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ABSTRACT 

Khan, Saqib Ali. PERFORMANCE ANALYSIS AND OPTIMAL UTILIZATION OF 
INTER-PROCESS COMMUNICATIONS ON A COMMODITY CLUSTER. (Major 
Advisor: Dr. Yilli Tseng), North Carolina Agricultural and Technical State University. 
 

 Classical science is based on theory, observation and physical experimentation. 

Contemporary science is characterized by theory, observation, experimentation and 

numerical simulation. With the use of hardware and software we can simulate lots of 

phenomenon. This saves time, money and physical resources.  

Simulation of a certain phenomenon requires lots of computing power. Answer to 

these computational power needs is high performance computer. High performance 

computers consist of numerous processors working on same task in parallel. In the past, 

high performance computers were very expensive and affordable by few institutions. 

After Message Passing Interface library is ported to PC platform, commodity clusters can 

be built of inexpensive PCs and afforded by any researcher.  

Lots of performance analyses have been conducted on high-end supercomputers. 

None has been done on commodity clusters. In this thesis, experiments for six major MPI 

communication functions were performed on eight different configurations of clusters. 

Performance analyses were then conducted on the results. Based on the results, methods 

for optimal utilization of inter-process communications on commodity clusters were 

proposed.
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CHAPTER 1 

INTRODUCTION 

 

1.1 The Need for High Performance Computing 

Classical science is based on observation, theory, and physical experimentation. 

In contrast, with the utilization of computer hardware and software, contemporary 

science is characterized by observation, theory, experimentation, and numerical 

simulation [1]. Numerical simulation is a mathematical modeling on a discrete model. It 

may represent a discrete approximation of the continuum partial differential equations, or 

it may represent a statistical representation of the microscopic model [2]. Numerical 

simulation is an increasingly important tool for scientists and engineers, who often cannot 

use physical experimentations to test because they may be too expensive or time-

consuming, because they may be unethical, or because they are impossible to perform 

[1]. Numerical simulation requires computers to carry out calculations. Many important 

scientific and engineering problems are so complex that solving them via numerical 

simulation requires extraordinary powerful computers. Those complex problems are often 

called grand challenges for science and require high performance computers to perform 

numerical simulations [2]. 

 

1.2 High Performance Computer 

High Performance Computers (HPC) refer to parallel computers or multiprocessor 

computers. HPCs gain high throughput by having plenty of processors working in 
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1.3 Dilemma of High Performance Computing and Resolution 

Although numerical simulation becomes an important tool for many science and 

engineering disciplines, it relies on the availability of HPCs. In the past, HPCs are very 

expensive and cannot be afforded by most researchers and institutions. The high costs 

were the barrier to wide adoption of HPCs. Nonetheless, due to the simplicity of 

message-passing platform’s architecture and thanks to the porting of MPI library to 

personal computer (PC) platform by open-source software developers, now researchers 

and institutions can connect inexpensive PCs with generic networking and install MPI 

library on them to build a commodity cluster [9] - [12]. Even retired PCs can be used to 

build a commodity cluster [13]. That paves a way for all researchers who are interested in 

numerical simulations to own an effective and affordable tool to perform research 

through numerical simulations. The commodity clusters still have decent computing 

power to solve smaller-scale numerical simulations.  

 

1.4 Related Work 

Although lots of performance analyses have been conducted for HPCs and high 

performance networking systems in the past, they were all performed on high-end HPCs.  

Xu et al. [14] and Miguel et al. [15] addressed IBM SP2. Muelder et al. [16] and Graham 

et al. [17] measured Cray XT. High-end clusters are the focus of the papers of Luecke et 

al. [18], Grbovic et al. [19], and Shipman et al. [20]. Dongarra et al. [21] evaluated 

multiple systems, but all of them were high-end HPCs. Doerfler et al. [22] and Graham et 

al. [23] investigated high performance networks. InfiniBand is the target network system 
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of the papers of Shipman et al.[24], Hoefler et al.[25], and Hursey et al.[26]. No 

performance analysis has been done on commodity clusters. As they use generic parts 

instead of high performance parts employed by high-end supercomputers, for example 

Gigabit Ethernet networking versus InfiniBand networking, commodity cluster could 

exhibit different characteristics than those of supercomputers. Because they are more 

popular and adopted than before, performance analysis should be conducted on 

commodity clusters to investigate their characteristics in executing MPI communication 

functions in order to carry out optimal utilization of them. This thesis begins with 

introducing installation and configuration of a typical commodity cluster; then executes 

and measures six major MPI communication functions on eight different configurations 

of commodity clusters; finally analyzes performance of commodity clusters and proposes 

optimal utilization of major MPI communication functions. 
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CHAPTER 2 

INSTALLATION AND CONFIGURATION OF  
A COMMODITY CLUSTER 

 

 In this Chapter, the general components and procedures required to install and 

configure a commodity cluster is covered [13]. 

 

2.1 Hardware Requirements 

Any PC with 128MB RAM or more and an Ethernet network interface card (NIC) 

can work as a node. PCs with Pentium III 500MHz CPUs work smoothly at author’s 

institution. All nodes have to be connected with a network hub or switch. Generic 

Ethernet NICs and switches can be acquired with very little cost.  

 

2.2 Operating System and Software Packages 

Among all operating systems, only Linux can be acquired for free. Also, Linux 

operating systems come with plenty of hardware drivers which cover almost all legacy 

and new hardware, that further makes it the ideal OS for commodity clusters. Although 

several implementations of open source Linux operating systems are available, not all of 

them work well with the MPI library. After extensive experiments, the author chose and 

installed CentOS Linux which is a clone of commercial Red Hat Enterprise Linux and 

downloadable at www.centos.org. The following actions should be done for all nodes in 

the cluster. Firewall and SELinux should be turned off during installation as they cause 

difficulty for communications among nodes which are required for executing MPI 
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programs. Fortunately, security is not a concern as long as the cluster is not connected 

with other networks. The editor, gcc C++ and FORTRAN have to be installed to as they 

are required for MPI programming process. One node should be selected as the server 

node and the following software should be installed on the node during installation: 

Network Information Service (NIS) server and Network File System (NFS) server 

configuration tool. After Linux is installed, networking should be correctly configured so 

that all nodes of the cluster can communicate among one another. In general, one user 

account with the same name needs to be created on each node because a parallel program 

is dispatched to each node under the same user account. NIS which is addressed in later 

subsections can take care of this and other issues. 

 

2.3 MPI library 

The next major step is to install the MPI library. Again, there are several 

implementations of MPI, such as MPICH, LAM/MPI, Open MPI, etc. Nevertheless, only 

Open MPI is still under active development and growing more powerful. Therefore, Open 

MPI is the best choice. The steps to install Open MPI are quite straightforward. They are 

described as follows [6]. First, download the latest version of the library from Open 

MPI’s website, www.openmpi.org.Log into the root account to install it. Copy the 

compressed file to the /tmp directory. Uncompress the file with the command line or 

double click to invoke GUI uncompress software: 

 shell$ gunzip -c openmpi-1.4.3.tar.gz | tar xf – 
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Then change to the directory openmpi-1.3. Configure and make Open MPI with the 

commands below [6]. Replace the directory after prefix option if you want to install into 

another directory. 

 shell$ cd openmpi-1.3 

 shell$ ./configure --prefix=/usr/local 

 shell$ make all install 

The make process may take up to one hour on an old PC. 

 

2.4 NFS and NIS 

Before we run a parallel program on our cluster, we need to dispatch a copy of the 

program’s executable file onto every node under the same account. Manually copying the 

executable to all nodes is impractical. NFS is the solution to help us to complete this 

mission. With NFS, the program’s executables only need to be saved into the shared 

directory of the NFS and a copy of the program is automatically copied to all other nodes. 

While NFS can solve the copying problem, there are some potential security problems. 

Each user has access to the shared directory, meaning any user can run, correct, save, and 

delete others’ programs. To remedy this problem, NIS was used to create accounts on the 

server node. All users can login from any node and manage their own shared directory. 

You have to login as root to perform all following setups and reboot all nodes to take 

effect. Do not reboot any client node until the server node completes its boot-up process, 

otherwise other nodes cannot read the correct configuration information from the server 

and perform normally. 
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2.4.1 Set Up the NFS Server 

1) From the NFS Server Configuration window, click File → Add Share. The Add 

NFS Share window appears. In the Add NFS Share window Basic tab, type the 

following information [27]: 

• Directory – Type the name of the directory you want to share. Type “/home” 

which is the parent directory to all user directories. 

• Host(s) – Enter one or more host names to indicate which hosts can access the 

shared directory. Type “*” to let all nodes access NFS server. 

• Basic permissions – Click Read/Write to let remote computers mount the shared 

directory with read/write access. 

2) To permanently turn on the NFS service, type:  

   shell$ chkconfignfs on  

   shell$ chkconfignfslock on 

2.4.2 Set Up the NFS Client  

 To set up an NFS file system to mount automatically each time you start your 

Linux system, you need to add an entry for that NFS file system to the /etc/fstab file. The 

/etc/fstab file contains information about all different kinds of mounted (and available to 

be mounted) file systems for your Linux system [27]. 

The format for adding an NFS file system to your local system is the following: 

 host:directory mountpoint options  0 0 

The first item “host:directory” identifies the NFS server computer and shared directory. 

Mountpoint is the local mount point on which the NFS directory is mounted, followed by 
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the file system type “nfs”. Any options related to the mount appear next in a comma 

separated list. For our system, we add the following NFS entries to /etc/fstab: 

kingtiger1:/home /home nfsrsize=8192,wsize=8192 0 

2.4.3 Set Up the NIS Client  

1) Defining an NIS domain name:  

 Our NIS domain name is kingtiger, we can set it by typing the following as the 

root user from the shell: 

   shell$ domainnamekingtiger 

 To make the NIS domain name permanently, you need to have the domainname 

command run automatically each time your system boots. We can do it by adding 

the command line to a run-level script that runs before the ypbind daemon is 

started. We edited the /etc/init.d/network file and added the following lines just 

after the first set of comment lines [27], [28]. 

   Domain name kingtiger 

2) Setting up the /etc/yp.conf file: 

 We had an NIS domain called kingtiger and a server called kingtiger1, we should 

have the following entries in our /etc/yp.conf file: 

   Domain kingtiger server kingtiger1 

   Domain kingtiger broadcast 

   ypserver kingtiger1 

3) Configuring NIS client daemons: 
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 We need set up an existing run-level script called ypbind to start automatically at 

boot time. To do this, you can run the following command: 

   shell$ chkconfig ypbind on 

4) Using NIS maps: 

 For the information being distributed by the NIS server to be used by the NIS 

client, you must configure the /etc/nsswitch.conf file to include nis in the search 

path for each file you want to use. In most cases, the local files are checked 

first”(files”, followed by “nis”. The following are examples of how some entries 

should be changed: 

   passwd:    files nis 

   shadow:    files nis 

   group: files nis 

   hosts: files nis dns 

 As soon as the /etc/nsswitch file is changed, the data from NIS maps are 

accessible. No need to restart the NIS service. 

2.4.4 Set Up the NIS Server  

1) To configure your Linux system as an NIS server, you should first configure it as 

an NIS client and reboot the system [27], [28]. 

2) Creating NIS maps: 

 To create NIS maps so that your Linux system can be an NIS server, start from the 

/var/yp directory from a Terminal window as root user. In that directory, a 

Makefile enables you to configure which files are being shared with NIS. All 
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default configurations in Makefile are ok for our purposes, so we don’t need 

change them. 

3) Configuring access to maps: 

 In the /etc/ypserv.conf file, you can define rules regarding which client host 

computers have access to which maps.  For our purposes we just need add the 

following line into /etc/ypserv.conf to allow all hosts access to all maps: 

   * : * : * :    none 

4) Configuring NIS serve daemons: 

 We can use the following chkconfig command to set ypserv and yppasswdd scripts 

to start automatically at boot time. 

   shell$ chkconfig ypserv on 

   shell$ chkconfig yppasswdd on 

5) Updating the NIS maps: 

 If you modify the sources for NIS maps (for example if you create a new user by 

adding the account to the passwd file), you need to regenerate the NIS maps. This 

is done by a simple 

   make –C /var/yp 

 This command will check which sources have changed, creates the maps new and 

tell ypserv that the maps have changed. 
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2.5 Disabling Password Authentication  

 As Open MPI is configured by default to use ssh (secured shell) to dispatch 

parallel tasks, it is ssh that asks for password to authenticate the connection. Extra steps 

below will prevent ssh from requesting passwords [6]. Because the measure should only 

work for the user account which intends to run MPI applications, log into the user 

account instead of root account of server node, to configure. First, generate the private 

and public key for the user account by executing: 

 shell$ ssh-keygen -t dsa 

Next, ssh to all other nodes respectively by typing: 

 shell$ ssh host_name 

That will generate the hidden .ssh directory on each node with the necessary attribute. 

Remember to go back to the server node by typing “exit” to finish the remaining 

procedures. Change into the .ssh directory under the user account and do the following. 

 shell$ cd/home/user/.ssh 

 shell$ cp id_dsa.pub authorized_keys 

Next, repeat the following steps for all other nodes in the cluster. Replace “user” with 

account names which you want to disable requesting passwords. 

 shell$ scp authorized_keyshost_name:/home/user/.ssh 

 shell$ scp id_dsahost_name:/home/user/.ssh 

 shell$ scp id_dsa.pub host_name:/home/user/.ssh 

With these procedures done, all private, public, and authorized keys are duplicated on 

each node. They will be used for authentication for all future connections without 
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passwords being requested from other nodes. Now the MPI applications can be executed 

on multiple nodes of this cluster without being asked for passwords. 
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CHAPTER 3 

INTER-PROCESS COMMUNICATION EXPERIEMNTS 

 

3.1 MPI Library 

Since commodity clusters are based on message-passing platform, they rely on 

passing messages to other processes to perform parallel tasks. The most popular 

communication protocol for message-passing platform is MPI which was made a 

standard in 1994. MPI has several different implementations since then. Currently, the 

most popular MPI library is Open MPI which is developed by Open MPI team at Indiana 

University. The Open MPI library used in this experiment is version 1.3. 

  

3.2 Tested MPI Functions 

 MPI communication functions consist of two major categories: point-to-point 

communication and collective communication. Point-to-point communication functions 

are used to send messages from one process to another. Collective communication 

functions involve all processes participating in a parallel program [2], [7], [8]. 

3.2.1 Point-to-Point Communication Functions 

The point-to-point communication functions tested in the experiments were 

MPI_Send and MPI_Recv. MPI_Send is called by a process to send a message to another 

process. It must be paired by a MPI_Recv function called by the receiving process. Both 

functions are blocking functions which do not return until the message is successfully 
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passed from sending process to receiving process. Therefore, the performance of both 

functions is essential to MPI programs.  

3.2.2 Collective Communication Functions 

The five collective communication functions tested in the experiments were 

MPI_Bcast, MPI_Reduce, MPI_Gather, MPI_Scatter, and MPI_Alltoall. A 

communicator is defined as all processes participating in a parallel program. MPI_Bcast 

is called by a process to broadcast the same message to all processes in the same 

communicator, including itself. MPI_Reduce collects a message from each process in the 

same communicator, including itself, and reduce them with a specified operation to a 

variable in a specified process. MPI_Gather collects a message from each process in the 

communicator, including itself, and stores them in an array in the order of the rank of 

each process. MPI_Scatter splits an array in a process and distributes one segment to one 

process in the communicator in the order of the rank of each process. MPI_Alltoall is 

equivalent to all processes in the communicator calling MPI_Gather or MPI_Scatter [3], 

[7], [8]. The five collective communication functions are most frequently used in and 

hence are fundamental to MPI programs. 

 

3.3 Methodologies 

 In the experiments, different MPI communication functions were executed with 

different sizes of messages ranging from 4 bytes, the length of an integer variable, to 1 

Mbytes on different cluster configurations. The message length is multiplied by a factor 

of 2 for next sample. For the point-to-point communication functions, the well-known 
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ping-pong method was utilized [14], [18], [29]. In ping-pong method, process 0 calls 

MPI_Send to send a message to process 1 while process 1 uses MPI_Recv to receive the 

message. Process 1 immediately sends the same message back to process 0. The latency 

of ping-pong operation is measured and then divided by two to determine the one-way 

point-to-point communication time. The procedure is repeated for 1000 times. In reality, 

MPI_Wtime is called before the first iteration and after the 1000th iteration to dilute the 

overhead of calling MPI_Wtime. The average latency is calculated and used as the result. 

As for collective communication functions, the function is called and followed by calling 

MPI_Barrier to ensure the collective communication is synchronized on all processes 

before marking ending time [18], [30]. The procedure is repeated for 1000 iterations. 

Likewise, MPI_Wtime is called before and after the 1000 iterations and average time is 

calculated as the result. For all functions, three iterations are executed to “warm up” the 

communication channels and procedures before the beginning time is marked. The 

number of iterations used was 20 in the methodology of Xu et al. [14] while it was 1000 

in the paper of Miguel et al. [15] and OSU Benchmarks [30]. The results from Luecke et 

al. [18] show that 15000 iterations do not improve the accuracy significantly. Hence, 

1000 iterations were used in the experiments. 
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3.4 Configurations of Tested Clusters 

 Three physical clusters were used in the experiments: Four nodes equipped with 

AMD Phenom X4 2.5GHz CPU and 1GB RAM each, four nodes equipped with Intel 

Pentium 4 2.4GHz CPU and 256MB RAM each, and eight nodes equipped with Intel 

Pentium III CPU and 256MB RAM each. Eight different configurations were created by 

changing network interface cards, adjusting number of nodes participating the testing 

program, and dispatching different number of processes to be executed by each node. The 

detailed information of each configuration is listed in Table 3.1. 

 

 

Table 3.1.  Configurations of Tested Commodity Clusters 
Configuration CPU Networking Number of Node 
1 AMD Quadcore 2.5GHz Internal Channels 4 cores 
2 AMD Quadcore 2.5GHz Gigabit Ethernet 4 
3 Intel Pentium 4 2.4GHz Gigabit Ethernet 4 
4 Intel Pentium 4 2.4GHz 100Base-T Ethernet 4 
5 Intel PIII 700MHz Gigabit Ethernet 4 
6 Intel PIII 700MHz 100Base-T Ethernet 4 
7 Intel PIII 700MHz Gigabit Ethernet 8 
8 Intel PIII 700MHz 100Base-T Ethernet 8 
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CHAPTER 4 

PERFORMANCE ANALYSIS ON RESULTS  
AND OPTIMAL UTILIZATION 

 

 Performance analyses were conducted on the results collected from the 

experiments. In high performance computing field, performance of a HPC is compared as 

a whole system with other HPCs, not on individual processor or networking equipment. 

Therefore, the performance of all configurations of clusters was compared for each MPI 

communication function first. Then each collective communication function was 

compared against MPI_Send for each configuration of cluster individually to determine 

whether the specific function performs better than equivalent number of MPI_Send on a 

specific configuration of cluster. Lastly, methods for optimal utilization of inter-process 

communications were proposed based on the performance analyses. As the size of 

message length is multiplied by a factor of two for next sample, it grows exponentially 

and is difficult to be displayed and distinguished on the same chart due to non-uniform 

scale. Therefore, all results for each test are divided into four groups and are charted as 

four graphs so that the scale can be properly shown and all samples can be distinctly read.  

 

4.1 Comparison of Performance of All Clusters 

 In this section, results from configurations with 4 nodes for the same MPI 

communication function are plotted on same chart so they can be compared. The latency 

of results from the configuration of PIII/100Base-T/4 nodes is too big when compared 
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with readings from the other five configurations. Hence, they are removed so that other 

results can be displayed with proper scale and are distinguishable. Charts for MPI_Send, 

MPI_Bcast, MPI_Reduce, MPI_Gather, MPI_Scatter, and MPI_Alltoall were plotted and 

displayed from Figure 4.1. to Figure 4.6. 

In Figure 4.1., which displays the performance of MPI_Send, it shows that, from 

message length of 16 Kbytes up, the latency for different cluster from low to high is in 

the following order:  

1. Quadcore/internal channels 

2. Quadcore/Gigabit 

3. P4/Gigabit 

4. PIII/Gigabit 

5. P4/100Base-T 

6. PIII/100Base-T  

Although the ranking of latency for message length under 16 Kbytes is not in the same 

order, the latency ranking for all other MPI communication functions tested for all 

message lengths are quite in this order except for MPI_Scatter and MPI_Alltoall with 

large messages over 32 Kbytes. The only difference is that latency of PIII/Gigabit is 

better than that of P4/Gigabit for those large file sizes. All other four clusters are still in 

the same order. That shows that generally the performance of those configurations is in 

this ranking order. It demonstrates that Gigabit NICs perform significantly better 

100Base-T NICs. In turn, internal channels outperform Gigabit networking. 
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4.2 Performance Analyses on Collective Communication Functions 

 As MPI collective communication functions send out messages to all processes in 

the same communicator, the following performance analyses compare the latency of each 

MPI collective communication function to the aggregate latency of equivalent number of 

MPI_Send. For example, calling MPI_Bcast in a parallel program which is executed with 

four processes is equivalent to calling MPI_Send three times to send the same message to 

the other three processes because the overhead of sending the same message to itself is 

negligible. The latency of executing MPI_Bcast with four processes is compared with the 

aggregate latency of executing MPI_Send three times. The latency of executing 

MPI_Alltoall with four processes is compared with the aggregate latency of executing 

MPI_Send twelve times because each process of the four processes need to collect one 

message from the other three processes.  

4.2.1 Scenarios 

There are four possible scenarios when the performance of a collective function is 

compared against that of MPI_Send: 

1. The latency of a collective communication function is higher than that of 

MPI_Send for all message lengths. Under that circumstance, multiple MPI_Send 

should be used instead of the specific collective communication function. An 

example is shown in Figure 4.7. 

2. The latency of a collective function is lower than that of MPI_Send for all message 

lengths. Under that circumstance, the specific collective communication function 

should be used instead of multiple MPI_Send. An example is shown in Figure 4.8. 
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3. The latency of a collective communication function is higher than that of 

MPI_Send initially for messages with shorter lengths. Above a certain message 

size, the latency of the specific collective communication function becomes lower 

than that of MPI_Send for all messages lengths. Under that circumstance, multiple 

MPI_Send should be used instead of the specific collective communication 

function to send messages shorter than that certain size. An example is shown in 

Figure 4.9. 

4. The latency of a collective communication function is lower than that of 

MPI_Send initially for messages with shorter lengths. Above a certain message 

size, the latency of the specific collective communication function becomes higher 

than that of MPI_Send for all messages lengths. Under that circumstance, multiple 

MPI_Send should be used instead of the specific collective communication 

function to send messages longer than that certain size. An example is shown in 

Figure 4.10. 

4.2.2 Notations 

Latencies of all collective communication functions were compared against their 

corresponding number of MPI_Send on each configuration of cluster. The results were 

charted for individual cluster. All the charts are included in Appendix. The observations 

based on the four scenarios are tabulated for each collective communication function and 

listed in following sections. The notation H means the latency of the collective 

communication function is higher than the aggregate latency of MPI_Send. The notation 

L means the latency of the collective communication function is lower than the aggregate 
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latency of MPI_Send. For scenarios 3 and 4, the length where the change happens is 

denoted as changing length. 

 

4.3 Observations 

 The observations on MPI_Bcast against MPI_Send are listed in Table 4.1.  The 

latency of MPI_Bcast on PIII/100Base-T/4 nodes is higher than the aggregate latency of 

MPI_Send for all message lengths. That means using three callings to MPI_Send is going 

to take less time than using MPI_Bcast. Contrarily, the latency of MPI_Bcast on 

Quadcore/internal/4 nodes and Quadcore/Gigabit/4 nodes is both lower than aggregate 

latency of MPI_Send for all message lengths. That means it is worthless to replace 

MPI_Bcast with three MPI_Send callings in the program. For the case of P4/Gigabit/4 

nodes, the latency of MPI_Bcast is originally higher than aggregate latency of MPI_Send 

for messages with shorter lengths. Then the latency of MPI_Bcast becomes lower than 

that of MPI_Send when message size is over 2048 bytes. Hence, it will reduce latency if 

use MPI_Send three times instead of MPI_Bcast when the message size is shorter than 

2048 bytes. As for the case of PIII/100Base-T/8 nodes, it will reduce latency to use seven 

MPI_Send callings instead of MPI_Bcast when the message size is or over 16384 bytes. 

The same interpretations work for the observations for the other four MPI communication 

functions. Their observations are listed from Table 4.2. to Table 4.5. 
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Table 4.1.  Observations on MPI_Bcast versus MPI_Send 
Configuration Short 

Message 
Latency 

Long 
Message 
Latency 

Changing 
Length 
(bytes) 

Quadcore 2.5GHz/Internal Channels/4 nodes L L  
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L L  
P4 2.4GHz/Gigabit Ethernet/4 nodes H L 2048 
P4 2.4GHz/100Base-T Ethernet /4 nodes L H 1024 
PIII 700MHz/Gigabit Ethernet/4 nodes H L 262144 
PIII 700MHz/100Base-T Ethernet/4 nodes H H  
PIII 700MHz/Gigabit Ethernet/8 nodes H L 128 
PIII 700MHz/100Base-T Ethernet /8 nodes L H 16384 
 

 

Table 4.2.  Observation on MPI_Reduce versus MPI_Send 
Configuration Short 

Message 
Latency 

Long 
Message 
Latency 

Changing 
Length 
(bytes) 

Quadcore 2.5GHz/Internal Channels/4 nodes H H  
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L L  
P4 2.4GHz/Gigabit Ethernet/4 nodes H L 2048 
P4 2.4GHz/100Base-T Ethernet /4 nodes H L 1024 
PIII 700MHz/Gigabit Ethernet/4 nodes H H  
PIII 700MHz/100Base-T Ethernet/4 nodes H H  
PIII 700MHz/Gigabit Ethernet/8 nodes H L 128 
PIII 700MHz/100Base-T Ethernet /8 nodes L H 16384 
 

 

Table 4.3.  Observation on MPI_Gather versus MPI_Send 
Configuration Short 

Message 
Latency 

Long 
Message 
Latency 

Changing 
Length 
(bytes) 

Quadcore 2.5GHz/Internal Channels/4 nodes H H  
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L L  
P4 2.4GHz/Gigabit Ethernet/4 nodes H L 262144 
P4 2.4GHz/100Base-T Ethernet /4 nodes L H 65536 
PIII 700MHz/Gigabit Ethernet/4 nodes H H  
PIII 700MHz/100Base-T Ethernet/4 nodes H H  
PIII 700MHz/Gigabit Ethernet/8 nodes L H 8192 
PIII 700MHz/100Base-T Ethernet /8 nodes L H 8192 
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Table 4.4.  Observation on MPI_Scatter versus MPI_Send 
Configuration Short 

Message 
Latency 

Long 
Message 
Latency 

Changing 
Length 
(bytes) 

Quadcore 2.5GHz/Internal Channels/4 nodes H H  
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L L  
P4 2.4GHz/Gigabit Ethernet/4 nodes H H  
P4 2.4GHz/100Base-T Ethernet /4 nodes H H  
PIII 700MHz/Gigabit Ethernet/4 nodes H H  
PIII 700MHz/100Base-T Ethernet/4 nodes L H 1024 
PIII 700MHz/Gigabit Ethernet/8 nodes L L  
PIII 700MHz/100Base-T Ethernet /8 nodes L H 16384 
 

 

Table 4.5.  Observation on MPI_Alltoall versus MPI_Send 
Configuration Short 

Message 
Latency 

Long 
Message 
Latency 

Changing 
Length 
(bytes) 

Quadcore 2.5GHz/Internal Channels/4 nodes L H 131072 
Quadcore 2.5GHz/Gigabit Ethernet/4 nodes L H 1048576 
P4 2.4GHz/Gigabit Ethernet/4 nodes L L  
P4 2.4GHz/100Base-T Ethernet /4 nodes L L  
PIII 700MHz/Gigabit Ethernet/4 nodes L L  
PIII 700MHz/100Base-T Ethernet/4 nodes L H 8192 
PIII 700MHz/Gigabit Ethernet/8 nodes L L  
PIII 700MHz/100Base-T Ethernet /8 nodes L H 16384 
 

 

4.4 Methods for Optimal Utilization of Inter-Process Communications 

 Based on the previous observations and performance analysis, the following 

methods are recommended for optimal utilization of inter-process communications on 

commodity clusters: 
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A. Use faster CPUs – CPUs with faster clock speeds can execute MPI 

communication functions faster than CPUs with slower clock speeds, but the 

speedup is not to the ratio of their clock speeds. 

B. Adopt multicore CPUs to utilize the internal communication channels – The 

main benefit of using multicore CPUs is the extremely low overhead of 

communication through internal communication channels on the chip. 

C. Employ Gigabit networking – Upgrading 100Base-T networking to Gigabit 

networking significantly improves the communication performance. The 

communication performance of the cluster equipped with PIII and Gigabit network 

is better than the cluster equipped with Pentium 4 and 100Base-T networking. 

D. Run tests of different MPI communication command against MPI_Send – As 

the results presented in previous sections show, the latency of all MPI 

communication functions are not always lower than that of aggregate latency of 

equivalent MPI_Send on commodity clusters. However, the characteristics are not 

uniform. Therefore, it recommended that researchers run benchmark programs to 

determine which MPI communication functions perform better than aggregate 

MPI_Send under what conditions on targeted commodity cluster. Then apply 

MPI_Send for conditions when MPI communication functions do not perform 

better. 

  



37 
 

CHAPTER 5 

CONCLUSIONS 

 

 Classical science is based on observation, theory, and physical experimentation. 

In contrast, with the utilization of computer hardware and software, contemporary 

science is characterized by observation, theory, experimentation, and numerical 

simulation. With the advancement of computer hardware and software, numerical 

simulation becomes an important tool for researchers. Nonetheless, complicated 

numerical simulations rely on HPC.  In the past, HPCs were very expensive and not 

affordable by most researchers and institutions.  

Due to the simplicity of message-passing platform and the porting of MPI library 

to PC platform by open-source software developers, commodity clusters can be built out 

of inexpensive PCs. They provide an effective tool for all researchers to take advantage 

of numerical simulations. Although a lot of performance analyses have been conducted 

HPCs, they are all on high-end HPCs. No performance analysis has been conducted on 

commodity clusters before. In order to take the most out of commodity clusters, 

performance evaluations should be performed on them, especially when commodity 

clusters utilize generic components which exhibit different characteristics than those of 

high performance components employed by supercomputers. 

Experiments which executed six major MPI communication functions were 

performed on eight different configurations of clusters. Performance analyses were 

conducted on results from those experiments. It was observed that performance of 
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networking system still plays the key role. A cluster equipped with PIII CPUs and 

Gigabit NICs outperforms a cluster consisting of Pentium 4 CPUs and 100Base-T NICs. 

Gigabit NICs are very cheap to acquire nowadays. The cost/performance ratio of 

upgrading to Gigabit networking is well worth of it. It was also observed that collective 

communication functions may not perform better than utilizing multiple MPI_Send for 

certain configuration of cluster with certain size of message. Recommendations for 

optimal utilization of inter-process communications based on observations on experiment 

results were proposed. 
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