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Abstract 

Thermal management is an important issue for applications that generate high heat flux.  

Choosing an efficient cooling technique depends on thermal performance, reliability, 

manufacturing cost, and prospects for minimization.  Based on these grounds, loop heat pipe 

(LHP) is a highly efficient two-phase passive cooling system used for cooling of electronics and 

many critical components of spacecraft and satellite.  Loop Heat Pipe (LHP) uses capillary 

action to circulate cooling fluid inside the loop.  Pressure developed in the pores of a wick 

provides the driving force to circulate the fluid.  LHP has superior heat transport capability and 

can operate at any orientation.  In the present study, a loop heat pipe with flat evaporator has 

been designed and manufactured and an experimental study was performed to investigate the 

effects of various parameters on loop performance.  LHP was instrumented with thermocouples 

to measure the loop temperature at various positions.  Temperature oscillations have been 

observed at the startup of LHP.  Performance of LHP has been evaluated at a wide range of 

evaporator heat loads.  In order to comprehend the complex phenomenon inside LHP, the main 

structure of LHP has been made from transparent acrylic plastic to visualize the evaporation and 

the condensation process.  A high-speed video camera has been utilized to visualize the 

operational process.  Data collected from the experiment provides a significant insight into the 

physics of LHP operation.  An analysis is presented to explain the startup process.  

Understanding of startup process is necessary for predicting the performance of LHP.  
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CHAPTER 1 

Introduction 

Heat generation in the electronic system has become a big concern with the advent of 

new technology.  Recently much attention is given to the cooling system to improve the heat 

dissipation capability.  Reliability of electronic component depends on the temperature level, 

which is a major challenge for thermal management.  Convectional cooling system using air as a 

coolant is not capable of removing high heat flux.  In addition, the need for cooling compact 

electronic system has become a big challenge for these traditional systems.  Two-phase cooling 

systems such as Spray cooling, Heat Pipe (HP), Capillary Pumped Loop (CPL), and Loop Heat 

Pipe (LHP) have great potential to meet future challenges.  All the technology mentioned above 

use phase change and for the passive system, the working fluid can circulate in the loop without 

any external mechanical pump. 

Cooling device like heat pump has been used extensively for several decades due to its 

effective solution to thermal problems.  Continuous research has been performed to improve the 

performance of heat pipe, which has guided to the invention of Loop Heat Pipe (LHP).  LHP is a 

one kind of heat pipe where the evaporator and condenser components are separated.  LHP's 

application gained its popularity after showing the successful operational capability in space 

programs in 1990s.  LHP is a passive device which can operate in any orientation and capable of 

self-starting.  Widespread research is going on to improve the performance and miniaturization 

to provide the higher cooling capability effectively.  Due to the compactness of the system, now 

LHP is successfully used in cooling of laptops and desktops.  Now the big challenge for the 

engineers is to increase the cooling capacity by keeping the size as compact as possible.  It is 

very critical to cool the small surface area with high heat flux.  Device as loop heat pipe (LHP) 
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can be an excellent solution for the problem.  Investigation has shown that LHP can be 

effectively used for thermal management of compact electronic system (Singh, Akbarzadeh, 

Dixon, Mochizuki, & Riehl, 2007).  Yury F Maydanik, Vershinin, Korukov, and Ochterbeck 

(2005) had developed miniature cylindrical LHP for electronic cooling applications.  

Development and improvement of the performance is the great interest of many researchers. 

1.1 Specific Objectives 

Experiments have been performed in different operating condition, with different kinds of 

working fluid and various wick structures to achieve optimum heat flux removal capability.  The 

two-phase phenomenon present in the system makes the mechanism complex.  An extensive 

literature review shows that not too many experiments have been performed to understand the 

effects of wide range of heat load in the evaporator of loop heat pipe (Ji Li, Wang, & Peterson, 

2010). Especially, it is extremely important to understand the startup and steady state operating 

condition in the loop at different heat load condition (Maidanik, Solodovnik, & Fershtater, 

1995).  The performance of LHP can be unstable at low as well as comparatively high heat load 

conditions.  Failure of the loop can be possible for both the cases.  For efficient operation of 

LHP, it is very important to understand the behavior of loop at different heat load, which will be 

presented in this study. 

It is also evident from the literature  review that there are very few research have been 

conducted on the visualization of the operation of LHP (Bartuli, Vershinin, & Maydanik, 2013).  

The theoretical model of LHP has been developed without any physical observation of the 

processes taking place inside the loop.  These models are unable to provide any comprehensive 

picture of the system.  Especially for two-phase system, it is very important to investigate the 

behavior of the fluid inside the evaporator and condenser where the phase changes take place.  
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To understand the physical phenomenon of the system, it is very important to visualize the 

operational process in LHP.  Based upon the discussion presented above, the specific objectives 

are: 

 To design and build a Loop Heat Pipe. 

 To evaluate the performance parameters of the loop heat pipe at different heat load 

conditions. 

 To visualize the startup and component performance of the LHP.  

1.2 Organization of Thesis 

The present thesis has been organized in five chapters.  The first chapter provides the 

specific objectives of the present study and the motivation behind these specific objectives.  

Second chapter presents the literature review on the current knowledge base on LHP.  Chapter 

three describes the methodologies and materials used to perform the present research.  Results 

and discussions are presented in chapter four.  Chapter five includes the conclusions and 

recommendation for further study. 
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CHAPTER 2  

Literature Review 

Literature review is important to understand the present knowledge base and to find the 

knowledge gap .  Chapter 2 presents information regarding historical development of LHP and 

performance analysis has been done so far for the improvement of LHP. 

2.1 Historical Development 

Loop heat pipe is one particular kind of heat pipe.  The history of heat pipes must be 

discussed first to understand the development process of LHP.  In a heat pipe, the wick structure 

transports heat from evaporator to condenser.  Perkins Tube is one kind of two-phase device, 

which was invented long before heat pipe.  Perkins Tube, which is also known as thermosyphon, 

is an essential part of the history of the heat pipe. 

2.1.1 Thermosyphon. Thermosyphon was patented by Perkins (1836).  Thermosyphon is 

a heat transfer device where the working fluid is circulated by density difference between vapor 

and liquid.  The method is based on natural convection and does not require a mechanical pump.  

When the liquid is heated, the liquid vaporizes and moves upwards in the loop where it is cooled 

and replaced by the cooler liquid returning by gravity.  The circulation keeps on with very little 

hydraulic resistance.  A schematic drawing of the thermosyphon is shown in figure 1 utilizing 

solar energy in water tank system.  The design is a closed tube containing water operating in 

two-phase cycle.  Both themosyphons and heat pipe are passive devices.  In thermosyphon, the 

condensate returns to evaporator section by gravity but in heat pipe, the condensate returns to 

evaporator by capillary forces.  Thermosyphon has limitation in the orientation.  The boiler or 

evaporator should be below the condenser for thermosyphon.  Normally used in heating and 

cooling applications such as heat pumps, water heaters, boilers and furnaces. 
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Figure 1. Schematic of thermosyphon (Gogreen Solutions Company) 

2.1.2 Heat pipe. Heat pipe was patented by Gaugler (1944).  During working on 

refrigeration system, he invented a device that can evaporate and condense a liquid without 

providing any external work in the system.  In heat pipe, the vapor passes through the wick of the 

tube and releases the heat to the condenser.  The process continued with capillary pressure.  Use 

of heat pipe in space program  was revived in 1962 (Trefethen, 1962).  The heat pipe concept 

came to attention after Grover, Cotter, and Erickson (1964) published detail physics and 

operational characteristics.  They have utilized different types of wick materials and working 

fluids in their study.  Highest operating temperature of the loop was 1650  C.  Heat pipe can 

operate in any orientation and in micro-gravity condition without any external pump.  For that 

reason, it became very popular in space program.  Significant number of experiments has been 

conducted on heat pipe to meet the high cooling demand.  Different design approach also has 

been implemented for the improvements in performance. 

Wicking material is the heart of heat pipe through which the fluid moves.  The container 

used for heat pipe should be sealed and evacuated.  Specific amount of liquid is charged into the 

system to saturate the wick.  Figure 2 shows three distinct regions of a heat pipe i.e. an 

evaporator, a condenser and an adiabatic region.  The heat applied to the evaporator region turns 



8 

 

 

the liquid into vapor.  The high pressure generated in the wick push the vapor through the tube to 

the condenser region.  In the condenser, the vapor condenses and the liquid returns back to the 

evaporator.  The pressure drop in the wick material mostly consumes the pressure generated in 

the wick.  It is hard to transfer heat to a large distance due to high-pressure drop in the system. 

 

Figure 2. Schematic of heat pipe (Brocheny, 2006) 

 2.1.3 Capillary pumped loop. Capillary pumped loop (CPL) is very close to the 

structure of loop heat pipe.  CPL was envisioned by Stenger (1966).  CPL came into attention at 

the late 1970.  This technology has been employed in space program to transport heat from one 

place to another.  CPL is a two-phase passive cooling device, which uses capillary pressure 

developed in the wick to circulate the fluid in the closed loop.  The liquid evaporates from the 

evaporator and condenses at the condenser.  Hydraulic connection between the evaporator and 

the reservoir is the main difference between CPL and LHP.  The reservoir is totally separated 

from the evaporator.  However, in LHP, the reservoir is directly connected to the evaporator 

section.  Separated reservoir in CPL has significant effects on thermal performance.  The 
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disadvantage of the CPL is that it needs preconditioning during start up.  The reservoir is heated 

few degree above the evaporator temperature.   

 

Figure 3. Schematic of capillary loop pipe (Wrenn, 2004) 

2.2 Fundamental Operating Principles of Loop Heat Pipes 

LHP consist of five main components. These components are  

1. Evaporator 

2. Compensation chamber (reservoir) 

3. Condenser 

4 Liquid line  

5. Vapor line  

Capillary force developed in the pore of the wick material is the source of the pumping 

action for circulating the fluid along the loop. A schematic diagram of a typical LHP is shown in 

figure 4. The wick is located inside the evaporator.  Compensation chamber is directly connected 

to the wick structure of the evaporator.  The compensation chamber provides accommodation for 

excess liquid in the loop and provides constant supply of liquid to the wick. 
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Figure 4. Schematic of LHP (Advanced Cooling Technologies Inc., USA) 

When heat is applied to evaporator, the liquid in the pore of the wick is vaporizes and 

form meniscus in the pore.  The vapor channel removes the vapor generated in the wick.  

Quantity of vapor depends on wick structure and amount of heat applied to the evaporator.  The 

heat is rejected from the condenser.  After the condensation, process vapor turns into liquid. The 

liquid then returns to the evaporator through the liquid line.  The wick is normally made from 

sintered metal with very fine pores to increase the pumping capability.  High pumping capability 

depends on pore size and permeability of the wick determines.  LHP can operate even in micro-

gravity condition efficiently.  LHP can also transfer heat from heat source to heat sink at a 

reasonable distance. 
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2.3 Working Fluids 

The first step in the design process of LHP is to select the working fluid. The working 

fluid should have the following properties 

• Minimum operating temperature for phase change  

•The contact angle between working fluid and porous substrates should be low.  High wettability 

ensures maximum capillary pressure. 

• The saturation pressure of the fluid at the maximum operating temperature 

• The fluid should be nonhazardous and environmental friendly. 

The working fluid should be compatible with the wick material.  Any chemical reaction 

between the working fluid and the wick material will create non-condensable gas (NCG) in the 

system and NCG deteriorate the performance of LHP. 

The common working fluids for LHP are ammonia, ethanol, acetone and water.  Impact 

of working fluid on environment is big issue.  Use of working fluid like ammonia, alcohol is 

decreasing due to toxicity.  Nontoxic working fluid such as water as working fluid is increasing 

due to its thermo-physical characteristics.  Water is compatible with copper and stainless steel 

wick.  Water is also easily available and has high latent heat of vaporization.  The surface tension 

of water is also high.  The working fluid determines the temperature and pressure limit of the 

system.  Ammonia and ethanol are used in LHP of low operating temperature and pressure.  

Depending on the operating temperature, LHPs are classified into four categories Faghri (1995): 

1. Cryogenic (4-200 K)  

2. Low (200-550 K) 

3. Medium (550-750 K) 

4. High (750 K and above)  
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Most of the LHP used for cooling purposes fall in the low and medium category 

temperature range. For space application, both the cryogenic and high loop heat pipe has been 

used. 

2.4 Wick 

Wick is the heart of LHP. Capillarity provides the required pressure to circulate the fluid 

in the system.  Selection of wick material is critical for design of a LHP.  Selection of the wick 

depends on three major properties  

1. Pore radius 

2. Permeability 

3. Thermal conductivity  

The pore radius limits the capillary pressure developed in wick.  Small pore radius 

provides high pumping capability.  A wick with small pore radius may have a low permeability.  

Permeability is the measure of resistance of the flow in the wick.  Permeability determines the 

pressure drop across the wick.  Low permeability offer high-pressure drop in the system.  Most 

pressure drop takes place in the wick itself.  In the design process, there has to be a compromise 

between porosity and permeability to minimize the pressure drop.  Thermal conductivity 

determines the heat leak to compensation chamber.  Properties mentioned above have great 

impact on performance of a LHP.  The pore radius of the wick should be in the range of 1-

100μm.  The wick also should have high permeability and low thermal conductivity.  

2.5 Compensation Chamber 

Compensation chamber is an integral part of loop heat pipe.  It is directly connected to 

the wick.  The conventional shape of compensation chamber is cylindrical.  Now there is 

diversity in designs.  Figure 5, 6 and 7 illustrate different combinations of evaporator and 
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compensation chamber.  Cylindrical shape needs a saddle to apply the heat.  Now experiments 

are conducted for miniaturization of LHP.  Miniaturization affects the thermal-hydraulic link 

between the evaporator and the compensation chamber.  

Parasitic heat to the compensation chamber increases due to reduce thermal resistance 

between the evaporator and the compensation chamber.  Parasitic heat is the part of the applied 

heat load is conducted through the wick structure to the compensation chamber.  Parasitic heat 

increases the operating temperature of LHP.  Returning sub cooled liquid in the condenser 

reduces the temperature of the liquid inside the compensation chamber. 

 

Figure 5. Evaporator/compensation chamber of cylindrical shape 

 

Figure 6. Evaporator/Compensation Chamber of flat shape with the reservoir located in the 

extension of the evaporator 



14 

 

 

 

Figure 7. Evaporator/Compensation Chamber of flat shape with the reservoir located in the 

thickness of the evaporator 

2.6 Thermodynamic Analysis of LHP: 

The first step to understand the operating process of a cooling system is to perform the 

thermodynamic analysis of system.  Thermodynamic analysis of LHP operating at steady state 

condition is shown in figure 8.  At a steady-state condition, LHP has to satisfy mass, momentum, 

and energy conservation laws.  However, it is difficult to maintain the energy conservation 

because of loss of heat from different component of LHP to environment.   

The vapor generated at the evaporator wick outlet at point 1 is in a saturation state.  It 

becomes superheated at the exit of the grooves at point 2.  For a perfectly insulated vapor line, 

there is a negligible temperature drop in vapor line.  The pressure drops in vapor line and reaches 

the condenser at point 3.  Due to condensation, the temperature starts decreasing in condenser 

from point 4.  The pressure drop in the condenser is small.  The vapor totally condenses to liquid 

and starts to be sub cooled at point 5.  The sub cooled liquid starts to flow in the liquid line from 

point 6 and keeps the temperature constant until the liquid reaches the compensation chamber at 

point 7.  The working fluid is heated up to point 8.  Thus, the energy balance is maintained in the 

loop.  
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Figure 8. P –T diagram of LHP for steady-state operation (Chuang, 2003a), (Ku, 1999). 

2.7 Development in LHP 

Present design of the LHP is more compact than previous one.  Miniaturization is very 

important due to compact electronic devices.  Pastukhov V.G. (1999) has developed a miniature 

LHP of 25–30 watt heat load and it can transfer the heat up to 250 mm distance.  The concept of 

low power management electronic cooling for spacecraft applications was also introduced by 

Bienert W.B. (1999).  Now most of the evaporators have flat surface.  Advantage of the flat 

surface is that it can be integrated easily into the compact electronic systems.  Liquid can 

evaporate uniformly on the flat surface and keeps the surface isothermal. 

 

Figure 9. Loop heat pipe with cylindrical evaporator(Santos, Bazzo, & Oliveira, 2012) 
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Maidanik Y.F. (2000) have performed tests on LHP with heat load of 40 to 80 watt with 

horizontal and vertical orientations for flat disc-shaped evaporator.  Tu et al. (2009) has 

developed a two-dimensional numerical model to characterize heat and mass transfer in the 

evaporator and he has also presented an experiment to verify the start-up process in LHP with 

flat evaporator.  The effects of different working fluids on flat evaporator has been done by Liu 

et al. (2011).  Singh, Akbarzadeh, and Mochizuki (2008) have developed a  miniature flat shape 

copper disc evaporator with 70 watt heat capability and the temperature of the evaporator was 

below 100 C. 

 

Figure 10. LHPs with flat evaporators (Yu F Maydanik, 2005) 

Moon, Hwang, Yun, Choy, and Kang (2002) have designed Copper based miniature loop 

heat pipe was able to remove heat load of 11.5 watt from a 35X35     area of laptop.  Yury F 

Maydanik et al. (2005) had developed copper-water miniature cylindrical LHP with load 

capacity of 130 watt for electronic cooling applications.  Cytrynowicz et al. (2002) have 

designed and fabricated Coherent Porous Silicon (CPS) MEMS loop heat pipe capable of 

removing high heat flux.  
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Figure 11. SEM micrograph of Coherent Porous Silicon of pore diameter 5μm (Cytrynowicz et 

al., 2002) 

2.8 Parametric Effects of LHP 

The performance of LHP is affected by numerous parameters.  Effects of different 

parameters of LHP have to be considered during design process.  The following paragraphs 

illustrate the effects of different parameters on performance of LHP.  

 2.8.1 Amount of fluid in LHP. The amount of working fluid charged into the system has 

no effect on the operation of LHP.  However, from the thermal analysis, amount of working fluid 

in compensation chamber may affect the radial heat leak and can have a significant impact on the 

loop operation.  Ku, Ottenstein, Rogers, Cheung, and Powers (2001) have investigated the effect 

of void fraction in evaporator with different fluid inventory and the relative tilt between the 

evaporator and the compensation chamber.  Their test results have signified the effect of vapor 

void fraction inside the evaporator core for LHP operating at low heat loads.  The optimum fill 

charge ratio and the heat flux conditions have been also investigated (Lee, Park, & Lee, 2004).  

In the experiment, the compensation chamber was located above the wick.  They have used 

sintered stainless steel and brass metal wick.  The working fluid is distilled water.  The fill 

charge ratio ranged from 40 % to 60 % of total volume and the applied heat flux was varied from 

1.5W/    to 5.9W/   . LHP  with similar configuration has been also studied by Boo and 
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Chung (2004). They used methanol as the working fluid and polypropylene (PP) as porous wick 

and did not find any significant effect of the fill charge ratio on the LHP thermal resistance 

(figure 12).  Nevertheless, the experimental results indicate a maximum heat load for an 

optimum value of the fill charge ratio of 0.4–0.5.  

 

Figure 12.      and    vs. working fluid fill charge ratio (Boo & Chung, 2004) 

2.8.2 Effect of the porous wick characteristics. The performance of LHP is affected by 

three major characteristics of porous wick.  They are pore diameter, porosity, the permeability, 

and the thermal conductivity.  The small pore diameter ensures a large capillary pressure.  Large 

porosity and permeability decreases the hydraulic resistance.  Low thermal conductivity of wick 

minimizes the parasitic heat flux to compensation chamber.  The thermal conductivity is a 

function of the porosity of the wick and the thermal conductivity of the liquid.  Boo and Chung 

(2004) have used several polypropylene wicks.  The pore diameters ranged from 0.5 to 25 µm.  

The effect of pore size on the maximum heat load and thermal resistance is shown in figure 13.  

From the figure, it can be seen that the maximum thermal load increased for reduction in pore 
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size diameter for high pressure but also have to think about permeability.  For the design process 

the optimum value should be choose for pore size and permeability. 

 

Figure 13.      and     for various pore sizes (Boo & Chung, 2004). 

Figure 14 illustrate porosity and permeability as a function of the pore diameter.  In 

figure 14, there is a wide range of data for porosity and the permeability for a given pore size.  

The porosity is between 30 to 75 % and permeability is between         and            and 

permeability increases with the pore diameter.   

 

Figure 14. Properties of wicks (Hoang, O’Connell, Ku, Butler, & Swanson, 2003) 
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Data accumulated by Hoang et al. (2003) on porous characteristics demonstrates that 

permeability increases with the increase of pore diameter.  The result of this study is shown in 

figure 15.  The most utilized wicks in LHP are polyethylene, PTFE, titanium, copper, stainless 

Steel, brass, and nickel-chromium.  The use of copper as wick has been started recently.  

Normally the pore diameter of wick varies between 1 and 50μm, and for copper between 20 and 

100μm.  

 

Figure 15. Properties of common wicks of LHP  (Hoang et al., 2003) 

Experiment has been performed to study the effect of manufacturing process on the 

properties of a sintered-nickel porous (Jinwang Li, Zou, Cheng, Singh, & Akbarzadeh, 2010).  

The study shows effect of mechanical stress applied to the sample and the concentration of 

microcrystalline cellulose added to the sintered-nickel porous.  Biporous wick structure (Yeh, 

Chen, & Chen, 2009) is also developed and utilized in LHP.  In the study, the average pore 

diameters were 7 and 24μm.   

Effective thermal conductivity is very important issue because it determines the amount 

of heat leak from the evaporator to the compensation chamber.  Effective thermal conductivity of 
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porous structure       is calculated from the thermal conductivity of wick material, liquid and 

the porosity (Mo et al., 2006). 

 

Figure 16. Schematic for effective thermal conductivity(Chuang, 2003b)  

The effective thermal conductivity of the wick shown in previous figure can be calculated 

from the following formula 

     
       

              
 

where,    is the thermal conductivity of the liquid and       is the thermal conductivity 

of the wick and   is the porosity of the wick.  Numerous experiments have been performed to 

measure and control the effective thermal conductivity.  Jinwang Li et al. (2010) has calculated 

     for a nickel wick of 75% porosity as 3 W/m K and for the same nickel wick with  porosity 

of 56 %, the effective thermal conductivity was 6 W/m K (Mo et al., 2006). 

2.8.3 Vapor groove. Position and shape of vapor groove can influence the heat transfer 

coefficient in the evaporator (Cao & Faghri, 1994; Figus, Bray, Bories, & Prat, 1999; Zhao & 

Liao, 2000).  Vapor groove also has effect of the on the capillary and boiling limits of  a 

LHP(Yao W., 2004).  The analysis includes the number of grooves, groove width (from 0. 15 to 
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0. 65 mm) and the porous wick thickness (from 3 to 8 mm).  They have mentioned that boiling 

limit increases with the number of grooves and boiling limit is at a maximum for a fin/groove 

width ratio of 0.5.  Capillary limit increases with the fin width.  

 

Figure 17. Design of different vapor grooves (Altman, Mukminova, & Smirnov, 2002) 

Vapor channels are machined either at the inner surface of the evaporator container, or at 

the outer surface of the porous wick.  Sometimes transverse channels are also added to 

longitudinal ones.  Heat transfer coefficient increase for transversal micro grooves along with 

longitudinal grooves on wick (Platel, Fudym, Butto, & Briend, 1996).  The position and the 

dimensions of vapor grooves depend on feasibility and to the cost of the groove machining.   

2.8.4 Instrumentation. To determine the effects of different parameters, LHP is 

instrumented with different types of sensors.  Numerous techniques are implemented to realize 

the accurate response of the system.  

Heat flux applied by the heating element is obtained from the measurements of current, 

voltage or resistance.  To measure the temperature, thermocouples are used in different 

component of LHP.  Temperature is plotted against the heat flux to understand the effects of heat 

flux on different components of LHP.  The temperature profile in the condenser distinguishes 

condensation region from sub cooling region.  To correctly analyze the thermal profile in the 

condenser Bartuli et al. (2013) have installed twelve copper-constantan thermocouples OMEGA 

TT-T-30 along the condenser.   
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The most important parameter in the system is the pressure.  Few experiments were 

conducted to measure absolute pressureKu et al. (2001); (Lee et al., 2004; Ogushi, Yao, Xu, 

Masumoto, & Kawaji, 2003; Singh, Akbarzadeh, & Mochizuki, 2010) in LHP.   

Now researchers are more interested in visualization techniques.  Visualization of LHP 

will explain the physics behind the operation.  Neutron radiographic was used to visualize the 

liquid and vapor phase inside the LHP(Cimbala et al., 2004).  For visualization of flow clear 

tubes were used in vapor and liquid line and a transparent window was made in the 

compensation chamber (Wang & Nikanpour, 2007).  To visualize the phase changes in  the 

evaporator, a bore scope was utilized in the compensation chamber (d’Entremont & Ochterbeck, 

2008).  Infrared metrology was employed to find the temperature distribution along LHP(Ji Li et 

al., 2010).  Infrared visualization technique was also implemented  to track the flow in the vapor 

and liquid line in LHP (Launay, 2010).  

2.9 Start-up and Steady-state Operation 

LHPs have reliable start-up ability.  A minimum heat load is required to begin the flow in 

the system; where the minimum heat load requirement depends on the design and size of LHP.  

The startup process of LHP may fail if the minimum heat requirement is not fulfilled. 

It is difficult to predict the shape of the LHP operating curve.  However, the usual 

operating temperature versus the heat load plot shows U or flat shape.  Two operating conducting 

mode have been described by Ku (1999).  At low heat loads, condenser is only partially utilized 

for vapor condensation.  This mode is called a variable conductance mode (VCM).  The 

operating temperature is low in this mode.  As the heat load continues to increase, the condenser 

can no longer dissipate the excess energy.  This operating mode is called as fixed conductance 

mode (FCM) 
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Figure 18. LHP operating curves 

U-shaped curves have been observed by Y.F Maydanik (2004).  Flattened shapes have 

been usually observed for low-thermal conductivity wicks with low-pressure working fluids such 

as methanol, ethanol, or acetone  

The most difficult condition for LHP start-up is for liquid filled vapor channel during 

startup.  It was found that two-phase fluid existed in the vapor channel for the small superheat 

case (Cheung, Hoang, Ku, & Kaya, 1998).  Experiments were also performed to study low power 

start-up process with different orientations.  The authors concluded that the required superheat, 

maximum temperature at start-up, and time required for start-up strongly depends on loop 

orientation (Kaya & Ku, 1999).  Maidanik et al. (1995) have presented few possible scenarios of 

the inside the evaporator/compensation chamber prior to start-up.  Situation 4 presents the most 

difficult condition for LHP start-up.  Here the evaporator grooves are filled with liquid while the 

evaporator core contains vapor.  Liquid superheat is required to begin the nucleation in the 

grooves.   



25 

 

 

 

Figure 19. Four different situation for startup process (Maidanik et al., 1995) 

2.10 Transient State Operation in LHP 

LHP does not require pre-conditioning for starting like capillary pumped loop (CPL).  It 

can start directly by applying heat to the evaporator.  For this reason, LHP is also known as self-

starting two-phase heat transport device.  However, self-start does not necessarily imply a quick 

and immediate start.  Delayed start may damage the operating system.  It is very important to 

understand the start-up process and to highlight the parameters that influence its characteristics.  

During start-up, the temperatures in the vapor line increase.  The sharp temperature rise is due to 

the vapor generation.  Parameters that influence the startup process of loop heat pipe are 

mentioned below:  

 Amount of working fluid and orientation of loop 

 Characteristics of wick 

 Applied heat load  

 Heat sink temperature 
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 Working fluid 

Baumann, Cullimore, Yendler, and Buchan (1999) have also mentioned effects of non-

condensed gas (NCG) in LHP.  Amount of applied heat load is a critical issue.  If the heat load is 

too high, dry up can take in the wick 

Experiment result of Singh et al. (2007) and Ji Li et al. (2010) regarding startup are 

shown in figure 20 and 21 for low heat load.  Both the figures show high oscillation in 

temperature profile due to the instability of meniscus of the fluid in the wick.  

 

Figure 20. LHP startup test under  low heat load of 20 watt (Singh et al., 2007) 

 

Figure 21. LHP startup process for a 30 watt heat load (Ji Li et al., 2010). 
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2.11 Effect of Non-condensable Gases 

Non-condensable gas (NCG) is one of the most common causes for the heat pipe failure.  

NCG can occur during the fabrication as well as operational lifespan of the device.  The most 

common source of the generation of NCG inside the loop heat pipe is due to the impurities in 

fabrication and assembling process and dissolved gases inside the working fluid.  Another source 

of NCG is the incompatibility between the wick and working fluid.  The wick and container 

material used in the device should be chemically compatible with the working fluid at low as 

well as high temperatures.   

Normally, NCG is generated in the evaporation zone.  Accumulated gas inside the loop 

heat pipe can affect its performance.  NCG reduce the condensation surface area, which increases 

thermal resistance.  NCG also increase the pressure inside the system, which will increase the 

evaporation temperature.  Liquid absorbing area inside the wick is reduced due to NCG, which 

causes wick dry out.  Experimental study of NCG effects on the LHP operation has been 

conducted by using ammonia as the working fluid (Nikitkin, Bienert, & Goncharov, 1998).  

NCG increase the start-up time and the operating temperature.  

 

Figure 22. Oxidation of the container inside the compensation chamber (Singh et al., 2010) 
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The compensation chamber is the most convenient location for storing the NCG and it 

reduces loop performance.  However, LHP is more tolerable to NCG than traditional heat pipe 

(Nikitkin et al., 1998) . 

2.12 Effect of Gravity (Elevation and Tilt) 

The reason for choosing loop heat pipe in space program is the effectiveness of the 

system in all orientation.  Some experiments have been conducted to understand the effect of 

gravity by changing the elevation and tilt of LHP.  LHP elevation refers to position of evaporator 

with respect to condenser and tilt corresponds to the position of evaporator in reference to the 

compensation chamber.  Adverse elevation means the evaporator is above the condenser and if 

the tilt is adverse, it refers to evaporator above compensation chamber.  Tilt has effects on fluid 

distribution in compensation chamber and evaporator.  Experiment was performed to examine 

the performance of a LHP for positive and adverse tilts(Kaya & Ku, 1999).  The LHP operating 

temperatures at adverse tilts were much higher than positive tilts for low heat loads.  Miniature 

ammonia LHP can work under all test conditions except for adverse tilts (Chen, Groll, Mertz, 

Maydanik, & Vershinin, 2006). Though there are some effects of elevation and tilt, operational 

performance of LHP is excellent than other cooling system and can operate in almost any 

orientation.  

2.13 Heat Transfer Limitations of Loop Heat Pipes 

LHP has a number of heat transfer limitations.  These limitations can be different in 

magnitudes and characteristics due to different design of loop heat pipe.  For proper design LHP, 

it is necessary to understand these limitations.  

2.13.1 Viscous limitation. If the applied heat load is small, the operating temperature in 

the system becomes very low.  At low temperature, the viscous effects become greater than the 
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pressure gradients, which cause the fluid to circulate.  There is no flow or low flow in the system 

at this condition and the heat transport capability is limited.  This phenomenon is recognized in 

cryogenic start-up.   

2.13.2 Sonic limitation. The vapor velocity in the vapor channel may reach sonic values 

during the start-up or steady state operation.  Under this condition, the maximum mass flow rate 

can choke in the system.  

2.13.3 Capillary limitation. This depends on characteristic of primary wick and working 

fluid.  Both of them can influence the pumping capability to circulate the working fluid in the 

loop.  This limitation is also known as hydrodynamic limit.  If the total pressure drops along the 

system is larger than the capillary pressure developed in the wick structure, the wick dries out 

and operation of the LHP becomes unstable.  

2.13.4 Boiling limitation. For traditional heat pipes, heat travels all the way through the 

wick structure saturated with liquid and the liquid evaporates in the core area.  If the wall 

temperature becomes excessively high, boiling of the liquid can take place in the wick structure.  

The vapor bubbles generated inside the wick structure may block the liquid return paths and the 

wick can dry out.  In LHP, the generated vapor bubbles can be vented easily through the vapor 

channel.  
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CHAPTER 3  

Material and Methodology 

3.1 Experimental Setup 

A loop heat pipe has been designed and to perform the experiment.  One copper wick was 

fabricated for the loop in the lab and another stainless steel 316 wick was purchased from 

vendor.  Chapter 3 describes the detail procedures and techniques to analyze the characteristic of 

sintered wicks used in the thermal loop.  At First, the process for preparing the samples of wick 

is presented.  Then, the methodology to analyze these properties is discussed.  Construction 

procedures of experimental setup and different parameters applied in the experiment are also 

explained in detail.  Figure 23 shows the schematic of the loop heat pipe for the experiment.  

 

Figure 23. Schematic of loop heat pipe 

3.2 Major Components of Loop Heat Pipe 

The major components of loop heat pipe (LHP) shown in figure 24 are as follows: 

a. Compensation chamber 

b. Wick 

c. Vapor groove 
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d. Vapor line 

e. Liquid line 

f. Condenser 

g. Top and bottom aluminum plate  

h. Heater block 

i. Teflon block to insulate the heater from surrounding environment 

j. The charging system  

 

Figure 24. Experimental setup of loop heat pipe 

3.3 Manufacturing of Wick 

3.3.1 Powder material and particle size. A wick material has been developed from fine 

copper powder.  Fine powder was selected due to fulfill requirement of high capillary pressure.  

The copper powder was purchased from Alfa Aesar, MA, USA.  This powder was spherical in 
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shape with 10   diameter.  Scanning electron microscope (SEM) is utilized to confirm the size 

and shape of the particle.  

3.3.2 Sample preparation. The samples were prepared in stainless steel mold.  The mold 

used for preparing the sample has diameter of 25.4mm and 7mm depth. The mold is shown in 

figure 25. 

 

Figure 25. Mold used for preparing the sample 

A hydraulic press has been used for cold pressing.  After the powder is poured in the 

mold, the mold has been shaken for uniform distribution of the powder inside the mold.  Twelve 

metric ton hydraulic pressure was applied on the mold to prepare the desired sample.  This 

pressure has been kept for 30 minutes.  The diameter of sample is 25.4 mm and the thickness of 

sample is 3 mm. 

3.3.3 Sintering procedure. The samples were loaded in a tube furnace for sintering.  To 

avoid the oxidation of the samples, protective atmosphere was maintained during sintering.  Pure 

nitrogen gas was allowed to flow for 1.5 hours to purge the furnace tube.  During The purging 

process, oxygen was diffused out of the pores of the sample.  After finishing the nitrogen, 

purging forming gas was used as the protective atmosphere.  The composition of forming gas 
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used is 4% hydrogen and 96% nitrogen.  The flow of forming gas flow started with the start of 

sintering process.   

 

Figure 26.Time-temperature plot of the sintering process. 

Figure 26 shows a time-temperature plot of the sintering process.  The heating rate of 600 

°C/h was maintained to reach the peak sintering temperature.  The peak sintering temperature 

was 450 °C.  The furnace was held at the peak sintering temperature for 30 minutes.  Once 

sintering was finished, the sinter was cooled inside the furnace.  After reaching the temperature 

bellow 200 °C, the forming gas flow was stopped and only pure nitrogen flow was started.  

Nitrogen flow was stopped once the sinter reached room temperature.   

 

Figure 27. Sintered Cu wick  
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The particles bonded together by sintering.  Thus, the wick becomes stronger.  For proper 

thermo physical property, samples should be sintered at 450 °C or above. The porosity of sample 

is calculated from the equation given below 

Porosity (%) =1-
       

         
 

Here         is the density of the sample and           is the density of the pure material.  

Density of the porous sample was calculated by dividing the mass of the sample by the volume 

of the sample.  A digital balance measured the mass of the sample.  The uncertainty in the 

measurement was 1%.  

3.4 Construction of Main Structure of LHP 

One of the main objectives of this experiment is to visualize the operating process in 

LHP.  Most of the LHP are made from either copper or stainless steel or from other metallic 

component.  Analytical models are developed without any physical observation of the processes 

inside the loop.  These models cannot provide any comprehensive picture of the system.  It is 

very important to investigate the behavior of the fluid inside the evaporator and in condenser 

where the phase changes take place.  To visualize the processes, main components of LHP is 

fabricated inside an acrylic plastic block.  The schematic of plastic mold is shown in figure. 28.  

 

Figure 28. Schematic diagram of the block 
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The dimension of the block (LxWxH) is 143x80x50 mm.  The diameter of the 

compensation chamber is 22.86 mm and the height of the compensation chamber is 38.5 mm.  

The evaporator section, which holds the wick, is 26.67 mm diameter and the height of the 

chamber is 12.5 mm.  The volume of the compensation chamber was made equal to the total 

internal volume of the other component of loop to accommodate most of the displaced liquid 

from the loop.  

 

Figure 29. Top view of the main structure of LHP 

A condenser with total length of 50 mm and 50 mm width and height of 5 mm depth is 

formed into the acrylic mold.  The condenser was used to reject heat transferred from the 

evaporator to the ambient air.  The condenser was attached with a Thermo Eclectic Cooler 

(TEC).  The TEC has two faces i. e. hot and cold faces.  The cold face is connected to the 

condenser and the hot faced is connected to a heat sink with electrical fan.  Detail description of 

the TEC and heat sink is given later.  The rectangular channel of vapor is 5mm width, 5 mm 

depth and 70 mm long.  This channel is connected to a 3mm diameter and 40 mm length line to 

the condenser and the liquid line is a rectangular channel attached to the compensation chamber.  

The dimension of the liquid channel is 5 mm width, 5 mm depth and 30mm length.  The two-
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aluminum plate covers the top and bottom of the mold.  The thicknesses of the plates are 6 mm.  

The length and width of the both the plates are 142.86 mm and 80 mm respectively.  On the 

bottom plate there is a hole of 38.1 mm (1.5 inch) diameter for the heater.  Figure 30 shows the 

bottom view of actual mold machined from acrylic plastic. 

 

Figure 30. Bottom view of the main structure of LHP 

3.5 Vapor Groove 

Vapor groove is machined from aluminum, which has high heat conductivity to conduct 

the heat from heat source to the wick.  To remove the vapor produced in the evaporator zone, 

vapor removal channels is formed by machining 6 very small grooves with rectangular cross-

section of 4 mm depth and 1 mm width.  The bottom plate of vapor groove plate is 2 mm thick.   

 

Figure 31. Drawing of vapor groove 
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 To accumulate and remove the vapor, some space is kept (vapor collection zone) in front 

of vapor groove.  Figure 32 shows the vapor removal channel used in the evaporator.  The vapor 

removal channel has two main functions.  The fins work as heat conductor between heat source 

and the wick to generate liquid–vapor interface present in the pores of the wick and the channels 

assist to remove the vapor to the vapor line. 

 

Figure 32. Aluminum vapor groove 

 

Figure 33. Schematic of vapor groove and wick assembly in LHP 

3.6 Working Fluid 

Water is used as working fluid in this experiment.  Water is used as working fluid is due 

to high surface tension and good compatibility with wick material.  High surface tension will 

provide more capillary pressure.  Thermo-physical properties of water are shown in table 1. 
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Table 1 

Thermo-physical properties of water  

Thermo-physical Property Water 

Boiling point ( ) @ 1 atm 100 

Liquid density (     ) 1000 

Latent heat of vaporization (kJ/kg) 2270 

Specific heat (kJ/kg-K) 4.187 

Surface tension (N/m) 0.073 

Thermal conductivity (W/m-K) 0.596 

Viscosity (kg/m-s) 0.001 

3.7 Measuring Instruments 

Temperature measurements were performed with six K type thermocouples.  

Thermocouples are connected to the different locations of LHP to understand the thermal 

behavior of the loop.  Data collection and processing was performed with the help of an IOtech 

6000 series data acquisition system.  The data acquisition system is connected to a computer.  

Encore software was used to communicate between the data acquisition system and computer.  

The experimental setup also consist a high-speed camera and back light illumination unit.  

Operating process of LHP was recorded through use of a high-speed camera attached to a zoom 

lens.  High-speed camera (Photron USA, Inc., San Diego) was used to capture the images and 

video of fluid at the different components of LHP.  Image-Pro Plus 5.0 software was used to 

analyze the images.  Figure 34 shows the location of thermocouples and table 3.2 presents the 

specific instruments used for each measured variable.  



39 

 

 

 

Figure 34.  Location of thermocouples in loop heat pipe 

Table 2 

Measuring instruments 

Variable Instrument 

Temperature K-type thermocouple 

Pressure PX 303A Pressure transducers 

Visualization High speed camera 

3.8 Data Acquisition System  

An IOtech 6000 series DAQ (Measurement Computing Corporation, MA, USA) is used 

to collect the measured data.  The data was collected at the frequencies between 1-100 kHz.  The 

data acquisition system is connected to a computer.  The IOtech Encore software installed at the 

computer analyzes the data collected.  Figure 35 shows the IOtech DAQ system used for the data 

acquisition for all the measured data.  
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Figure 35.  IOtech 6000 data acquisition system 

3.9 Heat Flux Measurement 

Power to the test specimen provided by the Agilent 6030A voltage supply (Agilent 

Technologies, 5301 Stevens Creek Blvd, CA 95051, USA).  At each voltage, the corresponding 

current is recorded and the power output is determined.  Figure 36 shows the front and rear view 

of the Agilent 6030A programmable power supply.   

 

Figure 36. Agilent 6030A programmable power supply 

Heat losses are minimized by the careful construction considerations of the experiments.  

To minimize the heat loss from the heater block to the surrounding, at first a ceramic block and 
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late a PTFF Teflon block are used for insulation.  A K-type thermocouple is used to measure the 

temperature of the surface o the heater block.  

3.10 Heater Block 

The heater block is made of copper material due to high thermal conductive property of 

the copper.  The diameter of cylinder heater block is 31.75 mm (1.25 inch) and the length is 38.1 

mm (1.5 inch).  To accommodate the heater cartridge, a 6.35 mm (0.25 inch) of hole is in the 

heater block.  Schematic of the heater block is shown in figure. 37. 

 

                               (a)                                                   (b) 

Figure 37.  Schematic of (a) heater block (b) cross section of insulation and heater block 

assembly 

A high-density 150-watt cartridge heater is inserted in the heater block.  A programmable 

power supply is connected to the cartridge heater.  When heating a block with high density 

heater cartridge, fit is an important issue for performance and life expectancy of the heater.  Fit is 

the clearance between the diameter of the hole and diameter of the cartridge heater.  Figure 37 

shows the picture of the heater block and the cross sectional view of insulator heater blocks 

assembly.  Fit is the difference between the diameter of drill hole and the diameter of the 

cartridge heater.  The recommended fit for the heater is 0.010 inch.   
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Figure 38. Heater of 150 watt used in the heater block 

To minimize the heat loss from the heater to the surrounding, the test specimen is 

insulated using low thermal conductive machinable ceramic material.  Figure 39 shows the first 

ceramic insulator used in the experiment.  

 

Figure 39. Ceramic block used for insulation of the heater block 

At the beginning of the experiment, ceramic block shown in figure 39 was utilized for 

insulation of the heater block.  Heat applied to the heater block is transferred to the evaporator.  

However, heat loss was found from the ceramic block to the surrounding environment.  To 

resolve the problem, another insulating block of Teflon® PTFE resins has been used in the 
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experiment.  This material is chemical resistance and can perform in high temperature (up to 

500 ).  The heat loss from the heater block has been reduced after utilizing PTFF.  The Teflon 

block is shown in figure 40. 

 

Figure 40. PTFF Teflon block for heater block insulation 

Two high temperature gaskets were used for insulation and to prevent the any leakage 

from LHP to the surrounding environment.  If the total system is insulated, the heat applied to 

the evaporator will be transferred to the condenser.  The heat input in the evaporator and the heat 

rejection in the condenser will be close.  Packing was also used around the circumference of the 

wick to prevent any internal leaks of vapor to the compensation chamber and to minimize heat 

conduction from the evaporator sidewalls to the wick structure.  Surface contact between the 

wick and vapor channel were checked to ensure proper contact.  

3.11 Condenser 

Normally the condensation process is performed by liquid coolant circulation or by air.  

The condensation process is a challenge for the system.  For condensation, a rectangular chamber 

of 50 mm length and 50 mm width and 5 mm depth was formed on the top of the acrylic mold 

but later the depth has been reduced to 1 mm.  Schematic of the top plate is shown in figure 41.  
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Figure 41. Schematic of top plate of LHP 

The condenser is utilized to condense the incoming vapor into liquid phase.  A Thermo 

Electric Cooler (TEC) achieves the condensation process.  The TEC is place in the aluminum 

plate.  TEC is very small in shape and needs only electric supply to operate.  The cooling can be 

controlled more accurately than by conventional air or liquid cooling systems.  Thermoelectric 

cooling uses the Peltier effect between the junctions of two different types of materials.  A 

Peltier cooler transfers heat from one side of the device to the other, with consumption of 

electrical energy.  Cooling can be controlled very accurately because of the electric controlling 

of the cooling system Figure 42 shows a TEC of LxWxH of 50x50x3.2 mm respectively.  

 

Figure 42. Schematic of TEC 
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Table 3 

The specification of TEC 

Part no.      (amp)      (watt)      (volt)       ( )      ( ) 

19911-5L31-

15CQ 

15.5 225 24 64 125 

 

The cooling capacity can be controlled by a DC power supply.  To observe the cooling 

effect in the condenser, power supply of TEC was varied as per manufacturer specification, 

which is shown in Figure 43.

 

Figure 43. Performance of TEC at different load conditions 

The cold face of the TEC will provide the cooling effect and the heat will be move from 

the bottom face of TEC to the top face.  Contact between the plate and the TEC is ensured by 

using a high conductive thermal silicon paste.  The heat from the hot face of TEC is removed by 

a heat sink of Aluminum fin.  On the top of the heat sink, a DC electric fan is used to remove the 

heat from the heat sink to environment by convection.  Figure 44 shows the heat sink used on top 

plate.  
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Figure 44. Heat sink used on the top of TEC 

3.12 Non Condensable gases 

Non-condensable gases can be produced during the fabrication and operation process of 

loop heat pipe.  Mostly non-condensable gases (NCG) are generated from the impurities through 

fabrication and machining process.  Another source of NCG is dissolved gases in the working 

fluid.  If the working liquid and loop wick material or container is not compatible, then NCG can 

be generated inside the LHP.   

NCG reduce the surface area for condensation, increase the thermal resistance inside the 

loop, and loop saturation temperature.  NCG also increase pressure drop inside the system.  NCG 

accumulate over the surface area of wick and hinders the normal supply of liquid into the pores 

of wick which may causes dry out of the wick.  If the generation of NCG is too high, it may 

completely stop the operation of LHP.   

Cleaning is essential for minimizing NCG.  Careful procedures were followed to avoid 

machining leftovers.  The cleaning was done by using acetic acid (CH3COOH).  De-ionized 

water is used to clean the surfaces.  
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A special charging system has been designed for charging the liquid and the loop.  A 

three-way valve is attached upon the top plate of LHP.  One port of three-way valve is connected 

to a vacuum pump and the other port is connected to the liquid charging cylinder.  All the ports 

are connected to common port of compensation chamber of the loop.   

 

Figure 45. Vacuum pump for charging system 

Before charging the liquid, the port connected to the vacuum pump is open end  to 

vacuum the loop.  The vacuum pressure create inside the loop is of 8 psig.  A pressure gauge is 

connected to the third port of three-way valve to read the pressure inside the loop during vacuum 

operation.  The suction side of the vacuum pump is connected to the vacuum port of the charging 

system and the delivery port of the vacuum pump is open to the atmosphere.  Figure 45 shows 

the vacuum pump.   

 To avoid NCG formation cooled deionizer water used to remove vapor bubble.  The 

amount of water charged inside the loop heat pipe is 50% or higher of the volume of 

compensation chamber.  Figure 46 shows the three-way valve used in charging process used in 

the loop. 
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Figure 46. Schematic of charging system of LHP 

3.13 Heat Transfer Analysis 

Heat transfer analysis has to be done to understand the operational effectiveness of the 

LHP.  Heat flux is applied uniformly to the evaporator.  Part of the applied heat is utilized for 

evaporation of the liquid in the wick and the rest of the applied heat goes to the compensation 

chamber and this portion of heat also known as heat loss from the system.  So it can be written: 

                          

Heat loss takes place from the metallic structure of the LHP and in compensation 

chamber.  However, the main structure of the loop is made from acrylic plastic and special 

attention is given for insulation of heater block.  The main heat loss takes place in compensation 

chamber.  It is difficult to minimize the heat loss to compensation chamber.  The conductivity of 

the wick can affect the heat loss to the compensation chamber.  Stainless steel wick has low 

thermal conductivity.  It ensures minimum heat loss to compensation chamber. 

3.14 Analysis of Pressure Balance  

The total pressure drop of the loop is the sum of the pressure drops in each component of 

the loop and can be written as: 
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Maximum operating pressure is obtained from the evaporating menisci formed at the pore 

of the wick.  Capillary limit of the loop depends on the wick design and the pressure developed 

can be expressed by Young-Laplace equation as: 

         
      

 
 

Where σ is the surface tension of working fluid, θ is the contact angle between the liquid and 

solid, and r is the pore radius of the wick. 

For steady-state operating condition, the capillary pressure gain in the wick must be 

balanced by the pressure loss in each component.  The pressure drops in the system can be 

defined in three categories. Those are  

a. The pressure drop in single phase (liquid and vapor line) 

b. The pressure drop in two phase (in condenser) 

c. The pressure drop in wick itself  

Already mentioned single phase takes place in the grooves just below the wick, in the 

vapor and liquid transport lines.  The single-phase pressure drop can be calculated from Darcy-

Weisbach equation, which is  

    (
 

  
)  

   

 
  

Here f is a dimensionless number, which is known as Darcy friction factor and is depend 

upon Reynolds number and roughness of the tube.  For laminar flow in smooth circular pipe,   

can be calculated from the equation  

  Re=64 

For turbulent flow, the value of friction factor can be calculated from another solution proposed 

by H. Blasius and the equation is as follows 



50 

 

 

               

The Reynolds number can be calculated by the following equation 

Re=
   

 
 

Where   is density of the liquid,   is the velocity of the liquid and   is the effective length of the 

system and   is the viscosity of the liquid. 

Flow in the vapor grooves is also laminar.  The Reynolds number in the vapor groove can 

be calculated by the hydraulic diameter of the groove.  The hydraulic diameter can be calculated 

as follows 

   
               

                 
 

For this loop heat pipe               and              

Now Darcy friction factor can be estimated from the proposed equation   Re=57.  

Reynolds number can be calculated as mentioned above.  Single-phase flow is assumed to 

prevail along the grooves, in the vapor and liquid transport lines and through the porous wick.  

The single-phase viscous pressure drop in the porous wick can be estimated from the Darcy-

Weisbach equation, 

   
     
      

 

m= mass flow rate 

   Viscosity of liquid 

  = length of the wick 

  = density of the liquid 

  = area of the wick 

  = permeability of the wick 
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The pore diameter in wick is one of the important factors to provide capillary pressure in 

LHP.  Higher capillary pumping pressure can be achieved by small pore diameter.  However, it 

increases the pressure drop in the wick.  The Darcy’s law for porous media as mentioned above 

can express the pressure drop inside the wick. 

It is difficult to define the length of two phases in the condenser.  The vapor enters the 

condenser in the saturated state and the vapor turns into liquid phase.  The vapor cannot 

immediately change from vapor phase to liquid phase.  There is a time lag in between these two 

phases.  Two phase exist in the condenser.  For the ease of the calculation, the calculation of the 

pressure drop of the condenser can be done by assuming only single phase i.e. either the liquid 

phase or vapor phase pressure drop.  The highest-pressure drop of the two can be assumed as the 

pressure drop the condenser.  The worst possible scenario can calculate maximum pressure drop 

inside the condenser.  
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CHAPTER 4  

Results 

4.1 SEM Images of Wick Structure 

Scanning electron microscope (SEM) was used to observe the microstructure of both the 

copper and stainless steel wicks.  Figure 47 shows the microstructure of stainless steel wick at 

100X magnification.  It is evident from the figure; the particles are not spherical for stainless 

steel wick.   

 

Figure 47. SEM images of stainless steel at 100X magnification 

Figure 48 shows the SEM images of copper power and sintered copper wick  

 

                                          (a)                                                         (b) 

Figure 48. SEM images of (a) copper powder at 500 X magnification (b) microstructure of 

sintered copper wick  
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From figure 48, it is obvious that the shape of the particle is spherical and the average 

diameter is approximate 10  .  The second image is the microstructure of the sintered wick of 

copper.  

4.2 Porosity: 

Porosity is defined as the ratio of the volume of the voids to the total volume.  After 

preparing the samples, a slide caliper measured the dimensions of the samples and a digital 

balance measured the mass of the sample.  These measurements are used to calculate the 

porosity.  The porosity of sample is calculated from the equation given below 

Porosity (%) =1-
       

         
 

Here         is the density of the sample and           is the density of the pure material.  

Density of the porous sample was calculated by dividing the mass of the sample by the volume 

of the sample.  The porosity of copper wick is 30% and porosity of stainless steel wick is 40%. 

The uncertainty in the measurement of porosity was 1%.   

4.3 Thermal Analysis of LHP 

The temperature was measured at different points of LHP by using K-Type 

thermocouples shown in table 1.  Six thermocouples have been used to read the temperature 

profile at the different component of the system.  These thermocouples are directly connected to 

IOtech 6000 series DAQ data acquisition system.  The data acquisition system collects the data 

after every 0. 5 sec and display the data on the computer connected to acquisition system.  

Encore software that communicates between the DAQ and the computer CPU.  Error in 

temperature measurement by K type thermocouples is ±0.1 °C.  Power to the test specimen is 

provided by the Agilent 6030A programmable voltage supply.  Uncertainty in the power 

measurement is ±0.2 percentage. 
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Table 4 

Position of thermocouples 

Serial Number Location of thermocouple DAQ channel number 

1 Condenser CH 5 

2 Vapor line CH 8 

3 Compensation Chamber CH 9 

4 Evaporator CH 10 

5 Below TEC CH 11 

6 Outside of heater block insulator CH 12 

4.3.1 Startup process and steady state condition. Figure 49 shows the startup process 

for 20-watt heat load.  At low heat input, heat leakage to the compensation chamber and to the 

environment is large.  It takes several minutes to start up the system due to low power input.  The 

generation of the vapor bubble is very small in number at low heat load.  

 

Figure 49. LHP startup process with 20-watt heating power 
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It can be noticed from the figure 49, there is a sudden high temperature oscillation at the 

evaporator after approximately25 minutes when the evaporator temperature reaches almost 85 .  

The range of this oscillation is about 30   (65 to 95 ).  The reason for chaotic oscillation is the 

irregular vapor generation.  Chaotic oscillations of temperature can be observed also in 

compensation chamber.  Inconsistent return of condensed liquid to the compensation chamber 

may cause the fluctuation in temperature.   

Figure 50 shows the startup process for 30-watt heat input power.  The heat load is higher 

than previous one.  Still the heat load is relatively low.  The oscillation of temperature can be 

observed in evaporator, compensation chamber and vapor line.   

 

Figure 50. LHP startup process with 30-watt heating power 

During the startup process, the vapor line is flooded with water.  Vapor generation and 

collapsing of bubble can cause the oscillation until the vapor line is free of liquid.  The 

temperature oscillation for compensation chamber starts at about 85 .  The range of oscillation 
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is about 5   in compensation chamber.  The chaotic behavior in compensation chamber 

continues until the continuous return from the condenser.  Temperatures of both the TEC and the 

Condenser are below 20  during the operation. 

Start of the loop heat pipe at low power input have been observed by Ji Li et al. (2010).  

Singh et al. (2007) have mentioned two start-up processes.  Ji Li et al. (2010) have mentioned the 

possible reason for the chaotic behavior is alternative vaporization and flooding in the porous 

wick.  This causes the instability of meniscus form in the wick.  Existence of two-phase can also 

create the oscillation.  

Startup process is more stable for 50-watt heat load than the 30-watt startup process.  The 

evaporator temperature rises very quickly and bubble generation becomes more faster than two 

previous cases 

 

Figure 51. LHP startup process with 50-watt heating power 
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The temperature of the compensation chamber gets the stability at 85 .  A decrease in 

the compensation chamber temperature was observed lather.  The temperature dropped from 

85  to 78    the temperature dropped due to high amount of condensate coming into the 

compensation chamber.  The temperature of compensation chamber became stable again after 

the drop. 

The effects of adding working fluid in the compensation chamber can be found in figure 

52.  The heat load in the evaporator is 60 watt.  The evaporator, compensation chamber and 

vapor outlet temperature ascend very quickly.  Liquid is added to the compensation chamber 

through charging system after compensation chamber reaches 80 .  The effect of adding new 

liquid  can be noticed by large temperature drop of the compensation chamber.  The temperature 

drops to approximate 52 .  The temperature of compensation chamber became stable later.  

There is some spike in the condenser temperature profile.  Collapse of vapor bubble in the 

condenser may cause the spike in temperature.  

 

Figure 52. LHP startup process with 60-watt heating power 
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Figure 53 presents the temperature profile for the startup of 90 watt.  Most stable 

temperature profile was observed for 90-watt heat load.  High oscillation of temperature can be 

seen at the beginning of evaporation.  Though the vapor outlet temperature increased, the other 

temperature profiles of LHP demonstrated the steady state behavior.  LHP starts very quickly for 

the higher heat load.  It can be shown that stable operation mode can be accomplished at 

relatively high heat load with negligible fluctuations in the temperature curves.  There is a slight 

increase both in the temperature of the TEC and condenser.  Ji Li et al. (2010) have also 

mentioned similar temperature profile for loop heat pipe at 300 watt.  

 

Figure 53. LHP startup process with 90-watt heating power 

Higher power input of 100 watt was applied to evaporator.  The response of the system 

can be viewed at figure 54.  The evaporator temperature keeps rising and at approximately 32 

minutes the temperature shoot to a higher value.  The vapor line temperature shows the same 

trend and keeps climbing 
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Figure 54. LHP startup process at heat load of 100 watt. 

The compensation chamber remains almost stable.  However, the condenser temperature 

increases at a moderate rate after 16 minutes.  

Step load is applied to the system to see the system behavior.  Heat load was applied after 

a certain time interval and the system response was observed with every change in heat load. 

Figure 55 illustrate the response of the system at different time interval at wide range of power 

input in the evaporator.  Comparatively low power input of 20 watt was applied to the system at 

the beginning.  The power input was gradually increased to 100 watt.  The temperature rise was 

slow at the beginning for the evaporator temperature.  The temperatures rise quickly with the 

increase of heat input.  The vapor outlet temperature kept rising with the heat load. Condenser 

and TEC temperatures were almost steady until a certain period.  High level of oscillation was 

found in the condenser at 100 watt. 
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Figure 55. Effects of gradual increase in heat load 

4.3.2. Thermal resistance. One of the important parameter for determining the 

performance of a loop heat pipe is the thermal resistance.  Total thermal resistance can be 

defined as   

    
       

 
 

where    is the temperature at the evaporator,    is the temperature at the condenser and 

Q is the applied load at the evaporator.  The thermal resistance provides the idea of resistance of 

the system to heat flow.  The thermal resistance should be low for the efficient system.  The total 

thermal resistance of the LHP at different load is shown in figure 56.  The thermal resistance is 

high at low heat load but the resistance decreases with higher heat load.  Heat leakage to the 

compensation chamber is high at the low heat load.  Most of the applied load is lost to the heat 

leakage to compensation chamber and to the environment.   The system starts up very quickly at 
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higher heat load due to low thermal resistance.  Effects of thermal resistance was also observed 

by Singh et al. (2007).  They have demonstrated that total thermal resistance decreases with heat 

load.   

 

Figure 56. Total thermal resistance vs. heat load. 

Evaporator is the most significant component of the LHP and can determine the overall 

performance of the device.  One of the important factors for determining system performance is 

evaporator thermal resistance.  Evaporator thermal resistance is the resistance encountered at the 

evaporator.  It is preferred thermal resistance decreases with heat load.  It is evident from the 

figure 57, evaporator thermal resistance decrease with heat load.  The evaporator thermal 

resistance is low when the load is 60 watt to 100 watt.  This can be also observed at the 

temperature response graphs discussed earlier.  This range is the efficient region where the 

system is stable.  The resistance is lower 0.2     at the heat load of 100 watt.  The result of 

evaporator thermal resistance can be also compared to the Singh et al. (2007) who have also 

explained the similar characteristic for their system. 
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Figure 57. Evaporator thermal resistance vs. heat load 

4.3.3 Heat transfer coefficient. The designed LHP is capable of cooling efficiently high 

heat fluxes without any concern in the performance.  The efficiency of any heat exchange system 

can be determined by the heat transfer coefficient.  For a competent system, the value of heat 

transfer coefficient should be high.  The heat transfer coefficient can be calculated as follows 

  
 

         
 

where Q is the applied load on the evaporator,    active heated area of the evaporator,     

is the temperature of the evaporator and     is the temperature of the vapor outlet.  Figure 58 

illustrate  heat transfer coefficient at different heat loads.  Maximum heat transfer coefficient in 

the evaporator is 14        for 100 watt.  The plot clearly indicates that high values of the 

heat transfer coefficient can be achieved at relatively high heat loads.  The heat transfer 

coefficient should be higher and the thermal resistance should be lower for high heat loads.  The 

minimum value of heat transfer coefficient is 1.08        for 20 watt.  Yury F Maydanik et 

al. (2005) have shown the same trend in the heat transfer coefficient at different heat loads.  They 
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have shown that heat transfer coefficient increases for working fluid water with the increase in 

heat load.   

 

Figure 58. Evaporator heat transfer coefficient vs. heat load 

4.3.4 Transient behavior of LHP. Condenser is one of the key components of LHP.  

Heat transfer efficiency depends upon the performance of condenser.  In the experiment, TEC 

has been used for condensation process.  The performance of the condenser should be stable for 

all heat loads.  It is expected that condenser temperature should be low even at the high heat load 

applied to the system.  The temperature of the condenser at different power input is shown in 

figure 59.  The figure demonstrates that condenser temperature increases with different heat 

power input.  For the high heat load of 80 to 90 watt, the condenser temperature at the end of the 

operation is maximum 31 to 32 .  At high heat load, high generation of vapor increases 

condenser temperature.  The maximum temperature of the condenser is within 35  , which 

indicate reasonable performance of LHP. 
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Figure 59. Condenser temperature vs. time at different heat load 

Figure 60 shows condenser maximum temperature at every load condition during the 

operation after the system gets steady state condition.  The temperature kept rising with the rise 

of the power input.  The temperature curve of the condenser becomes steady at around 32  for 

the heat load of 80 to 100 watt. 

 

Figure 60. Condenser temperature at different heat load 
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Evaporator contains the wick which separate the two phase of the fluid.  The evaporator 

dictates the startup process and the steady state condition.  Figure 61 illustrates the temperature 

profile of the evaporator at different heat loads during the operation period.  High oscillation of 

the temperature can be seen at low heat load of 20 watt.  The rate of temperature rise increases 

with the rise in power input.  It takes longer time to start the vapor generation for the low heat 

input of 20 watt.  The system reaches the vapor generation temperature very quickly for the high 

heat load.  The start of vapor generation is very quick and then it reaches the steady state 

temperature of approximate 100  for the heat load of 90 and 100 watt.  The temperature 

oscillation can be found very rapidly due to faster vapor generation for high heat load.  A 

temperature jump can be observed for 100 watt but for the other cases the system gets steady 

with the progress of time.  The slope of the evaporator temperature curve increases with the 

increase of heating load  

 

Figure 61. Evaporator temperature at different heat loads 
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4.4 Visualization of LHP 

Jun and Woei (2011) have explained the starting process of LHP into four stages.  The 

generated vapor-bubble drives out the liquid out of groove and vapor at the beginning of the 

startup.  The meniscus is not stable and cause temperature oscillation.  Startup process can be 

observed in figure 62.  The vapor front moves forward and drive the liquid out of vapor line  

At the second stage, vapor grooves are free of liquid.  The vapor drives the vapor line 

toward the condenser.  During this stage, still there is some temperature oscillations but moderate 

than the previous one.  

 

Figure 62. Advancement of vapor in the vapor line during startup 

During the stage three, there is no liquid in the vapor line.  The vapor generated in the 

evaporator directly comes to the condenser.  As soon as the vapor comes to the condenser, the 

heat exchange takes place and the vapor turns into liquid.  After the condenser is filled up with 

the liquid, vapor bubbles creates a continuous pressure waves in the condenser due to the two-

phase instabilities.  Bubble forms inside the condenser are shown in figure 63.  The rate of 

bubble formation is increased with heat load. 
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Figure 63. Two phase mixture in the condenser 

In the stage 4, the condensed liquid returns into the compensation chamber.  At the 

beginning, the rate of return is inconsistent but after some periods, the flow becomes consistent.  

Heat leaks from the evaporator to the compensation chamber and two-phase fluid exists in the 

chamber.  Bubble form inside the compensation chamber along with wick and on the surfaces of 

the chamber with the rise of temperature.  The cold liquid from condenser balances the heat 

leakage to the compensation chamber.  The formation of bubble inside the evaporator is shown 

in figure 64.  Bubble formation in the compensation chamber increases with increase in heat 

load. 

 

Figure 64. Formation of bubble in compensation chamber 

Vapor bubble 

Bubble 
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CHAPTER 5  

Conclusion and Future Research 

An experiment has been conducted on loop heat pipe during the present study.  Result of 

the experiment includes the development and evaluation of the performance of LHP at different 

heat load condition.  Numerous tests were performed to study the transient operation of LHP.  

The current technique provides the opportunity to observe the fluid behavior in the loop.  Images 

taken by the high-speed camera illustrate the startup process as well as behavior of fluid in 

different component.  Understanding of these phenomena will help to improve the efficiency of 

the loop.  The specific goals have been accomplished mentioned in chapter 1.  The outcome of 

the experiment can be concluded as follows 

 A LHP has been designed and developed with disc shape wick.  The main structure of 

the LHP is constructed from the acrylic plastic and the working fluid is water.   

 LHP was able to handle 100-watt heat load with the total thermal resistance of 0.78 

    and heat transfer coefficient of 14.114     .  The most stable condition was 

observed for 90-watt heat load.  Total thermal resistance for this load is 0.844    and 

heat transfer coefficient is 8.9      .   

 Temperature oscillation was observed in the loop heat pipe during startup and at low 

heat load.  Chaotic behavior of the temperature has been noticed for 20 and 30 watt.  The 

reason for the huge oscillation is instability of the meniscus.  

 A high-speed camera was used to visualize the operational behavior of the LHP.  Four 

main stages of the startup process have been analyzed with the help of visualization 

process.  The reasons for temperature oscillation in the evaporator and in the condenser 

were confirmed through the visualization process.  Images taken by the high-speed 
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camera verify heat leakage to the compensation chamber, existence of the two-phase 

flow in the condenser and development of bubble in the compensation chamber at the 

high heat load.   

 The manufactured LHP can operate satisfactorily at relatively high heat load.  The 

system is compact and can be used for the cooling of electronic devices.   

Though the present study provides an insight into the operational characteristic of LHP, 

future research needs to be done for improvement in efficiency.  Recommendation for the future 

research is sighted below 

 Measurement of pressure at the different components of LHP will give insight into 

pressure drop along the system.  

 Decrease in the working temperature of the system is possible by using various working 

fluids.  Working fluid like ammonia, ethanol can be used for low operating temperature.   

 Measurement of the flow rate  and vapor quality  

 Investigation of two-phase instability in condenser can improve the condensation process.   

 Development of a CFD code will help to understand the transient model of LHP more 

effectively. 
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