

that of the uncoated sample and PEUU was similar to the low control, significant 
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differences were found between PEUU and PCL.  These findings were also consistent 

with the results from the immersion and LDH tests thus, validating the relationship 

between magnesium exposure and cell health. 

A polymerase chain reaction (PCR) analysis was performed to measure the Cox-2 

gene expression in NHBE cells exposed to different sample conditions. The Cox-2 gene 

expression is indicative of the inflammatory response of the cells exposed to the various 

polymer-coating types. Higher Cox-2 gene expression was found in both the uncoated 

and PCL polymer coated which was consistent with the findings from the previous 

experiments.  This suggests that after 29 hours of continuous exposure to high levels of 

magnesium, percentage of LDH began to approach the level of acceptability (i.e. 30%).  

The results also revealed that the PEUU and PLGA polymer coating material seemed to 

be the most biocompatible, as the Cox-2 gene expression for those samples were most 

similar to that of the cells alone.   

In conclusion, there is sufficient evidence to state that the inflammatory response 

of the cells is proportional to the increasing magnesium exposure.   If the intent is to 

control the corrosion rate of magnesium alloys for a given application, PCL can be 

excluded as a potential candidate for coating as it corrodes at similar rates as the 

magnesium alloy with no coating.  PEUU and PLGA polymers may be considered for 

further testing as the showed good biocompatibility and corrosion control. Therefore, this 

research establishes a foundation for determining the best candidate polymer material for 

controlling the corrosion of magnesium alloys as they apply to numerous applications for 

controlled degradation of biomaterials for surgical implant devices.   
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6.4 Future Work 

6.4.1 Controlled Release Coating 

• New polymeric materials should be incorporated as possible candidate to 

achieve desired drug release profiles. 

• Biphasic and bio-triphasic drug delivery coatings should be developed to 

achieve a desired therapeutic effect. 

6.4.2 Polymer Coatings for Corrosion Retardation 

• Further biological testing should be conducted regarding cell response to 

polymer-coated magnesium. 

• Chemical properties of a given polymer type should be adjusted to inhibit 

the corrosion process, namely PLGA. 

• Biphasic and bio-triphasic drug delivery coatings should be incorporated 

to enhance the surface of the magnesium substrate. 



154 
 

REFERENCES 

1. Anderson, J.M. (1982) Chapter 7: In Vivo Studies on Drug-Polymer Sustained-
Release Systems. Biological Activities of Polymers, ACS Symposium Series Volume 
186. American Chemical Society.   

 
2. Pan C., Tang J., Weng Y., Wang J., and Huang N. (2009) Preparation and In Vitro 

Release Profiles of Drug-Eluting Controlled Biodegradable Polymer Coating Stents. 
Colloids and Surfaces B: Biointerface,s 73, 199-206. 

 
 
3. Okuda T., Tominaga K., and Kidoaki S.(2010) Time-Programmed Dual Release 

Formulation by Multilayered Drug-Loaded Nanofiber Meshes. Journal of 
Controlled Release, 143, 258-264. 

 
4. Sanders S.W. (1996) Transition from Temporal to Biological Control in the Clinical 

Development of Controlled Drug Delivery Systems. Journal of Controlled Release, 
39 389-397.   

 
5. Lincoff, A.M., Tool, E.J., Ellis, S.G. (1994) Local Drug Delivery for the Prevention 

of Restenosis: fact, Fantasy, and Future. Circulation, 90, 2070-2084. 
 
6. Axel, D.I., Kunert, W., Gogglemann, C. (1997) Paclitaxel Inhibits arterial Smooth 

Muscle Cell Proliferation and Migration In Vitro and In Vivo Using Local Drug 
Delivery.  Circulation, 96, 636-645.   

 
7. Nakayama, Y., Nishi, S., and Ueda, H. (2003) Fabrication of Drug-Eluting Covered 

Stents With Micropores and Differential Coating of Heparin and FK506. 
Cardiovascular Radiation Medicine, 4, 77-82.   

 
8. Raval, A. (2007) Novel Biodegradable Polymeric matrix Coated Cardiovascular 

Stent for Controlled Drug Delivery. Trends in Biomaterials and Artificial Organs, 
20, 101-110. 

 
9. Pan Ch. J. (2006) Preparation, Characterization and anticoagulation of Curcumin-

Eluting Controlled Biodegradable Coating Stents. Journal of Controlled Release, 
116, 42-49. 

 
10. Niinomi, M. (2002) Recent Metallic Materials for Biomedical Applications. 

Metallurgical and Materials Transactions A, 33A, 477-486. 
 
11. Niinomi, M. (2007) Fatigue Characteristics of Metallic Biomaterials. International 

Journal of Fatigue, 29, 992-1000. 
 



155 
 

12. Purnama, A., Hermawan, H. (2009) Assessing the Biocompatability of Degradable 
Metallic Materials: State-of-the-art and Focus on the Potential of Genetic 
Regulation. Acta Biomaterialia, 6, 1800-1807. 

 
13. Okazaki, Y., and Gotoh, E. (2005) Comparison of Metal Release from Various 

Metallic Biomaterials In Vitro. Biomaterials, 26, 11-21.   
 
14. Koster R. (2000) Nickel ad Molybdenum Contact Allergies in Patients with 

Coronary In-Stent Restenosis. The Lancet, 356, 1895-1897. 
 
15. Lim, I.A. (2004) Biocompatability of Stent Materials. Massachusetts Institute of 

Technology Undergraduate Research Journal, 11, 33-37. 
 
16. Hench, L., Best, S. (1996) Ceramics, Glasses, and Glass-Ceramics. Biomaterials 

Science, 2, 153-170. 
 
17. Elias, C.N., Lima, J.H.C., Valiev, R., and Meyers, M.A. (2008) Biomedical 

Applications of Titanium and its Alloys. Biological Materials Science, 60 (2008) 
46-49. 

 
18. Monnier, P. Mudry, A. Stanzel, F., Haeussinger, K., Heitz, M., Probst, R., and 

Bolliger, C.T. (1996) The Use of the Covered Wallstent for the Palliative Treatment 
of Inoperable Treacheobronchial Cancers. Chest Journal 110, 1161-1168. 

 
19. Grillo, H. C. (2004) Surgery of the Trachea and Bronchi. Hamilton, Ontario, BC 

Decker Inc. 
 
20. Yeung, S. J., Escalante, C. P., and Gagel, R. F. Medical Care of the Cancer Patient, 

Shelton, Connecticut, People’s Medical Publishing House. 
 
21. Levine, G. N., Chodos, A. P., Lascalzo, J. (1995) Restenosis Following Coronary 

Angioplasty: Clinical Representations and Therapeutic Options. Clinical 
Cardiology,18, 693-703. 

 
22. Rude RK. (1998) Magnesium deficiency: A cause of heterogeneous disease in 

humans. Journal of Bone and Mineral Research, 13, 749-58. 
 
23. Song G, Song S. (2007) A possible biodegradable magnesium implant material. 

Advanced Engineering Materials, 9(4), 298–302. 
 
24. Peacock JM, Folsom AR, Arnett DK, Eckfeldt JH, Szklo M (1999) Relationship of 

serum and dietary magnesium to incident hypertension: the Atherosclerosis Risk in 
Communities (ARIC) Study. Annals of Epidemiology 9, 159 – 165. 

 



156 
 

25. Ma, X., Wu, T., Robich, M., Wang, X., Wu, H., Buchholz, B., McCarthy, S. (2010) 
Drug-eluting Stents. International Journal of Clinical and Experimental Medicine, 
3, 192-201. 

 
26. Bhargave, B., Reddy, N.K., Karthikeyan, G., Raju, R., Mishra, M., Singh, S., 

Waksman, R., Virmani, R., and Somaraju, B. (2006) A Novel Paclitaxel-Eluting 
Carbon-Carbon Nanoparticle Coated, Nonpolymeric Cobalt-Chronium: Evaluation 
in a Porcine Model. Catheterization and Cardiovascular Interventions, 67, 698-702. 

 
27. Lansky, A.J. (2004) Non-Polymer-Based Paclitaxel-Coated Coronary Stents for the 

Treatment of Patients With De Novo Coronary Lesions: Angiographic Follow-Up 
of the DELIVER Clinical Trial.  Circulation, 109, 1948-1954. 

 
28. Moreno, R. (2005) Drug-Euting Stent Thrombosis. Journal of the American College 

of Cardiology, 45, 954-959. 
 
29. Whelan, D. M., Van Der Giessen, W. J., Krabbendam, S. C., Van Vliet, E. A., 

Verdouw, P. D., Serruys, P. W., Van Beusekom, H. M. M. (2000) Biocompatability 
of Phosphorylcholine Coated Stents in Normal Porcine Cornary Arteries. Heart, 83, 
338-345. 

 
30. Zilberman, M,. Eberhart, R. C. (2006) Drug-Eluting Bioresorbable Stents for 

Various Applications. The Annual Review of Biomedical Engineering, 8, 153-180. 
 
31. Wu, P., Grainger, D. W. (2006) Drug/Device Combinations for local drug therapies 

and infection prophylasix. Biomaterials, 27, 2450-2467. 
 
32. Stone GW, Moses JW, Ellis SG, Schofer, J., Dawkins, K., Morice, M., Colombo, 

A., Schampaert, E., Grube, E., Kirtane, A., Cultip, D., Fahy, M., Pocock, S., 
Mehran, R., and Leon, M. (2007) Safety and efficacy of sirolimus- and paclitaxel-
eluting coronary stents. The New England Journal of Medicine, 356, 998-1008. 

 
33. Chew, S. Y., Wen, J., Yim, E. F. Y., and Leong, K. W. (2005) Sustained Release of 

Protiens from Electrospun Biodegradable Fibers. Biomacromolecules, 6, 2017-
2024. 

 
34. Oh, S. H., Ward, C. L., Atala, A., Yoo, J. J., Harrison, B. S. (2008) Oxygen 

Generating Scaffolds for Enhancing Engineered Tissue Survival. Biomaterials, 30, 
757-762. 

 
35. Ektessabi, A.M. (1997) Surface Modification of Biomedical Implants Using Ion-

Beam-Assisted Sputter Deposition. Nuclear Instruments and Methods in Physics 
Research B, 127/128, 1008-1014. 

 



157 
 

36. Xie, J., Tan, J., Wand, C. (2007) Biodegradable Films Developed by Electrospray 
Deposition for Sustained Drug Delivery. American Pharmacists Association 
Journal Pharmaceutical Science, 97, 3109-3122. 

 
37. Jaworek, A. (2007) Electrospray Droplet Sources for Thin Film Deposition. Journal 

of Material Science, 42, 266-297. 
 
38. Rietveld, I.B., Kobayashi, K. (2009) Process Parameters for Fast Production of 

Ultra-thin Polymer Film with Electrospray Deposition Under Ambient Conditions. 
Journal of Colloid and Interface Science, 339, 481-488. 

 
39. Lu, P., and Ding, B. (2008) Applications of Electrospun Fibers. Recent Patents on 

Nanotechnology, 2, 169-182. 
 
40. Fang H. (2008) Dip Coating assisted Polylactic Acid Deposition on Steel Surface: 

Film Thickness Affected by Drag Force and Gravity. Materials Letters, 62, 3739-
3741. 

 
41. Norman, K., Siahkali, A., and Larsen, B. (2005) 6 Studies of Spin-Coated Polymer 

Films. Annual Reports Section “C” (Physical Chemistry), 101, 174-201. 
 
42. Decher, G., Ecklem M., Scmitt, J., Struth, B. (1998) Layer-byLayer Assembled 

Multicomposite Films. Current Opinion in Colloid & Interface Science, 3, 32-39. 
 
43. Crespilho, F. (2006) Electrochemistry of Layer-by-Layer Films: A Review. 

International Journal of Electrochemical Science, 1 (2006) 194-214. 
 
44. Kotov, N.A. (2006) Biomedical Applications of Layer-by-Layer Assembly: From 

Biomimetics to Tissue Engineering. Advanced Materials, 18, 3203-3224. 
 
45. Wang, X. (2009) Piezoelectric Inkjet Technology – From Graphic Printing to 

Material Deposition. Nanotech Conference & Expo, Houston, Texas. 
 
46. Calvert, P. (2001) Inkjet Printing for Materials and Devices. Chemical Materials, 

13, 3299-3305. 
 
47. Schubert, U. (2004) Inkjet Printing of Polymer: State of the Art and Future 

Developments. Advanced Materials, 16, 203-213. 
 
48. MicroFab Technology: Biomedical Applications. Retrieved August 14, 2011 from 

http ://www.microfab.com/technology/biomedical/Stents.html. 
 
49. Hendry, J.A., Pilliar, R.M. (2001) The Fretting Corrosion Resistance of PVD 

Surface-Modified Orthopedic Implant alloys. The Journal of Biomedical Material 



158 
 

Research, 58, 156–166. 
 
50.  Goa, J. C., Qiao, L. Y., Xin, R. L. (2010) Corrosion of Bone Response of 

Magnesium Implants After Surface Modification by Heat-Self-Assembled 
Monolayer. Frontiers of Materials Science, 4(2), 120–125. 

 
51. Tsai, W. B., Wei, T. C., Lin, M. C., Wang, J. Y., and Chen, C. H. (2005) The Effect 

of Radio-Frequency Glow Discharge Treatment of Polystyrene on the Behavior of 
Porcine Chondrocytes In Vitro. Journal of Biomaterials Science and Polymer 
Education, 16(6), 699–714. 

 
52. Ferretti, S., Paynter, S., Russell, D., Sapsford, K. (2000) Self-Assembled 

Monolayers: A Versatile Tool for the Formulation of Bio-Surfaces. Trends in 
Analytical Chemistry, 19 (9), 530-540. 

 
53. Ye, S. H., Johnson, C., Woolley, J., Snyder, T., Gamble, L., Wagner, W. (2008) 

Covalent Surface Modification of a Titanium Alloy with a Phosphorycholine-
Containing Copolymer for Reduced Thrombogenicity in Cardiovascular Devices. 
Journal of Biomedical Materials Research Part A, 91(1), 18-28. 

 
54. Staiger, M. P., Peitak, A. M., Huadmai, J., Dias, G. (2006) Magnesium and its 

Alloys as Orthopedic Biomaterials: A Review. Biomaterials, 27, 1728-1734. 
 
55. Gu, X., Zheng, Y., Cheng, Y., Zhong, S., Xi, T. (2009) In Vitro Corrosion and 

Biocompatibility of Binary Magnesium Alloys. Biomaterials, 30, 484-498. 
 
56. Hanzi, A., Gerber, I., Schinhammer, M., Loffler, J. F., Uggowitzer, P. J. (2010) On 

the In Vitro and In Vivo Degradation Performance and Biological Response of New 
Biodegradable Mg-Y-Zn Alloys. Acta Biomaterialia, 6, 1824-1833. 

 
57. Li, Z., Gu, X., Lou, S., Zheng, Y. (2008) The Development of Binary Mg-Ca 

Alloys for use as Biodegradable Materials Within Bone. Biomaterials, 29, 1329-
1344 

 
58. Yang, J., Cui, F., and Lee, S. (2011) Surface Modifications of Magnesium Alloys 

for Biomedical Applications. Annals of Biomedical Engineering, 39 (7), 1857-1871. 
 
59. Torchilin, V. (2001) Structure and Design of Polymeric Surfactant-Based Drug 

Delivery Systems. Journal of Controlled Release, 73 (2-3), 137-172. 
 
60. Guzman, L., Labhasetwar, V., Song, C., Jang, Y., Lincoff, M., Levy, R., Topol, E. 

(1996) Local Intraluminal Infusion of Biodegradable Polymeric Nanoparticles: A 
Novel Approach for Prolonged Drug Delivery After Balloon Angioplasty. 
Circulation, 94, 1441-1448. 



159 
 

 
61.  Humphry, W., Erickson, L., Simmons, C., Northrup, J., Wishka, D., Morris, J., 

Labhasetwar, V., Song, C., Levy, R., Shebuski, R. (1997) The Effect of Intramural 
Delivery of Polymeric Nanoparticles Loaded with the Antiproliferative 2-
aminochromone U-86983 on Neointimal Hyperplasia Development in Balloon-
injured Porcine Coronary Arteries. Advanced Drug Delivery Reviews, 24 (1), 87-
108. 

 
62.  Labhasetwar, V., Song, C., Levy, R. (1997) Nanoparticle Drug Delivery System 

for Restinosis. Advanced Drug Delivery Reviews, 24 (1), 63-85. 
 
63.  Wildemann, B., Bamdad, P., Holmer, Ch., Haas, N. P., Raschke, M., Schmidmaier, 

G. (2004) Local Delivery of Growth Factors from Coated Titanium Plates Increases 
Osteotomy Healing in Rats. Bone, 34, 862-868. 

 
64. Okuda, T., Tominaga, K., Kidoaki, S. (2010) Time-Programmed Dual Release 

Formulation by Multilayered Drug-Loaded Nanofiber Meshes. Journal of 
Controlled Release, 143, 258-264. 

 
65. Li, Y., Shawgo, R., Tyler, B., Henderson, P., Vogel, J., Rosenberg, A., Storm, P., 

Langer, R., Brem, H., Cima, M. (2004) In Vivo Release from a Drug Delivery 
MEMS Device.  Journal of Controlled Release, 100, 211-219. 

 
66.  Yu, R., Chen, H., Chen, T., Zhou, X. (2008) Modeling and Simulation of drug 

release from Multi-layered Biodegradable Polymer Microstructure in Three 
Dimensions. Simulation Modeling Practice and Theory, 16 (1), 15-25. 

 
67.  Nakayama, Y., Nishi, S., Ueda-Ishibashi, H., Matsuda, T. (2003) Fabrication of 

Micropored Elastomeric Film-Covered Stents and Acute-Phase Performances. 
Journal of Biomedical Materials Research, 64A (1), 52-61. 

 
68.  Raval, A., Chubey, A., Engineer, C., Kotadia, H., Kothwala, D. (2007) Novel 

Biodegradable Polymeric Matrix Coated Cardiovascular Stent for Controlled Drug 
Delivery. Trends in Biomaterials and Artificial Organs, 20 (2), 101-110. 

 
69.  Wessly, R., Hausleiter, J., Michaelis, C., Jaschke, B., Vogeser, M., Milz, S., 

Behisch, B., Schratzenstaller, T., Gluszko, M., Stover, M., Wintermantel, E., 
Kastrati, A., Schomig, A. (2005) Inhibition of Neointima Formation by a Novel 
Drug-Eluting Stent System That Allows for Dose-Adjustable, Multiple, and On-Site 
Stent Coating. Journal of the American Heart Association, 25, 748-753. 

70.  Steigerwald, K., Merl, S., Kastrati, A., Wieczoreck, A., Vorpahl, M., Mannhold, 
R., Vogeser, M., Hausleiter, J., Schomig, A., Wessley, R. (2009) The Pre-Clinical 
Assessment of Rapamycin-Eluting, Durable Polymer-Free Stent Coating Concepts. 
Biomaterials, 30 (4), 632-637. 



160 
 

 
71. De Gans, B., Duineveld, P., Schubert, U. (2004) Inkjet Printing of Polymers: State 

of the Art and Future Developments. Advanced Materials, 16 (3) 203-213. 
 
72. Cooley, P., Wallace, D., Antohe, B., MicroFab Technologies Inc, (2001) 

Application of Ink-Jet Printing Technology to BioMEMS and Microfluidic 
Systems. Proceedings, SPIE Conference on Microfluidics and BioMEMS. 

 
73.  Antohe, B., Wallace, D. (2008) Ink-Jet as a Manufacturing Method for Drug 

Delivery Applications. Proceedings of the 2008 International Manufacturing 
Science and Engineering Conference, October 7-10, 2008, Evanston, Illinois, USA. 

 
74. Khan, M., Fon, D., Li, X., Tian, J., Forsythe, J., Garnier, G., Shen, W. (2010) 

Biosurface Engineering Through Ink-Jet Printing. Colloids and Surfaces B: 
Biointerfaces, 75 (2), 441-447. 

 
75. Suh, H. (1998) Recent Advances in Biomaterials. Yonsei Medical Journal, 39 (2), 

87-96. 
 
76.  Makadia, H., Siegel, S. (2011) Poly Lactic-co-Glycolic Acid (PLGA) as 

Biodegradable Controlled Drug Delivery Carrier. Polymers, 3, 1377-1397. 
 
77.  Sinha, V. R., Bansal, K., Kaushik, R., Trehan, A. (2004) Poly-e-Caprolactone 

Microspheres and Nanospheres: An Overview. International Journal of 
Pharmaceutics, 278, 1-23. 

 
78.  Martina, M., Hutmacher, D. (2007) Biodegradable Polymers Applied in Tissue 

Engineering Research: A Review. Polymer International, 56 (2), 145-157. 
 
79. Ma, X., Wu, T., Robich, M., Wang, X., Wu, H., Buchholz, B., McCarthy, S. (2010) 

Drug-Eluting Stents.  International Journal of Clinical and Experimental Medicine, 
3 (3), 192-201. 

 
80.  Singla, A., Garg, A., Aggarwal, D. (2002) Paclitaxel and its Formulations. 

International Journal of Pharmaceutics, 235, 179-192. 
 
81.  MicroFab. JetLab User’s Manual. (2003) Retrieved July 5, 2006 from 

www.microfab.com. 
 
82. Calvert, P. (2001) Inkjet Printing for Materials and Devices. Chemistry of 

Materials, 13, 3299-3305. 
 
83. Kraft CN, Hansis M, Arens S (1996) Controlled release of antibiotics from coated 

orthopedic implants. Journal of Biomedical Materials Research, 30, 281–286. 



161 
 

 
84. Jarvinen TA, Ruoslahti E (2010). “Target-seeking antifibrotic compound enhances 

wound healing and suppressed scar formation in mice”.  Proceedings of the 
National Academy of Sciences of the United States of America., 1-6 

 
85. Jahnen-Dechent W, Ketteler M. (2012) Magnesium basics. Clinical Kidney Journal, 

5, 3-14. 
 
86. Xu LP, Yu GN, Zhang E, Pan F, Yang K. (2007) In vivo corrosion behavior of Mg–

Mn Zn alloy for bone implant: application. Journal of Biomedical Materials 
Research A, 83A, 703–711. 

 
87. K.I Gourgoulianis, G Chatziparasidis, A Chatziefthimiou, P.A Molyvdas  (2001) 

Magnesium as a relaxing factor of airway smooth muscles. Journal of Aerosol 
Medicine, 14, 301–307. 

 
88. Vitale J (1992) Magnesium deficiency and cardiovascular disease. Lancet, 340, 

1224. 
 

 
  



162 
 

APPENDIX A 

CONTROLLED RELEASE COATINGS 

Full Factorial Design for Burst Release 
 
Factors:  2   Base Design:         2, 4 
Runs:     8   Replicates:             2 
Blocks:   1   Center pts (total):     0 
 
 
All terms are free from aliasing. 
 
 
Design Table (randomized) 
 
Run  A  B 
  1  -  + 
  2  +  - 
  3  +  + 
  4  +  - 
  5  -  + 
  6  -  - 
  7  -  - 
  8  +  + 
 
 
 
  
Factorial Fit: Burst Release versus %Taxol Con., No. of passes  
 
Estimated Effects and Coefficients for Burst Release (coded units) 
 
Term                        Effect     Coef   SE Coef       T      P 
Constant                            0.60569  0.005898  102.69  0.000 
%Taxol Con.                0.42379  0.21190  0.005898   35.93  0.000 
No. of passes              0.13340  0.06670  0.005898   11.31  0.000 
%Taxol Con.*No. of passes  0.19379  0.09690  0.005898   16.43  0.000 
 
 
S = 0.0166827   R-Sq = 99.76%   R-Sq(adj) = 99.59% 
 
 
Analysis of Variance for Burst Release (coded units) 
 
Source              DF    Seq SS    Adj SS    Adj MS       F      P 
Main Effects         2  0.394790  0.394790  0.197395  709.26  0.000 
2-Way Interactions   1  0.075111  0.075111  0.075111  269.88  0.000 
Residual Error       4  0.001113  0.001113  0.000278 
  Pure Error         4  0.001113  0.001113  0.000278 
Total                7  0.471014 
 
 
Estimated Coefficients for Burst Release using data in uncoded units 
 
Term                             Coef 
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Constant                     0.641970 
%Taxol Con.                -0.0315170 
No. of passes              -0.0447980 
%Taxol Con.*No. of passes  0.00775170 
 
 
Least Squares Means for Burst Release 
 
                             Mean   SE Mean 
%Taxol Con. 
  5                        0.3938  0.008341 
 10                        0.8176  0.008341 
No. of passes 
 10                        0.5390  0.008341 
 20                        0.6724  0.008341 
%Taxol Con.*No. of passes 
  5 10                     0.4240  0.011796 
 10 10                     0.6540  0.011796 
  5 20                     0.3636  0.011796 
 10 20                     0.9812  0.011796 
 
 
Alias Structure 
I 
%Taxol Con. 
No. of passes 
%Taxol Con.*No. of passes 
 
Total Release DOE 

 
Factorial Fit: Total Release versus %Taxol Con., No. of passes  
 
Estimated Effects and Coefficients for Total Release (coded units) 
 
Term                       Effect   Coef  SE Coef       T      P 
Constant                           59.14   0.3650  162.04  0.000 
%Taxol Con.                 49.72  24.86   0.3650   68.11  0.000 
No. of passes               33.81  16.91   0.3650   46.32  0.000 
%Taxol Con.*No. of passes   20.01  10.00   0.3650   27.41  0.000 
 
 
S = 1.03233   R-Sq = 99.95%   R-Sq(adj) = 99.91% 
 
 
Analysis of Variance for Total Release (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS        F      P 
Main Effects         2  7230.07  7230.07  3615.04  3392.17  0.000 
2-Way Interactions   1   800.40   800.40   800.40   751.06  0.000 
Residual Error       4     4.26     4.26     1.07 
  Pure Error         4     4.26     4.26     1.07 
Total                7  8034.73 
 
 
Estimated Coefficients for Total Release using data in uncoded units 
 
Term                           Coef 
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Constant                    23.8700 
%Taxol Con.                -2.06000 
No. of passes              -2.62000 
%Taxol Con.*No. of passes  0.800200 
 
 
Least Squares Means for Total Release 
 
                             Mean  SE Mean 
%Taxol Con. 
  5                         34.29   0.5162 
 10                         84.00   0.5162 
No. of passes 
 10                         42.24   0.5162 
 20                         76.05   0.5162 
%Taxol Con.*No. of passes 
  5 10                      27.38   0.7300 
 10 10                      57.09   0.7300 
  5 20                      41.19   0.7300 
 10 20                     110.91   0.7300 
 
 
Alias Structure 
I 
%Taxol Con. 
No. of passes 
%Taxol Con.*No. of passes 
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APPENDIX B 

POLYMER COATINGS FOR COROSION RETARDATION: A PILOT STUDY 
 
Overview 

 Appendix B details the preliminary experiment procedure for cell culture and 

surface-cell interactions experiments.  The experimental results and statistical analysis 

from this preliminary test are also presented here.   

Cell Culture Procedure 

 Normal Human Bronchial Epithelial (NHBE) cells were cultured in complete 

media, which consisted of a 50:50 mixture of BEBM/DMEM supplemented with 

antibiotics and growth factors.  The cells were rapidly thawed from liquid nitrogen in a 

37oC water bath and seeded in 6-well culture dishes fitted with rat tail collagen-coated 

polycarbonate membrane Transwell® inserts (0.4 µm pore).  Complete media (500 mL) 

was prepared by combining 250 mL of BEBM and 250 mL of DMEM into a flask with 

SingleQuot® components.  The cells were fed apically and basolaterally every other day 

until they reached 100% confluency (at approximately 7 days).  At that point, an air 

liquid interphase (ALI) was established by removing medium from the apical chamber 

and cells were fed basolaterally everyday for 14 days to allow full differentiation of the 

airway epithelial phenotype.  .  The cells were cultured at 37°Celcius in humidified air 

and 5% CO2. 

 Cell – Surface Interface Testing Procedure 

 The 10X10 mm Mg samples (n=3 per coating) were coated with 20 layers of 

polymer and sterilized under a laminar flow hood with a UV sterilization bulb for 15 
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minutes on each side.  Due to apparent differences in cells across the wells, the wells, 

which looked the healthiest, were chosen for the experiment.  Each of the samples were  

assigned a well number were they were placed face down such that the coated 

magnesium surface was in direct contact with the epithelial cell layer.  The wells were 

labeled as the low control, thus they were cells, which were untreated.  Initial media 

samples were collected from each well at time zero and stored at -20oC until need for 

lactate dehydrogenase (LDH) and or elemental analysis via inductively coupled plasma 

mass spectrometry (ICP-MS).    Fresh medium was placed in the lower chamber of each 

well and the plates were placed in incubation at 37°C and 5% CO2.   

Balolateral medium samples were collected again at 1 hour, 4, hours, 6 hours, 24 

hours, and 48 hours.  During the sample collection period, 1.5 mL of the sample media 

was collected from each of the wells and placed into a small tube.  The tubes were 

labeled and frozen at -20°C.  Any remaining media was aspirated from the cell well and 

two mL of fresh media was reapplied to the lower chamber.  During this period, selected 

wells were imaged by phase contrast microscopy using an Evos xl inverted  microscope 

(AMG).  After the final sample collection, the wells containing the untreated cells were 

lysed such that all LDH activity would be released.  These samples were then labeled as 

the high control and used for LDH analysis.   

LDH Assay 

Following exposure to coated Mg samples, reactions were terminated by 

removing materials from the apical surface, collection of basolateral culture medium and 

plates were wrapped in foil and stored at -80o C until needed for gene expression analysis.  
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The Roche cytotoxicity detection kit was used to determine LDH release by the cells at 

the indicated time points.  The low control consisted of the untreated cells (n=3) and the 

high control consisted of the lysed cells, which provided information about the maximum 

amount of released LDH activity in the cells.  The assay was performed according to 

manufacture’s recommendation and samples (in triplicate) were transferred into a 96-well 

plate according to the template found below.  

 Table A.1 96-well template for preliminary LDH data collection 

  

 Absorbance measurements were taken for each time point at 492 nm on a 

VersaMAX microplate reader (Molecular Devices).  To determine the percentage 

cytotoxicity, the average of the triplicates were obtained and the cytotoxicity percentage 

was calculated using equation.  Where, exp. is the experimental value obtained from the 

absorbance readings, low control is the absorbance value obtained from cells with no 

magnesium exposure, and high control is the absorbance value obtained from samples 

containing the maximum LDH activity.   

 

Experimental Design  

The purpose of this experiment was to gauge the effects of polymer coating 

material on the percentage of LDH activity from the cultured cells. The various 
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conditions identified for comparison were untreated magnesium alloys, samples coated 

with PCL, PLGA, and PEUU.  A low control that consisted of cultured cells with no 

magnesium exposure.  Having this low control would allow us to compare the 

magnesium containing samples to the natural cell death process.  A one-way analysis of 

variance was chosen to determine the statistical differences between the means of the 

various experiment groups. 

The question was posed, “Can direct-write inkjet printing be used as a mechanism 

for depositing uniformly distributed protective thin films?”  Furthermore, “Can these thin 

films aid in retardation of the corrodible AZ31 magnesium alloy in physiological 

solutions?”  More specifically, we seek to answer the following questions: 

1. Does polymer type and coating thickness have a significant effect on the rate of 

metal ion release? (Phase 1) 

2. Does polymer coating type have a significant effect on the percentage of LDH 

activity from Human Bronchial Epithelial Cells? (Phase 2) 

Results 

 Preliminary cell culture testing was conducted to determine the effects of polymer 

coating type on the percentage of LDH activity and magnesium presence in sample media 

at various time points. LDH activity was collected over a course of a 48 hour period at t = 

0, 1, 4, 6, 24 and 48 hours.  The sample data collected at time zero represents two distinct 

events.  The first is that this sample was collected at the end of a 24-hour feeding during 

which some LDH activity had already occurred.  This is apparent in the graph shown 

below which depicts a sample reading that shows significantly higher LDH activity when 
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compared to subsequent readings.  Also, at time zero fresh media was added to each of 

the sample wells to initiate the new testing period.  Thus, it is taken that each time point 

represents the end of a sample collection period. 

 The samples collected at each time period were evaluated as percentages of the 

high control, that is, the total amount of LDH that could be released from the cells.  

Given that the samples collected at time zero contained 24 hours worth of LDH activity 

before magnesium exposure, this provided some indication of the cell health before the 

experiment was started.   The sample data collected at time zero indicates that the cell 

health of the wells that were chosen as the low control was significantly lower than the 

wells assigned to the other experiment groups due to a high percentage of LDH release.   

 Sample media collected between t = 1 and t = 6 hours showed very little LDH 

release occurred and that activity was fairly consistent between the experiment groups.  

Between t = 6 and t = 24 hours a slight jump in percentage LDH activity is realized with 

PEUU coated samples having the highest activity and uncoated samples showing the 

least.  Finally, at t = 48 hours the data shows a great increase in all of the experiment 

groups, however it remains that the PEUU show the highest release percentage where the 

uncoated samples continue to show the least.  The results indicated that the cells are able 

to maintain good health as they are exposed to the magnesium.  However the cells seem 

to react more to the polymer coatings, specifically, PEUU.   
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Figure A.1 Depiction of fluctuating LDH for all time points of preliminary study 
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(a) 

 

(b) 

Figure A.2 (a) Depiction of trends in LDH activity over 24 hours (b) increasing LDH 
activity over 24 hours for preliminary data set 
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 A one-way analysis of variance (ANOVA) was conducted to determine if there 

are significant differences between the means of the experiment groups.  The results 

showed that significant differences do exist between at least two of the sample types (p < 

0.05).  Therefore, the null hypothesis stating that there are no differences between the 

means was rejected and further analysis was required.  Tukey’s analysis was conducted to 

determine specific differences between groups.  Here results showed that statistical 

differences occurred between the low control (cells only) and the uncoated samples.  The 

differences amongst all other sample types were shown to be insignificant.   

 

Figure A.3 Depiction of differences in LDH for preliminary data set 
 Samples from each experiment group were also collected for inductively coupled 

plasma (ICP) analysis.  The ICP analysis was to determine whether or not the various 

treatment types affected magnesium presences within the collected samples.  The data 

shows higher magnesium presences from PCL-coated samples and lower magnesium 

presence for PEUU-coated samples.  A one-way ANOVA was performed on the data, 
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which revealed that the differences in means for magnesium presences were not 

significant thus; the results here were likely due to chance and possibly variations in the 

sample types.  Overall, it seemed that cells may be reacting to the polymer type as oppose 

to magnesium exposure.   

 

Figure A.4 Magnesium presence in LDH samples for preliminary data set 

 

Figure A.5 Depiction of mean differences in mg content for preliminary data 
Conclusions 
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 Normal Human Bronchial Epithelial cells were culture in Air-Liquid Interface.  

Magnesium samples set in epoxy resin material were coated using direct-write 

techniques.  Cell wells were selected bases on apparent cell health at the start of the 

experiment and randomly assigned to an experiment group.  The samples were placed for 

surface interaction between the cells and polymer coated magnesium surfaces in which 

the samples were tested for percentage of LDH activity and magnesium presence in the 

sample fluid.    

Statistical analysis (ANOVA) was conducted on the results for a 48-hour period, 

which determined that there were no significant differences in the polymer coating types 

on the percentage of LDH activity.  However the difference in means between the cells 

and the uncoated samples was significant indication a positive reaction to the magnesium 

from the uncoated samples.  It is also evident from the results of the test that declining 

cell health could be a response to the biocompatibility of the polymer types rather than 

increased magnesium exposure.   

In conclusion, this test should be conducted again with cells having similar health 

at the start of the experiment.  Also smaller samples sizes should be used to eliminate the 

possibility of weight contributing to accelerated cell stress.   

Statistical Analysis for Preliminary Experiments 

LDH shows statistical significance for NOV 
 

One-way ANOVA: Nov LDH  
 
Source   DF      SS     MS     F      P 
NOV_L24   4   869.7  217.4  4.31  0.028 
Error    10   504.9   50.5 
Total    14  1374.6 
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S = 7.106   R-Sq = 63.27%   R-Sq(adj) = 48.58% 
 
 
                          Individual 95% CIs For Mean Based on 
                          Pooled StDev 
Level  N    Mean   StDev  -+---------+---------+---------+-------- 
Bare   3  27.916   1.765  (--------*--------) 
Cells  3  47.403   8.556                     (--------*---------) 
PCL    3  29.004   7.374   (--------*--------) 
PEUU   3  38.709  10.630             (--------*--------) 
PLGA   3  28.822   2.958   (--------*--------) 
                          -+---------+---------+---------+-------- 
                          20        30        40        50 
 
Pooled StDev = 7.106 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of NOV_L24 
 
Individual confidence level = 99.18% 
 
 
NOV_L24 = Bare subtracted from: 
 
NOV_L24    Lower  Center   Upper  ---------+---------+---------+---------+ 
Cells      0.411  19.487  38.563                     (---------*--------) 
PCL      -17.988   1.088  20.164            (---------*--------) 
PEUU      -8.283  10.793  29.870                 (--------*---------) 
PLGA     -18.169   0.907  19.983            (--------*---------) 
                                  ---------+---------+---------+---------+ 
                                         -20         0        20        40 
 
 
NOV_L24 = Cells subtracted from: 
 
NOV_L24    Lower   Center   Upper  ---------+---------+---------+---------+ 
PCL      -37.475  -18.399   0.677  (---------*--------) 
PEUU     -27.770   -8.694  10.382       (---------*--------) 
PLGA     -37.657  -18.581   0.495  (---------*--------) 
                                   ---------+---------+---------+---------+ 
                                          -20         0        20        40 
 
 
NOV_L24 = PCL subtracted from: 
 
NOV_L24    Lower  Center   Upper  ---------+---------+---------+---------+ 
PEUU      -9.371   9.705  28.781                (---------*--------) 
PLGA     -19.258  -0.182  18.894           (---------*--------) 
                                  ---------+---------+---------+---------+ 
                                         -20         0        20        40 
 
 
NOV_L24 = PEUU subtracted from: 
 
NOV_L24    Lower  Center  Upper  ---------+---------+---------+---------+ 
PLGA     -28.963  -9.887  9.189       (--------*---------) 
                                 ---------+---------+---------+---------+ 
                                        -20         0        20        40 
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NOV ICP Data does not show statistical significance 

 
One-way ANOVA: Nov ICP NHBE  
 
Source     DF         SS         MS     F      P 
Nov18_T24   4  0.0000000  0.0000000  1.12  0.400 
Error      10  0.0000000  0.0000000 
Total      14  0.0000000 
 
S = 0.00005312   R-Sq = 30.93%   R-Sq(adj) = 3.30% 
 
 
 
Level  N        Mean       StDev 
Bare   3  0.00018672  0.00000492 
Cells  3  0.00014152  0.00000460 
PCL    3  0.00023239  0.00009136 
PEUU   3  0.00017941  0.00005646 
PLGA   3  0.00017791  0.00005027 
 
       Individual 95% CIs For Mean Based on Pooled StDev 
Level  --------+---------+---------+---------+- 
Bare           (----------*-----------) 
Cells  (-----------*----------) 
PCL                   (-----------*----------) 
PEUU          (----------*----------) 
PLGA         (-----------*----------) 
       --------+---------+---------+---------+- 
             0.000120  0.000180  0.000240  0.000300 
 
Pooled StDev = 0.00005312 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of Nov18_T24 
 
Individual confidence level = 99.18% 
 
 
Nov18_T24 = Bare subtracted from: 
 
Nov18_T24        Lower       Center       Upper 
Cells      -0.00018780  -0.00004520  0.00009741 
PCL        -0.00009693   0.00004567  0.00018828 
PEUU       -0.00014991  -0.00000730  0.00013530 
PLGA       -0.00015141  -0.00000880  0.00013380 
 
Nov18_T24  ---------+---------+---------+---------+ 
Cells         (-----------*-----------) 
PCL                   (-----------*-----------) 
PEUU              (----------*-----------) 
PLGA             (-----------*-----------) 
           ---------+---------+---------+---------+ 
                 -0.00012   0.00000   0.00012   0.00024 
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Nov18_T24 = Cells subtracted from: 
 
Nov18_T24        Lower      Center       Upper 
PCL        -0.00005173  0.00009087  0.00023348 
PEUU       -0.00010471  0.00003789  0.00018050 
PLGA       -0.00010621  0.00003640  0.00017900 
 
Nov18_T24  ---------+---------+---------+---------+ 
PCL                       (-----------*----------) 
PEUU                 (-----------*-----------) 
PLGA                 (-----------*-----------) 
           ---------+---------+---------+---------+ 
                 -0.00012   0.00000   0.00012   0.00024 
 
 
Nov18_T24 = PCL subtracted from: 
 
Nov18_T24        Lower       Center       Upper 
PEUU       -0.00019558  -0.00005298  0.00008963 
PLGA       -0.00019708  -0.00005448  0.00008813 
 
Nov18_T24  ---------+---------+---------+---------+ 
PEUU          (-----------*----------) 
PLGA          (----------*-----------) 
           ---------+---------+---------+---------+ 
                 -0.00012   0.00000   0.00012   0.00024 
 
 
Nov18_T24 = PEUU subtracted from: 
 
Nov18_T24        Lower       Center       Upper 
PLGA       -0.00014410  -0.00000150  0.00014111 
 
Nov18_T24  ---------+---------+---------+---------+ 
PLGA              (-----------*-----------) 
           ---------+---------+---------+---------+ 
                 -0.00012   0.00000   0.00012   0.00024 
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APPENDIX C 

Statistical Output for Magnesium Ion Content from Immersion Testing 
 

 
DOE ICP Mg –Immersion Test 

 
Multilevel Factorial Design  
 
Factors:      2     Replicates:     2 
Base runs:    6     Total runs:    12 
Base blocks:  1     Total blocks:   1 
 
Number of levels: 3, 2 
 
 
Design Table (randomized) 
 
Run  Blk  A  B 
  1    1  3  1 
  2    1  3  2 
  3    1  2  1 
  4    1  1  1 
  5    1  2  1 
  6    1  3  2 
  7    1  1  2 
  8    1  3  1 
  9    1  1  2 
 10    1  2  2 
 11    1  2  2 
 12    1  1  1 
 
  
General Linear Model: Mg-Immer versus Polymer Type, No. of Layers  
 
Factor         Type   Levels  Values 
Polymer Type   fixed       3  PCL, PLGA, PEUU 
No. of Layers  fixed       2  10, 20 
 
 
Analysis of Variance for Mg-Immer, using Adjusted SS for Tests 
 
Source                      DF     Seq SS     Adj SS     Adj MS     F      P 
Polymer Type                 2  0.0000114  0.0000114  0.0000057  2.15  0.198 
No. of Layers                1  0.0000002  0.0000002  0.0000002  0.09  0.770 
Polymer Type*No. of Layers   2  0.0000197  0.0000197  0.0000099  3.74  0.088 
Error                        6  0.0000159  0.0000159  0.0000026 
Total                       11  0.0000472 
 
 
S = 0.00162534   R-Sq = 66.41%   R-Sq(adj) = 38.43% 
 
 
Term                            Coef   SE Coef      T      P 
Constant                    0.002990  0.000469   6.37  0.001 
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Polymer Type 
PCL                         0.001277  0.000664   1.92  0.103 
PLGA                       -0.000195  0.000664  -0.29  0.778 
No. of Layer 
10                          0.000144  0.000469   0.31  0.770 
Polymer Type*No. of Layer 
PCL          10            -0.001804  0.000664  -2.72  0.035 
PLGA         10             0.001062  0.000664   1.60  0.161 
 
 
Least Squares Means for Mg-Immer 
 
Polymer Type                   Mean   SE Mean 
PCL                        0.004267  0.000813 
PLGA                       0.002794  0.000813 
PEUU                       0.001908  0.000813 
No. of Layer 
10                         0.003133  0.000664 
20                         0.002846  0.000664 
Polymer Type*No. of Layer 
PCL          10            0.002606  0.001149 
PCL          20            0.005927  0.001149 
PLGA         10            0.003999  0.001149 
PLGA         20            0.001589  0.001149 
PEUU         10            0.002794  0.001149 
PEUU         20            0.001021  0.001149 
 
 
ANOVA ICP Mg – Immersion Test 

 
One-way ANOVA: Mg-Imm versus Immer  
 
Source  DF         SS                  MS             F        P 
Immer    6  0.0000714  0.0000119  4.45  0.036 
Error       7  0.0000187  0.0000027 
Total      13  0.0000901 
 
S = 0.001635   R-Sq = 79.23%   R-Sq(adj) = 61.42% 
 
 
                               Individual 95% CIs For Mean Based on 
                               Pooled StDev 
Level   N      Mean     StDev  -----+---------+---------+---------+---- 
Bare    2  0.007821  0.001690                      (------*-------) 
PCL10   2  0.002606  0.000318       (------*-------) 
PCL20   2  0.005927  0.003085                (-------*-------) 
PEUU10  2  0.002794  0.000011       (-------*-------) 
PEUU20  2  0.001021  0.000213  (-------*-------) 
PLGA10  2  0.003999  0.002483           (------*-------) 
PLGA20  2  0.001589  0.000157    (-------*------) 
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                               -----+---------+---------+---------+---- 
                                  0.0000    0.0035    0.0070    0.0105 
 
Pooled StDev = 0.001635 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of Immer 
 
Individual confidence level = 99.46% 
 
 
Immer = Bare subtracted from: 
 
Immer       Lower     Center      Upper 
PCL10   -0.011699  -0.005214   0.001271 
PCL20   -0.008378  -0.001893   0.004592 
PEUU10  -0.011511  -0.005026   0.001459 
PEUU20  -0.013284  -0.006799  -0.000314 
PLGA10  -0.010306  -0.003821   0.002664 
PLGA20  -0.012717  -0.006232   0.000253 
 
Immer   ---------+---------+---------+---------+ 
PCL10     (---------*--------) 
PCL20          (--------*---------) 
PEUU10     (--------*--------) 
PEUU20  (--------*---------) 
PLGA10      (---------*--------) 
PLGA20   (--------*--------) 
        ---------+---------+---------+---------+ 
              -0.0070    0.0000    0.0070    0.0140 
 
 
Immer = PCL10 subtracted from: 
 
Immer       Lower     Center     Upper 
PCL20   -0.003164   0.003321  0.009806 
PEUU10  -0.006297   0.000188  0.006673 
PEUU20  -0.008070  -0.001585  0.004900 
PLGA10  -0.005092   0.001393  0.007878 
PLGA20  -0.007503  -0.001017  0.005468 
 
Immer   ---------+---------+---------+---------+ 
PCL20                 (---------*--------) 



181 
 

PEUU10            (--------*---------) 
PEUU20         (---------*--------) 
PLGA10              (--------*--------) 
PLGA20          (---------*--------) 
        ---------+---------+---------+---------+ 
              -0.0070    0.0000    0.0070    0.0140 
 
 
Immer = PCL20 subtracted from: 
 
Immer       Lower     Center     Upper 
PEUU10  -0.009618  -0.003133  0.003352 
PEUU20  -0.011391  -0.004906  0.001579 
PLGA10  -0.008413  -0.001928  0.004557 
PLGA20  -0.010824  -0.004339  0.002146 
 
Immer   ---------+---------+---------+---------+ 
PEUU10       (---------*--------) 
PEUU20     (--------*--------) 
PLGA10         (--------*---------) 
PLGA20      (--------*--------) 
        ---------+---------+---------+---------+ 
              -0.0070    0.0000    0.0070    0.0140 
 
 
Immer = PEUU10 subtracted from: 
 
Immer       Lower     Center     Upper 
PEUU20  -0.008258  -0.001773  0.004712 
PLGA10  -0.005280   0.001205  0.007690 
PLGA20  -0.007690  -0.001205  0.005280 
 
Immer   ---------+---------+---------+---------+ 
PEUU20         (--------*---------) 
PLGA10             (---------*--------) 
PLGA20          (--------*---------) 
        ---------+---------+---------+---------+ 
              -0.0070    0.0000    0.0070    0.0140 
 
 
Immer = PEUU20 subtracted from: 
 
Immer       Lower    Center     Upper 
PLGA10  -0.003507  0.002978  0.009463 
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PLGA20  -0.005917  0.000568  0.007053 
 
Immer   ---------+---------+---------+---------+ 
PLGA10                (--------*---------) 
PLGA20             (--------*--------) 
        ---------+---------+---------+---------+ 
              -0.0070    0.0000    0.0070    0.0140 
 
 
Immer = PLGA10 subtracted from: 
 
Immer       Lower     Center     Upper 
PLGA20  -0.008896  -0.002411  0.004074 
 
Immer   ---------+---------+---------+---------+ 
PLGA20        (---------*--------) 
        ---------+---------+---------+---------+ 
              -0.0070    0.0000    0.0070    0.0140 
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APPENDIX D 

STATISTICAL OUTPUT FOR FINAL LDH ACTIVITY AND MG CONTENT IN 
CULTURE MEDIA  

 
 
LDH shows statistical significance for DEC 

 
One-way ANOVA: LDH-T24_DEC  
 
Source   DF      SS     MS     F      P 
DEC_L24   4   848.0  212.0  3.75  0.041 
Error    10   564.7   56.5 
Total    14  1412.6 
 
S = 7.514   R-Sq = 60.03%   R-Sq(adj) = 44.04% 
 
 
                          Individual 95% CIs For Mean Based on 
                          Pooled StDev 
Level  N    Mean   StDev  -----+---------+---------+---------+---- 
Bare   3  28.080   4.594  (-------*-------) 
Cells  3  49.908  15.981                     (-------*-------) 
PCL    3  32.357   1.779      (-------*-------) 
PEUU   3  37.302   0.449          (-------*-------) 
PLGA   3  32.604   1.575      (-------*-------) 
                          -----+---------+---------+---------+---- 
                              24        36        48        60 
 
Pooled StDev = 7.514 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of DEC_L24 
 
Individual confidence level = 99.18% 
 
 
DEC_L24 = Bare subtracted from: 
 
DEC_L24    Lower  Center   Upper  ---------+---------+---------+---------+ 
Cells      1.655  21.829  42.002                      (---------*---------) 
PCL      -15.896   4.277  24.451             (---------*---------) 
PEUU     -10.951   9.222  29.396                (---------*---------) 
PLGA     -15.650   4.524  24.698             (---------*---------) 
                                  ---------+---------+---------+---------+ 
                                         -20         0        20        40 
 
 
DEC_L24 = Cells subtracted from: 
 
DEC_L24    Lower   Center  Upper  ---------+---------+---------+---------+ 
PCL      -37.725  -17.551  2.622  (---------*---------) 
PEUU     -32.780  -12.606  7.568     (---------*---------) 
PLGA     -37.478  -17.305  2.869  (---------*---------) 
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                                  ---------+---------+---------+---------+ 
                                         -20         0        20        40 
 
 
DEC_L24 = PCL subtracted from: 
 
DEC_L24    Lower  Center   Upper  ---------+---------+---------+---------+ 
PEUU     -15.229   4.945  25.119             (---------*----------) 
PLGA     -19.927   0.247  20.420           (---------*---------) 
                                  ---------+---------+---------+---------+ 
                                         -20         0        20        40 
 
 
DEC_L24 = PEUU subtracted from: 
 
DEC_L24    Lower  Center   Upper  ---------+---------+---------+---------+ 
PLGA     -24.872  -4.698  15.475         (---------*---------) 
                                  ---------+---------+---------+---------+ 
                                         -20         0        20        40 
 
DEC ICP Data shows statistical significance 
 
One-way ANOVA: Dec Mg ICP for NHBE  
 
Source     DF         SS         MS     F      P 
Dec16_T24   4  0.0000000  0.0000000  7.56  0.005 
Error      10  0.0000000  0.0000000 
Total      14  0.0000000 
 
S = 0.000006802   R-Sq = 75.16%   R-Sq(adj) = 65.22% 
 
 
                                  Individual 95% CIs For Mean Based on 
                                  Pooled StDev 
Level  N        Mean       StDev  ----+---------+---------+---------+----- 
Bare   3  0.00016682  0.00000595                        (--------*--------) 
Cells  3  0.00014512  0.00000765  (--------*--------) 
PCL    3  0.00016616  0.00000375                       (--------*--------) 
PEUU   3  0.00014572  0.00000655   (--------*-------) 
PLGA   3  0.00015067  0.00000897        (--------*-------) 
                                  ----+---------+---------+---------+----- 
                                    0.000140  0.000150  0.000160  0.000170 
 
Pooled StDev = 0.00000680 
 
 
Tukey 95% Simultaneous Confidence Intervals 
All Pairwise Comparisons among Levels of Dec16_T24 
 
Individual confidence level = 99.18% 
 
 
Dec16_T24 = Bare subtracted from: 
 
Dec16_T24         Lower        Center         Upper 
Cells      -3.99556E-05  -2.16933E-05  -3.43106E-06 
PCL        -1.89136E-05  -6.51333E-07   0.000017611 
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PEUU       -3.93596E-05  -2.10973E-05  -2.83506E-06 
PLGA       -3.44056E-05  -1.61433E-05   0.000002119 
 
Dec16_T24    +---------+---------+---------+--------- 
Cells        (--------*--------) 
PCL                     (--------*--------) 
PEUU         (--------*---------) 
PLGA            (--------*--------) 
             +---------+---------+---------+--------- 
           -4.0E-05  -2.0E-05  0.000000  0.000020 
 
 
Dec16_T24 = Cells subtracted from: 
 
Dec16_T24         Lower       Center        Upper 
PCL         0.000002780  0.000021042  0.000039304 
PEUU       -1.76663E-05  0.000000596  0.000018858 
PLGA       -1.27123E-05  0.000005550  0.000023812 
 
Dec16_T24    +---------+---------+---------+--------- 
PCL                               (---------*--------) 
PEUU                    (--------*--------) 
PLGA                       (--------*--------) 
             +---------+---------+---------+--------- 
           -4.0E-05  -2.0E-05  0.000000  0.000020 
 
 
Dec16_T24 = PCL subtracted from: 
 
Dec16_T24         Lower        Center         Upper 
PEUU       -3.87083E-05  -2.04460E-05  -2.18373E-06 
PLGA       -3.37543E-05  -1.54920E-05   0.000002770 
 
Dec16_T24    +---------+---------+---------+--------- 
PEUU          (--------*--------) 
PLGA            (--------*--------) 
             +---------+---------+---------+--------- 
           -4.0E-05  -2.0E-05  0.000000  0.000020 
 
 
Dec16_T24 = PEUU subtracted from: 
 
Dec16_T24         Lower       Center        Upper 
PLGA       -1.33083E-05  0.000004954  0.000023216 
 
Dec16_T24    +---------+---------+---------+--------- 
PLGA                      (--------*---------) 
             +---------+---------+---------+--------- 

           -4.0E-05  -2.0E-05  0.000000  0.000020 
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