
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University 

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship 

Theses Electronic Theses and Dissertations 

2012 

Modeling And Analysis Of Cascading Effects Of Weapons Of Modeling And Analysis Of Cascading Effects Of Weapons Of 

Mass Destruction (Wmd) Events On Critical Infrastructure Mass Destruction (Wmd) Events On Critical Infrastructure 

Systems Systems 

Sliman Amrani Joutei 
North Carolina Agricultural and Technical State University 

Follow this and additional works at: https://digital.library.ncat.edu/theses 

Recommended Citation Recommended Citation 
Joutei, Sliman Amrani, "Modeling And Analysis Of Cascading Effects Of Weapons Of Mass Destruction 
(Wmd) Events On Critical Infrastructure Systems" (2012). Theses. 72. 
https://digital.library.ncat.edu/theses/72 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital 
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie 
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu. 

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/72?utm_source=digital.library.ncat.edu%2Ftheses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu


MODELING AND ANALYSIS OF CASCADING EFFECTS OF WEAPON OF MASS 

DESTRUCTION (WMD) EVENTS ON CRITICAL INFRASTRUCTURE SYSTEMS 
 

 

 

 

by 

 

 

 

 

Sliman Amrani Joutei 

 

 

 

 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

 

 

 

 

 

Department: Electrical and Computer Engineering 

Major: Electrical and Computer Engineering 

Major Professor: Dr. Marwan Bikdash 

 

 

 

 

 

 

 

North Carolina A&T State University 

Greensboro, North Carolina 

2012



 ii 

School of Graduate Studies 

North Carolina Agricultural and Technical State University 

 

 

 

This is to certify that the Master’s Thesis of 

 

 

Sliman Amrani Joutei 

 

 

 

has met the thesis requirements of 

North Carolina Agricultural and Technical State University 

 

Greensboro, North Carolina 

2012 

 

 

Approved by: 

 

_________________________________           ________________________________ 

  Dr. Marwan Bikdash                                           Dr. Numan S. Dogan 

  Major Professor                       Committee Member 

 

_________________________________           ________________________________ 

  Dr. Robert Li                                                        Dr. John C. Kelly 

  Committee Member                        Department Chairperson 

 

 

 

___________________________________ 

Dr. Sanjiv Sarin 

Associate Vice Chancellor of Research and Graduate Dean   



 iii 

DEDICATION 

 

This work is dedicated to my wife and children, my dad, my mom, my mother-in-

law and my brother’s-in-law family for their prayers and unflinching support through my 

years of education. 



 iv 

BIOGRAPHICAL SKETCH 

 

Sliman Amrani Joutei was born on September 17, 1968, in Casablanca, Morocco. 

He received the Bachelor of Science degree in Chemistry from Mohamed V University of 

Morocco in 1997. He is a candidate for the Master in Electrical Engineering at the North 

Carolina Agricultural and Technical State University.  

  



 v 

ACKNOWLEDGMENTS 

 

It is a great pleasure to express many thanks to my advisor, Dr. Marwan Bikdash, 

for his support and enthusiastic advice. The past two and half years at North Carolina 

Agricultural and Technical State University have been some of the happiest times in my 

life. I also would like to thank Dr. Numan S. Dogan and Dr. Robert Li for their service as 

my committee members and for providing valuable advice. 

Additionally, I would like to thank the Advanced Systems and Concepts Office 

(ASCO) at the Defense Threat Reduction Agency (DTRA) for their support of the 

Student Research Associate Program (SRAP) under the University Strategic Partnership 

(USP) and for the support of Pennsylvania State University (PSU) and DTRA under 

contract DTRA01-03-0010-0016, which provided partial funding for my work. Also, 

special thanks are due to Dr. Bharat B. Madan, PSU for collaborating and helping with 

this work.  

  



 vi 

TABLE OF CONTENTS 

TABLE OF CONTENTS ................................................................................................... vi 

LIST OF FIGURES ......................................................................................................... viii 

LIST OF TABLES .............................................................................................................. x 

LIST OF ACRONYMS ..................................................................................................... xi 

ABSTRACT     .................................................................................................................. xii 

CHAPTER 1 INTRODUCTION ........................................................................................ 1 

1.1 WMD attacks and other threats under investigation ............................................ 1 

1.2 Petri Nets .............................................................................................................. 3 

1.3 Markov Chains ..................................................................................................... 5 

1.4 Synopsis ............................................................................................................... 6 

CHAPTER 2 BACKGROUND .......................................................................................... 8 

2.1 Petri Nets review .................................................................................................. 8 

2.1.1 Synchronization, Concurrency, and Conflict in Petri Nets ......................... 10 

2.1.2 Stochastic Petri Nets ................................................................................... 12 

2.2 Markov chains .................................................................................................... 14 

2.2.1 Discrete-Time Markov Chains (DTMC) .................................................... 14 

2.2.2 Continuous-time Markov chains (CTMC) .................................................. 15 

2.3 Hidden Markov Chains ...................................................................................... 16 

CHAPTER 3 MARKOV MODEL REPRESENTATION OF PETRI NETS .................. 19 

3.1 A motivating example ........................................................................................ 19 

3.2 Use of the Incidence Matrices ............................................................................ 21 



 vii 

3.3 Markov Model Representation (MMR) of a Petri Net ....................................... 23 

3.4 Algorithm to Find the MMR for Petri Net Incidence Matrices.......................... 27 

3.5 Steady-State of the MMR ................................................................................... 29 

3.6 Estimating the Probability Transition Matrix from Monte Carlo Simulations .. 31 

3.7 Analysis of Communicating Classes .................................................................. 34 

CHAPTER 4 A HIERARCHICAL FAULT MODEL FOR WMD ATTACKS .............. 36 

4.1 A Hierarchical Model ......................................................................................... 36 

4.1.1 The Health Infrastructure Subsystem (HIS) ............................................... 37 

4.1.2 The Information Infrastructure Sub-System ............................................... 39 

4.1.3 The Transportation Infrastructure Subsystem (TIS) ................................... 40 

4.2 The Weapon of Mass Destruction Event............................................................ 41 

4.3 The overall Model in Snoopy ........................................................................... 44 

CHAPTER 5 ANALYSIS USING MONTE CARLO SIMULATIONS ......................... 45 

5.1 Monte Carlo simulation description ................................................................... 45 

5.2 The output data from Snoopy software ............................................................. 45 

5.3 Statistical Analysis of the Monte Carlo Simulation ........................................... 46 

5.3.1 The Tokens distribution .............................................................................. 46 

5.3.2 The Communicating Classes....................................................................... 50 

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ................................................. 52 

REFERENCES ................................................................................................................. 53 

 



 viii 

LIST OF FIGURES 

 

FIGURES 

 

PAGE 

Figure 2.1. A Petri Net with one enabled transition, two places and one token ................. 9 

Figure 2.2. Place P₁ looses one token and Place P₂ wins one token .................................. 9 

Figure 2.3. Example of sequential execution: T₂ fires only when T₁ has already fired ... 10 

Figure 2.4. Synchronization example: Place P1 cannot fire until P2 receives a token ..... 11 

Figure 2.5. Example of merging proprieties ..................................................................... 11 

Figure 2.6. Example of concurrent transitions .................................................................. 12 

Figure 2.7. Example of a conflict ...................................................................................... 12 

Figure 2.8. Conflict resolution pseudo-code ..................................................................... 13 

Figure 2.9. Hidden Markov Model (HMM) example ....................................................... 17 

Figure 3.1. The simple model snapshot from Snoopy 2.0 .............................................. 19 

Figure 3.2. Petri Net example with 3 places and 4 transitions .......................................... 22 

Figure 3.3. A Petri Net example constructed in Snoopy ................................................. 24 

Figure 3.4. The Markov Chain representation of the Petri Net in Figure 3.3 ................... 25 

Figure 3.5. Algorithm for the representation of the Petri Net by a Markov model .......... 28 

Figure 3.6. State trajectory as an impulse response .......................................................... 30 

Figure 3.7. Algorithm pseudo-code to compute P and Q ................................................. 31 

Figure 3.8. Alternative algorithm to compute P and Q ..................................................... 32 

Figure 3.9. Markov Model transition diagram for the Petri Net example ........................ 33 

Figure 3.10. Pseudo-code to compute Communicating classes ........................................ 34 



 ix 

Figure 3.11. The Class transition diagram for the petri Net example in Figure 3.3 ......... 35 

Figure  4.1. A Hierarchical model with first-order and second-order effects ................... 36 

Figure 4.2. Inter-Infrastructure dependence graph ........................................................... 37 

Figure 4.3. Health Infrastructure Model ........................................................................... 38 

Figure 4.4. Information Infrastructure Model ................................................................... 39 

Figure 4.5. The Transportation Infrastructure Model ....................................................... 40 

Figure 4.6. WMD Event Model ........................................................................................ 41 

Figure 4.7. Stochastic Petri Net Model for the hierarchical Fault Model ......................... 44 

Figure 5.1. Monte Carlo simulations averaged ................................................................. 47 

Figure 5.2. Token distributions for the main 3 places ...................................................... 47 

Figure 5.3. Images of correlation matrices based on 4 Monte Carlo runs ........................ 49 

Figure 5.4.  Image of the average correlation matrix ........................................................ 49 

Figure 5.5. Transition graph of the Markov Chain Representation of the HFM .............. 50 

Figure 5.6. Class representation of the hierarchical fault model ...................................... 51 

Figure 5.7. Image of P-I matrix ........................................................................................ 51 

 

  



 x 

LIST OF TABLES 

TABLES PAGE 

Table 3.1. The different markings reached in the Petri Net example ............................... 24 

Table 4.1. The different places in the hierarchical fault model (HFM) and their             

explanations ...................................................................................................................... 42 

Table 4.2. Stochastic transitions and their explanations ................................................... 43 

Table 5.1. Sample data (12) from simulation file 1 .......................................................... 45 

Table 5.2. The list of the headers in csv files (The places in the STPN) .......................... 46 

  



 xi 

LIST OF ACRONYMS 

 

BSCC               Bottom Strongly Connected Components 

CIS  Critical Infrastructure Systems 

IIS   Information Infrastructure Systems 

HFM               Hierarchical fault model 

HIS   Health Infrastructure Systems 

TIS   Transportation Infrastructure Systems 

MMR             Markov Model Representation 

 

  



 xii 

ABSTRACT 

 

Amrani Joutei, Sliman. MODELING AND ANALYSIS OF CASCADING EFFECTS 

OF WEAPONS OF MASS DESTRUCTION (WMD) EVENTS ON CRITICAL 

INFRASTRUCTURE SYSTEMS. (Major Professor: Marwan Bikdash), North 

Carolina Agricultural and Technical State University.  

 

This research studies how the global network behaves after a Weapon of Mass 

Destruction (WMD) attack. The goal is to find a reliable model that will help capture the 

behavior of the network in the event of a WMD attack and then proceed to a systematic 

analysis of that model. We discuss a hierarchical model that visualizes how a WMD 

attack will impact different infrastructure systems. The second level of the Hierarchical 

Fault Model (HFM) illustrates the failure propagation from one Critical Infrastructure 

System (CIS) to another CIS. Next, we construct a stochastic Petri Net for HFM of which 

we compute a Markov model representation that is subsequently developed and analyzed. 

In the developed models, both the repair and the failure are modeled to be random, 

and the repair process for one system depends on the actual system as well as on the 

damage severity in the other systems as well. For example, if the repair process of the 

Information System requires one day normally, the repair process will be further delayed 

by damages in the Transportation System or in the Hospital System. 

We develop algorithms and methods that allow the analysis of different aspects of 

the HFM such as understanding state trajectory dynamics and the statistics of the 

transient and steady-state behavior. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 WMD attacks and other threats under investigation 

The south tower of the world trade center in New York City was slammed by a 

plane at 9:03 AM, and at 9:21 AM another plane hit the North tower. Additionally, more 

attacks were carried out in Washington DC and New Pittsburg. This act left 2819 dead 

[1]. The rescue mission was impaired by secondary damages. For instance, the 

Emergency Operation Center, a $15 million facility opened in 1999 and located in the 

23d floor of the World Trade Center building was also destroyed [1]. In this particular 

case, terrorists used knives to hijack planes but what if the terrorists decide to use more 

sophisticated weapons in order to conduct and carry out their operations? What if 

terrorists used chemical or biological weapons?  

Terror events are not equal, therefore they should be classified. Furthermore, 

terrorist acts can be modeled as consisting of successive steps. The probability of a 

terrorist event is in fact the product of the conditional probabilities associated with the 

steps. Hence, in order to reduce the probability of terror events, we should aim at 

reducing conditional probabilities to the minimum [2]. 

 An example of terrorist attacks could be a cyber attack, which can be described as 

security failures (as opposed to reliability failures). Security failures are often by 

reliability failures [3]. An example is that of a Distributed Denial of Service (DDoS) 

attack when a group of synchronized requests to a resource are sent to a network. The 
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goal of the attack is to prevent legitimate users access the resources and to push the 

system to the brink of reliability failures.  The simulation tools that can detect a cascading 

failure independently of security failure must be developed [4]. 

The entire natural resources can be thought of as linked together through "Cyber 

care", thus leading to a superior response to a terrorist attack [5]. Attacks may also be 

decentralized on integrated networks [6]. 

The Idaho National Laboratory (INL) is in the process of becoming an all hazard 

WMD technology evaluation and training range. The benefits of consolidating all types 

of training related to WMD in one facility are apparent [7].  

To increase the efficiency of a WMD attack response, an integrated Hierarchical 

Fault Model (HFM) such the one considered in this thesis is greatly beneficial. The 

modeling effort is complemented by designing sophisticated alarm systems to combat 

terrorism.  A micromachined differential mobility spectrometer (DMS), for instance can 

detect chemical and biological agents simultaneously on a time scale of seconds [8].  

A full model may also have to include government policies such as those 

enforcing antiterrorist regulations recommendations such as Biological Weapon 

Convention (BWC) and Chemical Weapon Convention (CWC) [9].   

One substructure of the network is the transportation network. Terrorists may use 

the trucking network to conduct an attack or try to destroy parts of it. Many command 

and control security systems can be used to prevent such attacks, such as, the use of GPS 

technology [10]. 
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 Another substructure of interest is the communication network. Its survivability 

is assessed using simulations and analytical model [11]. Although WMD deals primarily 

with the physical destruction of the network units, intrusion is possible after a WMD 

event to further weaken the network. 

 Network intrusion can be detected by using Markov Chains and the flag field in 

TCP/IP protocol [12]. 

One measure of the survivability counts the number of connected nodes in the 

largest communicating section of the network after attack. Algorithms are available to 

identify vulnerable nodes in the network [13]. Some nodes are more central than others 

and hence are crucial to survivability [14].  

Survivability can also be defined as the ability of the system to meet the minimum 

performance in the presence of undesirable events. Stochastic reward net and continuous 

Markov chains can be used to model the network survivability [15].  

1.2 Petri Nets 

Adam Petri introduced Petri Nets in 1962. Petri Nets are not only a graphical 

representation of dynamic systems but also a mathematical interpretation. This 

combination made Petri Nets successful in many different applications. For example, 

communication systems and survivability are few areas among many that benefited a lot 

from Petri Nets [16].  

A Petri Net consists of 3 objects: places, transitions, and directed arcs. A Petri Net 

marking denotes the number of tokens in each place.  Transitions and arcs dictate how the 

distributions of the tokens evolve over time [17]. 
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The flow of tokens and their distribution over the places is governed by two rules. 

First, the enabling rule in which a transition is enabled if it contains at least k tokens 

where  k is the multiplicity of the directed arc connecting  a place P to a transition T. 

Second, the firing rule in which a number of k tokens equal to the multiplicity of the 

directed arc TP are deposited in the output places [18]. 

Transient analysis for prioritized failure recovery in communication network was 

studied using Petri Nets. However, the focus was on the transient behavior of a queuing 

system with prioritized recovery [19]. 

Petri nets were also used to assess the survivability of object oriented software in 

design phase [20]. The distribution functions were defined to be the probability for the 

transition to be a failure. The coverage testing and fault density analysis were used to 

compute those distributions. 

Formal verification of a network survivability model was also presented using 

Petri Nets [21] where formal verification enabled the extraction of certain properties like 

reachability, boundedness, and fairness. 

The firing times can be stochastic, thus leading to Stochastic Petri Nets (STPN) 

where the exponential distribution is often used. The STPN can often be simplified to 

Continuous-Time Markov Chains (CTMC). If the resulting Markov chain is ergodic, the 

steady state probability could readily be obtained by using standard linear algebra 

techniques [22]. 
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1.3 Markov Chains 

Andrei A. Markov (1856-1922) proposed the concept of Markov Chains. Since its 

creation, Markov Chains found many applications as survivability and statistical models 

of real-world processes. Markov models have been used to study queuing systems with 

propagated breakdowns and thus survivability analysis was provided. In fact, the system 

returns to the normal state via the threshold in the queue length [23]. 

A survivability quantitative evaluation model was created based on Markov 

models, and was used to develop a methodology for choosing proper strategies and 

optimization of the system design [24]. 

Markov models were also used to evaluate the survivability for intrusion-tolerant 

real-time database systems (ITRDB) [25] and to predict with high accuracy the behavior 

of a real intrusion-tolerant database system. Experimental results show the validity of the 

model used [26]. 

In Markov Chains, the state space of possible values of the Markov Chain is finite 

or countable. Moreover, all the information needed to predict the future is contained in 

the present. At equally- spaced time points, the process evolves from one state to another 

and the one step transition matrix contains the probabilities of transitioning among the 

Markov states [27]. When the states are hidden and observations are generated according 

to some random rule, Hidden Markov models are used. They can represent complex 

Markov processes where the states emit the observations. More information could be 

found in [28]. 
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For a continuous time Markov Chains, a system in state O, can transition after a 

random time with an exponential distribution of parameter λ to another state. When a 

state has more than one state to transition to, the waiting time is exponentially distributed 

with parameter
1 2 ... n     . The probability to jump to a particular state is therefore 

simply the proportion of that rate [27]. 

1.4 Synopsis 

Critical Infrastructure systems (CIS) contain many infrastructure systems (e.g., 

Military, financial, transportation, health, etc.). When a Weapon of Mass Destruction 

(e.g. dirty terrorist bombs, massive nuclear explosion, etc.) affects one or many 

infrastructure systems, the rest of the CIS will be likely affected as well. For example: if a 

WMD destroys a power grid, then the process of repair of the power grid will be 

impaired or delayed because many processes (i.e. Information, Transportation… etc.) 

depends on the power grid. 

In this work, we limit our attention to three systems; namely, the Information 

System (IS), the Transportation System (TS), and the Health System (HS). The WMD 

may damage the different sub-networks differently, It might destroy the IS, TS, and HS 

by 30%-25%-40% respectively. A nuclear bomb attack might destroy the IS, TS, and HS 

by 30%-70%-10% respectively. 

 In chapter 2, we review some of the background necessary to understand this 

research. In chapter 3, we explore the Markov Model Representation of Petri Nets. In 

chapter 4, a Hierarchical Fault Model (HFM) for Weapon of Mass Destruction is 



 7 

constructed. In chapter 5, the HFM is subjected to various analyses, such as extensive 

Monte Carlo simulations, and deriving a representative Markov Model (MM) which is 

subsequently analyzed and develop the methodology and algorithms needed. We 

conclude in Chapter 6. 
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CHAPTER 2   

BACKGROUND 

 

2.1 Petri Nets review 

Petri nets are primarily used for studying the concurrent dynamic behavior of 

network-based systems where there is a discrete flow represented by a number of tokens. 

A Petri net is a bipartite directed graph formed by three types of objects: transitions, 

places, and directed arcs. Directed arcs connect either places to transitions or transitions 

to places. A Petri net consists of two types of nodes: places and transitions. An arc exists 

only from a place to a transition or from a transition to a place. A place may have zero or 

more tokens. Graphically, places, transitions, arcs, and tokens are represented 

respectively by circles, bars, arrows, and dots respectively.     

Figure 2.1 is an example of a Petri net with two places and one transaction. The 

transition node is ready to fire if and only if there is at least one token at each of its input 

places. As shown in Figure 2.1, the Petri Net has one token in the input place P₁. The 

place P₂ receives one token after transition T₁ fires. Figure 2.2 represents the resulting 

Petri Net after T₁ fires. The Petri Nets shown in Figure 2.1 and Figure 2.2 can be 

represented by the markings  [1,0] and [0,1] . Therefore, the marking transition has the 

form    1,0 0,1 .   
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Figure 2.1. A Petri Net with one enabled transition, two places and one token 

 

 

 

 

Figure 2.2. Place P₁ looses one token and Place P₂ wins one token 

 

Mathematically we write ( , , , )C P T I O  defined with the following sets and 

mappings. 

 

1 1 1

1 1 1

Places:          { , , ,.... }.

Transitions:  { , , ,... }.

Input:           : ( number of places).

Output:        O : ( number of places).

Marking      : assignment of tokens into pl

n

n

r

q

P p p p p

T t t t t

I T P r

T P q







 

 

1 2 3

aces.

Marking      : = , , ,....... .n     

 (2.1) 

 

The simulation of a stochastic Petri Net follows a simple scheme. In the case of one 

unique transition, the transition will fire if: 

 1 exp( ) ( ),t P X t    rand  (2.2) 

Here rand is a random number  0 1 ,  generated from a uniform distribution. 
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In the case of many transitions, one transition will fire if: 

 
1 2 31 exp( ( .... ) ).n t         rand  (2.3) 

But any transition i  will fire if    

 1 2

rand .
...



  


  

i

n

     

2.1.1 Synchronization, Concurrency, and Conflict in Petri Nets 

In Figure 2.3 transition 
2T  can fire only after the firing of 

1T . This imposes the 

precedence of constraints "
2T  after 

1T ". With this property, a Petri net is able to model 

processes executing sequentially in time.  

 

Figure 2.3. Example of sequential execution: T₂ fires only when T₁ has already fired 

 

 

In Figure 2.4 transition 
1T  will be enabled only when there are at least one token 

at each of its input places. With this property, a Petri net is able to model multiple 

processes executing with synchronization in time.  
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Figure 2.4. Synchronization example: Place P1 cannot fire until P2 receives a token 

 

 

In Figure 2.5 merging happens when tokens from several places arrive for service 

at the same transition. When transition 
1T  fires, the resources located in the p1aces 

1P  and 

2P  are consolidated into the place
3P . 

 

 

Figure 2.5. Example of merging proprieties 

 

Two transitions are concurrent if they can happen simultaneously. In Figure 2.6 

the Transitions 
3T  and 

2T  are concurrent. In fact, the Transitions 
3T  and 

2T
 
can happen 

simultaneously (or not). Note that a token in place 
2P  has been duplicated into 2 tokens, 

one in 
2P
 
and the other in

3P . 
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Figure 2.6. Example of concurrent transitions 

 

 

Conflict occurs when two transitions 
1T  and 

2T  are both ready to fire but the 

firing of one transition leads to the inhibition of the other transition. In Figure 2.7, the 

transition 
1T  cannot fire if the transition 

2T  fires. Similarly, the transitions 
2T  cannot fire 

if the transition 
1T  fires. 

 

Figure 2.7. Example of a conflict 

 

2.1.2 Stochastic Petri Nets 

The continuous-time Stochastic Petri net ( , )SPN PN   is formed from the Place-

Transition net 
0( , , , , )PN P T I I M  by adding the set of rates 

1 2 3( , , ,.. )m     to the 

definition. 
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In [29], conflicts and fairness in Petri Nets were studied. There are many issues 

involved such as detecting conflicts, and determining whether a given Petri Net is prone 

to conflicts. In this thesis, we will use the method outlined in Figure 2.8 to resolve 

conflicts: 

 

 

Figure 2.8. Conflict resolution pseudo-code 

 

  

 

 

Conflict resolution Pseudo code  

Input: The incidence matrix and the initial marking 

If several n transitions are competing for the tokens at a place  over sampling period TS, do as 

follows:  

1. Generate r1 = Uniform [0, 1]. Compare r1 with Pr(<1 transition), Pr(<2 transitions), etc.. 

Determine the largest number m1 of transitions allowed at this period 

2. Generate a random permutation using MATLAB randperm of  1,  2 n , say 

 3 2 5 4 1 . This is the order in which transitions will be checked for being enabled. 

3. Check whether the transitions are enabled in the order in 2, fire them with the underlying 

probability, then remove the tokens. 

a) Generate r2 from uniform [0, 1] and check if r2< lambda (3)/ (sum lambdas). 

If yes, fire T3 and remove the necessary tokens. Keep doing this (proceeding to 

T2, T5, etc.) until 

i. We get more than the number of transitions m1 allowed in 1 

ii. We run out of tokens 

Note: you can cycle through [3 2 5 4 1] until a or b occurs 
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2.2 Markov chains 

2.2.1 Discrete-Time Markov Chains (DTMC) 

The state of a Markov chain at time t is denoted
tX . The state space S of a 

Markov chain is the set of values that 
tX  can take. For example,   0,  1,  2,  3S  is a 

state space.  

The Markov property of a Markov chain is that only the most recent point in the 

trajectory affects the future. Mathematically, the Markov property for all times t  and 

states s  could be stated as follow:  

 
1 0 0 1 1 1( | , ,..., ) ( | ).t t t t t tP X s X s X s X s P X s X s         (2.4) 

The one-step state transition matrix P  for the Markov model has the elements 

   

 
1( | ) for  , S and 0,1,2,..ij t tP P X j X i i j t      (2.5) 

The t th step transition matrix has elements 

 0( | ) ( ) .   t

t ijP X j X i P  (2.6) 

 

Note that a probability transition matrix is irreducible if the state space is a single 

communicating class.  

Typically, the initial probability distribution of 
0X  is denoted (0) . 

 

 
0(  ) (0).iP X i    (2.7) 

And the probability distribution of 
tX   at time t  with initial distribution  is given by: 

 ( ) ( ).t iP X t  (2.8) 

Equilibrium is obtained when there is no change in the distribution: 
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 . T TP  (2.9) 

2.2.2 Continuous-time Markov chains (CTMC) 

Let  ( ),  0Z t t represent a homogenous finite-state continuous time Markov chain with 

state space   . Let 
ij  represent the random variable time for a transition from state i  to 

state j . We assume that 
ij  is exponentially distributed with parameter

ijr . The matrix 

ijr     
is called the rate matrix. Note that for all i  we have 0iir  . From the rate matrix, 

one defines the infinitesimal generator Q matrix as follows: 

 

   if  ij ij

ii ij

j i

q r i j

q r


 



 



 (2.10) 

The infinitesimal generator of a stochastic process contains a lot of information 

about the process. The unconditional probability of the CTMC being in state i  at time t  

is: 

 ( ) ( ( ) ).  i t P Z t i  (2.11) 

The transient state probability vector of the CTMC is 

 

 
1 2 3( ) [ ( ), ( ), ( ),...].   t t t t  (2.12) 

The behavior of the CTMC can be described by the following Kolmogorov 

differential equation: 

 
( )

( ) ,
d t

t Q
dt


  (2.13) 

Whose solution is  
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( ) (0) Qtt e   

 

where the matrix Q
 is the infinitesimal generator; additionally, the steady state 

probabilities can be computed by: 

 0,  1.   iQ  (2.14) 

The vector e   is the left eigenvector of the matrix Q  corresponding to the zero 

eigenvalue. The probability distribution is normalized (i.e. 1  i ). More information 

could be found in [30]. 

The one step transition matrix P  of the discrete time Markov Chain equivalent to 

a continuous time Markov Chain with rate matrix R  and infinitesimal generator Q  is: 

 SQT
P e  (2.15) 

where 
ST  is the sampling time. If 

ST  is small then: 

 
 

...
2!

SQT S

S S

QT
e I QT I QT       (2.16) 

Combining the above two equations we get 

.
S

P I
Q

T




 

Thus, the matrix Q  can be computed using the one step transition matrix and the time. 

2.3 Hidden Markov Chains 

In the Markov models the states are visible. In hidden Markov Chains the states 

are visible only through a random emission process, in the sense that observations can be 

non trivial functions of the states. Consider the Markov process in Figure 2.9 where 
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0 1 2 3X X X X  is the Markov process and 
0 1 2 3O OO O  are the observations. The matrix A  is 

the transition matrix; the matrix B  is the observation matrix which contains the state 

distribution of the observations given a Markov process X . The vector   is the initial 

Markov state distribution. Consider the example in which we have a system that has two 

states and three observations.  

 

Figure 2.9. Hidden Markov Model (HMM) example 

 

 

We wish to know the probability of a state sequence of length four: 

 

 
0 1 2 3( , , , ).X x x x x  (2.17) 

Given the observations: 

 

   0 1 2 3

.7 .3 .1 .4 .5
,  ,  .5 .5 , and ( , , , ).

.2 .8 .7 .2 .1


   
      
   

A B O o o o o  (2.18) 

Therefore: 

 
0 0 0 1 1 1 2 2 2 3 30 , 1 , 2 , 3( ) ( ) ( ) ( ) ( ). x x x x x x x x x x xP X b o a b o a b o a b o  (2.19) 
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where O  and X are given. Therefore, it seems that if we are given an observation it is 

possible to get the transition matrix. The MatLab command  
m m e s t i m a t eh

 
 is able to 

estimate the transition matrix A  and the observation matrix B  given a collection of 

observations. 
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CHAPTER 3   

MARKOV MODEL REPRESENTATION OF PETRI NETS 

 

3.1 A motivating example 

Figure 3.1 is a simple model of the network. When a WMD attack strikes the 

network (transition 
1T  is in play), the working units in place 

1P  go through a failure 

transition to become failed units in place
2P . Some failed units undertake repair transition 

3T  to become working units again. However, other units stay failed units because of the 

failure propagation and go through transition 
2T  to place

3P ; from there they can be 

repaired through transition 
4T  to become working units again.  

 

Figure 3.1. The simple model snapshot from Snoopy 2.0 
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The elements of the pre-incidence matrix are ( )ijD
= multiplicity of the arc 

connecting place j  to the input of transition i , and it is zero otherwise. 

The pre-incidence matrix D
 and the post-incidence matrix D

 are m n  

matrices with m is the number of transitions and n  is the number of places. The matrix 

D  is simply the difference between the matrix D
 and the matrix D

: 

 D D D    (3.1) 

For example, for the transition 
1T  there is only one input place  

1P   with multiplicity one. 

Then (1,1) 1D   but    1,2 1,3 0D D   , and so forth. The resulting matrix is 

therefore: 

 

1 0 0

0 1 0

0 1 0

0 0 1

D

 
 
 
 
 
 

 (3.2) 

 

In order to find D
, we look to each transition output places and we report the 

multiplicity of that place to the corresponding transition in the post-incidence matrix. For 

example, for the transition 
1T  there is only one output place 

2P  with the multiplicity one 

then (1,2) 1D   but    1,1 1,3 0D D   , and so forth. The resulting matrix is 

therefore: 
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0 1 0

0 0 1

1 0 0

1 0 0

D

 
 
 
 
 
 

 (3.3) 

Finally, the resulting incidence matrix D  is the following: 

 

-1 1 0

0 -1 1

1 -1 0

1 0 -1

D

 
 
 
 
 
 

 (3.4) 

Now assume that 
1T  fires which is represented by [1,0,0,0].F   the resulting 

marking is  4,2,1 .M ₁  however, the same result could be obtained using the state’s 

equation 
0FA M M   illustrated below: 

      

1 1 0

0 1 1
1 0 0 0 5 0 0 4 1 0 .

1 0 1

1 0 1

 
 


   
 
 

 

 (3.5) 

3.2 Use of the Incidence Matrices 

We further illustrate the use of the incidence matrices using the example in 

Figure 3.2, where some arcs have multiplicity larger than 1. 
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P1

P2

P3

T1

T2

T3

2

T4
4

 

Figure 3.2. Petri Net example with 3 places and 4 transitions 

 

The incidence matrices are 

 

1 0 1 0 4 0

0 2 0 0 0 1
, .

0 1 0 1 0 0

0 0 1 1 0 0

D D



   
   
    
   
   
     

And therefore, 

0 4 0 1 0 1 -1 4 -1

0 0 1 0 2 0 0 -2 1

1 0 0 0 1 0 1 -1 0

1 0 0 0 0 1 1 0 -1

D D D



     
     
         
     
     
       

 

Transition 
iT

 
is enabled at a marking M if and only if:   

 ,  1,  2, , .ij jD M p j m    

The marking update equation, often called the state equation for a Petri net, is 

1  ,  1, 2,...

 is the firing vector

T

k k k

k

M M D u k

u

  
 (3.6) 
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In the example above, the initial marking is  
0 [5 0 1]M   and 

1T  is enabled because 

   5 0 1 1 0 1 .Using the state equation, one obtain the updated marking 

 

-1 4 -1

0 -2 1
[5 0 1] [1 0 0 0] [4 4 0]

1 -1 0

1 0 -1

M M

 
 
    
 
 
 

 (3.7) 

3.3 Markov Model Representation (MMR) of a Petri Net 

If all transitions in a Petri Net are conservative (the number of tokens in the net 

never increases), or if token-increasing transitions do not occur in a cycle, and the initial 

number of markings is less than a pre-specified number, then there is a finite number of 

possible markings that can be produced by the simulation. Not all the possible markings 

will actually occur, and some may be extremely improbable (in STPN).  A Markov model 

representation can then be found where the nodes are the occurring markings (called the 

states of the Markov chain) and the arcs represents the direct transitions from one 

marking to another. 

A Petri Net example is shown in Figure 3.3 allowing only 3 tokens or less in the 

Petri Net. 
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Figure 3.3. A Petri Net example constructed in Snoopy 

 

It is obvious that the three tokens will be distributed according to transitions. In 

fact, each time a transition is in play a different distribution is reached. Table 3.1 lists all 

the possible markings that can result. 

Table 3.1. The different markings reached in the Petri Net example 

Marking Tokens 

1 [0 0 0 0 0 3] 

2 [0 0 2 0 0 0] 

3 [0 0 0 0 2 1] 

4 [0 1 1 0 0 0] 

5 [0 0 0 2 0 1] 

6 [0 2 0 0 0 0] 

7 [2 0 0 0 0 1] 
 

 

Careful consideration will show that the transition diagram containing the 

different markings can be summarized in Figure 3.4. The number on the arcs denotes the 

transition needed. For example, starting with the marking 
1 [0,0,0,0,0,3]M   and 
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following transition 6 (moving two tokens from 
6P  to

5P ), will lead to marking

3 [0,0,0,0,2,1]M  . Moreover, one can assign a rate 
i  to transition

iT , thus leading to a 

stochastic Petri Net.  The stochastic Petri Net transitions in Figure 3.3 can be then 

represented by a CTMC in Figure 3.4 

 

1 6

3

7 4

3

5

2

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

R

 



 







 
 
 
 
 

  
 
 
 
 
 

 (3.8) 

  

  

 

Figure 3.4. The Markov Chain representation of the Petri Net in Figure 3.3 

 

A Markov model transition matrix Z  can be defined in terms of the rate matrix as 

follows 

 
0 1

0 0

ij ij

ij ij

R Z

R Z

  

  
 (3.9) 
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The transition on Zero-pattern matrix Z  for Figure 3.4  is: 

 

 

0 1 1 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 0 0 0 0 0

Z

 
 
 
 
 

  
 
 
 
 
 

 

The reachability captures the system’s ability to get from one marking to another 

in one or more steps. The reachability graph is a digraph that contains all the possible 

markings of Petri Net as nodes. An arrow from node i to node j explained earlier 

indicates that there is a sequence of feasible transitions that allow marking i to reach 

marking j .  

The reachability graph can be represented by the matrix: 

 

 
1 if   ( , ) 0  for some t 0

0  otherwise

t

ij

Z i j
W

  
  
 

 

 It can be shown [31] that the nonzero elements of W are the nonzero elements of: 

2 1.....  with  is the dimention of .nI Z Z Z n Z     Hence one can use the MATLAB 

code: 11 0  (eye(size( , ) )nW Z Z . 

 If a state i  is reachable from state j  and vice versa, then they are said to belong 

to a communicating class. Such a class is the set of all states that communicate with each 
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other or with a class representative. If there are m communicating classes then there are 

m  representative markings: 
1,..., mU U . This is summarized in the matrix C  where: 

 
1 if state  is in class  includes

0 otherwise
ij

j i
C

 
  
 

 (3.10) 

 

 For the Markov model in Figure 3.4 there are 4 classes:  

        2,4,6 , 1,3 , 5 ,  and 7  (3.11) 

which can be represented by the list of class representatives: 

 

0 1 0 1 0 1 0

1 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

U

 
 
 
 
 
   

3.4 Algorithm to Find the MMR for Petri Net Incidence Matrices 

 

The idea behind an algorithm that computes the Markov representation (or state 

transition matrix Z is to count all the states reachable from the initial state
0M in the 

current system in study. We start from an initial state
0M , then we record all the unique 

states obtained by firing enabled transitions. For each new state we repeat the same 

process. This algorithm makes the assumption that the Petri Net is bounded, i.e. the state 

space is finite.  

Figure 3.5  details the steps followed to obtain the transition matrix. At every 

iteration, the algorithm has a current marking list and a list of considered markings
cL . If 

the current marking has not been considered before, it is then considered and appended to
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cL
 
after updating the adjacency or transition matrix Z . The algorithm searches for new 

markings by finding enabled transitions. The markings found are appended to the list 
NL

of markings to be considered. Then the algorithm iterates until no new marking is found 

and 
NL  is empty. Arcs are added to the graph when an enabled transition takes marking 

i to marking j . The flow chart in Figure 3.5 offers more details concerning this 

algorithm. 

 

Figure 3.5. Algorithm for the representation of the Petri Net by a Markov model 

 

 The program resulting from the above algorithm works fine with small nets like 

the one shown in Figure 3.3. However; when the net starts to be bigger like the Fault 

model, the program is not efficient in the sense that we got a huge data. In fact, the data 

obtained is 2020 markings in 3hours the time we left the program running. 

 

Start

Get the initial marking Mo and append to New Marking List (NML)

Is the new marking list empty?

Select new marking M
StopNo Yes

Is M identical to 

another existing 

marking?

Append the list of 

existing markings 

with M

No

Is the set of 

enabled 

transitions from 

M empty?

Tag M 

terminal
yes

Append all new 

markings to NML and 

update the adjacency 

listNo

Tag M oldYes
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3.5 Steady-State of the MMR 

 

The rate matrix ,  R is defined in Equation (3.8) and corresponding to Figure 3.3 

is 

 

0 1 6 0 0 0 0 7

0 0 0 3 0 0 0 3

7 0 0 0 4 0 0 11

0 0 0 0 0 3 0 3

0 0 0 0 0 0 5 5

0 2 0 0 0 0 0 2

0 0 0 0 0 0 0 0

   
   
   
   
   

    
   
   
   
   
   

, R E  

Where E(i)=sum(R(i,:))  therefore, from equation  (2.10)  Q  becomes:  

 

7 1 6 0 0 0 0

0 3 0 3 0 0 0

7 0 11 0 4 0 0

.0 0 0 3 0 3 0

0 0 0 0 5 0 5

0 2 0 0 0 2 0

0 0 0 0 0 0 0

Q

 
 


 
 
 

  
 
 

 
 
   

 

Since ( ) (0) Qtt e  , the steady state probability can be written as:  

  lim ( ) 0,0.089,0,0.089,0,0.134,0.685 .
t

t 


   

Another way to compute the steady state probability is to simulate the dynamics 

of the CTMC model. In fact, the impulse response of a single-input state-space model can 

be used: 
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 ( ) (0) ( )

( ) ( )

T

T Td
Q t u t

dt

y t t

 


 





 



  (3.12) 

 

The above equation is equivalent to the following unforced response with initial state

(0) : 

 ,  and y=
d

Q
dx


   (3.13) 

 

 Figure 3.6 illustrates the history of the state probabilities. Note that the steady state 

probability vector is found to be the same as

 .  

  

   

 

Figure 3.6. State trajectory as an impulse response 
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3.6 Estimating the Probability Transition Matrix from Monte Carlo 

Simulations 

The method in Section finds a Markov model containing all the possible states no 

matter how improbable they are. The method proposed here focuses on the probable 

states and is based on an intuitive understanding of the probability transition matrix. 

Essentially, one can estimate the probability 
ijP  by counting how many times state j  

occurred immediately after i  in a set of simulations or Monte Carlo runs, and then 

dividing by the total number that state i  occurred. The implementation is summarized in 

Figure 3.7.    

We simulate the Petri Net example in Figure 3.3 using Snoopy using a step size 

0.01 for 10000 stepsST  .We used two different methods in order to compute the 

transition matrix P  and the infinitesimal generator Q  from the simulation files.  

 

 

Figure 3.7. Algorithm pseudo-code to compute P and Q 

 

Pseudo code to compute the Q matrix 

Input: data from Snoopy software 

1. Simulate the Petri net for a given number of Monte Carlo runs  

2. Collect the history of the markings and determine the matrix M of the unique rows 

3. Initialize a zero square matrix P that has the same size as the number of rows in M 

4. For each Monte Carlo run collect the marking trajectory in matrix G and do the following: 

4.1 For all m,n find the number of times where a marking n follows the marking m 

immediately. This is achievable using the MATLAB command K =FINDSTR (G’, [m 
n]) 

4.2 Add K  to the corresponding entry in P(m,n) 
5. Normalize every row of P by the sum of the elements on the row 

6. Q=(P-I)/∆   where ∆ is the sampling period and I is the identity matrix 

7. Return P and Q 
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 Alternatively, we use MATLAB’s command hmmestimate which computes the 

same probability using a more sophisticated method. The implementation is shown in 

Figure 3.8. 

 

 

Figure 3.8. Alternative algorithm to compute P and Q 

 

 Using the algorithm in Figure 3.7 one obtains the matrices P


 and Q


 using a 

sampling period 0.01ST . The estimated probability transition matrix is: 

  

0.90 0.04 0.039 0.003 0 0 0

0 0.95 0 0.04 0 0 0

0.01 0 0.94 0 0.03 0 0

0 0 0 0.95 0 0.04 0 ,  

0 0 0 0 0.96 0 0.03

0 0.05 0 0 0 0.94 0

0 0 0 0 0 0 0.99



 
 
 
 
 

  
 
 
 
 
 

P  (3.14) 

  

 

 

Alternative Pseudo code to compute the Q matrix 

1. Input: data from Snoopy software  

Given M (labels of distinct markings) 

 Given G
1
, G

2
… the collection of marking trajectories for MC run 1,2,…. 

1. For the j
th

 MC run,  j=1,2,… 

1.1 Transform G
j
 into g

i
 history of labels as named in M 

1.2 Let g
i 
be the i

th
 row of F 

2. [P,O]=hmmestimate(F,F); 
3. Q=(P-I)/∆   where ∆ is the time step and I the identity matrix 

4. Return P and Q 
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And the corresponding semi-infinite generator is 

 

-9.09 4.74 3.95 0.39 0 0 0

0.01 -4.66 0 4.51 0 0.13 0

1.54 0 -5.15 0 3.60 0 0

  0 0.17 0 -4.87 0 4.68 0

0 0 0 0 -3.15 0 3.15

0.01 5.61 0 0.14 0 -5.76 0

0 0 0 0 0 0 0



 
 
 
 
 

  
 
 
 
 
 

Q  (3.15) 

where ( ) / .


  SQ P I T  

The above algorithm tends to shuffle the states. The transition matrix is close to 

the identity matrix. This is explained by the fact that the sampling period 
ST  is quite 

small compared to the transition times. 

Once we have the transition matrix, it is possible to trace back the transition 

diagram by simply drawing an arc from one state to another where the probability of 

transition is greater than zero. As shown in Figure 3.9, the transition diagram the states 

were shuffled compared to the transition diagram in Figure 3.4.  

 

Figure 3.9. Markov Model transition diagram for the Petri Net example 
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3.7 Analysis of Communicating Classes 

Given the zero-pattern matrix Z  of a Markov model, one can compute the 

communicating classes defined in Equation(3.10). Moreover, one can determine the 

class-transition diagram which is a directed tree showing transitions from the so-called 

top strongly-connected components (or classes) of the Markov transition graph to the 

Bottom-Strongly Connected Components (BSCC). A BSCC is a “sink” or “absorbing 

class” and a state entering a BSCC never leaves it. The class transition can be described 

by the class transition matrix H  

 
1 if class  transits to class 

0 otherwise


 


ij

i j
H  (3.16) 

 Note that the matrix H  is similar to the matrix Z , and is a reduced version of it.  

A BSCC is recognized as a class that has no outgoing transitions. This corresponds to a 

zero row in H . The algorithm is shown in Figure 3.10. 

 

 

Figure 3.10. Pseudo-code to compute Communicating classes 

 

The class transition diagram for Figure 3.3 is shown in Figure 3.11. Note that the 

numbering represents classes and not states. 

Communicating classes Pseudo code  

Input: The transition matrix of size n×n 

1. Compute the adjacency matrix (Z=double(p>0)) 

2. Compute the reachability matrix (W=(eye(n) +Z)^(n-1)) 

3. Compute the communicating classes (C= unique(W &W', 'rows')) 

4. Compute the image matrix (H=C*Z*C’) and replace H by H=H& ~eye(size(H,1)) 

5. Eh=(sum(H,2)==0) returns the indices of the BSCCs 
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Figure 3.11. The Class transition diagram for the petri Net example in Figure 3.3 

 

 

 

 

The following matrix relates class to states: 

 

 

0     0     0     0     0     0     1

0     0     0     0     1     0     0

0     1     0     1     0     1      0

1     0     1     0     0     0      0

C

 
 
 
 
 
 

 (3.17) 

Here 1ijC  if state j  is in communicating class i  and 0 otherwise. 

That is class 1= {state 7}, class 2= {state 5}, class 3= {state 2, state 4, state 6}, and 

finally class 4= {state 1, state 3}. 
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CHAPTER 4    

A HIERARCHICAL FAULT MODEL FOR WMD ATTACKS 

 

 

We limit our research to the three interaction infrastructure systems; namely the 

Information systems, the Transportation systems, and the Health systems.  

4.1 A Hierarchical Model 

The hierarchical model shown in Figure  4.1 illustrates how different systems are 

individually affected by WMD events (e.g. dirty terrorist bomb, nuclear incidents of 

different scales, massive nuclear explosion, high altitude nuclear explosion leading EMP, 

etc.). The second level of this hierarchical model captures WMD effects on the inter-

dependence of different CISs and the propagation of failures among different systems 

subjected to WMD events.  

 

Figure  4.1. A Hierarchical model with first-order and second-order effects 
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The directed graph model shown in Figure 4.2 captures the interdependence 

among CISs. In more details, this also identifies different variables (e.g. Repair needed 

alert, Travel time etc.) We reported in the graph just few variables in order for the graph 

to be more readable. The Inter-Infrastructure Dependence graph focuses on the second 

effect caused by the WMD attack. We are able to identify many variables. For example, 

Traffic management, Worker's transportation, Access to records, Worker's health. Those 

variables are weakened when the WMD attack targeted the corresponding substructure.  

 

Figure 4.2. Inter-Infrastructure dependence graph 

 

4.1.1 The Health Infrastructure Subsystem (HIS) 

The Health Infrastructure Subsystem as shown in Figure 4.3 consists of healthy 

people that get injured, get transported to the hospital, get proper medication, and finally 

become healthy people again. For simplification we considered that dead people are 

going to be replaced by healthy people. Also, we considered Doctors, Ambulances, and 

Nurses resources as invulnerable.  
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The HIS has 40 people. When one person gets injured, he or she became disabled. 

The disabled person has to wait an exponentially-distributed random time with rate H . 

After an exponentially-distributed random time, he or she will receive medication to 

become healthy again. This process is done indefinitely and it is done for one token at a 

time. This is a simplifying assumption. 

 

 

Figure 4.3. Health Infrastructure Model 
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4.1.2 The Information Infrastructure Sub-system (IIS) 

The Information Infrastructure Subsystem is shown in Figure 4.4. It has many 

working information units. Examples of units which can fail and be repaired are 

computers, instructions, stored facts, and procedures. The transitions in this model are 

stochastic transitions with rates  and F R  .  

 

 

Figure 4.4. Information Infrastructure Model 
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4.1.3 The Transportation Infrastructure Subsystem (TIS) 

The Transportation Infrastructure Subsystem as shown in Figure 4.5  has drivable 

roads that get damaged, get repaired using materials and workers, after which the roads 

become drivable again. In this model, we consider that the shipment transition is always 

enabled and hence the Materials are always available. We also considered that workers 

are always available.  

 

Figure 4.5. The Transportation Infrastructure Model 

 



 41 

4.2 The Weapon of Mass Destruction Event 

A Weapon of Mass Destruction (WMD) is assumed to damage all the subsystems 

at the same time. When WMD attack hits the IIS, TIS, and HIS are first affected 

separately. Figure 4.6 shows graphically how the three sub-systems will be affected by a 

WMD attack. This representation ignores the cascading effect that might result because 

of the attack. Note that the place WMD_transition will replace one token with 3. But this 

duplication is a onetime event only, and the Petri Net is bounded. 

 

 

Figure 4.6. WMD Event Model 

 

Table 4.1 lists the software names of the places in the Petri Net used in the simulations, 

explains them, and lists their corresponding initial markings. Working_Units denotes the 

number of working units in the IIS. These could be hubs, routers, etc. The Failed_Units 
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are the information failed units. They could be as before hubs, routers, computers, etc.  

The place Hospitals represents the number of hospitals but here only one hospital is 

considered. Healthy_People represents the number of people available. The other 

variables follow the same logic. 

 

Table 4.1. The different places in the hierarchical fault model (HFM) and their 

explanations 

Place Id Explanation Initial marking  

Failed_Units 1 IIS failed units 0 

Workings_Units 2 IIS working units 5 

WMD 3 The WMD attack 1 

NIS_Destroy 4 The IIS receive the WMD attack 0 

People_Hurt 5 The number of people hurt 0 

Road_Destroy 6 The number of roads destroyed 0 

Ambulances 7 The number of ambulances 

available 

1 

Hospitals 8 Contains the disabled people 0 

Healty_People 9 The number of healthy people 10 

Disabled_People 10 The number of disabled people 0 

Drivable_Roads 11 The number of drivable roads 10 

Broken_Roads 12 The number of broken roads 0 

H_Server_Down 13 Hospital server down 0 

T_Server_Down 14 Transportation server down 0 

Wait_Room 15 The waiting room 0 

T_Grid_Broken 16 Transportation grid broken 0 

T_Grid_Online 17 Transportation grid is online 0 

H_Server_Online 18 The hospital server is online 0 
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Table 4.2 explains the stochastic transitions involved. Those transitions are 

stochastic and follow the exponential distribution.  

Table 4.2. Stochastic transitions and their explanations    

Stochastic 

transition 

Id Explanation Rate average 

time 

between 

transiti

ons 

Input 

places 

(multipl

icity) 

output 

places 

(multipl

icity 

Unit_Repair 1 IIS unit repair 1/(4*7)  4 weeks 9(5),1,1

1 

9(5),2,1

7,18,11 

Unit_Failure 2 IIS unit failure 1/(365*2)  2 years 2 1,13,14 

WMD _Transition 3 Enable the 

WMD attack 

1 1 day 3 4,6,5 

Trans_to_hosp 4 transit disabled 

people to 

Hospital 

1/(1/24)  1 hour 10,11,7 8,11,7 

Injuries 5 people get 

injured 

1/(7*4*6)  6 

months 

9 10 

Medication 6 People get 

medication 

1/(14)  14 days 8 9 

Road_Failure 7 Road not 

drivable 

1/365 1 year 11 12 

Road_Repair 8 Road become 

drivable 

1/(2*4*7)  2 

months 

12,9(5) 11,9(5) 

T_Grid_Repair 9 Transportation 

server get 

repaired 

1/(1/24)  1 hour 16,17 11 

H_Server_Repair 10 Hospital server 

get repaired 

1/(1/24)  1 hour 15,18 8 

T_Grid_Failure 11 2
nd

 effect of 

WMD over TS 

240 6 

minutes 

11,14 16 

TS_failure 12 1
st
 effect of 

WMD over TS 

240 6 

minutes 

6,11 12 

H_Server_Failure 13 2
nd

effect of 

WMD over HS 

240 6 

minutes 

8,13 15 
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Table 4.2  (cont.) 

IS_failure 14 1
st
 effect 

of WMD 

over IS 

240 6 minutes 2,4 1,13,14 

HS_failure 15 1
st
 effect 

of WMD 

over HS 

240 6 minutes 5,9 10 

 

4.3 The overall Model in Snoopy 

Now we have enough information to build the aggregated model shown in Figure 

4.7.   

 

Figure 4.7. Stochastic Petri Net Model for the hierarchical Fault Model  
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CHAPTER 5 

   ANALYSIS USING MONTE CARLO SIMULATIONS 

 

5.1 Monte Carlo simulation description 

Monte Carlo simulation is a problem solving technique that approximates the 

probability of certain outcomes by running multiple simulations. We have performed 100 

Monte Carlo simulations using the Snoopy software, each for 300 days.  The sampling 

period was one hour. 

5.2 The output data from Snoopy software 

Each output from Snoopy is a csv file. Each of the 100 files contains 7202 rows, 

and each row except the header row contain the number of tokens in every place 

(column).  Table 5.1 shows 12 rows extracted from the first simulation file. Table 5.2 

lists the headers of the columns which they represent Time, Failed_Units…etc.  

 

Table 5.1. Sample data (12) from simulation file 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 5 1 0 10 0 10 0 0 0 0 0 0 0 

1 3 2 0 0 4 6 2 5 3 0 0 3 0 0 

2 3 2 0 3 4 0 2 5 0 0 3 3 0 0 

3 3 2 0 3 4 0 2 5 0 0 3 3 0 0 

4 3 2 0 3 4 0 2 5 0 0 3 3 0 0 

5 3 2 0 3 4 0 2 5 0 0 3 3 0 0 

10 3 2 0 3 4 0 2 5 0 0 3 3 0 0 

50 3 2 0 0 7 0 2 5 0 0 3 3 0 0 

100 3 2 0 0 7 0 7 0 0 0 3 3 0 0 

200 0 5 0 0 10 0 10 0 0 0 0 0 0 0 
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Table 5.1 (cont.) 

250 0 5 0 0 10 0 10 0 0 0 0 0 0 0 

300 0 5 0 0 10 0 10 0 1 0 0 0 0 1 

 

Table 5.2. The list of the headers in csv files (The places in the STPN) 

   

Time Failed_Units Working_Units 

WMD Hospital Healthy_People 

Disabled_People Drivable_Roads Broken_Roads 

H_Server_Down T_Server_Down Wait_Room 

T_Grid_Broken T_Grid_Online H_Server_Online 

 

5.3 Statistical Analysis of the Monte Carlo Simulation 

5.3.1 The Tokens distribution 

We concentrate our analysis effort on three main places: Working Units, Healthy 

People, and Drivable Roads. The histograms shown in Figure 5.2 suggest that the IIS 

has recovered as well as HIS. However, the TIS do not seem to have recovered. This is 

explained by the fact that roads need a long time to recover. 

 

Figure 5.1 shows the average (over 100 Monte Carlo runs) time history of the 

number of tokens in the places Working_Units, Healthy_People, and Drivable 

_Roads. The top graph is an average over 50 simulations, and the subsequent graphs are 

for 75 and 100 Monte Carlo runs, respectively. Since there is little difference between 

using 75 and 100 simulations, we conclude that 75 Monte Carlo simulations are enough. 
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Figure 5.1. Monte Carlo simulations averaged 

 

Figure 5.2. Token distributions for the main 3 places 
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Next we show the correlation between the numbers of tokens in all the places. 

The images of the resulting 18 18  matrices are shown in Figure 5.3. This Figure shows 

four plots, which correspond to four different simulations. The four plots are quite 

similar. For each plot we observe that the locations of the white squares are almost the 

same. This tells us that there is a strong correlation between the variables of those 

squares. However, a dark square suggest a weak correlation between those variables. 

Figure 5.4 shows the correlation image of the resulting average of all 100 simulation 

files.  

The correlations were computed as follows. Let ( )ix t  represent the number of 

tokens in place i  at time t . Then the data matrix X  has ( )ij i SX x jT  and the correlation 

matrix is computed using the MATLAB’s command corrcoef. 
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Figure 5.3. Images of correlation matrices based on 4 Monte Carlo runs 

 

 

Figure 5.4.  Image of the average correlation matrix 
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5.3.2 The Communicating Classes 

Next, we apply the algorithm shown in Figure 3.7 to obtain the transition matrix P . 

From there we get the Zero-pattern matrix Z  by applying estimate Equation(3.9).  From 

there we obtain the transition graph of the Markov Chain Representation of the 

Hierarchical Fault Model (HFM) using the algorithm shown in Figure 3.10.  Figure 5.5 

shows the resulting representation. 

 

Figure 5.5. Transition graph of the Markov Chain Representation of the HFM 

 

 

 Once the zero-pattern matrix Z   is obtained, one can compute the communicating 

classes by applying the algorithms shown in Figure 3.10.  The result is the reduced graph 

shown in Figure 5.6. This figure shows that class 72 is the only BSCC. The normal 

working condition states (states 35 and 220) are members of class 72. Figure 5.7 is the 

image of P I  matrix. We note from the image that many states have low probability or 

never occur. 
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Figure 5.6. Class representation of the hierarchical fault model 

 

 

Figure 5.7. Image of P-I matrix 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

 We have developed a methodology to capture the interdependency between the 

different subsystems of the critical infrastructure systems using stochastic Petri Nets. The 

modeling combines common sense understanding of what happen while specific data are 

available. 

 We have subsequently developed a methodology that can extract the most 

probable marking from Monte Carlo Simulations of the resulting Petri Net and to obtain a 

far simpler and more Markov model. The one-step transition matrix, the probability 

transition matrix, the reachability graph, the class transition matrix and the BSCC classes 

were successfully obtained using reliable algorithms. Simulations shows that the HFM 

model developed recovers in a reasonable amount of time and that the normal states are 

attracting in the long term.  

In future work, we will extract more information from the infinitesimal generator, 

such as time needed to move from one state to another. Also, future work will compare 

different designs of the network in order to determine which configuration is more robust. 
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