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Abstract 

Increased swine production in North Carolina has resulted in higher waste production. 

Continuous application of swine wastewater from lagoons to agricultural land can pose surface 

and ground water pollution. Constructed wetland (CW) treatment is an alternate to the lagoon 

spray field system that reduces the nutrients concentration through physical, chemical and 

biological mechanisms. One of the biological processes in the CW is enzymatic activity which 

plays a major role in releasing nutrients from organic substances.  

The objectives of this research were to investigate the activity of soil enzymes at different depths 

of CW treated with swine wastewater and to assess the relationship between the enzyme activity 

and nutrient concentration. One continuous marsh (CM) and one marsh-pond-marsh (MPM) 

wetland cells were studied, which were in operation for the last ten years treating swine 

wastewater.  

The activities of dehydrogenase, urease, phosphatase, arylsulfatase, and β-glucosidase were 

significantly higher in the soil surface layer (0-3 cm) than lower depths (6-12 cm). Enzyme 

activities were higher in marsh soils of CM than pond soils of MPM. There was no significant 

difference in enzyme activity between inlet and outlet of CM and MPM. No significant 

relationship was found between the enzyme activity and nutrient concentration. Urease, 

phosphatase and arylsulfatase activity were correlated to soil C and N, whereas, β-glucosidase 

activity was correlated to soil C. The results suggest that lower enzyme activity is required for 

these wetlands to achieve high nutrient removal efficiency. 

Keywords: Enzyme activity, Swine wastewater, Constructed wetlands. 
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CHAPTER 1 

Introduction 

1.1 Overview 

  United States of America is among the largest producers, consumers and exporters of 

pork products of the world. The number and size of concentrated animal operations in the USA 

makes the treatment of manure generated by these operations a challenge. This is particularly 

true in North Carolina, which ranks 2
nd

 in the entire nation in swine industry, where the disposal 

of animal manure impacts water quality (Mallin, 2000). According to the 2002 National 

Agricultural Statistics, 16% of all USA hogs are produced by North Carolina. The number of 

hogs in North Carolina has increased from 2.8 million in 1990 to more than 9 million in 1996 

(USDA-NASS, 2004). The growth in the swine industry has been leveled off since 1997 because 

of governmental regulations and laws. There are now more than 3,000 swine units in North 

Carolina and the majority are located in Duplin and Sampson counties. Although, decreasing a 

number of swine operations, the number of swine units has increased to ten million. The 

conversion from small independent swine farms to large swine industrial operations has create a 

need for innovative waste management systems. In general, the lack of effective treatments and 

disposal systems of swine waste effluent (SWE) is a current issue. Currently, main hog 

operations flush SWE into an anaerobic lagoon, and lagoon wastewater is broadcasted over the 

land surface. Currently approximately 4,000 active anaerobic lagoons and 1140 inactive lagoons 

exist. Although these methods meet the federal and state standards, wastewater application on 

land has lead to the accumulation of nitrogen (N) and phosphorus (P) in fields to levels of 

concern.  

 One of the methods to treat swine waste is using constructed wetlands (CWs) with  
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vegetation reduce the nutrient concentration prior to land application. CWs provide an efficient 

ecological system with low maintenance requirements and construction costs to remove nutrients 

from animal wastewater (Hill et al., 1999; Kadlec & Knight, 1996). CW systems are commonly 

used to treat domestic sewage, industrial or municipal wastewater and agricultural runoff 

(Kadlec et al., 2000; Robert H, 1999). Wetland technology removes excess nutrients from 

wastewater by the process of sedimentation, adsorption, organic matter accumulation, microbial 

assimilation, nitrification-denitrification, and ammonia volatilization (Brix, 1993; Johnstone, 

1991). Wetland systems and their applications to remove nutrients from point and non-point 

pollution sources are gaining considerable international interest (Gopal, 1999; Sakadevan & 

Bavor, 1998, 1999). CWs have successfully treated large amounts of animal manure inflows 

(Knight et al., 2000). They have successfully treated animal wastewater prior to land application 

and reduced nutrient concentrations applied to crops and pastures (Knight et al., 2000; Reddy et 

al., 2001). Previous studies have shown that 70-75% of the nitrogen (N) and 40-45% of the 

phosphorus (P) are removed from swine wastewater when CWs are treated with 3 to 36 kg N per 

ha per day (Hunt et al., 2002; Poach et al., 2004; Reddy et al., 2001). CWs receive nutrients and 

organic matter from wastewater and in winter month’s detritus from vegetation. Thus, the 

decomposition of organic matter is important in CWs, which depends on microbial enzymatic 

activities. 

During the treatment of wastewater in CWs, high molecular weight organic compounds 

are degraded to low molecular weight organic compounds by the metabolism of microorganisms 

(Brix & Schierup, 1989) and the enzyme activity of the soil (Kang et al., 1998; Martens et al., 

1992). Microbial enzymes play a major role in the process of decomposition of  organic matter 

(Tabatabai, 1982). Soil enzyme activity includes enzymes excreted by microorganisms as part of 
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extracellular metabolism and enzymes immobilized on soil colloids and humic materials (Burns, 

1982). Enzyme activity in constructed wetlands is affected by many factors, including biological 

factors (microbial populations, higher taxa, and fauna), soil factors (pH, texture, nutrient 

composition, depth profiles, organic matter content, etc.) and climatic factors (Duarte et al., 

2008; Reboreda & Cacador, 2008; Zaman et al., 1999). Shackle et al., (2006) reported that 

addition of exogenous enzymes to CWs will increase the biodegradation processes. Microbial 

decomposition plays a major role in macronutrient cycles and energy flows of aquatic 

ecosystems (Wetzel, 1992). In wetlands, the continual availability of nutrient resources depends 

upon the microbial degradation of organic matter (Aerts & de Caluwe, 1997; Alvarez & 

Guerrero, 2000; Shaver & Melillo, 1984; Talling & Lemoalle, 1998). The rate of decomposition 

controlled by extracellular enzymes has long been identified  (Schimel & Weintraub, 2003).   

Most of the organic matter in wetlands is composed of high molecular weight 

compounds, of which a small portion is readily available to the microorganisms (Benner et al., 

1984; Chrost, 1991). Complex organic compounds in wastewater such as proteins, carbohydrates, 

lipids and their derivatives are initially hydrolyzed by extracellular enzymes produced 

microbially. After extracellular enzyme hydrolysis, low molecular weight compounds are formed 

and utilized by microorganisms as an energy source (Chrost, 1991). Therefore, the role of 

extracellular enzymes in the decomposition process provides valuable information about the 

cycling of nutrients in ecosystems. Many researchers have recognized that the interaction 

between substrate, wetland plants and microorganisms in wetlands plays a major role in 

wastewater purification (Hammer, 1989; Reddy, 1983). 

Enzymes in soil are present extracellularly or intracellularly. Location of soil enzymes 

and their interaction with living and non-living substrates are shown in Figure 1. 
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Figure 1. Location of Enzymes in Soils (Burns, 1982; Nannipieri et al., 1994). 

In this research of CWs, we studied the activity of dehydrogenase, urease, arylsulfatase, 

phosphatase and β- glucosidase in soil samples collected at various depths. These enzymes are 

involved in metabolic processes such as C cycling (β- glucosidase, catalyzes the final step of 

cellulose degradation), N cycling (urease, that catalyzes the hydrolysis of urea in to carbon 

dioxide and ammonia), P cycling (acid Phosphatase, hydrolyzes organic-P compounds),              

S cycling (arylsulfatase, hydrolyzes the organic S compounds). 

1.1.1 Urease. Urease is the enzyme that catalyzes the hydrolysis of urea into carbon 

dioxide and ammonia. The urea or uric acid in swine wastewater originates from swine urine. 

Soil urease originates from plants (Polacco, 1977) and microorganisms found intra and 

extracellularly (Blakeley & Zerner, 1984; Burns, 1986; Mobley & Hausinger, 1989; Mulvaney & 

Bremner, 1981)extracellularly (Blakeley & Zerner, 1984; Burns, 1986; Mobley & Hausinger, 

1989; Mulvaney & Bremner, 1981). The urease enzymatic reaction is: 
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 1.1.2 Phosphatase. Phosphatase is an extracellular hydrolytic enzyme that plays an 

important role in the formation of inorganic phosphorus from organic phosphorus esters (Chrost, 

1991).  Indigestible phosphorus is excreted by hogs and ends up in wastewater. The phosphorus 

in the excreta is in the organic and inorganic form. Phosphatases are enzymes that catalyze the 

hydrolysis of esters and anhydrides of phosphoric acid (Schmidt & Laskowski 1961). This 

enzyme plays a critical role in the P cycle (Speir & Ross, 1978). Bacteria, fungi and yeast 

produce phosphatases and their reaction differs depending on the substrate (Hollander, 1971). 

The phosphatase enzymatic reaction is: 

 

 

 

1.1.3 Arylsulfatase. Arylsulfatase is responsible for the hydrolysis of organically bound 

sulfate esters (Tabatabai & Bremner, 1970). Arylsulfatase is an extracellular hydrolytic enzyme 

that plays a key role in the formation of inorganic sulfate ions from organic sulfate compounds. 

It is important to the S cycling processes in wetland soils. They are produced by soil bacteria and 

in response to sulphur limitations (McGill & Cole, 1981). The arylsulfatase enzymatic reaction 

is: 
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 1.1.4 β-glucosidase. β-glucosidase catalyzes the hydrolysis of sugars resulting in the 

formation of β-linked monosaccharide (Eivazi & Tabatabai, 1988). This enzyme plays an 

important role because it is involved in the biodegradation of various β-glucosidase present in 

soil organic matter (Ajwa & Tabatabai, 1994; Martinez & Tabatabai, 1997). The final product of 

the enzymatic reaction is glucose which is an important carbon energy source for soil 

microorganisms (Esen, 1993). 

 

 

 

 

 

Figure 2. Reaction of β-glucosidase enzyme. 

1.1.5 Dehydrogenase. Dehydrogenase activity is commonly used as an indicator of 

microbial activity in soils (Burns, 1978). This enzyme oxidizes soil organic matter by 

transferring electrons and protons from substrates to acceptors. This process is part of the 

respiration pathway of soil microorganisms and its activity is strongly related to soil type and 

soil air-water conditions (Doelman & Haanstra, 1979; Glinski & Stepniewski, 1985; Kandeler, 

1996). Thus, dehydrogenase activity is very important to support microbial biochemical 

processes in soil.  

These enzymes are involved in major nutrient cycles such as C cycling (β- glucosidase), 

N cycling (urease), P cycling (Phosphatase), and S cycling (arylsulfatase). So the above enzymes 

are important in our wetland study. 
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Table 1  

Role of soil enzymes in decomposition of organic matter and nutrient cycling 

Enzyme Organic matter 

substances acted 

on 

End product Significance Predictor of 

soil function 

Urease urea nitrogen 

ammonia (NH3) 

and carbon dioxide 

(CO2) 

plant available 

NH4 

nutrient 

cycling 

Phosphatase organic phosphorus phosphate (PO4) 
plant available 

P 

nutrient 

cycling 

Arylsulfatase organic sulfur Sulfate (SO4) 
plant available 

S 

nutrient 

cycling 

β-glucosidase carbon compounds glucose 
energy for 

microorganisms 

organic matter 

decomposition 

 

1.2 Hypothesis 

1. Enzymes will act on complex organic compounds, decompose them into smaller molecules 

and release nutrients from organic matter. 

2. Enzyme activity is occurs in the high concentration of nutrients found in CWs. 

3. Enzyme activity has correlation with nutrients concentration, C and N content in soil.  

4. Enzyme activity will differ in marsh area from the pond area of wetland cell. 

1.3 Objectives 

The objectives of this research were: 

1. To study the activity of dehydrogenase, phosphatase, urease, β-glucosidase, arylsulfatase and 

measure the microbial biomass carbon (MBC) content in several soil depths of CWs treated 

with swine wastewater. 

2. To correlate the specific enzymatic activities to total carbon (TC), total nitrogen (TN), NH4, 

and PO4 ions. 
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3. To investigate the differences in enzymatic activity in the pond area with marsh areas of 

marsh pond marsh (MPM) and continuous marsh (CM) constructed wetlands. 

1.4 Justification 

        Waste effluent from concentrated swine operations is commonly stored and treated in 

anaerobic lagoons, and the liquid collected is sprayed on nearby fields. If nutrients in this liquid 

are in excess of crop uptake rates, they may seep through the surface into ground water or in high 

rainfall event nutrients may be subject to runoff and contaminate surface waters. To reduce the 

contamination of surface and ground water, alternative methods of treating wastewater should be 

implemented. One of the options under consideration is using CWs to reduce the nutrient 

concentration of swine wastewater before land application. During the treatment of wastewater 

in CWs, high molecular weight organic pollutants are degraded to low molecular weight 

compounds and inorganic products. This is mainly achieved by the metabolism of 

microorganisms and enzyme activity in soil. CWs have a living dynamic system containing 

many free enzymes such as immobilized extra-cellular enzymes and intra-cellular enzymes. The 

CWs treated with swine wastewater receive organic solids and nutrients in inorganic form. Also, 

in winter months vegetation will senesce and becomes part of the organic matter referred as 

detritus. Therefore, the nutrient availability in such wetlands is from wastewater content, 

decomposition of plant residue, and decomposition of organic solids. Previous studies (Poach et 

al., 2004; Reddy et al., 2001) have indicated that 70-75% of N and 40-45% of P is removed in 

these wetlands. However, the complete removal of these nutrients was not achieved because of 

the continuous decomposition that occurs in these wetlands. However, there is not much data 

available on enzymatic activity in CWs treated with swine wastewater. Also, no data exists in the 

literature to correlate the enzyme activity with nutrient concentration in highly nutrient loaded 



11 

 

CWs. The enzymatic approach represents a valuable method to assess decomposition processes 

in wetland sediments, and that characteristically low enzyme activities in the sediments may be 

important in the water quality amelioration function. Therefore, it is important to understand the 

enzymatic activities in different depths of CWs receiving high concentration of nutrients through 

swine wastewater application and how this work can be related to improve the efficiency of 

nutrient removal in such wetlands.  

      If these enzymes activity in wetland soils is higher, it is more likely that more nutrients 

are released in the system by microorganisms and therefore, less efficiency of wetlands can be 

observed. However, these CWs are very complicated systems having continuous flow of 

wastewater in to the CW carrying organic solids, nutrients, and microbial populations. In normal 

CW ecosystems treating wastewater will have low concentrations of nutrients and microbial 

populations and diversities. Whereas, in these CWs, not only high concentrations of nutrients 

input but also higher populations and diversity of microorganisms input into the system. 

Therefore, it is very essential to understand, if there is any relationship between enzymatic 

activities and nutrients concentration. 
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CHAPTER 2 

Literature Review 

2.1 Constructed wetlands (CWs) 

        CWs are constructed basins that contain stable water all over the year (at least during wet 

season) and differ from natural wetlands having shallow depth and great vegetation coverage. 

CWs are engineered systems designed and constructed to make use of natural processes such as 

vegetation, soils, and their related microbial activities to treat domestic wastewater, industrial 

wastewater and agricultural runoff. CWs work as alternative to conventional system for nutrient 

management to reduce nutrient concentration in agricultural wastewaters before application to 

the land (Hunt & Poach, 2001; Knight et al., 2000). CWs offer different mechanisms to improve 

water quality which include biochemical transformations, settling of suspended particulate 

matter, adsorption/desorption processes and absorption by plants and microbes (immobilization). 

       Two basic categories exist for the design of the CWs, surface flow (SF) and sub surface 

flow (SSF) wetlands. The surface flow wetlands have shallow depths over a rooting matrix 

supporting macrophytes. Because of the density of vegetation and configuration, surface flow 

wetlands contain shallow flow and low velocity. Surface flow CWs (SF) are parallel to the 

natural environments due to the permanent standing water and environment favorable for plant 

species (Scholz & Lee, 2005). In surface flow systems water depths are less than 0.4 m (Kadlec 

& Knight, 1996). Sub surface systems are classified by the direction of water flows either 

horizontally (horizontal sub surface flow constructed wetlands HSSFCW) or vertically (vertical) 

through the porous filter material. In sub surface systems water flows below the rooting matrix 

and they contain gravel of different diameter. Surface flow CW systems (SF) are less abundant 

than sub surface flow systems, even though free water surface wetlands are one of the oldest 
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designs in Europe  (Vymazal, 2005). For efficient purification of wastewater hybrid systems 

have been introduced that consist of different types of constructed wetlands constructed in 

sequence (Vymazal et al., 2008). However, in USA for animal wastewater treatment surface flow 

CW systems have been preferred (Knight et al., 2000).  

2.2 Vegetation role in treatment wetlands 

        In CWs, plants provide a substrate and a carbon source for microbes. Wetland plants 

increase the aerobic portion by oxygenating the substrate adjacent to their roots (Brix, 1993) and 

additionally during the growing season they remove nutrients from the incoming wastewater. A 

variety of plant species have been recommended for use in animal wastewater treatment 

wetlands. Desirable species are native so that they best suited to local conditions and they should 

have high productivity for rapid nutrient uptake, rhizome production and colonization. Desirable 

species should be able to tolerate high nutrient concentrations. Cattails and bulrushes are 

commonly used for treating wastewater in CWs. 

         Plants play an important role in purification of wastewater in CWs. Plants directly 

influence the soil enzyme activity by excreting organic compounds and exogenous enzymes and 

there by affect species composition and diversity of microbes. Also, plant roots release exudates 

and oxygen in to the rhizosphere for microbial proliferation. Wetland plants immobilize nutrients 

from the wastewater. The uptake of nutrients ranged from species to species of wetland plants. 

The uptake rates are from 2 to 10% of applied nutrients through wastewater (Reddy et al., 2001). 

Reboreda and Cacador (2008) reported positive correlation between root biomass and 

rhizosphere sediment enzyme activity of five enzymes. In CWs plant biomass residue undergoes 

decomposition by extracellular enzymes and mineralization of organic matter will occur. 

Purification in CWs is based on combined action between microbes and filter material which is 
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provided by plants. In wetlands, organic carbon mainly supplied by the vegetation and which is 

used as the carbon and energy source by microbes. Plant tissue also provides a large amount of 

surface area for microbial growth. When plants die litter decomposition leads to the mobilization 

of metals and their return to sediment and their rate depend upon the type of tissue and plant 

species (Windham et al., 2003). Wetland plants contribute removal of metals through important 

processes such as substrate stabilization, rhizosphere oxidation and supply of organic matter for 

microorganisms (Kosolapov et al., 2004). Wetland plants interact with microorganisms in the 

rhizosphere by supplying organic matter required for appropriate reactions and thus provide 

suitable environment for nutrients cycling (Jacob & Otte, 2003). 

2.3 Nutrient removal in wetlands 

        Nutrients and solids removal in wetlands is mainly achieved by shallow water (which 

maximizes the sediment to water interface), accumulation of litter, high primary productivity, 

and the presence of aerobic and anaerobic sediments (Mitsch & Gosselink, 1993). Additionally 

slow water flow causes to settle suspended solids from the water column in wetlands. The most 

important constituents in animal wastewater are N, P, and total solids and these can be reduced 

by using CWs with vegetation (Poach et al., 2004; Reddy et al., 2001). 

2.3.1 Nitrogen removal. Nitrogen enters in animal wastewater treatment wetland as 

organic and inorganic forms. The inorganic forms are nitrite (NO2
-
), nitrate (NO3

-
),

 
ammonia 

(NH3) and ammonium (NH4
+
).         

Nitrogen may be lost from the wetland system through volatilization, plants or microbes 

immobilization, adsorption, nitrification and denitrification processes. Ammonia volatilization is 

a process of removal of N in wastewater, but it causes pollution to the environment (Asman, 

1994). Research showed that ammonia volatilization accounted for less than 20% of the nitrogen 
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removal when Marsh Pond Marsh CWs were treated with swine wastewater (Poach et al., 2002). 

Nitrate and nitrite are removed from wastewater by plant uptake or denitrification (Gambrell & 

Patrick Jr, 1978). The major removal pathway of N in wetlands receiving wastewater is by 

denitrification, which convert wastewater N to gaseous form of N.  Hammer (1994) reported that 

when wetland nitrate is limited, denitrification often times affected by nitrification. The removal 

of N from swine wastewater accounts less than 10% of the N load by plant accumulation (Hunt 

et al., 2002; Poach et al., 2004a; Reddy et al., 2001). 

       Several scientists reported that CWs were efficient in removing N, P, COD and TSS 

(Hunt et al., 1995; Payne et al., 1992; Reddy & De Busk, 1985). Nitrogen removal occurred at 

51% and 36% when 16 and 32 kg N ha
-1

 day
-1

 was applied through swine wastewater 

respectively (Reddy et al., 2001). Hunt et al (2002) reported that CWs removed 75 to 50% 

nitrogen from the swine wastewater when they received nitrogen loads between 3 to 36 kg per ha 

per day. The average mass reduction of TKN was in the range of 46 to 72% (Hammer & Knight, 

1994). Poach et al. (2004) reported that when wetlands were loaded at the range of 2-52 N 

kg/ha/day and the total N removal efficiency was in the range of 10 to 75%. 

2.3.2 Phosphorus removal. Wetlands have a tendency to retain phosphorus through 

physical (Sedimentation and adsorption), chemical (Precipitation) and biological processes (Plant 

and microbial uptake) (Gale et al., 1994; Reddy et al., 1999). A decrease in contaminants is 

observed whenever a deposition of solids (e.g. phosphorus) takes place  (Johnston et al., 1984). 

Bioavailable forms of phosphorus may be sorbed on to soil particles or taken up by plants. 

Phosphorus adsorption on soil matrix is the main process for phosphorus removal in wetlands 

(Richardson, 1985). 

In CWs, inputs of phosphorus continue over a period of several years, Sorption sites in 
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the sediments become increasingly unavailable and ultimately lead to phosphorus release (Cyrus 

& Reddy, 2010; Kadlec, 1985). Plant uptake and decomposition of organic phosphorus increases 

with increase in the temperature. In growing season retention of phosphorus increase have been 

observed at domestic wastewater treatment wetlands (Gearheart et al., 1989). Addition of 

aluminum to the substrate also increases phosphorus removal  (James et al., 1992; Reddy et al., 

2011). Phosphorus adsorption is positively correlated to aluminum content in the substrate 

(Richardson, 1985). Periodic draining can allow oxidation and recharge sorption sites for greater 

phosphorus removal than under permanently reduced conditions (Faulkner & Richardson, 1989). 

CWs have used other techniques such as limestone, slag, wollastonite, calcite, shale, iron rich 

gravel and zeolite to improve the removal processes of precipitation and absorption (Brix et al., 

2001). Shale based wetlands had 98 to 100% P removal capacity (Mann, 1997). Fisher (1998) 

reported 20% P removal  by vertical-flow constructed gravel wetland treating urban wastewater. 

2.4 Enzyme activity in wetlands 

       The accumulation of organic matter is a characteristic feature of both natural and CWs 

(Tanner et al., 1998). Accumulation of organic matter in soils provides long-term storage of 

carbon and nutrients (e.g. Nitrogen and Phosphorus). Nutrient retention function in wetlands 

closely related to the accumulation of organic matter and which is based on biological processes. 

Soil enzyme activity is important in CWs and is sensitive to changes in soil micro-environmental 

conditions such as soil pH, temperature, plant exudates and soil water chemistry (Shackle et al., 

2000). Enzymes activities are useful indicators of microbial activity in a given ecosystem (Ravit 

et al., 2003; Sinsabaugh, 1994). 

        Enzymes present extracellularly in sediments by attached to clay minerals or complexed 

with humic colloids (Burns, 1982). Extracellular enzymes excreted by fungi and bacteria, to 
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metabolize the humic compounds by reducing their molecular weight and increase the solubility 

and mobility of potential carriers of heavy metals (Gramss et al., 1999). The maximum potential 

activity of enzymes occurring in sediment rather than the actual enzyme activity in water (Alef & 

Nannipieri, 1995). Microbial degradation of high molecular organic matter is initiated by 

extracellular hydrolysis (Marxsen & Witzel, 1991) and is completed intracellularly. Therefore 

extracellular enzymes play a vital role as initiators of organic pollutant removal in treatment 

wetlands (Kang et al., 1998). CWs supplemented with extracellular enzymes as a way to increase 

the rate and efficiency of soil decontamination (Cervelli & Perret, 1998) and waste treatment 

(Duran & Esposito, 2000; Michael D, 1993). Soil enzyme activity proposed as an important 

determinant of soil quality (Alef & Sparling, 1995) and water quality improvement in 

agricultural and wetland systems respectively (Freeman et al., 1997; Kang et al., 1998). Enzyme 

activity (activity on a per gram of soil basis) depends on both total microbial biomass and 

enzyme efficiency (enzyme activity on a per microbial biomass basis). 

2.5 Soil enzymatic activities in CWs 

       Kong et al. (2009) studied the enzyme and root activities in wetlands constructed for 

domestic waste water purification by planting four different plant species and the correlations 

between contaminant removal and soil enzyme activity, root activity, and the plant growth were 

obtained. It was observed that the removal efficiency of NH4
+
 was significantly correlated with 

both urease and protease activity in all wetlands, and the removal of total phosphorus (TP) and 

soluble reactive phosphorus (SRP) was significantly correlated with phosphatase activity in most 

wetlands, while the removal of TN, NO3
-
, and chemical oxygen demand (COD) was significantly 

correlated with enzyme activity in a few instances. This strong correlation between root activity 

and enzyme activity indicated that plant root activity can affect enzyme activity, and that plant 
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roots have important effects on contaminant removal. Kang, et al. (1998) reported that soil 

enzymatic activities would be lower in wetland sediment than adjacent uplands.  

       Zhang and co-workers (2010) focused on the relationship between plant diversity (six 

species richness levels) and nutrient retention and enzyme activities associated with carbon, 

nitrogen and phosphorus cycling in a full-scale CW fed with post treatment domestic wastewater. 

They observed retention of NH4 and NO3 in the wetland substrate increased with increasing 

species richness, while phosphorus retention significantly decreased the richness level of 16 

species per plot. It was also reported that activities of dehydrogenase, β-glucosidase, invertase, 

phenol oxidase, protease and nitrate reductase were affected by plant species richness, were 

strongly depended on the presence or absence of plants, while activities of urease and acid 

phosphatase were strongly affected by plant species richness. These findings suggest that by 

manipulating the quantity and quality of carbon supply in CWs, it may be possible to modify 

extracellular enzyme activities in order to maximize the efficiency of water treatment (Shackle et 

al., 2000). Microbial abundance and enzyme activities in the rhizospheres of nine plant species 

were investigated in an vertical-flow CW by Ge et al. (2011). They reported that the abundance 

of denitrifiers, as well as urease, acid, and alkaline phosphatase activities were positively 

correlated to plant root biomass and significant differences in rhizospheres enzyme activity 

among plant species were also observed. 

2.6 Soil enzymatic activities in other agricultural eco-systems 

       Sustainable management practices in agriculture, including crop rotations and 

fertilization systems have significant effects on soil biochemical processes. Long-term cropping 

systems and fertilization can influence important soil properties such as soil structure and 

density, pH, the quantity, quality, and distribution of soil organic matter and nutrient cycles 
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within the soil profile. Moore et al. (2000) reported that highest enzyme activities, microbial 

biomass carbon and nitrogen contents are found in multicropping systems involving oats or 

meadow, and the lowest in continuous corn and soybean systems. Bergstrom et al. (1998) 

reported that the activity of dehydrogenase, phosphatase, and arylsulfatase was greater in no-

tilled than in conventionally tilled fields. Soil urease, acid phosphatase and protease activities in 

the top 0-10 cm depth, and acid phosphatase, dehydrogenase, arylsulfatase, invertase, amidase 

and urease in the 0-7.5 cm depth were significantly higher in soil subjected to no-tillage than in 

ploughed ones (Dick, 1984; Doran, 1980; Klein & Koths, 1980). Verstraete and Votes (1977) 

showed that application of animal manure plus green manure increased phosphatase, urease, and 

saccharase and β- glucosidase activities over a 7-year period and that enzyme activity was related 

to soil organic matter. Decomposition of carbon substrates under anaerobic conditions of flooded 

soils is generally slower than in upland soil (Tate, 1979). Hu et al. (1999) and other short term 

studies have shown that organic amendments increase microbial biomass. Long-term cultivation 

in the absence of organic amendments causes decrease in organic C and total N content (Dick, 

1992; Tate, 1987). 

        According to Acosta-Martinez and Harmel (2006) β- glucosidase activity 150 and170 µg 

g
-1

, arylsulfatase activity 100 and 50 µg g
-1 

and phosphatase activities 600 and 400µg g
-1

 were 

observed in pasture and cultivated sites by different application rates of poultry litter 

amendments. Earlier studies in agricultural soils have reported that enzymatic activities for 

phosphatase 798 µg g
-1

, dehydrogenase 93 µg g
-1

, β- glucosidase 282 µg g
-1

, and urease were  

120 µg g
-1

 (Aon & Colaneri, 2001). Tiquia (2002) reported that relative abundance and activities 

of enzymes were higher in poultry manure composting than in pig manure. Municipal solid 

waste compost (MSW-C) application showed higher enzyme activity than vermicompost, ovine 
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manure and sewage sludge. The enzymatic activities MSW-C applied soils were observed for 

phosphatase 350 µg g
-1

, arylsulfatase 35 µg g
-1

, urease 65 µg g
-1

 and dehydrogenase 8 µg g
-1

  

(Albiach et al., 2000).  
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CHAPTER 3 

Materials and Methods 

3.1 Field 

3.1.1 Site and wetland cells design. The experiment was conducted in one continuous 

marsh (CM) and one marsh-pond-marsh (MPM) cell at the swine research facility of the North 

Carolina A&T State University farm in Greensboro. The 11 m wide × 40 m long wetland cells 

were constructed in 1995 (Reddy et al., 2001) to treat swine wastewater generated from 

university farm swine unit. MPM consisted of 11m width × 10 m length × 0.15 m water depth of 

the marsh sections at the both influent and effluent ends and an 11 m width × 20 m length × 0.75 

m water depth pond section separating the marsh sections. The marsh sections of both wetland 

cell types were planted with Typha latifolia L. (broadleaf cattail) and Schoenoplectus americanus 

(pers) (bulrush). In the pond section of the MPM cell presence of duck weed was observed 

during the summer months. The CM cell is a continuous system planted with the cattail and 

bulrushes from the inflow end to the outflow end (Figure 3). 

3.1.2 Soil sampling.  Soil samples were collected in June 2010 from the constructed 

wetlands after being treated with swine wastewater. Twelve cores were hand augered along the 

length of each wetland cell and sectioned into depths 0-3 cm, 3-6 cm and 6-12 cm. The wet soil 

samples were bagged in polythene bags, transported in an ice chest to the laboratory, and stored 

in the refrigerator at 5 ºC for further analysis. 

3.2 Soil analysis procedure 

 A soil subsample was air dried in the laboratory under room temperature for 2 days. The 

percent moisture of the original wet sample was determined. The air dried soil samples were 

crushed and sieved through 1.0 mm mesh to remove any plant material and sand particles, mixed  
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thoroughly and stored in the refrigerator in plastic bags. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Figure 3. Schematic diagram showing continuous marsh (CM), and pond section separates marsh 

areas in marsh pond marsh (MPM) constructed wetland cells. 

3.3 Soil Samples Analysis  

      The pH of each soil sample was determined using pH meter (Orion 3 star pH bench top), 

Total carbon and nitrogen was determined using a CHN analyzer (Perkin Elmer series 2 model: 
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2400), Microbial biomass carbon (MBC) by using a Schimadzu Total organic carbon analyzer 

(Model TOC: VSCN), ammonium (NH4), nitrate (NO3) and orthophosphate (PO4) were analyzed 

using flow injection analyzer (FIA) (Lachat instruments Quick chem. 8500 series 2). 

3.4 Soil Enzyme activity assay 

     The activity of dehydrogenase, urease, phosphatase, β- glucosidase and arysulfatase was 

determined in each soil sample. 

3.4.1 Urease. Urease activity was determined according to the procedure of Klose & 

Tabatabai (2000). A solution containing 10 mL phosphate buffer (pH 6.7), 0.5 mL toluene and 

10 mL 10% aqueous urea was added to 5 g air-dry soil (< 2 mm), and the mixture was incubated 

for 48 h at 37
0 
C. At the end of incubation period, 20 mL of 1M KCL was added and the culture 

solution was shaken thoroughly for 30 min and filtered. The released ammonium (NH4
+
) in the 

filtrate was measured by using FIA (Flow Injection Analyzer) and the urease activity was 

expressed as µg NH4
+ 

g
-1 

of soil. 

3.4.2 Phosphatase. Phosphatase activity was determined by using the procedure 

described by Tabatabai and Bremner, (1969) and  Eivazi and Tabatabai (1977). One gram of air-

dry soil (< 2mm) was placed in a 50 ml Erlenmeyer flask and 4 mL of modified universal buffer 

(MUB) (pH 6.5), 0.25 mL of toluene and 1 mL of P-nitro phenol (PNP) solution were added as 

working substrate for the enzyme and the contents were mixed for a few seconds, covered in a 

flask and placed in an incubator at 37 ºC for 1 hr. After 1hr, it was removed and 1 mL of 0.5 M 

CaCl2 and 4 mL of 0.5 M NaOH were added and swirled thoroughly for a few seconds and then 

filtered. The yellow color intensity of the filtrate was measured by using a spectrophotometer at 

420 nm.  

The P-nitrophenol content of the filtrate was calculated by using a calibration graph 
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plotted from the results obtained with standards containing 0, 10, 20, 30, 40, and 50 µg of          

p-nitrophenol. For the standard graph, 1 mL of standard p-nitrophenol solution diluted  to       

100 mL was taken in a volumetric flask and mixed the solution thoroughly and then piped out 0, 

1, 2, 3, 4, and 5 mL aliquots of this diluted standard solution into 50 mL Erlenmeyer flasks and 

adjusted the volume to 5 ml by addition of water. After that 1 ml of 0.5 M CaCl2 and 4 mL of  

0.5 M NaOH were added and mixed the solution thoroughly and filtered the resultant suspension 

through a whatman No. 4 filter paper and measured the yellow color intensity of filtrate by using 

spectrophotometer at 420 nm.   

Using these results standard p-nitrophenol graph was plotted. Controls also were 

performed for each soil which allowed no color development from p-nitrophenol released by 

Phosphatase activity. For this controls the same procedure was followed as described for 

samples.  

3.4.3 Arylsulfatase. Arylsulfatase activity was determined by using the procedure of 

Tabatabai and Bremner (1970). One gram of soil was placed in a 50 ml Erlenmeyer flask and     

4 mL 0.5 M acetate buffer (pH 5.8), 0.25 mL of toluene and 1 mL of P-nitro phenyl sulfate 

(PNS) solution (as substrate) were added and mixed for few seconds, covered and placed in an 

incubator at 37 ºC for 1 hr. After 1 hr incubation, the parafilm cover was removed and 1 mL of 

0.5 M CaCl2 and 4 mL of 0.5 M NaOH were added and swirled thoroughly for few seconds and 

filtered the soil suspension through a whatman No. 4 filter paper. The yellow color intensity of 

the filtrate was measured by using a spectrophotometer at 420 nm.  

       For the calibration graph and the controls used the same procedure was followed as for 

the phosphatase assay. Controls were performed for each soil in which no color development 

occurred from p-nitrophenol released by arylsulfatase activity.  
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 3.4.4 β-glucosidase. β-glucosidase activity was measured according to the procedure 

described by Eivazi & Tabatabai (1988). One gram of soil was placed in a 50 ml Erlenmeyer 

flask and 4 mL Modified Universal Buffer (MUB) (pH 6.0), 0.25 mL of toluene and 1 mL of     

P-nitro phenol β-D-glucoside (PNG) solution (as substrate) were added and swirled the contents 

for few seconds and covered the flask with parafilm and placed in incubator at 37 ºC for I hr. 

After 1hr incubation, parafilm was removed and 1mL of 0.5 M CaCl2 and 4 mL of 0.1 M Tris 

Hydroxymethyl Amino Methane (THAM) buffer at pH 12 were added and swirled thoroughly 

for few seconds and filtered the soil suspension through a whatman No.4 filter paper. The yellow 

color intensity of the filtrate was measured by using a spectrophotometer at 420 nm.  

        For calibration graph and controls same procedure was followed as for phosphatase 

assay. Controls performed for each soil which allowed no color development from P-nitrophenol 

(PNP) released by β- glucosidase activity. It is important to treat the incubated soil sample with 

THAM buffer pH 12 instead of the 0.5 M of NaOH used for extraction of p-nitrophenol in assay 

of phosphatase and arysulfatase because the substrate of β- glucosidase, PNG is hydrolyzed with 

time in the presence of excess NaOH. The CaCl2 and THAM treatment served extraction of       

p- nitrophenol released in the assay of β- glucosidase activity and the activity of β- glucosidase 

was expressed as µg p-nitrophenol g
-1 

of soil. 

3.4.5 Dehydrogenase. Dehydrogenase activity was determined according to the 

procedure described by Casida, et al. (1964). Six grams of air dried soil was mixed with 0.07 g of 

CaCO3, 1 mL (3% aqueous solution) 2, 3, 5 Triphenyltetrazolium Chloride (TTC) and 2.5 mL 

distilled water. Mixed the contents of each tube, covered with parafilm and placed it in incubator 

at 37 ºC for 24 h. After 24 h incubation, parafilm was removed and 10 mL of methanol was 

added and shaked for 1 min and solution was filtered through a glass funnel plugged with 
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absorbent cotton in to a 100 mL volumetric flask. Washed the tube with methanol, quantitatively 

transferred the soil to the funnel and  then added additional methanol to the funnel until the 

reddish color was disappeared from the cotton plug, Diluted the filtrate to 100 mL and measured  

the intensity of reddish color by using spectrophotometer at a wavelength of 485 nm against 

blank.  

        The amount of Tri Phenyl Formazan (TPF) produced was calculated by reference to a 

calibration graph prepared from TPF standards. For this calibration graph diluted 10 mL of TPF 

standard solution to 100 mL with methanol (100 µg of TPF mL
-1

) and then piped out 0.5, 1, 2.5, 

5, 7.5, 10 and 15 mL of this solution in to 100 mL volumetric flasks and diluted to 100 mL with 

methanol and mixed thoroughly and measured the intensity of reddish color of TPF by using 

spectrophotometer at a wavelength of 485 nm against blank. The absorbance readings were 

plotted on a graph against TPF concentration. 

3.5 Statistical Analysis 

Relationship between enzymatic activities to TC, TN, NH4 and PO4 ions were evaluated 

using linear correlation analysis. Correlation coefficients (r) were presented for all possible pairs 

of correlations. For each enzyme mean values and standard errors were used to test differences 

with depth at each site. Differences between means were tested using paired-sample T-tests. The 

level of significance for all analyses was tested at P<0.05. 
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CHAPTER 4 

Results and Discussion 

       Table 2 shows the measured parameters decreased with increasing depth in CM and 

MPM. The highest values were observed in the upper 0-3 cm depth. TC and TN were found to 

decrease from 1.35 to 0.75% and 0.13 to 0.07 % in CM and 0.7 to 0.43% and 0.09 to 0.06 % in 

pond area of MPM, respectively. NH4 and NO3 nutrient concentrations were decreased from 

surface depth to deeper soil depths. Contrary to earlier studies (Poach et al., 2004) that showed a 

lower concentration of NH4 in the pond area due to higher ammonia volatilization compared to 

the marsh area, we observed higher NH4 concentration in the pond area compared to the marsh 

area. This is attributed to the higher dissolved O2 found in the pond area relative to marsh areas 

resulting in exceeded mineralization than nitrification rate.  

Table 2 

Parameters measured (Mean±SD) of CM and pond area of MPM at three different depths  

Soil CM  M-P-M (Pond Area) 

Property 0-3 cm 3-6 cm 6-12 cm  0-3 cm 3-6 cm 6-12 cm 

pH 6.64±0.12 6.73±0.13 6.91±0.24 7.88±0.12 7.59±0.20 7.57±0.18 

 ……………………. µg g
-1

……………………. 

TC 13558±6175 8800±2326 7500±2055 7025±4945 5925±4684 4325±2117 

TN 1375±685 875±205 733±187 950±102 666±152 650±70 

NH4
+
 24.84±42 12.45±21 3.62±3 45.17±10 40.40±19 56.45±37 

NO3
-
 7.90±13.70 2.20±2.60 2.80±4.00 0.40±0.50 0.10±0.07 0.08±0.09 

PO4
-2

 408±143 237±128 81±80 183±83 92±102 34±31 

Org N 1342±646 860±197 726±183 904±237 625±246 593±262 

MBC 622±56 591±68 552±57 505±31 446±24 415±7 
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4.1 Enzyme activity in wetlands 

 4.1.1 Urease activity. In CM and MPM, urease activity decreased with increasing soil 

depth (Figure 4). In CM, at inlet and outlet points significant decrease was observed between 0-3 

and 6-12 cm depths. In both wetlands from inlet to outlet, the soil samples at 0-3 cm (300 to   

450 μg g
-1 

soil) showed highest urease activity than in the lower depths. The least enzymatic 

activity (<200 μg g
-1 

soil) was observed in the 6-12 cm depth. In CM, the activity of urease 

increased from the inlet to the outlet from 363 to 436 µg/g at the 0-3 cm depth and 280 to       

340 µg/g at the 3-6 cm depth. In MPM, the activity of urease decreased from inlet to outlet 407 

to 301 µg/g at 0-3 cm depth and 340 to 227 µg/g at 3-6 cm depth. We could not find a significant 

difference in enzyme activity between inlet and outlet in both CM and MPM (Table 3). Urease 

activity depends on the availability of NH4
+ 

in the inlet and the outlet of the CM and MPM. In 

MPM, highest urease activities were observed in the marsh area than in the pond area. In 

comparison to MPM, urease activity was higher in CM but the difference was not statistically 

significant (P<0.05). 

          In both wetlands, highest urease activities were observed in comparison to other four 

enzymes. It may be attributed to the low availability of NH4
+
 in our wetlands due to the 

nitrification and denitrification processes as evident by the data shown in Table 2. Previous 

studies at this site showed that 70-95% nitrogen (N) removal from the swine wastewater when 

the wetland cells were loaded with 3 to 36 kg N per ha per day (Poach et al., 2004a; Reddy et al., 

2001). The desired removal mechanism of wastewater N from wetland is denitrification, which 

converts N to gaseous forms of nitrogen and NH3 volatilization. However, the volatilization of 

ammonia as it relates to acid rain is of concern. Past research conducted on constructed wetland 

systems treating swine wastewater found that ammonia volatilization accounted for less than  
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Figure 4. Urease activity in each site at different soil depths in the Continuous marsh (CM) and 

Marsh pond marsh (MPM) constructed wetlands (mean± SE, n = 4).  

Note: Means having the same letters in common are not significantly different at the 5% level of 
probability for each site at different soil depths of CM and MPM as determined from t-test pair 

comparison. 

20% of the N removed by the wetlands (Poach et al., 2002). Denitrification is the desired 

mechanism for N removal because N accumulation by plant accounts for less than 10% of the N 

load (Hunt et al., 2002; Poach et al., 2004; Reddy et al., 2001).  

        Urease activity in the species-specific surface flow constructed wetlands was observed to 

be in the range of 240 to 260 μg g
-1

, 160 to 180 μg g
-1

, and 140 to 160 μg g
-1

 for 0-5 cm,          
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15-20 cm, and 35-40 cm, respectively (Kong et al., 2009). However, comparatively higher 

enzyme activities were observed in case of our constructed wetland systems treated with swine 

waste water which was 367 μg g
-1 

at 0-3 cm depth, 282 μg g
-1 

at 3-6 cm depth and 186 μg g
-1 

at 

6-12 cm depth in CM and 336 μg g
-1 

at 0-3 cm depth, 232 μg g
-1 

at 3-6 cm depth and 161 μg g
-1 

at 

6-12 cm depth in MPM. On the other hand, our results were consistent with the urease activities 

reported by Zhang et al. (2010), wherein they found that, depending upon the species richness in 

the full scale constructed wetlands obtained on the treatment of domestic wastewater activities 

ranged from 120 to 400 μg g
-1

. This may be due to removal of nitrogen is more or availability of 

ammonium is less in our CWs when compared to other systems.  This is a continuous input of 

nutrients, uric acid and microbes into the wetland system. Therefore, higher urease enzyme 

activity is evident with high TN in sediment (soil) samples. Since, higher microbial populations  

(Dong & Reddy, 2010) require higher amounts of NH4 as a N source and due to the lack of 

required NH4 concentration, microbes produce urease enzyme to hydrolyze uric acid which is a 

part of total N. 

 4.1.2 Phosphatase activity.  In CM and MPM phosphatase activity showed highest in 

top 0-3 cm depth than other two depths (Figure 5). Inlet portion of CM samples showed 

significantly decreased phosphatase activity between 0-3 and 3-6 cm whereas, in outlet the 

difference was not significant among the depths. The lowest enzymatic activity (12 µg g
-1 

soil) 

was observed in 6-12 cm depth of CM inlet and MPM pond area. In CM, phosphatase activity 

was observed similarly at 0-3 cm soil samples in inlet and outlet, whereas higher activity was 

observed at 3-6 cm and 6-12 cm depth samples in outlet portion of wetland. In MPM, the activity 

of phosphatase increased from inlet to outlet at all three depths. Phosphatase activity was highest 

in marsh (outlet) area than the pond area and the difference was significant (P<0.05). Although,  
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Figure 5. Phosphatase activity in each site at different soil depths in the Continuous marsh (CM) 

Marsh pond marsh (MPM) constructed wetlands (mean± SE, n = 4).  

Note: Means having the same letters in common are not significantly different at the 5% level of 
probability for each site at different soil depths of CM and MPM as determined from t-test pair 

comparison. 

CM showed highest phosphatase activity, significant difference was not found between CM and 

MPM wetland systems. Phosphatase activity showed significant difference between inlet and 

outlet in MPM, whereas in CM the difference was not significant (Table 3). 

         In the earlier studies (Kong et al., 2009) phosphatase activity in surface flow constructed 

wetlands was reported as 120-140 μg g
-1

 for 0-5 cm depth, 90-110 μg g
-1

 for 15-20 cm depth,   

85-100 μg g
-1

 for 35-40 cm depth depending upon the species used in the study. On the other 
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hand, in natural wetlands at fen site very high phosphatase activity (4675-9680 μg g
-1

)  was 

observed  (Kang & Freeman, 1999). Our observations on constructed wetland systems treated 

with swine wastewater which was 66 μg g
-1 

in CM and 37 μg g
-1

 in MPM were comparable to 

Kong et al. (2009) but were very low compared to Kang and Freeman (1999). This may be due to 

the fact that treated swine wastewater contains lot of inorganic phosphate or available 

phosphorus in the sediments (Table 2) that might have decreased the phosphatase activity in our 

constructed wetlands. This is in agreement with  Reddy et al. (2001), Poach et al. (2004a), Hunt 

et al. (2002) work, indicated that 40-45% of phosphorus (P) was removed from the swine 

wastewater or 55-60% of  P available in wastewater when constructed wetlands were treated 

with 3 to 36 kg N per ha
-1

 day
-1

. 

4.1.3 Arylsulfatase activity. Arylsulfatase activity was decreased with the increasing 

depths in CM and MPM wetlands (Figure 6). In CM inlet portion showed significant decrease in 

enzyme activity between 0-3 and 6-12 cm depths, whereas in outlet no significant difference was 

observed between the depths. In MPM, inlet and outlet points showed significant difference in 

enzyme activity between 0-3 and 6-12 cm depths and in pond area no significant decrease was 

observed among three depths. In CM, the activity of arylsulfatase decreased from inlet to outlet 

65 to 57 µg/g at 0-3 cm depth and no difference was found at 3-6 cm depth.  

In MPM, arylsulfatase activity was higher in marsh area compared to pond area and the 

difference was statistically significant (P<0.05) among them. No significant difference in 

enzyme activity was observed between inlet and outlet in both CM and MPM (Table 3). CM 

wetland showed significantly (P<0.05) higher arylsulfatase activity than in MPM wetland. The 

microbial demand for sulfur is higher in CM as compared to MPM. Finally, arylsulfatase activity 

depends on the availability of sulphate ion in both CM and MPM wetlands.     



33 

 

 

Figure 6. Arylsulfatase activity in each site at different soil depths in the Continuous marsh 

(CM) and Marsh pond marsh (MPM) constructed wetlands (mean± SE, n = 4).  

Note: Means having the same letters in common are not significantly different at the 5% level of 

probability for each site at different soil depths of CM and MPM as determined from t-test pair 

comparison. 
 

Microbial arylsulfatase enzyme activity in the Laurentian Great Lakes wetlands was 

reported to be 24-239 nmol g C
-1

 h
-1

(Hill et al., 2006). Whereas in natural wetlands at fen site it 

was observed in the range of 200-700 µg g
-1

 (Kang & Freeman, 1999). The enzyme activities in 

our constructed wetland systems were 58 μg g
-1 

and 35 μg g
-1 

in CM and MPM wetlands, 

respectively.  Lower arylsulfatase enzyme activity could be due to lower uptake of sulphur by 
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plants and microbes which is a more important process than the lower mineralization by which 

SO4 is released into the wetland or treated swine wastewater contains higher amounts of 

inorganic sulfate or available sulphur in wetlands that might decrease the enzyme activity 

compared to other systems in our study. 

 4.1.4 β-glucosidase activity. β-glucosidase activity showed highest at 0-3 cm depth in 

CM and MPM (Figure 7). A decreased enzymatic activity was observed with increasing depths 

in both wetland systems, and the difference was not significant (P<0.05). In CM system            

β- glucosidase activity decreased from inlet to outlet 66 to 60 µg/g at 0-3 cm depth. In MPM, the 

activity of enzyme decreased from inlet to outlet 48 to 35 µg g
-1

 at 0-3 cm depth and 35 to        

29 µg g
-1

 at 3-6 cm depth. The pond section showed less enzyme activity than marsh area in 

MPM system and the difference among them was highly significant (P<0.05). The enzyme 

activity was significantly (P<0.05) higher in CM compared to MPM wetland. In CM and MPM, 

the activity of β-glucosidase was observed no significant between inlet and outlet (Table 3).  

 Hill and co-workers (2006) in their study on Laurentian Great Lakes wetlands found the                   

β-glucosidase activity to be in the range of 581 to 1262 nmol g C
-1

 h
-1

. In naturally decomposing 

litter at medium salinity rate, 2200 to 3670 μg g
-1

 range of β-glucosidase activity was   

observed (Rejmankova & Sirova, 2007). Lower enzyme activities compared to these activities 

were observed in our constructed wetland systems which were 54 μg g
-1 

and 32 μg g
-1

 in CM and 

MPM wetlands, respectively. Lower enzyme activity may be due to an excess of low molecular 

weight carbon in our wetland sediments compared to other wetlands. When such readily 

metabolized soluble carbon is freely available, it has been suggested that there is no need for 

microorganisms to acquire it enzymatically (Chrost & Rai, 1993).  We observed lower β-

glucosidase activity when compared to other eco-systems. 
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Figure 7. β-glucosidase activity in each site at different soil depths in the Continuous marsh 

(CM) and Marsh pond marsh (MPM) constructed wetlands (mean± SE, n = 4).  

Note: Means having the same letters in common are not significantly different at the 5% level of 

probability for each site at different soil depths of CM and MPM as determined from t-test pair 
comparison. 

 

4.1.5 Dehydrogenase activity. In CM and MPM dehydrogenase activity decreased with 

the depth of wetland (Figure 8). In CM, enzyme activity decreased from inlet to outlet showing 

no significant difference among distance in wetland.  

The distance from inflow to outflow did not show any significant difference in enzyme 

activity in MPM. In pond area the activity was less compared to marsh area in MPM system. 

Dehydrogenase activity was significantly (P<0.05) higher in CM Compared to MPM. The 

activity of dehydrogenase was observed no significant between inlet and outlet in both CM and 
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MPM (Table 3). Enzyme activity was not significantly different among 3-6 and 6-12 cm depth in 

all samples taken in CM and MPM. 

 

Figure 8. Dehydrogenase activity in each site at different soil depths in the Continuous marsh 

(CM) and Marsh pond marsh (MPM) constructed wetlands (mean± SE, n = 4). 

Note: Means having the same letters in common are not significantly different at the 5% level of 

probability for each site at different soil depths of CM and MPM as determined from t-test pair 

comparison. 
 

            The dehydrogenase activities in our study were observed to be 15 μg g
-1 

in CM and 3 μg 

g
-1 

in MPM. On the contrary, Zhang et al. (2010) reported 4-6 times higher activities for 

domestic wastewater treated full scale constructed wetland. 

      Enzyme activities were higher in upper 0-3 cm depth for all five enzymes understudy in 

CM and MPM systems. Earlier studies have also reported that activities of enzymes were higher 

in upper sediment depths (Aon & Colaneri, 2001; Niemi et al., 2005). In our study, enzyme 
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activities in these wetlands are oxygen availability, organic carbon availability, pH and soil 

nutrients. In these CW, swine wastewater first flowed from inlet area to outlet area and surface 

soil is exposed to nutrient and organic carbon rich wastewater and therefore, could influence the 

rate of microbial growth and enzyme activity in upper 0-3 cm sediment depth. The decrease in 

the enzyme activities could be due to changes in microbial population, decrease in novo 

synthesis of enzymes or increase of inhibitors such as metal ions under the reduced condition  

 (Freeman et al., 1996; Pulford & Tabatabai, 1988). 

Table 3 

Enzyme activity (µg/g) in the inlet and outlet points of Continuous marsh and Marsh pond marsh 

wetland cells. 

 

Note:  † Means having the same letters in common are not significantly different at the 5% level of 
probability for inlet and outlet points of CM and MPM as determined from t-test pair comparison. 

 For all five enzymes in our study, we could not find any significant difference between 

inlet and outlet values in both CM and MPM (Table 3). This may be due to 10 year long 

utilization of our CWs for swine wastewater treatment which would have affected the settling of 

organic matter, nutrient and microbial influx in inlet and outlet areas of both the wetlands. 

Enzymes 

CM  MPM 

Inlet† Outlet†  Inlet† Outlet† 

Urease 832
 a
 948

 a
 918

 a
 718

 a
 

Phosphatase 91
 a
 119

 a
 83

 a
 128

 b
 

Arysulfatase 130
 a
 127

 a
 100

 a
 70

 a
 

β-glucosidase 143
 a
 144

 a
 99

 a
 92

 a
 

Dehydrogenase 33
 a
 9

 a
 7

 a
 4

 a
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 In MPM, our results clearly indicated that enzyme activities were higher in marsh area in 

comparison to pond area (Table 4). Because the presence of plants could influence the changes 

of enzyme activities in marsh area by supplying organic carbon and modifying hydrochemistry 

in rhizosphere. Choi et al. (2009) reported that the organic carbon supplemented by root 

exudates, root debris and plant residue played an important role in increasing enzyme activities 

in the sediments with plants. He also reported sediments with wetland plants exhibited 

significantly higher enzyme activities of β-glucosidase, arysulfatase, phosphatase and               

N-acetylglucosaminidase. He observed significant differences in sediment organic matter 

between vegetated and nonvegetated sediments and found sediment organic matter was higher in 

the vegetated sediments.  

Table 4 

Enzyme activity difference in the marsh and pond areas of Marsh pond marsh wetland cell 

Enzymes                      Marsh† ….µg/g…. Pond† 

Urease 918
a
 554

a
 

Phosphatase 128
a
 65

 b
 

Arysulfatase 100
a
 59

 b
 

β-glucosidase 99
a
 43

 b
 

dehydrogenase 7
a
 4

 a
 

 

Note: † Means having the same letters in common are not significantly different at the 5% level of 

probability for MPM as determined from t-test pair comparison. 

 

 The lowest enzymes activities were detected in the pond, which might explain the slow 

decomposition rate in the pond area. Activities of phosphatase, β- glucosidase and arysulfatase 

were found significantly (P<0.05) higher in marsh area than pond area (Table 4). Urease and 
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dehydrogenase activities were higher in marsh area but not significant. In this study, all enzyme 

activities were higher in CM than in MPM. This suggested that the characteristics of CM wetland 

were different from MPM wetland. 

4.2 Relationship between enzyme activities to nutrient concentration 

         In CM and MPM at each site at different depths, the relationship between urease activity 

to ammonium concentration and phosphatase activity to phosphate concentration were 

determined by linear correlation analysis. No significant (P<0.05) correlation was found between 

urease activity and ammonium concentration and phosphatase activity and phosphate 

concentration in CM and MPM at all three depths. 

 From an ecological point of view, it is believed that an inverse relationship would exist 

between nutrient availability and enzyme activity (Sinsabaugh et al., 1993). The fundamental 

relationships between them are repression-depression and end product inhibition of the enzyme 

(Chrost, 1991). High enzyme activity indicates nutrient limitation (Sinsabaugh et al., 1993), and 

sometimes a pattern of increasing enzyme activity with decreasing nutrient availability found in 

soil. For example phosphatase activity increases as P declines (Allison & Vitousek, 2005; 

McGill & Cole, 1981) in soil. Activity of the N-releasing enzyme, chitinase, increases as N 

declines (Olander & Vitousek, 2005) in soil. However, the negative relationship between 

enzymatic activity and nutrient availability has not been established. There are contradictory 

reports concerning the relationship between enzymes and inorganic nutrient content in the soil 

(Speir & Ross, 1978). In CM and MPM systems, we could not find a relationship between urease 

activity to ammonium concentration and phosphatase activity to phosphate concentration and 

this observation was due to several factors. First, either enough nutrients are not available in our 

CWs to microbes that are heterotrophic and autotrophic in nature. Secondly, treated swine 
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wastewater contains very high autotrophic microbial populations (Dong & Reddy, 2010) that 

demand more ammonium and become competitive to heterotrophs. Thirdly, continuous process 

where input or source and output or removal of nutrients occurring simultaneously in our 

wetland systems. Fourthly, the soil enzymes are largely stabilized by humus and clay, and are 

thus independent of microbial regulation (Burns, 1982). These base line enzyme activities do not 

respond to low nutrient availability (Clarholm & Rosengren-Brinck, 1995). Finally, treated swine 

wastewater contains excess amounts of microorganisms, inorganic nitrogen and phosphorus that 

might have affected the relationship between them. 

4.3 Microbial Biomass Carbon (MBC) at different depths 

      MBC was determined at three depths (0-3 cm, 3-6 cm and 6-12 cm) in CM and pond area 

of MPM wetlands (Table 5). Highest biomass carbon was observed in 0-3 cm depth of soil 

samples. In both wetlands MBC decreased with the depth and no significant (P<0.05) difference 

was found between the depths and this is due to the sampling in close soil depths.  

 Biomass carbon was higher in marsh area compared to pond area and the difference was 

not significant (P<0.05) among them. These results indicated that high amount of microbial 

activity carried out in marsh area than pond area. This is true in our study, where higher 

enzymatic activities carried out in marsh area compared to pond area for all five enzymes in CM 

and MPM systems. 

4.4 Relationship between enzyme activity to TC and TN 

         Relationship between enzyme activity to TC and TN was determined by correlation 

analysis (Table 6 and 7). It was found that urease, phosphatase and arylsulfatase activities were 

strongly correlated to TC and TN at 0-3 cm depth in CM. In MPM, urease and phosphatase 

activities showed significant correlation with TC and TN. The results indicate that urease,  
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arylsulfatase and phosphatase activities are strongly dependent on the availability of total carbon 

and total nitrogen in the soil organic matter. β-glucosidase activity was significantly correlated 

with total carbon in CM. 

Table 5 

Microbial Biomass Carbon (MBC) values at three different depths in CM and pond area of 

MPM  

 

 This suggests that organic matter which contain different carbohydrates have been 

hydrolyzed into two sugar units in order for glucosidase was actively engaged to form glucose 

units for heterotrophs to consume as their carbon source. These results suggested that TC and TN 

in CWs influencing enzyme activity and decomposition ability. Our results shown that, still some 

enzymatic activities carried out in CWs even they received high concentration of nutrients 

through swine wastewater application. 

 
CM (Pond) MPM 

 ………………………….mg kg
-1

………………………….. 

Sub 

Sample 

 

Depth (cm) 

0-3 3-6 6-12 0-3 3-6 6-12 

S1 574.7 659.9 490.6 533.7 465.7 424.1 

S2 609.5 590.1 602.6 472.3 455.6 411.1 

S3 684.4 522.9 565.3 511.2 418.5 410.5 

Mean 622.9 591.0 552.8 505.7 446.6 415.2 
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Table 6 

Correlation coefficients between soil enzyme activity and TC and TN at 0-3 cm depth in 

Continuous marsh wetland 

 

Note: † * Represent significant correlations at p < 0.05. 

** Represent significant correlations at p < 0.01. 
NS   

Represent no significant correlations at p < 0.05. 

Table 7 

Correlation coefficients between soil enzyme activity and TC and TN at 0-3 cm depth in Marsh 

pond marsh wetland 

 

 Note: † * Represent significant correlations at p < 0.05. 

** Represent significant correlations at p < 0.01. 
NS   

Represent no significant correlations at p < 0.05. 

 

Enzymes  Total C†  Total N† 

Urease  0.92**  0.95** 

Phosphatase  0.75**  0.71** 

Arylsulfatase  0.89**  0.76** 

β-glucosidase  0.71**          0.59* 

dehydrogenase          0.63*  0.80** 

Enzymes  Total C†  Total N† 

Urease  0.97**  0.97** 

Phosphatase  0.95**  0.96** 

Arylsulfatase  0.78**           0.69* 

β-glucosidase           0.67*           0.63* 

dehydrogenase  0.42
NS

  0.51
NS
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CHAPTER 5 

Conclusion 

        The constructed wetlands (1 CM and 1 MPM) studied at North Carolina A&T State 

University
’
s swine unit have clearly shown that all five enzyme activities were decreased from  

0-3 to 6-12 cm soil depths. Our results show that the presence of wetland plants can increase the 

enzyme activities in both CM and MPM wetlands. Phosphatase, arysulfatase and β-glucosidase 

activities were observed significantly higher in the marsh area compared to pond area of MPM 

wetland, whereas, urease and dehydrogenase activities were found to be not significant. For all 

five enzymes, highest enzymatic activity was carried out in CM wetland in comparison to MPM 

wetland. The above results indicated that MPM wetlands are effective in purifying the swine 

wastewater by retaining the excess nutrients in the wetland sediments. We observed some 

enzymatic activity in our CWs, even they received high concentration of nutrients through swine 

wastewater application. In the present study, various exudates from plants, high inorganic 

nutrients, microorganisms and total solids from swine wastewater, detritus of plants and wetland 

microorganisms seems to contribute to the biogeochemistry of the wetlands. These excess 

inorganic nutrients may not be sufficient for our wetland microorganisms so they released 

enzymes, these are acted on organic matter and decomposed into inorganic nutrients for their 

growth and development. Urease, arylsulfatase and phosphatase enzymes in this study were 

strongly correlated to TC and TN at 0-3 cm depth in CM and MPM. No significant correlations 

were found between urease activity to inorganic ammonium and phosphatase activity to 

inorganic phosphate concentration in both CM and MPM. 

       In general higher enzymatic activities are observed in agricultural soils and wetland 

sediments where lower nutrients concentration exists. In order for CWs to be efficient in 
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nutrients removal the enzyme activity must be lower. Previous studies indicated that higher the 

nutrient loading into these wetlands, lower the nutrients removal efficiency was observed. Even 

at 15 kg N loading, N and P removal was only 60% and 35%, respectively. It suggests that 

enzyme activity is continuously contributing to the release of inorganic nutrients which will 

reduce the wetlands efficiency. 
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Appendix A 

Nutrients data in CM and MPM Wetlands 

A.1 TC data in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

21800 9300 9200 52600 18100 9500 

10500 6900 8500 19400 7900 5300 

9700 9300 3900 8500 8500 6600 

11200 8000 7200 12000 20400 3900 

       

Mid 

11400 7700 8000 11100 4100 4000 

21400 6200 4400 11300 12900 7300 

7600 6000 9700 4200 3900 3700 

26500 9400 7800 1500 2800 2300 

       

Outlet 

14000 11400 5400 7900 5000 6200 

8000 8900 7800 9000 6400 7600 

10700 8100 10700 9900 9700 7100 

9900 14400 7400 17800 8800 5700 
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A.2 TN data in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

2700 1100 1100 5100 2000 1100 

1100 800 800 1700 900 600 

1000 1000 400 1000 1000 700 

1200 800 700 1200 1100 500 

       

Mid 

1200 800 700 900 800 800 

2200 700 600 1800 2100 1300 

700 500 800 700 700 600 

2500 900 900 400 500 700 

       

Outlet 

1200 1000 500 900 700 800 

800 800 700 900 700 600 

1000 800 900 1000 1000 900 

900 1300 700 1700 1000 600 

 

 

 

 

 

 

 

 



61 

 

A.3 Ammonium (NH4) data in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

155 80.8 15 37.2 22.2 21.4 

35.8 13.9 2.57 9.32 4.44 1.61 

16.9 4.99 1.45 15.2 18.5 30 

19.7 9.36 3.41 8.5 7.56 26.8 

       

Mid 

6.64 5.3 1.86 49.8 132 220 

4.42 3.41 2.3 186 228 191 

2.9 3.53 1.39 33.7 30.7 50.3 

35.1 15.4 6.95 51.8 50.1 62.6 

       

Outlet 

10.3 3.83 1.73 3.25 2.99 2.58 

2.74 2.48 1.57 2.05 1.96 1.38 

3.53 2.59 2.56 2.01 3.3 1.49 

5.08 3.84 2.7 3.92 3.51 1.25 
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A.4 Nitrate (NO3) data in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

48.1 9.42 13.3 142 54.6 18.2 

6.61 4.28 3.59 20.1 6.7 2.17 

4.66 3.41 7.48 7.72 4.57 2.29 

7.8 3.62 5.42 17.5 1.74 0.381 

       

Mid 

0.982 0.816 0.633 1.29 0.136 0 

1.98 0 0.159 0.177 0 0 

0.2 0 0.641 0.251 0.112 0.18 

19.5 1.33 0.906 0.147 0.163 0.123 

       

Outlet 

0.339 1.73 0.377 4.51 1.14 1.39 

0 0.225 0.187 3.26 1.1 0.634 

3.99 1.09 0.234 2.76 1.38 0.69 

1.63 1.58 0.945 8.72 1.7 0 
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A.5 Ortho Phosphate (PO4) data in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

819 545.3 246.4 616.7 488.6 350.7 

467.6 298.9 53.9 480.2 270.2 79.1 

331.1 118.3 3.073 375.9 163.1 32.13 

419.3 350.7 25.9 563.5 303.1 53.76 

       

Mid 

277.2 129.5 31.36 284.9 34.16 7.91 

336.7 108.5 88.2 81.2 16.03 10.78 

404.6 124.6 10.5 178.5 79.1 43.68 

478.8 266.7 214.9 189 241.5 75.6 

       

Outlet 

387.8 318.5 34.93 325.5 200.2 196.7 

333.9 158.9 103.6 341.6 120.4 119.7 

296.8 213.5 133 333.2 291.9 185.5 

348.6 216.3 28.84 403.9 287 109.9 
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Appendix B 

Enzymes Data in CM and MPM Wetlands 

B.1 Urease activity in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

1477.4 387 324.6 2597.4 1093.4 755 

498.2 311.8 196.6 555.8 317.4 143.8 

219 176.6 86.2 330.2 513.4 245.4 

372.6 227.8 165.4 336.6 191.8 122.2 

       

Mid 

363 211.8 151 316.6 196.6 163.8 

1053.4 282.2 153.4 285.4 507.4 377.4 

239 226.2 210.2 83.8 105.4 91.8 

1157.4 264.6 215.8 84.6 91 152.6 

       

Outlet 

671 456.6 187.8 206.2 127 191.8 

251.8 247 155 231 202.2 147 

585.4 353.4 252.6 359 356.6 264.6 

239 249.4 143.8 407.8 222.2 158.2 
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B.2 Phosphatase activity in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

116.58 25.32 20.1 391.69 118.5 35.56 

26.52 14.56 42.34 35.94 31.6 32.14 

87.06 17.74 0.75 13.5 21.24 6.52 

62.3 26.56 15.57 26.04 30.28 45.23 

       

Mid 

81.54 65.25 33.6 44.85 21.6 71.88 

283.2 39.5 81.74 33.52 15.52 36.38 

32.82 35.16 112.81 20.89 4.84 10.76 

149.4 93.85 50.12 9.04 24.12 13.43 

       

Outlet 

109.14 82.6 19.2 26.76 46.06 41.64 

40.68 43 34.63 27.12 37.05 25.05 

51.66 41.2 23.35 42.08 14.12 54.18 

62.64 64.04 69.39 79.72 47.3 40.16 
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B.3 Arysulfatase activity in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

130.16 33.44 31.07 62.70 51.64 43.05 

54.37 48.73 53.17 50.80 26.38 14.34 

35.43 46.19 15.87 27.74 33.05 23.05 

43.72 26.01 30.19 46.10 13.47 7.95 

       

Mid 

56.20 30.72 34.4 45.76 20.03 7.11 

195.36 40.8 38.17 24.14 35.8 23.52 

50.52 18.37 40.83 10.08 16.41 10.67 

306.42 49.84 38.73 4.39 6.15 11.7 

       

Outlet 

148.84 36.92 30.41 27.52 20.22 17.23 

69.30 34.11 33.07 27.23 20.31 12.64 

118.20 42.68 45.68 30.98 45.97 22.77 

45.10 29.97 33.07 40.70 28.77 11.89 
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B.4 β- glucosidase activity in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

59.45 48.1 36 55.00 62.95 32.46 

49.80 49.7 42.42 16.20 39.15 22.41 

15.80 47.62 16.45 40.56 36.58 26.5 

30.50 55.54 41.3 25.40 29.48 15.71 

       

Mid 

36.95 102.28 38.04 33.17 21.87 5.29 

93.96 41.31 32.27 15.46 29.38 21.11 

17.40 31.22 48.28 9.62 13.88 9.48 

106.62 39.28 28.71 3.28 7.76 3.98 

       

Outlet 

95.36 44.2 35.25 12.28 23.16 22.01 

23.68 54.41 25.85 7.80 29.38 20.07 

95.70 55.54 56.38 39.42 55.44 31.84 

26.60 24.96 38.88 36.85 37.27 22.32 
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B.5 Dehydrogenase activity in CM and MPM systems 

Wetland CM  MPM 

 
0-3 cm 3-6 cm 6-12 cm 0-3 cm 3-6 cm 6-12 cm 

           …………………….(µg g
-1

 soil)……………………. 

Inlet 

63.026 12.419 12.245 6.855 8.69 2.668 

16.438 6.771 6.432 4.162 2.549 0.279 

11.313 4.965 1.413 3.755 1.523 1.158 

13.118 2.406 0.723 4.395 0.679 0.501 

       

Mid 

4.405 2.205 0.523 5.511 1.216 0.123 

27.617 5.993 3.255 11.564 7.604 5.343 

1.668 1.344 0.612 0.591 0.487 0.279 

14.493 3.726 1.278 0.134 0.928 0.59 

       

Outlet 

7 3.812 0.345 2.768 0.813 3.322 

4.251 3.094 1.389 2.329 0.353 0.59 

3.279 3.582 1.034 3.463 1.293 1.323 

2.263 5.161 0.545 3.81 0.852 0.345 
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