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[1] Recent studies have shown that tropospheric sulfate aerosols commonly contain 50%
by mass organic species. The influence of these organics on the chemical and physical
properties of sulfate aerosols is not fully established. We have measured the water activity
of pure dicarboxylic acids and eutonic mixtures of ammonium sulfate/dicarboxylic acids
at 25�C and have calculated van’t Hoff factors for each individual system. We have also
used the vapor pressure data to determine the hygroscopic growth curves for pure
dicarboxylic acids and eutonic mixtures and provide power law fits to the data. For the
systems studied we find that the presence of soluble dicarboxylic acids at the eutonic
proportion depresses hygroscopic growth when compared to pure ammonium sulfate. In
addition, we find that the presence of low-solubility dicarboxylic acids at the eutonic
proportion has no effect on the hygroscopic growth when compared to pure ammonium
sulfate. To model the hygroscopic growth curves of the eutonic solutions, we employed
the Zdanovskii, Stokes, and Robinson method. It was found that this approximation was
accurate to within 17% for all the systems studied. INDEX TERMS: 0305 Atmospheric

Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and

Structure: Cloud physics and chemistry; 0365 Atmospheric Composition and Structure: Troposphere—

composition and chemistry; KEYWORDS: hygroscopic growth, ammonium sulfate, dicarboxylic acids

Citation: Wise, M. E., J. D. Surratt, D. B. Curtis, J. E. Shilling, and M. A. Tolbert, Hygroscopic growth of ammonium

sulfate/dicarboxylic acids, J. Geophys. Res., 108(D20), 4638, doi:10.1029/2003JD003775, 2003.

1. Introduction

[2] Sulfate aerosols are ubiquitous in the upper tropo-
sphere (UT) and are known to affect the Earth’s atmosphere
in several ways. These aerosols can impact the Earth’s
radiation balance directly by scattering and absorbing radi-
ation [Charlson et al., 1992] and indirectly by serving as
cloud condensation nuclei [DeMott and Rogers, 1990].
Sulfate aerosols can also serve as surfaces for heterogeneous
chemistry in the UT. The impact of aerosols on atmospheric
chemistry and climate depends, in part, on the particle phase
and size, which is in turn depends on atmospheric relative
humidity (RH) and particle composition.
[3] Aerosol particles with different chemical composi-

tions will behave differently as RH changes. At very low
RH values some aerosols remain in the liquid phase and
absorb water continuously as relative humidity increases.
Conversely, some aerosols are in the solid phase at low RH
values and their size will remain unchanged until the RH
increases to the deliquescence RH (DRH). Once the DRH is
reached, the particle dissolves and becomes a saturated
solution droplet. If the RH increases past the DRH, the
solution aerosol undergoes hygroscopic growth to maintain
equilibrium with the water vapor surrounding it.

[4] Field measurements have shown that background
tropospheric aerosols are largely composed of inorganic
species such as ammonium sulfate. However, there is also
evidence that organic material may comprise 50% or more
of the particle mass [Murphy et al., 1998]. Rogge et al.
[1993] identified more than 80 different organic compounds
in tropospheric aerosols including water soluble, low
molecular weight dicarboxylic acids such as oxalic,
malonic, and succinic acids. It has been shown that the
presence of organic material in ammonium sulfate aerosols
can lower their DRH [Wexler and Seinfeld, 1991; Clegg et
al., 2001; Brooks et al., 2002] and can alter their hygro-
scopic growth [Saxena et al., 1995].
[5] Previous laboratory studies [see Martin, 2000] as well

as thermodynamic models [Clegg et al., 1998] have firmly
established the DRH and the hygroscopic growth curve of
pure ammonium sulfate. Recent laboratory studies have also
determined the DRH and hygroscopic growth curves of a
variety of low molecular weight dicarboxylic acids and
multifunctional acids [Peng et al., 2001; Prenni et al.,
2001] using both particle and bulk solution techniques.
Further laboratory studies and thermodynamic models have
determined the DRHs and hygroscopic growth curves of
mixed inorganic and organic particles [Ansari and Pandis,
2000; Cruz and Pandis, 2000; Brooks et al., 2002; Choi and
Chan, 2002a, 2002b; Hameri et al., 2002; Ming and
Russell, 2002; Brooks et al., 2003]. However, these studies
have been limited to a small number of dicarboxylic acids
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and have not been conducted for eutonic composition
solutions, which may have the largest effect on the hygro-
scopic growth.
[6] We have measured the water activities of both pure

dicarboxylic acids and eutonic mixtures of ammonium
sulfate/dicarboxylic acids at 25�C. The organic compounds
studied are the C-2 to C-6 dicarboxylic acids, as well as
maleic and l-malic acid. We report van’t Hoff factors for
each individual system so that if particle water content is
known, an estimation of water activity can be made. We
use the water activities to determine the hygroscopic
growth curves and provide power law fits so that at any
given water activity, the growth of the particle can be
calculated. We compare our results to those obtained in
previous studies as well as those obtained by thermody-
namic equilibrium models where available. Finally, we use
the additivity analysis of Zdanovskii, Stokes, and Robin-
son (ZSR) to determine if the eutonic mixtures can be
treated as two separate components.

2. Experiment

[7] Ammonium sulfate and pure organic precursor sat-
urated solutions were prepared by the addition of each
component to distilled water until a small excess of
undissolved solid remained. Each precursor solution was

maintained at 25�C by placing it in a temperature-con-
trolled water bath with a thermometer calibrated to ±0.2 K.
The solutions were mixed for approximately 24 hours to
ensure that the species in solution were in equilibrium with
the undissolved solids. To create eutonic composition
precursor solutions, ammonium sulfate and each organic
were simultaneously mixed in distilled water and stirred
until crystals of both components would not dissolve.
Because the solid ammonium sulfate crystals are cubic
and translucent, while most of the organics in this study
are powdery white solids, we were able to visibly distin-
guish the point at which the solution was saturated with
respect to both components. The resultant solution was
handled as before. The compositions of each solution were
taken from Brooks et al. [2002] and are listed in Table 1.
Brooks et al. [2002] estimate errors in the eutonic compo-
sitions to be approximately ±1 � 10�2 molar ratio for the
water soluble organics and ±1 � 10�3 molar ratio for the
less water soluble organics. As shown by Brooks et al.
[2002], the maximum solubility of each component in
eutonic solutions is not dependent on the order in which
the components are added.
[8] Bulk RH measurements were conducted on the su-

pernatant of each precursor solution using a sealed test tube
placed in a 25�C temperature controlled water bath. Ap-
proximately 5–10 mL of solution was placed in the test tube

Table 1. Precursor Solution Composition and Deliquescence Relative Humidities (DRH)a

Precursor Solution Previous Studies

Manufacturer,
Purity %

Organic,
mol/mol

Ammonium
Sulfate,
mol/mol

Vapor Pressure at
Deliquescence, torrb DRH, %b DRH, %

Pure Species in Water
Ammonium sulfate Fischer (99.7) 0.095 18.8 80.0 81.7,c 79.0,d 79,e 80,f 81g

Malonic acid Aldrich (99) 0.22 16.7 71.9 74.3,c 65.2,h 70,i 74–91j

Glutaric acid Aldrich (99) 0.17 20.8 88.9 87.5,c 83.5–85,k 85,d 85.2
(83),l 88.0–88.5,h 92,i 89–99j

Maleic acid Aldrich (99) 0.10 20.7 88.9 87.5,c 86 (71),l 89 (20),m 85–100j

l-malic acid Aldrich (97) 0.26 13.5 57.6 58.9c

Oxalic acid Aldrich (99+) 0.025 22.6 97.1 93.0,c 97.3,h 97–99j

Succinic acid Aldrich (99+) 0.014 22.8 97.6 91.0,c 98.8,h 99,i 98–100j

Eutonic Mixtures in Water
Malonic acid/ammonium sulfate 0.16 0.10 15.8 67.8 70.9,c (58),n 73.7 (57.8)o

Glutaric acid/ammonium sulfate 0.08 0.07 18.0 76.7 77.5,c 72,n 76.6 (68.7),o 79p

Maleic acid/ammonium sulfate 0.11 0.09 16.0 68.5 71.5,c 75 (19)q

l-malic acid/ammonium sulfate 0.25 0.13 12.6 53.7 56.4c

Oxalic acid/ammonium sulfate 0.006 0.095 18.4 78.6 77.3c

Succinic acid/ammonium sulfate 0.004 0.094 18.5 79.1 82.9,c 79 (77.5),o 79,r 80n

aParentheses represent the onset of deliquescence.
bBulk solution measurements, 24.7�–24.9�C.
cBrooks et al. [2002], bulk solution measurements, 24�C.
dCruz et al. [2000], TDMA measurements, 22�–26�C.
eCziczo et al. [1997], absorption cell measurements, room temperature.
fOnasch et al. [1999], flow tube measurements, 22�C.
gCziczo et al. [1999], flow tube measurements, 10�C.
hPeng et al. [2001], bulk solution measurements, 25�C.
iMing et al. [2002], 100 nm particles, model predictions.
jSaxena et al. [1997], UNIFAC predictions, 25�C.
kPeng et al. [2001], EDB measurements, 25�C.
lChoi et al. [2002a], EDB measurements, 20�–23�C.
mBrooks et al. [2003], flow tube measurements, 0�C.
nMing et al. [2002], 1:1 mass ratio, 100 nm particles, model predictions.
oChoi et al. [2002b], 1:1 mole ratio, EDB measurements, 20�–23�C.
pCruz et al. [2000], 1:1 mass ratio, TDMA measurements, 22�–26�C.
qBrooks et al. [2003], 1:1 mass ratio, flow tube measurements, 0�C.
rHameri et al. [2002], 1:1 mass ratio, TDMA measurements, room temperature.
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and attached to a mechanically pumped glass line. The
vapor pressure of the sample was measured using a 100 Torr
Baratron capacitance manometer that is accurate to ±0.15%
of the pressure reading. The vapor pressure of pure water
was calculated at the bath temperature from data by Perry
[1941]. Pure water samples were tested as outlined above to
verify that the measured water vapor pressure agreed with
calculated value (i.e., the thermometer was calibrated). It
was found that, within error, both values of water vapor
pressure agreed. The sample relative humidity was then
determined by ratioing the measured sample vapor pressure
to the saturation vapor pressure of water. Because the
accuracy of the capacitance manometer is very high, the
uncertainty in the sample temperature was used to calculate
the uncertainty in the relative humidity measurements,
which we report to be between 0.50 and 1.35% RH.
[9] Simulation of water uptake by the saturated solutions

was accomplished by adding varying aliquots of water to
the supernatant of each saturated precursor solution. After
adding water to the saturated solutions, the RH was deter-
mined as outlined above. In this way, hygroscopic growth
curves were constructed. To check this method of simulat-
ing water uptake by saturated solutions, we added a
weighed portion of each organic and ammonium sulfate
separately to various amounts of water, mixed, and mea-
sured the RH. It was found that this method of preparing the
solutions yielded the same RH values (within error) as by
adding varying amounts of water to saturated solutions.

3. Results and Discussion

[10] To validate our experimental method for studying
hygroscopic growth, the water uptake curve was first deter-
mined for ammonium sulfate. Figure 1 shows the inverse of
the mass fraction solid soluble (1/mfs) versus water activity
for ammonium sulfate at and after the DRH in this study as
well as predicted values from the thermodynamic model of
Clegg et al. [1998] at 25�C. The inverse of the mass fraction
solid soluble is calculated using equation (1):

1=mfs ¼ 1þ gwater=gsolidð Þ ð1Þ

where gwater is the grams of water in solution and gsolid is the
grams of solid in solution. We measure a DRH of 80.0% at
24.9�C (denoted by a downward arrow in the figure) for the
ammonium sulfate precursor solution, which is in excellent
agreement with the DRH reported in aerosol studies [Cziczo
et al., 1997; Cziczo and Abbatt, 1999; Onasch et al., 1999]
and in bulk studies [Brooks et al., 2002]. Within the
experimental error, the water uptake curve we measure by
adding various aliquots of water to the saturated ammonium
sulfate solution agrees well with the predicted values from
the Clegg et al. [1998] model.
[11] Table 1 includes the solution vapor pressure and the

corresponding DRH that we determined for each pure
component and eutonic composition precursor solution
along with previous bulk and particle measurements. We
are in fairly good agreement with the majority of the
literature DRH values except for the groups that also report
the onset of deliquescence (indicated by parentheses in the
table) prior to full deliquescence. A disadvantage of bulk
measurements is that water absorption prior to full deli-

quescence cannot be measured. This phenomenon is impor-
tant because it extends the range of RH values at which
liquid phase reactions might be able to occur on the aerosol.
Choi et al. [2002a] showed that maleic acid aerosol starts to
absorb water at 71% RH, well before the full DRH of 86%.
Brooks et al. [2003] observed the same phenomena in their
maleic acid measurements as the aerosol started to absorb
water at 20% RH and became fully deliquesced at 89% RH.
We are in good agreement with these groups at full
deliquescence as we report a full DRH value of 88.7% for
malic acid. These results further validate our method for
studying the hygroscopic growth of organic and mixed
ammonium sulfate/organic particles.
[12] The water activity of an ideal solution of containing a

nonvolatile, nonelectrolyte is always lower than that of a
pure solvent and decreases as more of the nonelectrolye
dissolves. In an ideal solution, this relationship is expressed
as Raoult’s Law where the water activity is equivalent to the
mole fraction of solvent in solution. If our solutions were
comprised solely of nonelectrolytes and were ideal, we
could make an estimation of particle water activity with
the knowledge of water content. However, our solutions do
contain electrolytes and are far from ideal because of
substantial quantities of solute dissolved in them. Therefore,
to estimate water activity in our solutions, deviations from
ideality must be measured. The van’t Hoff factor has been
used as a measure of solution nonideality [Pruppacher and
Klett, 1980] and is defined through the relation:

a�1
w ¼ 1þ i ns=nwð Þ ð2Þ

where i is the van’t Hoff factor, ns is the moles of solute in
solution, and nw is the moles of water in solution. Figures 2a
and 2b show our water uptake data plotted as aw

�1 versus
ns/nw for pure species in water and for each eutonic solution
respectively. A straight line, with the y intercept forced
through 1, satisfactorily fits each soluble dicarboxylic acid
data set and each eutonic solution data set. Therefore the

Figure 1. Inverse of the mass fraction solid soluble
(1/mfs) versus water activity for ammonium sulfate at and
after the DRH in this study as well as predicted values from
the thermodynamic model of Clegg et al. [1998] at 25�C.
We measure a DRH of 80.0% at 24.9�C (denoted by a
downward arrow) for ammonium sulfate.

WISE ET AL.: GROWTH OF AMMONIUM SULFATE/ORGANIC ACIDS AAC 4 - 3



slope of each data set yields i, which can be used to estimate
the water activity of the solutions if water content is known.
The uncertainty in the slope of the straight line fits to the
data (one standard deviation) is one measure of the error in
the van’t Hoff factors, which we find to be �5% in all cases.
We have also calculated van’t Hoff factors for each system
without forcing the y intercept through 1. The percent
difference between the van’t Hoff factors for the ‘‘forced’’
and ‘‘unforced’’ fits is �10% for the pure species in water
and �6% for the eutonic solutions. The calculated van’t
Hoff factors and percent deviation from ideality for the
soluble dicarboxylic acids and each eutonic system are
listed in Table 2 for the fits forced through unity.

[13] A van’t Hoff factor of 1 indicates that the solution
behaves as an ideal solution, whereas as a progressively
larger (or smaller) factor indicates a progressively larger
deviation from ideality. The calculated i for ammonium
sulfate in this work (2.31) is in good agreement with the
‘‘effective’’ van’t Hoff factor used in Kohler theory calcu-
lations for ammonium sulfate, of between 2 and 2.5,
[Gerber et al., 1977; Rogers and Yau, 1989] to account
for solution nonidealities. For the pure species in water,
ammonium sulfate shows the largest deviation from ideality.
For the soluble dicarboxylic acids, the more acid dissolved
in water, the greater the deviation from ideality. It is
surprising that, although the pKa values for each of the
soluble dicarboxylic acids in water are similar, the van’t
Hoff factor for glutaric acid is less then 1 while the van’t
Hoff factors for the other dicarboxylic acids are greater than
one. This is most likely due to specific interactions that
occur in the glutaric acid solution. Because oxalic and
succinic acid have such low solubility in water, a wide
range of ns/nw values could not be studied. Therefore we
have not included van’t Hoff factors for these systems in
Table 2.
[14] For the eutonic solutions, the oxalic and succinic

systems show the largest deviation from ideality, likely due
to the fact that ammonium sulfate comprises the majority of
the solid in solution. The deviation from ideality in the
remaining eutonic solutions show no systematic dependence
on the amount of solid in solution or the fraction of
ammonium sulfate in solution. However, there is a good
dependence on the pKa of the first proton of the diacid. The
higher the pKa, the larger the deviation from ideality.
[15] The hygroscopic growth factor, Gf, is widely used to

represent the hygroscopic growth of aerosols where Gf =
Rp,2/Rp,1 with Rp,1 representing the dry particle radius and
Rp, 2 representing the wet particle radius at a specific RH.
To quantify the water uptake by each solution in this study
we used our mfs data to calculate Gf. Using the formalism
of Peng et al. [2001], Gf is calculated using equation (3):

Gf ¼ mfs1r1ð Þ= mfs2r2ð Þ½ 	1=3 ð3Þ

where mfs1 is the mass fraction solid in the dry particle (= 1),
mfs2 is the mass fraction solid in the wet particle, r1 is the
dry particle density, and r2 is the wet particle density. The

Figure 2a. Our water uptake data plotted as aw
�1 versus

ns/nw for the pure components. A straight line (with the y
intercept forced through 1) satisfactorily fits each soluble
dicarboxylic acid solution data set. Therefore the slope of
the line yields the van’t Hoff factor, which can be used to
estimate the water activity of the solutions if water content
is known (data set offset by aw

�1 = 0.5 each from the
previous data set for clarity).

Figure 2b. Our water uptake data plotted as aw
�1 versus

ns/nw for the eutonic solutions. A straight line (with the y
intercept forced through 1) satisfactorily fits each eutonic
solution data set. Therefore the slope of the line yields the
van’t Hoff factor, which can be used to estimate the water
activity of the solutions if water content is known (data set
offset by aw

�1 = 0.5 each from the previous data set for
clarity).

Table 2. Van’t Hoff Factors (i) at 25�C for Dicarboxylic Acids

and Eutonic Mixtures of Dicarboxylic Acids and Water

i
% Deviation From
Ideality (i = 1)

Pure Species in Water
Ammonium sulfate 2.31 131
Malonic acid 1.37 37
Glutaric acid 0.64 36
Maleic acid 1.14 14
l-malic acid 1.87 87

Eutonic Mixtures in Water
Malonic acid/ammonium sulfate 1.36 36
Glutaric acid/ammonium sulfate 1.70 70
Maleic acid/ammonium sulfate 1.78 78
l-malic acid/ammonium sulfate 1.42 42
Oxalic acid/ammonium sulfate 2.25 125
Succinic acid/ammonium sulfate 2.36 136
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particle density (assuming additivity of the volumes) is
estimated from equation (4):

1=r ¼ �mfi=rio ð4Þ

where mfi and rio are the mass fraction of water or solute in
solution and the corresponding density of the water or
solute, respectively.

[16] Figure 3a shows the calculated hygroscopic growth
factors as a function of water activity for all the pure
systems in this study with the exception of the low-solubil-
ity dicarboxylic acids (oxalic and succinic) which did not
exhibit deliquescence until an RH greater than 97%. In-
cluded are power law fits to each data set of the general
form:

Gf ¼ yo þ B awð ÞC ð5Þ

where yo, B, and C are empirical fitting parameters. This
empirical equation satisfactorily fits each data set and the
empirical fitting parameters for each system are listed in
Table 3. This method of plotting the data shows that the
solutions do not exhibit significant water uptake until an RH
of 90% is attained. The growth factors for the soluble
dicarboxylic acid/ammonium sulfate eutonic solutions are
shown in Figure 3b and are much closer to the growth of the
ammonium sulfate solution than their pure dicarboxylic acid
counterparts. This finding is in qualitative agreement with
Cruz and Pandis [2000] as they found a decrease in particle
growth with an increase in mass fraction of glutaric acid in
their glutaric acid/ammonium sulfate mixtures. In addition,
the hygroscopic growth factors of the low-solubility
dicarboxylic acid/ammonium sulfate solutions (Figure 3c)
are nearly the same as the ammonium sulfate solution.
[17] Using equation (5), Gf values for each system can be

calculated at any water activity. Table 3 includes the Gf

values calculated for 85% RH and 90% RH for all the
dicarboxylic acids and eutonic solutions studied here. Also
listed in Table 3 are Gf values determined by other groups.
Our Gf values are in fairly good agreement with those in the
literature at both 85% RH and 90% RH. If the DRH of a

Figure 3a. Calculated hygroscopic growth factors as a
function of water activity for all the pure systems in this
study with the exception of the low-solubility dicarboxylic
acids (oxalic and succinic), which did not exhibit
deliquescence until an RH greater than 97%. Each line
represents a power law expression fit to each data set with
the general form of Gf = yo + B(aw)

C.

Table 3. Growth Factors (Gf) at 25�C for Dicarboxylic Acids and Eutonic Mixtures of Dicarboxylic Acids and Water

Fit Coefficientsa Gf (85%) Gf (90%)

yo B C This Work Other Studies ZSR Modelb This Work Other Studies ZSR Modelb

Pure Species in Water
Ammonium sulfate 1.49 2.81 24.6 1.54 1.51,e 1.49,h 1.6l 1.70
Malonic acid 1.26 2.04 21.1 1.32 1.40j 1.48 1.73g, 1.53k

Glutaric acid 1.25 3.73 63.3 1.00c 1.13,f 1.10,h 1.09j 1.25 1.29g, 1.30k

Maleic acid 1.48 3.59 46.0 1.00c 1.14f 1.51
l-malic acid 1.17 2.08 21.3 1.24 1.23,f 1.31j 1.39 1.39k

Oxalic acid 1.00c 1.03j 1.00c 1.43g, 1.08k

Succinic acid 1.00c 1.06,f 1j 1.00c 1.01g, 1k

Eutonic Mixtures in Water
Malonic acid/ammonium sulfate 1.21 2.38 17.5 1.34 1.45,e 1.55l 1.42 1.58 1.58
Glutaric acid/ammonium sulfate 1.30 2.38 26.5 1.34 1.38,e 1.37i 1.45 1.47
Maleic acid/ammonium sulfate 1.26 2.38 21.7 1.33 1.50 1.60
l-malic acid/ammonium sulfate 1.11 2.63 18.4 1.24 1.35 1.49 1.50
Oxalic acid/ammonium sulfate 1.47 2.22 21.3 1.54 1.71
Succinic acid/ammonium sulfate 1.48 2.87 26.4 1.52 1.43,e > 1.5l 1.65

aFit coefficients to the power law expression, Gf = y0 + B(aw)
C.

bGf calculated using equation (6).
cDRH is greater than 95% RH, therefore Gf = 1.00.
dChoi et al. [2002a], Gf calculated from RH = 10–85, 20�–23�C.
eChoi et al. [2002b], 1:1 mole ratio, Gf calculated from RH = 10–85, 20�–23�C.
fAnsari et al. [2000], Gf calculated from UNIFAC at RH � 10–85%.
gPrenni et al. [2001], Gf calculated from RH � 5–90, 30�C.
hCruz et al. [2000], Gf calculated from RH � 10–85, 100 nm dry diameter particles, 22�–26�C.
iCruz et al. [2000], 1:1 mass ratio, Gf calculated from RH � 10–85, 100 nm dry diameter particles, 22�–26�C.
jPeng et al. [2001], Gf calculated from RH = 5–85, 25�C (used dl-malic acid).
kPeng et al. [2001], Gf calculated from RH = 10–90, 25�C (used dl-malic acid).
lHameri et al. [2002], 1:1 mass ratio, Gf calculated from RH = 10–85, room temperature.
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system in our study was greater than either 85 or 90% RH,
we assume that the Gf = 1.00 (no particle growth prior to the
DRH). Some groups do report a Gf > 1.00 for particles at
RH less than the full DRH of the system. This is due to
slight water absorbtion by the particle prior to full deliques-
cence or because the particles were not fully effloresced
prior to the deliquescence experiment. Prenni et al. [2001],
observed no efflorescence transition for oxalic acid which is
why the Gf at 90% RH reported in their study is 1.43 and
ours is 1.00.
[18] From these calculations it is evident that for the

systems studied, pure dicarboxylic acids take up signifi-
cantly less water than ammonium sulfate. It is also evident
that the presence of soluble dicarboxylic acids at the eutonic
proportion affects hygroscopic growth such that the Gf of
these eutonic solutions are at or between that of its pure

counterparts. We saw a negligible change in Gf for the
succinic and oxalic acid eutonic systems when compared to
pure ammonium sulfate. This is likely due to the fact that
the majority of these systems were comprised of ammonium
sulfate.
[19] The biggest discrepancy between growth factors

calculated in this study and previous studies is for the
ammonium sulfate/malonic acid mixed system. This dis-
crepancy is likely due to the fact that Choi and Chan
[2002b] and Hameri et al. [2002] use a 1:1 ammonium
sulfate to malonic acid mass ratio in their hygroscopic
growth experiments. We use an approximately 0.8:1 am-
monium sulfate to malonic acid mass ratio (eutonic propor-
tion) in our hygroscopic growth experiments. Because
organic acids take up less water than ammonium sulfate,
our hygroscopic growth factors should be lower than the
previous studies.
[20] Using the formalism of Cruz and Pandis [2000], one

approach to modeling mixed particle hygroscopic growth is
to assume that the water content of a mixed particle is the
sum of the water content of the pure components compris-
ing that particle at a specific relative humidity. The Zda-
novskii, Stokes, and Robinson (ZSR) method uses this
approach to estimate mixture growth factors using measured
growth factors for the pure components. The ZSR equation
can be written as:

Gf RHð Þ ¼ eoGorg
3 ðRHÞ

�
þ 1� eoð ÞGinorg

3 ðRHÞ
�1=3 ð6Þ

where eo is the organic volume fraction in the dry particle
and Gorg (RH) and Ginorg (RH) are the pure organic and pure
inorganic growth factors, respectively.
[21] Figures 4a and 4b show the actual and modeled

soluble dicarboxylic acid eutonic growth curves. The actual
eutonic growth curves are the power law fits to the data
(Equation 5) and the modeled growth curves were calculated
using equation (6). The data for the modeled eutonic growth
curves are only presented at water activities for which both

Figure 3b. Calculated hygroscopic growth factors as a
function of water activity for the soluble dicarboxylic acid/
ammonium sulfate eutonic solutions. Each line represents a
power law expression fit to each data set with the general
form of Gf = yo + B(aw)

C.

Figure 3c. Calculated hygroscopic growth factors as a
function of water activity for the low-solubility dicarboxylic
acid/ammonium sulfate eutonic solutions. Each line repre-
sents a power law expression fit to each data set with the
general form of Gf = yo + B(aw)

C.

Figure 4a. Actual and modeled malonic acid and glutaric
acid eutonic growth curves. The actual eutonic growth
curves are the power law expression fits to the data (shown
as open symbols), and the modeled growth curves were
calculated using equation (6) (shown as lines).
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the organic and inorganic components have deliquesced.
The modeled growth curves are in good agreement with the
actual growth curves over the majority of water activities. In
all cases the growth factors estimated by equation (6) are
within 17% and in most cases within 10% of the measured
values. Table 3 includes the modeled Gf for 85% and 90%
RH using equation (6).

4. Conclusions and Atmospheric Implications

[22] We have determined the water activity of both pure
dicarboxylic acids and eutonic mixtures of ammonium
sulfate/dicarboxylic acids at 25�C. We report van’t Hoff
factors so that an empirical approximation of water activity
can be made if the water content of each solution is known.
It was found that the ammonium sulfate solution showed the
greatest deviation from ideality. For the soluble dicarboxylic
acids, nonideality was dependant on the organic solubility
and for the eutonic solutions, no dependence on solid
solubility was found. From these results, it is obvious that
deviations in solution ideality due to specific solutes must
be taken into account in order to accurately model the water
uptake of particles in the atmosphere.
[23] We have also provided power law fits to the hygro-

scopic growth curves so that at any given water activity, the
growth of the particle can be calculated. We find lower
growth factors for the binary dicarboxylic acid/water mix-
tures than for ammonium sulfate. The growth factors of
the soluble dicarboxylic acid eutonic solutions with am-
monium sulfate were also depressed when compared with
the pure inorganic component. Our results show that the
ZSR relationship is a good approximation (within 17%) of
the hygroscopic growth of a mixed dicarboxylic acid/
ammonium sulfate particle.
[24] While measuring the DRH using bulk solutions

eliminates the problem of difficulty in fully drying particles,
one limitation of bulk studies is that we are unable to map
out the efflorescence branch of the water uptake curve and
measure the crystallization RH of the solution. This is due

to the inability to make metastable bulk solutions. Therefore
we cannot measure the contribution of the organic compo-
nent to the hygroscopic growth for metastable solutions at
low RH. The effect of an organic component on the water
uptake of mixed solutions at low RH may be important
because Posfai et al. [1998] found that organics were
responsible for water uptake of ammonium sulfate at low
RH. Therefore more particle measurements are needed to
quantify the effect organics have on the hygroscopic growth
of mixed aerosols at low RH in the metastable region of the
hygroscopic growth curve.
[25] While we found that the low-solubility acids had

little impact on the hygroscopic growth of ammonium
sulfate, they could still be important in the atmosphere.
For example, a particle containing a low-solubility organic
may have the organic present as a solid ‘‘core’’. This ‘‘core’’
could impact the crystallization RH and ice nucleation RH
in the particle. Thus it is of interest to conduct particle
measurements to quantify the heterogeneous effect of low-
solubility organics in atmospheric particles.
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