
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Theses Electronic Theses and Dissertations

2011

Performance Analysis And Optimal Utilization Of Inter-Process Performance Analysis And Optimal Utilization Of Inter-Process

Communications On A Commodity Cluster Communications On A Commodity Cluster

Saqib Ali Khan
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/theses

Recommended Citation Recommended Citation
Khan, Saqib Ali, "Performance Analysis And Optimal Utilization Of Inter-Process Communications On A
Commodity Cluster" (2011). Theses. 19.
https://digital.library.ncat.edu/theses/19

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/19?utm_source=digital.library.ncat.edu%2Ftheses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

PERFORMANCE ANALYSIS AND OPTIMAL UTILIZATION
OF INTER-PROCESS COMMUNICATIONS ON

A COMMODITY CLUSTER

by

Saqib Ali Khan

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department: Electronics, Computer, and Information Technology
Major: Information Technology
Major Professor: Dr. Yilli Tseng

North Carolina A & T State University

Greensboro, North Carolina
2011

ii

School of Graduate Studies
North Carolina Agricultural and Technical State University

This is to certify that the Master’s Thesis of

Saqib Ali Khan

has met the thesis requirements of
North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2011

Approved by:

______________________________ ______________________________
Dr. Yilli Tseng Dr. DeWayne R. Brown
Major Professor Committee Member

______________________________ ______________________________
Dr. Qing-An Zeng Dr. Clay Gloster
Committee Member Department Chairperson

Dr. Sanjiv Sarin
Dean of Graduate Studies

iii

DEDICATION

 I dedicate this work to my parents, teachers and any one from whom I learned

anything in my life.

iv

BIOGRAPHICAL SKETCH

Saqib Ali Khan was born in a small village in Pakistan on October 1974. He

Received the Bachelor of Science degree in Electrical Engineering from University of

Engineering and Technology Peshawar, Pakistan. He is a candidate for Master of Science

Degree in Information Technology from North Carolina A&T State University in

Greensboro, North Carolina.

v

TABLE OF CONTENTS

LIST OF FIGURES.. vii

LIST OF TABLES ... viii

ABSTRACT.. ix

CHAPTER 1. INTRODUCTION ..1

 1.1 The Need for High Performance Computing...1

 1.2 High Performance Computer...1

1.2.1 Shared Memory Platform…...2

1.2.2 Message-Passing Platform...3

 1.3 Dilemma of High Performance Computing and Resolution....................................4

 1.4 Related Work……………………………..……...4

CHAPTER 2. INSTALLATION AND CONFIGURATION OF A
 COMMODITY CLUSTER…….…………………………………………..6

 2.1 Hardware Requirements……………………………………………..………….....6

 2.2 Operating System and Software Packages…………………………………...........6

 2.3 MPI Library…………….………………………………………………………….7

 2.4 NFS and NIS………………………………………………………………………8

2.4.1 Set Up the NFS Server……………………………………………..……….9

2.4.2 Set Up the NFS Client………………………………………………..…….9

2.4.3 Set Up the NIS Client……………………………………………..………10

2.4.4 Set Up the NIS Server……………………………………...………….….11

vi

 2.5 Disabling Password Authentication………………………….....………………13

CHAPTER 3. INTER-PROCESS COMMUNICATION EXPERIMENTS……………15

 3.1 MPI Library…………………………………………...…………........................15

 3.2 Tested MPI Functions….………...…………………………...…...…..…………15

3.2.1 Point-to-Point Communication Functions…………...……………………15

3.2.2 Collective Communication Functions…..………………………………...16

 3.3 Methodologies……………....……...……………………………………………16

 3.4 Configuration of Tested Clusters…...……………………...……………………18

CHAPTER 4. PERFORMANCE ANALYSIS ON RESULTS AND OPTIMAL
 UTILIZATION………….………………………………………………..19

 4.1 Comparison of Performance of All Clusters… .……..…...………………….…19

 4.2 Performance Analyses on Collective Communication Functions….….………..27

 4.2.1 Scenarios……………………………………………………...………...…27

 4.2.2 Notations……………………………………………………...…………...28

 4.3 Observations.….………………………………...……………………………....29

 4.4 Methods for Optimal Utilization of Inter-Process Communications……...……35

CHAPTER 5. CONCLUSIONS…………………………………………………………37

REFERENCES…………………………………………………………………………..39

APPENDIX………………………………………………………………………………42

vii

LIST OF FIGURES

FIGURES PAGE

1.1. Architecture of Shared-Memory Platform……….…...……………………………...2

1.2. Architecture of Message-Passing Platform…………………………………………..3

4.1. Comparison of MPI_Send Latency on All Clusters………………………………..21

4.2. Comparison of MPI_Bcast Latency on All Clusters…………………….………….22

4.3. Comparison of MPI_Reduce Latency on All Clusters……………………………..23

4.4. Comparison of MPI_Gather Latency on All Clusters………………….…………...24

4.5. Comparison of MPI_Scatter Latency on All Clusters……………………………...25

4.6. Comparison of MPI_Alltoall Latency on All Clusters……………………………..26

4.7. MPI_Reduce versus MPI_Send on Quadcore/Internal Channels/4 nodes ……...….30

4.8. MPI_Alltoall versus MPI_Send on P4/100Base-T/4 nodes…………….…………..31

4.9. MPI_Bcast versus MPI_Send on P4/Gigabit/4 nodes .…………………………….32

4.10. MPI_Scatter versus MPI_Send on PIII/100Base-T/8 nodes………………..…......33

viii

LIST OF TABLES

TABLE PAGE

3.1. Configurations of Tested Commodity Clusters…………………………………….18

4.1. Observation on MPI_Bcast versus MPI_Send……………………………….……..34

4.2. Observation on MPI_Reduce versus MPI_Send …………………………….……..34

4.3. Observation on MPI_Gather versus MPI_Send ……………………………………34

4.4. Observation on MPI_Scatter versus MPI_Send …………………………………...35

4.5. Observation on MPI_Alltoall versus MPI_Send ………………………….……….35

ix

ABSTRACT

Khan, Saqib Ali. PERFORMANCE ANALYSIS AND OPTIMAL UTILIZATION OF
INTER-PROCESS COMMUNICATIONS ON A COMMODITY CLUSTER. (Major
Advisor: Dr. Yilli Tseng), North Carolina Agricultural and Technical State University.

 Classical science is based on theory, observation and physical experimentation.

Contemporary science is characterized by theory, observation, experimentation and

numerical simulation. With the use of hardware and software we can simulate lots of

phenomenon. This saves time, money and physical resources.

Simulation of a certain phenomenon requires lots of computing power. Answer to

these computational power needs is high performance computer. High performance

computers consist of numerous processors working on same task in parallel. In the past,

high performance computers were very expensive and affordable by few institutions.

After Message Passing Interface library is ported to PC platform, commodity clusters can

be built of inexpensive PCs and afforded by any researcher.

Lots of performance analyses have been conducted on high-end supercomputers.

None has been done on commodity clusters. In this thesis, experiments for six major MPI

communication functions were performed on eight different configurations of clusters.

Performance analyses were then conducted on the results. Based on the results, methods

for optimal utilization of inter-process communications on commodity clusters were

proposed.

1

CHAPTER 1

INTRODUCTION

1.1 The Need for High Performance Computing

Classical science is based on observation, theory, and physical experimentation.

In contrast, with the utilization of computer hardware and software, contemporary

science is characterized by observation, theory, experimentation, and numerical

simulation [1]. Numerical simulation is a mathematical modeling on a discrete model. It

may represent a discrete approximation of the continuum partial differential equations, or

it may represent a statistical representation of the microscopic model [2]. Numerical

simulation is an increasingly important tool for scientists and engineers, who often cannot

use physical experimentations to test because they may be too expensive or time-

consuming, because they may be unethical, or because they are impossible to perform

[1]. Numerical simulation requires computers to carry out calculations. Many important

scientific and engineering problems are so complex that solving them via numerical

simulation requires extraordinary powerful computers. Those complex problems are often

called grand challenges for science and require high performance computers to perform

numerical simulations [2].

1.2 High Performance Computer

High Performance Computers (HPC) refer to parallel computers or multiprocessor

computers. HPCs gain high throughput by having plenty of processors working in

p

tw

-

1.

n

A

A

m

h

p

arallel. Cate

wo major cat

[5].

.2.1 Shared

A typi

ame suggest

All processes

Although the

message-pass

ardware com

assing system

.

gorized by c

tegories, nam

Memory Pla

ical architec

t, it has share

s interact thro

programmin

sing platform

mplexity also

ms do.

Figure 1

communicati

mely shared-

atform

cture of share

ed-memory w

ough accessi

ng model of

m, it requires

o prevents it

.1. Archite

2

ion models,

-memory pla

ed-memory p

which is acc

ing shared v

f shared-mem

s more costs

from implem

cture of Sha

parallel com

atform and m

platform is s

cessible to al

variables stor

mory machin

to build sha

menting as m

ared-Memo

mputers are c

message-pas

shown in Fig

ll processor

red on the sh

nes is much e

ared-memory

many proces

ory Platform

classified int

sing platform

gure 1.1. As

in the system

hared-memo

easier than

y hardware.

ssors as mess

m

to

m [3]

the

m.

ry.

The

sage-

1.

M

su

p

m

h

o

P

p

.2.2 Messag

A typi

Multiple proc

uggests, each

assing messa

message-pass

igh performa

f the top 500

assing Interf

aradigm for

ge-Passing P

ical architec

cessors are c

h node of a m

ages. Becau

sing platform

ance comput

0 supercomp

face (MPI) i

message-pa

Figure 1

Platform

cture of mess

onnected by

message-pas

se of the sim

m to scale to

ter architectu

puters in the

s the most p

assing platfor

.2. Architec

3

sage-passing

y networking

ssing platform

mplicity of its

plenty of pr

ure. On www

world are cl

popular stand

rm [1] - [4],

cture of Me

g platform is

g switches to

rm interacts w

s architectur

rocessors. It

w.top500.or

lusters as of

dard develop

, [6] - [8].

essage-Passi

shown in Fi

o form a clus

with one ano

re, it is very

becomes the

rg, it shows m

June, 2011.

ped for the pr

ing Platform

igure 1.2.

ster. As the n

other through

easy for

e most popul

more than 82

Message-

rogramming

m

name

h

lar

2.2%

g

4

1.3 Dilemma of High Performance Computing and Resolution

Although numerical simulation becomes an important tool for many science and

engineering disciplines, it relies on the availability of HPCs. In the past, HPCs are very

expensive and cannot be afforded by most researchers and institutions. The high costs

were the barrier to wide adoption of HPCs. Nonetheless, due to the simplicity of

message-passing platform’s architecture and thanks to the porting of MPI library to

personal computer (PC) platform by open-source software developers, now researchers

and institutions can connect inexpensive PCs with generic networking and install MPI

library on them to build a commodity cluster [9] - [12]. Even retired PCs can be used to

build a commodity cluster [13]. That paves a way for all researchers who are interested in

numerical simulations to own an effective and affordable tool to perform research

through numerical simulations. The commodity clusters still have decent computing

power to solve smaller-scale numerical simulations.

1.4 Related Work

Although lots of performance analyses have been conducted for HPCs and high

performance networking systems in the past, they were all performed on high-end HPCs.

Xu et al. [14] and Miguel et al. [15] addressed IBM SP2. Muelder et al. [16] and Graham

et al. [17] measured Cray XT. High-end clusters are the focus of the papers of Luecke et

al. [18], Grbovic et al. [19], and Shipman et al. [20]. Dongarra et al. [21] evaluated

multiple systems, but all of them were high-end HPCs. Doerfler et al. [22] and Graham et

al. [23] investigated high performance networks. InfiniBand is the target network system

5

of the papers of Shipman et al.[24], Hoefler et al.[25], and Hursey et al.[26]. No

performance analysis has been done on commodity clusters. As they use generic parts

instead of high performance parts employed by high-end supercomputers, for example

Gigabit Ethernet networking versus InfiniBand networking, commodity cluster could

exhibit different characteristics than those of supercomputers. Because they are more

popular and adopted than before, performance analysis should be conducted on

commodity clusters to investigate their characteristics in executing MPI communication

functions in order to carry out optimal utilization of them. This thesis begins with

introducing installation and configuration of a typical commodity cluster; then executes

and measures six major MPI communication functions on eight different configurations

of commodity clusters; finally analyzes performance of commodity clusters and proposes

optimal utilization of major MPI communication functions.

6

CHAPTER 2

INSTALLATION AND CONFIGURATION OF
A COMMODITY CLUSTER

 In this Chapter, the general components and procedures required to install and

configure a commodity cluster is covered [13].

2.1 Hardware Requirements

Any PC with 128MB RAM or more and an Ethernet network interface card (NIC)

can work as a node. PCs with Pentium III 500MHz CPUs work smoothly at author’s

institution. All nodes have to be connected with a network hub or switch. Generic

Ethernet NICs and switches can be acquired with very little cost.

2.2 Operating System and Software Packages

Among all operating systems, only Linux can be acquired for free. Also, Linux

operating systems come with plenty of hardware drivers which cover almost all legacy

and new hardware, that further makes it the ideal OS for commodity clusters. Although

several implementations of open source Linux operating systems are available, not all of

them work well with the MPI library. After extensive experiments, the author chose and

installed CentOS Linux which is a clone of commercial Red Hat Enterprise Linux and

downloadable at www.centos.org. The following actions should be done for all nodes in

the cluster. Firewall and SELinux should be turned off during installation as they cause

difficulty for communications among nodes which are required for executing MPI

7

programs. Fortunately, security is not a concern as long as the cluster is not connected

with other networks. The editor, gcc C++ and FORTRAN have to be installed to as they

are required for MPI programming process. One node should be selected as the server

node and the following software should be installed on the node during installation:

Network Information Service (NIS) server and Network File System (NFS) server

configuration tool. After Linux is installed, networking should be correctly configured so

that all nodes of the cluster can communicate among one another. In general, one user

account with the same name needs to be created on each node because a parallel program

is dispatched to each node under the same user account. NIS which is addressed in later

subsections can take care of this and other issues.

2.3 MPI library

The next major step is to install the MPI library. Again, there are several

implementations of MPI, such as MPICH, LAM/MPI, Open MPI, etc. Nevertheless, only

Open MPI is still under active development and growing more powerful. Therefore, Open

MPI is the best choice. The steps to install Open MPI are quite straightforward. They are

described as follows [6]. First, download the latest version of the library from Open

MPI’s website, www.openmpi.org.Log into the root account to install it. Copy the

compressed file to the /tmp directory. Uncompress the file with the command line or

double click to invoke GUI uncompress software:

 shell$ gunzip -c openmpi-1.4.3.tar.gz | tar xf –

8

Then change to the directory openmpi-1.3. Configure and make Open MPI with the

commands below [6]. Replace the directory after prefix option if you want to install into

another directory.

 shell$ cd openmpi-1.3

 shell$./configure --prefix=/usr/local

 shell$ make all install

The make process may take up to one hour on an old PC.

2.4 NFS and NIS

Before we run a parallel program on our cluster, we need to dispatch a copy of the

program’s executable file onto every node under the same account. Manually copying the

executable to all nodes is impractical. NFS is the solution to help us to complete this

mission. With NFS, the program’s executables only need to be saved into the shared

directory of the NFS and a copy of the program is automatically copied to all other nodes.

While NFS can solve the copying problem, there are some potential security problems.

Each user has access to the shared directory, meaning any user can run, correct, save, and

delete others’ programs. To remedy this problem, NIS was used to create accounts on the

server node. All users can login from any node and manage their own shared directory.

You have to login as root to perform all following setups and reboot all nodes to take

effect. Do not reboot any client node until the server node completes its boot-up process,

otherwise other nodes cannot read the correct configuration information from the server

and perform normally.

9

2.4.1 Set Up the NFS Server

1) From the NFS Server Configuration window, click File → Add Share. The Add

NFS Share window appears. In the Add NFS Share window Basic tab, type the

following information [27]:

• Directory – Type the name of the directory you want to share. Type “/home”

which is the parent directory to all user directories.

• Host(s) – Enter one or more host names to indicate which hosts can access the

shared directory. Type “*” to let all nodes access NFS server.

• Basic permissions – Click Read/Write to let remote computers mount the shared

directory with read/write access.

2) To permanently turn on the NFS service, type:

 shell$ chkconfignfs on

 shell$ chkconfignfslock on

2.4.2 Set Up the NFS Client

 To set up an NFS file system to mount automatically each time you start your

Linux system, you need to add an entry for that NFS file system to the /etc/fstab file. The

/etc/fstab file contains information about all different kinds of mounted (and available to

be mounted) file systems for your Linux system [27].

The format for adding an NFS file system to your local system is the following:

 host:directory mountpoint options 0 0

The first item “host:directory” identifies the NFS server computer and shared directory.

Mountpoint is the local mount point on which the NFS directory is mounted, followed by

10

the file system type “nfs”. Any options related to the mount appear next in a comma

separated list. For our system, we add the following NFS entries to /etc/fstab:

kingtiger1:/home /home nfsrsize=8192,wsize=8192 0

2.4.3 Set Up the NIS Client

1) Defining an NIS domain name:

 Our NIS domain name is kingtiger, we can set it by typing the following as the

root user from the shell:

 shell$ domainnamekingtiger

 To make the NIS domain name permanently, you need to have the domainname

command run automatically each time your system boots. We can do it by adding

the command line to a run-level script that runs before the ypbind daemon is

started. We edited the /etc/init.d/network file and added the following lines just

after the first set of comment lines [27], [28].

 Domain name kingtiger

2) Setting up the /etc/yp.conf file:

 We had an NIS domain called kingtiger and a server called kingtiger1, we should

have the following entries in our /etc/yp.conf file:

 Domain kingtiger server kingtiger1

 Domain kingtiger broadcast

 ypserver kingtiger1

3) Configuring NIS client daemons:

11

 We need set up an existing run-level script called ypbind to start automatically at

boot time. To do this, you can run the following command:

 shell$ chkconfig ypbind on

4) Using NIS maps:

 For the information being distributed by the NIS server to be used by the NIS

client, you must configure the /etc/nsswitch.conf file to include nis in the search

path for each file you want to use. In most cases, the local files are checked

first”(files”, followed by “nis”. The following are examples of how some entries

should be changed:

 passwd: files nis

 shadow: files nis

 group: files nis

 hosts: files nis dns

 As soon as the /etc/nsswitch file is changed, the data from NIS maps are

accessible. No need to restart the NIS service.

2.4.4 Set Up the NIS Server

1) To configure your Linux system as an NIS server, you should first configure it as

an NIS client and reboot the system [27], [28].

2) Creating NIS maps:

 To create NIS maps so that your Linux system can be an NIS server, start from the

/var/yp directory from a Terminal window as root user. In that directory, a

Makefile enables you to configure which files are being shared with NIS. All

12

default configurations in Makefile are ok for our purposes, so we don’t need

change them.

3) Configuring access to maps:

 In the /etc/ypserv.conf file, you can define rules regarding which client host

computers have access to which maps. For our purposes we just need add the

following line into /etc/ypserv.conf to allow all hosts access to all maps:

 * : * : * : none

4) Configuring NIS serve daemons:

 We can use the following chkconfig command to set ypserv and yppasswdd scripts

to start automatically at boot time.

 shell$ chkconfig ypserv on

 shell$ chkconfig yppasswdd on

5) Updating the NIS maps:

 If you modify the sources for NIS maps (for example if you create a new user by

adding the account to the passwd file), you need to regenerate the NIS maps. This

is done by a simple

 make –C /var/yp

 This command will check which sources have changed, creates the maps new and

tell ypserv that the maps have changed.

13

2.5 Disabling Password Authentication

 As Open MPI is configured by default to use ssh (secured shell) to dispatch

parallel tasks, it is ssh that asks for password to authenticate the connection. Extra steps

below will prevent ssh from requesting passwords [6]. Because the measure should only

work for the user account which intends to run MPI applications, log into the user

account instead of root account of server node, to configure. First, generate the private

and public key for the user account by executing:

 shell$ ssh-keygen -t dsa

Next, ssh to all other nodes respectively by typing:

 shell$ ssh host_name

That will generate the hidden .ssh directory on each node with the necessary attribute.

Remember to go back to the server node by typing “exit” to finish the remaining

procedures. Change into the .ssh directory under the user account and do the following.

 shell$ cd/home/user/.ssh

 shell$ cp id_dsa.pub authorized_keys

Next, repeat the following steps for all other nodes in the cluster. Replace “user” with

account names which you want to disable requesting passwords.

 shell$ scp authorized_keyshost_name:/home/user/.ssh

 shell$ scp id_dsahost_name:/home/user/.ssh

 shell$ scp id_dsa.pub host_name:/home/user/.ssh

With these procedures done, all private, public, and authorized keys are duplicated on

each node. They will be used for authentication for all future connections without

14

passwords being requested from other nodes. Now the MPI applications can be executed

on multiple nodes of this cluster without being asked for passwords.

15

CHAPTER 3

INTER-PROCESS COMMUNICATION EXPERIEMNTS

3.1 MPI Library

Since commodity clusters are based on message-passing platform, they rely on

passing messages to other processes to perform parallel tasks. The most popular

communication protocol for message-passing platform is MPI which was made a

standard in 1994. MPI has several different implementations since then. Currently, the

most popular MPI library is Open MPI which is developed by Open MPI team at Indiana

University. The Open MPI library used in this experiment is version 1.3.

3.2 Tested MPI Functions

 MPI communication functions consist of two major categories: point-to-point

communication and collective communication. Point-to-point communication functions

are used to send messages from one process to another. Collective communication

functions involve all processes participating in a parallel program [2], [7], [8].

3.2.1 Point-to-Point Communication Functions

The point-to-point communication functions tested in the experiments were

MPI_Send and MPI_Recv. MPI_Send is called by a process to send a message to another

process. It must be paired by a MPI_Recv function called by the receiving process. Both

functions are blocking functions which do not return until the message is successfully

16

passed from sending process to receiving process. Therefore, the performance of both

functions is essential to MPI programs.

3.2.2 Collective Communication Functions

The five collective communication functions tested in the experiments were

MPI_Bcast, MPI_Reduce, MPI_Gather, MPI_Scatter, and MPI_Alltoall. A

communicator is defined as all processes participating in a parallel program. MPI_Bcast

is called by a process to broadcast the same message to all processes in the same

communicator, including itself. MPI_Reduce collects a message from each process in the

same communicator, including itself, and reduce them with a specified operation to a

variable in a specified process. MPI_Gather collects a message from each process in the

communicator, including itself, and stores them in an array in the order of the rank of

each process. MPI_Scatter splits an array in a process and distributes one segment to one

process in the communicator in the order of the rank of each process. MPI_Alltoall is

equivalent to all processes in the communicator calling MPI_Gather or MPI_Scatter [3],

[7], [8]. The five collective communication functions are most frequently used in and

hence are fundamental to MPI programs.

3.3 Methodologies

 In the experiments, different MPI communication functions were executed with

different sizes of messages ranging from 4 bytes, the length of an integer variable, to 1

Mbytes on different cluster configurations. The message length is multiplied by a factor

of 2 for next sample. For the point-to-point communication functions, the well-known

17

ping-pong method was utilized [14], [18], [29]. In ping-pong method, process 0 calls

MPI_Send to send a message to process 1 while process 1 uses MPI_Recv to receive the

message. Process 1 immediately sends the same message back to process 0. The latency

of ping-pong operation is measured and then divided by two to determine the one-way

point-to-point communication time. The procedure is repeated for 1000 times. In reality,

MPI_Wtime is called before the first iteration and after the 1000th iteration to dilute the

overhead of calling MPI_Wtime. The average latency is calculated and used as the result.

As for collective communication functions, the function is called and followed by calling

MPI_Barrier to ensure the collective communication is synchronized on all processes

before marking ending time [18], [30]. The procedure is repeated for 1000 iterations.

Likewise, MPI_Wtime is called before and after the 1000 iterations and average time is

calculated as the result. For all functions, three iterations are executed to “warm up” the

communication channels and procedures before the beginning time is marked. The

number of iterations used was 20 in the methodology of Xu et al. [14] while it was 1000

in the paper of Miguel et al. [15] and OSU Benchmarks [30]. The results from Luecke et

al. [18] show that 15000 iterations do not improve the accuracy significantly. Hence,

1000 iterations were used in the experiments.

18

3.4 Configurations of Tested Clusters

 Three physical clusters were used in the experiments: Four nodes equipped with

AMD Phenom X4 2.5GHz CPU and 1GB RAM each, four nodes equipped with Intel

Pentium 4 2.4GHz CPU and 256MB RAM each, and eight nodes equipped with Intel

Pentium III CPU and 256MB RAM each. Eight different configurations were created by

changing network interface cards, adjusting number of nodes participating the testing

program, and dispatching different number of processes to be executed by each node. The

detailed information of each configuration is listed in Table 3.1.

Table 3.1. Configurations of Tested Commodity Clusters
Configuration CPU Networking Number of Node
1 AMD Quadcore 2.5GHz Internal Channels 4 cores
2 AMD Quadcore 2.5GHz Gigabit Ethernet 4
3 Intel Pentium 4 2.4GHz Gigabit Ethernet 4
4 Intel Pentium 4 2.4GHz 100Base-T Ethernet 4
5 Intel PIII 700MHz Gigabit Ethernet 4
6 Intel PIII 700MHz 100Base-T Ethernet 4
7 Intel PIII 700MHz Gigabit Ethernet 8
8 Intel PIII 700MHz 100Base-T Ethernet 8

19

CHAPTER 4

PERFORMANCE ANALYSIS ON RESULTS
AND OPTIMAL UTILIZATION

 Performance analyses were conducted on the results collected from the

experiments. In high performance computing field, performance of a HPC is compared as

a whole system with other HPCs, not on individual processor or networking equipment.

Therefore, the performance of all configurations of clusters was compared for each MPI

communication function first. Then each collective communication function was

compared against MPI_Send for each configuration of cluster individually to determine

whether the specific function performs better than equivalent number of MPI_Send on a

specific configuration of cluster. Lastly, methods for optimal utilization of inter-process

communications were proposed based on the performance analyses. As the size of

message length is multiplied by a factor of two for next sample, it grows exponentially

and is difficult to be displayed and distinguished on the same chart due to non-uniform

scale. Therefore, all results for each test are divided into four groups and are charted as

four graphs so that the scale can be properly shown and all samples can be distinctly read.

4.1 Comparison of Performance of All Clusters

 In this section, results from configurations with 4 nodes for the same MPI

communication function are plotted on same chart so they can be compared. The latency

of results from the configuration of PIII/100Base-T/4 nodes is too big when compared

20

with readings from the other five configurations. Hence, they are removed so that other

results can be displayed with proper scale and are distinguishable. Charts for MPI_Send,

MPI_Bcast, MPI_Reduce, MPI_Gather, MPI_Scatter, and MPI_Alltoall were plotted and

displayed from Figure 4.1. to Figure 4.6.

In Figure 4.1., which displays the performance of MPI_Send, it shows that, from

message length of 16 Kbytes up, the latency for different cluster from low to high is in

the following order:

1. Quadcore/internal channels

2. Quadcore/Gigabit

3. P4/Gigabit

4. PIII/Gigabit

5. P4/100Base-T

6. PIII/100Base-T

Although the ranking of latency for message length under 16 Kbytes is not in the same

order, the latency ranking for all other MPI communication functions tested for all

message lengths are quite in this order except for MPI_Scatter and MPI_Alltoall with

large messages over 32 Kbytes. The only difference is that latency of PIII/Gigabit is

better than that of P4/Gigabit for those large file sizes. All other four clusters are still in

the same order. That shows that generally the performance of those configurations is in

this ranking order. It demonstrates that Gigabit NICs perform significantly better

100Base-T NICs. In turn, internal channels outperform Gigabit networking.

Figure 4.1. CComparison

21

n of MPI_Seend Latencyy on All Cluusters

Fiigure 4.2. CComparison

22

n of MPI_Bccast Latencyy on All Cluusters

Figgure 4.3. Coomparison o

23

of MPI_Redduce Latenccy on All Cllusters

Figgure 4.4. Comparison

24

of MPI_Gaather Latenccy on All Cllusters

Figgure 4.5. Comparison

25

of MPI_Scaatter Latenccy on All Cllusters

Figgure 4.6. Coomparison o

26

of MPI_Allltoall Latenccy on All Cllusters

27

4.2 Performance Analyses on Collective Communication Functions

 As MPI collective communication functions send out messages to all processes in

the same communicator, the following performance analyses compare the latency of each

MPI collective communication function to the aggregate latency of equivalent number of

MPI_Send. For example, calling MPI_Bcast in a parallel program which is executed with

four processes is equivalent to calling MPI_Send three times to send the same message to

the other three processes because the overhead of sending the same message to itself is

negligible. The latency of executing MPI_Bcast with four processes is compared with the

aggregate latency of executing MPI_Send three times. The latency of executing

MPI_Alltoall with four processes is compared with the aggregate latency of executing

MPI_Send twelve times because each process of the four processes need to collect one

message from the other three processes.

4.2.1 Scenarios

There are four possible scenarios when the performance of a collective function is

compared against that of MPI_Send:

1. The latency of a collective communication function is higher than that of

MPI_Send for all message lengths. Under that circumstance, multiple MPI_Send

should be used instead of the specific collective communication function. An

example is shown in Figure 4.7.

2. The latency of a collective function is lower than that of MPI_Send for all message

lengths. Under that circumstance, the specific collective communication function

should be used instead of multiple MPI_Send. An example is shown in Figure 4.8.

28

3. The latency of a collective communication function is higher than that of

MPI_Send initially for messages with shorter lengths. Above a certain message

size, the latency of the specific collective communication function becomes lower

than that of MPI_Send for all messages lengths. Under that circumstance, multiple

MPI_Send should be used instead of the specific collective communication

function to send messages shorter than that certain size. An example is shown in

Figure 4.9.

4. The latency of a collective communication function is lower than that of

MPI_Send initially for messages with shorter lengths. Above a certain message

size, the latency of the specific collective communication function becomes higher

than that of MPI_Send for all messages lengths. Under that circumstance, multiple

MPI_Send should be used instead of the specific collective communication

function to send messages longer than that certain size. An example is shown in

Figure 4.10.

4.2.2 Notations

Latencies of all collective communication functions were compared against their

corresponding number of MPI_Send on each configuration of cluster. The results were

charted for individual cluster. All the charts are included in Appendix. The observations

based on the four scenarios are tabulated for each collective communication function and

listed in following sections. The notation H means the latency of the collective

communication function is higher than the aggregate latency of MPI_Send. The notation

L means the latency of the collective communication function is lower than the aggregate

29

latency of MPI_Send. For scenarios 3 and 4, the length where the change happens is

denoted as changing length.

4.3 Observations

 The observations on MPI_Bcast against MPI_Send are listed in Table 4.1. The

latency of MPI_Bcast on PIII/100Base-T/4 nodes is higher than the aggregate latency of

MPI_Send for all message lengths. That means using three callings to MPI_Send is going

to take less time than using MPI_Bcast. Contrarily, the latency of MPI_Bcast on

Quadcore/internal/4 nodes and Quadcore/Gigabit/4 nodes is both lower than aggregate

latency of MPI_Send for all message lengths. That means it is worthless to replace

MPI_Bcast with three MPI_Send callings in the program. For the case of P4/Gigabit/4

nodes, the latency of MPI_Bcast is originally higher than aggregate latency of MPI_Send

for messages with shorter lengths. Then the latency of MPI_Bcast becomes lower than

that of MPI_Send when message size is over 2048 bytes. Hence, it will reduce latency if

use MPI_Send three times instead of MPI_Bcast when the message size is shorter than

2048 bytes. As for the case of PIII/100Base-T/8 nodes, it will reduce latency to use seven

MPI_Send callings instead of MPI_Bcast when the message size is or over 16384 bytes.

The same interpretations work for the observations for the other four MPI communication

functions. Their observations are listed from Table 4.2. to Table 4.5.

FFigure 4.7. MMPI_Reducce versus M

30

MPI_Send onn Quadcoree/Internal Channels/4 nnodes

Figurre 4.8. MPII_Alltoall ve

31

ersus MPI__Send on P44/100Base-TT/4 nodes

Figgure 4.9. MMPI_Bcast v

32

versus MPI__Send on P44/Gigabit/4 nodes

Figuree 4.10. MPII_Scatter ve

33

ersus MPI_SSend on PIIII/100Base-T/8 nodes

34

Table 4.1. Observations on MPI_Bcast versus MPI_Send
Configuration Short

Message
Latency

Long
Message
Latency

Changing
Length
(bytes)

Quadcore 2.5GHz/Internal Channels/4 nodes L L
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L L
P4 2.4GHz/Gigabit Ethernet/4 nodes H L 2048
P4 2.4GHz/100Base-T Ethernet /4 nodes L H 1024
PIII 700MHz/Gigabit Ethernet/4 nodes H L 262144
PIII 700MHz/100Base-T Ethernet/4 nodes H H
PIII 700MHz/Gigabit Ethernet/8 nodes H L 128
PIII 700MHz/100Base-T Ethernet /8 nodes L H 16384

Table 4.2. Observation on MPI_Reduce versus MPI_Send
Configuration Short

Message
Latency

Long
Message
Latency

Changing
Length
(bytes)

Quadcore 2.5GHz/Internal Channels/4 nodes H H
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L L
P4 2.4GHz/Gigabit Ethernet/4 nodes H L 2048
P4 2.4GHz/100Base-T Ethernet /4 nodes H L 1024
PIII 700MHz/Gigabit Ethernet/4 nodes H H
PIII 700MHz/100Base-T Ethernet/4 nodes H H
PIII 700MHz/Gigabit Ethernet/8 nodes H L 128
PIII 700MHz/100Base-T Ethernet /8 nodes L H 16384

Table 4.3. Observation on MPI_Gather versus MPI_Send
Configuration Short

Message
Latency

Long
Message
Latency

Changing
Length
(bytes)

Quadcore 2.5GHz/Internal Channels/4 nodes H H
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L L
P4 2.4GHz/Gigabit Ethernet/4 nodes H L 262144
P4 2.4GHz/100Base-T Ethernet /4 nodes L H 65536
PIII 700MHz/Gigabit Ethernet/4 nodes H H
PIII 700MHz/100Base-T Ethernet/4 nodes H H
PIII 700MHz/Gigabit Ethernet/8 nodes L H 8192
PIII 700MHz/100Base-T Ethernet /8 nodes L H 8192

35

Table 4.4. Observation on MPI_Scatter versus MPI_Send
Configuration Short

Message
Latency

Long
Message
Latency

Changing
Length
(bytes)

Quadcore 2.5GHz/Internal Channels/4 nodes H H
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L L
P4 2.4GHz/Gigabit Ethernet/4 nodes H H
P4 2.4GHz/100Base-T Ethernet /4 nodes H H
PIII 700MHz/Gigabit Ethernet/4 nodes H H
PIII 700MHz/100Base-T Ethernet/4 nodes L H 1024
PIII 700MHz/Gigabit Ethernet/8 nodes L L
PIII 700MHz/100Base-T Ethernet /8 nodes L H 16384

Table 4.5. Observation on MPI_Alltoall versus MPI_Send
Configuration Short

Message
Latency

Long
Message
Latency

Changing
Length
(bytes)

Quadcore 2.5GHz/Internal Channels/4 nodes L H 131072
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L H 1048576
P4 2.4GHz/Gigabit Ethernet/4 nodes L L
P4 2.4GHz/100Base-T Ethernet /4 nodes L L
PIII 700MHz/Gigabit Ethernet/4 nodes L L
PIII 700MHz/100Base-T Ethernet/4 nodes L H 8192
PIII 700MHz/Gigabit Ethernet/8 nodes L L
PIII 700MHz/100Base-T Ethernet /8 nodes L H 16384

4.4 Methods for Optimal Utilization of Inter-Process Communications

 Based on the previous observations and performance analysis, the following

methods are recommended for optimal utilization of inter-process communications on

commodity clusters:

36

A. Use faster CPUs – CPUs with faster clock speeds can execute MPI

communication functions faster than CPUs with slower clock speeds, but the

speedup is not to the ratio of their clock speeds.

B. Adopt multicore CPUs to utilize the internal communication channels – The

main benefit of using multicore CPUs is the extremely low overhead of

communication through internal communication channels on the chip.

C. Employ Gigabit networking – Upgrading 100Base-T networking to Gigabit

networking significantly improves the communication performance. The

communication performance of the cluster equipped with PIII and Gigabit network

is better than the cluster equipped with Pentium 4 and 100Base-T networking.

D. Run tests of different MPI communication command against MPI_Send – As

the results presented in previous sections show, the latency of all MPI

communication functions are not always lower than that of aggregate latency of

equivalent MPI_Send on commodity clusters. However, the characteristics are not

uniform. Therefore, it recommended that researchers run benchmark programs to

determine which MPI communication functions perform better than aggregate

MPI_Send under what conditions on targeted commodity cluster. Then apply

MPI_Send for conditions when MPI communication functions do not perform

better.

37

CHAPTER 5

CONCLUSIONS

 Classical science is based on observation, theory, and physical experimentation.

In contrast, with the utilization of computer hardware and software, contemporary

science is characterized by observation, theory, experimentation, and numerical

simulation. With the advancement of computer hardware and software, numerical

simulation becomes an important tool for researchers. Nonetheless, complicated

numerical simulations rely on HPC. In the past, HPCs were very expensive and not

affordable by most researchers and institutions.

Due to the simplicity of message-passing platform and the porting of MPI library

to PC platform by open-source software developers, commodity clusters can be built out

of inexpensive PCs. They provide an effective tool for all researchers to take advantage

of numerical simulations. Although a lot of performance analyses have been conducted

HPCs, they are all on high-end HPCs. No performance analysis has been conducted on

commodity clusters before. In order to take the most out of commodity clusters,

performance evaluations should be performed on them, especially when commodity

clusters utilize generic components which exhibit different characteristics than those of

high performance components employed by supercomputers.

Experiments which executed six major MPI communication functions were

performed on eight different configurations of clusters. Performance analyses were

conducted on results from those experiments. It was observed that performance of

38

networking system still plays the key role. A cluster equipped with PIII CPUs and

Gigabit NICs outperforms a cluster consisting of Pentium 4 CPUs and 100Base-T NICs.

Gigabit NICs are very cheap to acquire nowadays. The cost/performance ratio of

upgrading to Gigabit networking is well worth of it. It was also observed that collective

communication functions may not perform better than utilizing multiple MPI_Send for

certain configuration of cluster with certain size of message. Recommendations for

optimal utilization of inter-process communications based on observations on experiment

results were proposed.

39

REFERENCES

[1] M. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-
 Hill, 2004.

[2] G. Karniadakis and R. Kirby, Parallel Scientific Computing in C++ and

 MPI,Cambridge University Press, 2003.

[3] P. Pacheo , Parallel Programming with MPI, Morgan-Kaufmann, 1996.

[4] A. Grama, A. Gupta, G. Karypis and V. Kumar, Introduction to Parallel
 Computing, Addison-Wesley, 2003.

[5] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,

 and Programmability, McGraw Hill, New York, 1993.

[6] Open MPI: Frequently Asked Questions. http://www.openmpi.org/faq.

[7] W. Gropp, E. Lusk and A. Skjellum, Using MPI, MIT Press, 1999.

[8] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2, MIT Press, 1999.

[9] J. Sloan, High Performance Linux Clusters, O’Reilly, 2005.

[10] C. Bookman, Linux Clustering, New Riders, 2003.

[11] A. Vrenios, Linux Cluster Architecture, Sams, 2002.

[12] R. Lucke, Building Clustered Linux Systems, Prentice Hall, 2005.

[13] Y. Tseng. and C. Hargrove, “Construction of Parallel Machines for

 Engineering Courses with Retired Personal Computers,” ASEE
 Southeastern Section Annual Conference, 2008.

[14] Z. Xu and K Hwang, “Modeling Communication Overhead: MPI and

 MPLPerformance on the IBM SP2,”IEEE parallel & distributed
 Technology, Vol. 4, No.1, Spring 1996, pp. 9-23.

[15] J. Miguel and A. Arruabarrena, “Assessing the Performance of the New

 IBM SP2 Communication Subsystem,” IEEE Parallel & Distributed
 technology.1996.

40

[16] C. Muelder, F. Gygi, and K. Ma, “Visual Analysis of Inter-Process

 Communication for Large-Scale Parallel Computing,” IEEE Transactions
 on Visualization and Computer Graphics, Vol. 15, NO. 6, Nov/Dec 2009.

[17] R.Graham, R. Brightwell, B. Barrett, Ge. Bosilca and J. Grbovic, “An

 Evaluation of Open MPI's Matching Transport Layer on the Cray XT,”
 EuroPVM/MPI 2007, 2007.

[18] G. Luecke, J. Coyle, J. Hoekstra, and M. Kraeva, “Measuring MPI

 Latency and Communication Rates for Small Messages,” Shanghai
 Supercomputing Center, 2009.

[19] J. Grbovic, G. Fagg, T. Angskun, G. Bosilca and J. Dongarra, “MPI

 Collective Algorithm Selection and Quadtree Encoding,” Euro PVM/MPI
 2006, 2006.

[20] G. Shipman, S. Poole, P. Shamis, and I. Rabinovitz, “X-SRQ - Improving

 Scalability and Performance of Multi-Core InfiniBand Clusters,”
 EuroPVM/MPI 2009, 2009.

[21] J.J Dongarra and T. Dunigan, “Message Passing Performance of Various

 Computers,” Tech. Report UT-CS-95-229, Computer Science Dept, Univ.
 of Tennessee,1995, available at http://www.cs.utk.edu/~library/1995.html.

[22] D. Doerfler and R. Brightwell, “Measuring MPI Send and Receive

 Overhead and Application Availability in High Performance Network
 Interfaces,” Euro PVM/MPI 2006, 2006.

[23] R. Graham, S. Timothy and M. Jeffrey, “Open MPI: A Flexible High

 Performance MPI,”6th International Conference on Parallel Processing
 and Applied Mathematics in Poznan, 2005.

[24] G. Shipman, T. Woodall, R. Graham, A. Maccabe and P. Bridges,

 “InfiniBand Scalability in Open MPI,” IEEE Parallel and Distributed
 Processing Symposium (IPDPS), 2006.

[25] T. Hoefler, P. Gottschling, W. Rehm and A. Lumsdaine, “Optimizing a

 Conjugate Gradient Solver with Non Blocking Collective Operations,”
 Euro PVM/MPI 2006, 2006.

41

[26] J. Hursey, T. Mattox and A. Lumsdaine, “Interconnect agnostic
 checkpoint/restart in Open MPI,” 18th ACM international symposium on
 High Performance Distributed Computing (HPDC 2009), 2009.

[27] M. Sobell, A Practical Guide to Red Hat Linux, Third Edition, Prentice-

 Hall, 2006.

[28] Linux NIS-HOWTO: http://www.linux-nis.org/nis-howto/.

[29] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham and G. Bosilca,

 “Analysis of the Component Architecture Overhead in Open MPI,” Euro
 PVM/MPI 2005, 2005.

[30] The Ohio State University Benchmarks: http://nowlab.cse.ohio-

 state.edu/projects/mpi-iba/benchmarks.html.

[31] Intel’s MPI Benchmarks 3.1: http://www.intel.com/cd/software/products/

 asmo-na/eng/cluster/cluster/clustertoolkit/219848.html.

[32] T.S. Woodall, R.L. Graham, R.H. Castain, D.J. Daniel, M.W. Sukalski,

 G.E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, J.J. Dongarra, J.M.
 Squyres, V. Sahay, P. Kambadur, B. Barrett and A. Lumsdaine, “A High-
 Performance, Scalable,Multi-Network Point-to-Point Communications
 Methodology,” Euro PVM/MPI 2004, 2004.

[33] J. Hursey, J Squyres, T. Mattox and A. Lumsdaine, “The Design and

 Implementation of Checkpoint/Restart Process Fault Tolerance for Open
 MPI,” International Parallel and Distributed Processing Symposium
 (IPDPS 2007), 2007.

FFigure A.1. MPI_Bcas

A

st versus MP

42

APPEND

PI_Send on

DIX

 Quadcore//Internal Chhannels/4 no

odes

Figuree A.2. MPI__Bcast versu

43

us MPI_Sennd on Quaddcore/Gigabbit/4 nodes

Figgure A.3. MMPI_Bcast v

44

versus MPI__Send on P44/Gigabit/4 nodes

Figuure A.4. MPPI_Bcast ve

45

ersus MPI_SSend on P4//100Base-T//4 nodes

Figure A.5. MMPI_Bcast ve

46

ersus MPI_

_Send on PIII/Gigabit/44 nodes

Figurre A.6. MPPI_Bcast ver

47

rsus MPI_S

end on PIIII/100Base-TT/4 nodes

Figure A.7. MMPI_Bcast ve

48

ersus MPI_

_Send on PIII/Gigabit/88 nodes

Figurre A.8. MPPI_Bcast ver

49

rsus MPI_Send on PIIII/100Base-TT/8 nodes

FFigure A.9. MPI_Reduce versus M

50

MPI_Send onn Quadcoree/Internal CChannels/4 n

nodes

Figure AA.10. MPI__Reduce ver

51

rsus MPI_S

Send on Quaadcore/Gigaabit/4 nodes

s

Figuure A.11. MMPI_Reduce

52

e versus MP

PI_Send on P4/Gigabit//4 nodes

Figurre A.12. MPPI_Reduce v

53

versus MPI_

_Send on P44/100Base-TT/4 nodes

Figurre A.13. MPPI_Reduce

54

versus MPI

I_Send on PPIII/Gigabitt/4 nodes

Figuree A.14. MPII_Reduce ve

55

ersus MPI_

_Send on PIIII/100Base--T/4 nodes

Figurre A.15. MPPI_Reduce

56

versus MPI

I_Send on PPIII/Gigabitt/8 nodes

Figuree A.16. MPII_Reduce ve

57

ersus MPI__Send on PIIII/100Base--T/8 nodes

F

Figure A.17.

 MPI_Gath
 nodes

her versus M

58

MPI_Send oon Quadcorre/Internal CChannels/4

Figure AA.18. MPI__Gather ver

59

rsus MPI_S

end on Quaadcore/Gigaabit/4 nodes

s

Figuure A.19. MMPI_Gather

60

r versus MP

PI_Send on PP4/Gigabit//4 nodes

Figurre A.20. MPPI_Gather v

61

versus MPI_

_Send on P44/100Base-TT/4 nodes

Figurre A.21. MPI_Gather

62

versus MPI

I_Send on PPIII/Gigabitt/4 nodes

Figuree A.22. MPII_Gather ve

63

ersus MPI_

_Send on PIIII/100Base--T/4 nodes

Figurre A.23. MPI_Gather

64

versus MPI

I_Send on PPIII/Gigabitt/8 nodes

Figuree A.24. MPII_Gather ve

65

ersus MPI__Send on PIIII/100Base--T/8 nodes

F

Figure A.25.

 MPI_Scat
 nodes

ter versus M

66

MPI_Send oon Quadcorre/Internal CChannels/4

Figure AA.26. MPI__Scatter ver

67

rsus MPI_Send on Quaadcore/Gigaabit/4 nodes

s

Figuure A.27. MMPI_Scatter

68

r versus MP

PI_Send on PP4/Gigabit//4 nodes

Figure AA.28. MPI__ScatterBcas

69

st versus M

MPI_Send onn P4/100Basse-T/4 nodes

s

Figurre A.29. MPI_Scatter

70

versus MPI

I_Send on PPIII/Gigabitt/4 nodes

Figuree A.30. MPII_Scatter ve

71

ersus MPI_

_Send on PIIII/100Base--T/4 nodes

Figurre A.31. MPI_Scatter

72

versus MPI

I_Send on PPIII/Gigabitt/8 nodes

Figuree A.32. MPII_Scatter ve

73

ersus MPI__Send on PIIII/100Base--T/8 nodes

F

Figure A.33.

 MPI_Allto
 nodes

oall versus M

74

MPI_Send oon Quadcorre/Internal CChannels/4

Figure AA.34. MPI__Alltoall ver

75

rsus MPI_S

Send on Quaadcore/Gigaabit/4 nodes

s

Figure A.35. MPII_AlltoallBc

76

cast versus M

MPI_Send oon P4/Gigabbit/4 nodes

Figurre A.36. MPPI_Alltoall v

77

versus MPI_

_Send on P44/100Base-TT/4 nodes

Figurre A.37. MPPI_Alltoall

78

versus MPI

I_Send on PPIII/Gigabitt/4 nodes

Figuree A.38. MPII_Alltoall ve

79

ersus MPI_

_Send on PIIII/100Base--T/4 nodes

Figurre A.39. MPPI_Alltoall

80

versus MPI

I_Send on PPIII/Gigabitt/8 nodes

Figuree A.40. MPII_Alltoall ve

81

ersus MPI__Send on PIIII/100Base--T/8 nodes

	Performance Analysis And Optimal Utilization Of Inter-Process Communications On A Commodity Cluster
	Recommended Citation

	Microsoft Word - Thesis - Saqib Khan

