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Abstract. While water insoluble organics are prevalent in the
atmosphere, it is not clear how the presence of such species
alters the chemical and physical properties of atmospheric
aerosols. Here we use a combination of FTIR spectroscopy,
Transmission Electron Microscopy (TEM) and Aerosol Mass
Spectrometry (AMS) to characterize ammonium sulfate par-
ticles coated with palmitic acid. Coated aerosols were gener-
ated by atomizing pure ammonium sulfate, mixing the parti-
cles with a heated flow of nitrogen with palmitic acid vapor,
and then flowing the mixture through an in-line oven to create
internally mixed particles. The mixing state of the particles
was probed using the AMS data and images from the TEM.
Both of these probes suggest that the particles were internally
mixed. Water uptake by the mixed particles was then probed
at 273 K. It was found that for ammonium sulfate containing
∼20 wt% palmitic acid the deliquescence relative humidity
(DRH) was the same as for pure ammonium sulfate (80±3%
RH). For particles with∼50 wt% palmitic acid however, the
mixed particles began to take up water at relative humidi-
ties as low at 69% and continued to slowly take up water to
85% RH without fully deliquescing. In addition to studies of
water uptake, water loss was also investigated. Here coatings
of up to 50 wt% had no impact on the efflorescence relative
humidity. These studies suggest that even if insoluble sub-
stances coat salt particles in the atmosphere, there may be
relatively little effect on the resulting water uptake and loss.

1 Introduction

Atmospheric aerosols are a mixture of many inorganic and
organic compounds. It is currently not clear how these
combinations of compounds interact to impact the particle
growth, the cloud condensation ability of the particle and the

Correspondence to:M. Tolbert
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catalytic behavior of the particle towards heterogeneous re-
actions. The water uptake and loss by ammonium sulfate,
a major component of tropospheric aerosol, has been exten-
sively studied in the laboratory. Ammonium sulfate under
goes a deliquescence transition at 80% RH and an efflores-
cence transition at 30% RH at 273 K (Tang and Munkelwitz,
1993; Han and Martin, 1999; Onasch et al., 1999). However,
field data show that atmospheric sulfate particles may contain
50% or more organic material by mass (Saxena and Hilde-
mann, 1996; Middlebrook et al., 1998; Murphy et al., 1998).
Several recent water uptake and loss studies of mixed inor-
ganic and water-soluble organics have been reported (Cruz
and Pandis, 2000; Peng et al., 2001; Choi and Chan, 2002;
Brooks et al., 2003; Prenni et al., 2003; Wise et al., 2003;
Xu et al., 2003; Braban and Abbatt, 2004; Marcolli et al.,
2004; Pant et al., 2004; Parsons et al., 2004). Generally these
studies have shown that the addition of water-soluble organic
compounds decreases the deliquescence relative humidity.
This effect would be predicted using the Gibbs-Duhem equa-
tion (Wexler and Seinfeld, 1991) and follows the modeling of
multicomponent deliquescence (Nenes et al., 1998; Clegg et
al., 2001). However, recent fieldwork has shown that much
of the organic matter present in atmospheric aerosols is wa-
ter insoluble (Cecinato et al., 2000; Gelencser et al., 2000;
Graham et al., 2003; Tervahattu et al., 2005).

The impact of insoluble organics on the properties of am-
monium sulfate is much less well characterized than that of
water-soluble organics. Fatty acids such as myristic acid,
stearic acid and palmitic acid form an important class of
insoluble organics found at the surface of marine aerosols
(Mochida et al., 2002; Russell et al., 2002; Tervahattu et al.,
2002; Tervahattu et al., 2002; Mochida et al., 2003) and for-
est fire aerosols (Peterson and Tyler, 2003). Therefore, it is
possible that these compounds form a hydrophobic coating
with their hydrophilic carboxyl groups buried in the aerosol’s
core; thereby leaving the surface of the aerosol hydropho-
bic and possibly impacting water uptake (Gill et al., 1983;

© 2005 Author(s). This work is licensed under a Creative Commons License.



1952 R. M. Garland et al.: Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles

N2

Atomizer

Syringe 
pump (AS)

Drying

H2SO4
conditioner

Heated
N2

Heated oil bath, 
Palmitic Acid in 
Erlenmeyer

Detector

IR 

Bubbler

Dry Dilution
OR

Deliquescence

Efflorescence

Four stage
coating oven 

AS

PA MIX

60οC

excess

H2O bath
(efflorescence) 

Tbath 
or 140oC

Pre-tube #1

Pre-tube #2 O
bservation

tube

AMSTEM 
collection

 

Fig. 1. Experimental set-up. Aerosols are produced and then sent to either the flowtube system for FTIR analysis or the Aerosol Mass
Spectrometer for chemical and size analysis. For TEM analysis the particles are collected after they exit the oven.

Ellison et al., 1999). While recent observations have shown
the prevalence of water insoluble compounds in atmospheric
particles, there is still little information on how water insolu-
ble organics impact phase changes of the salt aerosols.

Organic coatings can potentially affect aerosols in several
ways. Studies have shown that the presence of a surface
active organic on ammonium sulfate and ammonium nitrate
aerosols will decrease water evaporation rates (Shulman et
al., 1997; Cruz et al., 2000). Further a coating of surface ac-
tive organics can act as a barrier for the reactivity and trans-
port of trace atmospheric gases into the bulk aerosol (Niess-
ner, 1984; Daumer et al., 1992; Folkers et al., 2003). How-
ever, the effect of the coatings on water uptake and phase
changes is not clear. Some studies have found that a coating
does impact deliquescence and water uptake (Andrews and
Larson, 1993; Xiong et al., 1998; Chen and Lee, 1999; Chen
and Lee, 2001) while other studies have seen minor (Hansson
et al., 1998) or no changes (Wagner et al., 1996).

In this study, we produce and characterize ammonium sul-
fate particles mixed with different amounts of palmitic acid
and study the effect of the organic on the deliquescence and
efflorescence relative humidities. Palmitic acid is a water in-
soluble sixteen carbon n-alkanoic acid that is prevalent in the
atmosphere due to its occurrence as a fatty acid in cell mem-
branes. Sources include anthropogenic emissions, such as
from fossil fuel burning, meat cooking and fireplaces (Rogge
et al., 1993; Rogge et al., 1998; Cecinato et al., 2000), marine
emissions (Mochida et al., 2002; Tervahattu et al., 2002) and
terrestrial emissions from forests and vascular plants (Ge-
lencser et al., 2000; Pio et al., 2001; Graham et al., 2003)
and forest fires (Peterson and Tyler, 2003). Due to palmitic
acid’s structure with a hydrocarbon hydrophobic tail and a
carboxylic acid hydrophilic head, it is a surface active or-

ganic (Seidl, 2000). It has been suggested that palmitic acid
could form a reverse micelle around a salt core (Ellison et
al., 1999). Indeed, field studies have found palmitic acid
preferentially on the surface of aerosols (Tervahattu et al.,
2002; Peterson and Tyler, 2003). Our study will probe how
this palmitic acid affects the deliquescence and efflorescence
phase transitions of ammonium sulfate.

2 Experimental

A schematic of the aerosol generation system, the flowtube
apparatus and the detection system is given in Fig. 1. Pure
ammonium sulfate particles were produced using an atom-
izer (TSI Model 3076) and a syringe pump (Harvard Appara-
tus 22). These pure particles were then passed through a dif-
fusion dryer and a 96 wt% H2SO4/4 wt% H2O bath to lower
the relative humidity to<30%RH, so that the ammonium
sulfate particles would effloresce. Before coating the ammo-
nium sulfate, the particles were passed through the FTIR to
check that they were indeed dry. Palmitic acid vapor was
produced by passing hot nitrogen gas (∼100◦C) over an oil
bath containing an Erlenmeyer flask with pure palmitic acid.
The oil bath was heated to temperatures in the range 100–
140◦C to vaporize the palmitic acid. The ammonium sulfate
particles and palmitic acid vapor were then mixed and en-
tered an in-line oven (1.17 m×1.9 cm). The temperature at
the entrance of the oven was set to the bath temperature in
deliquescence experiments and to 140◦C in efflorescence ex-
periments. In addition to comparing the pure palmitic mass
spectrum with a NIST reference spectrum,1H-NMR spec-
tra were obtained to confirm that the heating of palmitic acid
to 140◦C does not decompose the acid. The temperature in
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the oven was then decreased in four stages to a temperature
of 60◦C, a temperature where both ammonium sulfate and
palmitic acid are solid. The oven is similar to that in Han
and Martin (2001) and has a temperature gradient such that
the palmitic acid will not become highly supersaturated and
homogenously nucleate, but rather will condense on the am-
monium sulfate seed particles. We are assuming that since
the particles were produced via condensation of palmitic acid
vapor on the ammonium sulfate seed, the organic forms a
coating on the ammonium sulfate. However, the surface of
the aerosol was not fully characterized and thus the inter-
nal mixing state of the aerosols is not known. For discussion
purposes, we will assume that the aerosols are indeed coated.
Pure palmitic acid particles were generated by the same sys-
tem without the added ammonium sulfate, i.e. homogeneous
nucleation of palmitic acid, at a bath temperature of 140◦C.

Transmission Electron Microscopy (TEM) images of
the particles were obtained by impacting dry particles
(RH<30%) on carbon-coated TEM grids after exiting the
oven. Particles were collected for 1–2 min and then imaged
on a Phillips CM10 (FEI Inc Hillsboro, OR) scope. The TEM
images were used to obtain information on the morphology
of the particles generated using the coating oven.

Additional information on particle size, composition and
mixing state was obtained using an Aerodyne Aerosol Mass
Spectrometer (AMS; Aerodyne Inc, MA (Jayne et al., 2000;
Jimenez et al., 2003)). Particles entering the AMS are pref-
erentially focused over gases by a factor of∼107. The par-
ticles pass through a particle time of flight (PTOF) region at
the end of which they strike a vaporizer (∼600◦C). The va-
porized molecules enter into the electron impact ionization
region, and the positive ions formed are mass analyzed with
a quadrupole mass spectrometer. Since ionization occurs un-
der high vacuum, ion-molecule reactions are suppressed and
quantitative information on the mass loading at eachm/zcan
be obtained. The mass spectrum can then be compared to
known fragmentation patterns in order to identify the amount
of mass coming from different compounds (i.e. sulfates, or-
ganics, nitrates). The organic traces were compared with the
NIST reference spectrum for palmitic acid.

In water uptake and loss studies, the particles passed
through a temperature-controlled flowtube system. The flow-
tube consisted of two 80 cm pre-tubes to equilibrate the
aerosols with water and one 80 cm observation tube equipped
with single pass Fourier Transform Infrared (FTIR) Spec-
troscopy for detection of the particles’ phase. The tubes were
double jacketed to allow the methanol coolant to circulate
throughout and control the temperature of the flowtubes to
273 K. The IR spectra were used to confirm the presence of
palmitic acid and ammonium sulfate in the flowtube and to
detect the phase transitions.

To perform deliquescence experiments, the coated
aerosols were mixed with a humidified nitrogen flow upon
entering the flowtubes at 273 K. This humidified flow was
produced with a temperature-controlled water bubbler and
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Fig. 2. Representative IR spectra of(a) pure ammonium sulfate;(b)
48.8 wt% palmitic acid/51.2 wt% ammonium sulfate and(c) pure
palmitic acid; * indicates CO2 absorption bands subtracted out; the
bands are an artifact from the coating method.

the flow rate was increased as the experiment progressed,
thereby increasing the RH in the tubes. For efflorescence ex-
periments, the mixed aerosols left the oven and were passed
over a water bath to deliquesce before entering the flowtubes.
A dry dilution flow was added and incrementally increased to
lower the RH until the particles were dry. The residence time
of the particles in the flowtubes was 1–3 min.

Relative humidity probes (Vaisala, Humitter 50Y) and gas
phase water infrared absorption peaks were used to deter-
mine relative humidity (RH). A water calibration was per-
formed by passing dry nitrogen gas over ice deposited in the
flowtubes at a known temperature. The IR gas phase water
peaks were then calibrated to the known water pressure over
the ice. Using this calibration, the RH in the flowtubes dur-
ing an experiment could be determined. Most experiments
used the RH probes (uncertainty of±3% RH) and the ice cal-
ibration was used to check the accuracy of the probes. Each
experiment has a total error of±3–5% RH due temperature
gradients in the flowtubes, the probes’ uncertainty and the
increments by which the relative humidity was increased.

3 Results and Discussion

3.1 Particle Characterization

Infrared spectroscopy was used to characterize the mixed
aerosol system of ammonium sulfate and palmitic acid as
well as to probe the water uptake and loss by the aerosols.
Spectra 2a–c show the dry IR spectra of pure ammo-
nium sulfate, mixed ammonium sulfate and palmitic acid
(bath=120◦C) and pure palmitic acid (bath=140◦C), respec-
tively. Spectrum 2a agrees well with the literature spectrum
of ammonium sulfate and spectrum 2c agrees with the lit-
erature spectrum of pure palmitic acid. As can be seen in
spectrum 2b, the IR spectrum of mixed particles exhibits

www.atmos-chem-phys.org/acp/5/1951/ Atmos. Chem. Phys., 5, 1951–1961, 2005



1954 R. M. Garland et al.: Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles 
 
a) b) d)

300 nm3000 nm 100nm

c)

100nm

 
 

Fig. 3. TEM images of(a) pure palmitic acid;(b) and (c) ∼49 wt% palmitic acid/51 wt% ammonium sulfate; and(d) pure ammonium
sulfate. Note the differences in the size bars.

0.16
0.12
0.08
0.04
0.00

M
as

s r
ati

oe
d t

o t
ot

al 
m

as
s

10080604020
m/z

0.16
0.12
0.08
0.04
0.00

0.16
0.12
0.08
0.04
0.00

A

B

C

 

Fig. 4. AMS MS traces of ammonium sulfate/palmitic acid aerosol. The green indicate organic peaks and the red are sulfate peaks, A) pure
ammonium sulfate; B) bath set to 120◦C (internally mixed aerosols that are 48.8 wt% organic/51.2 wt% ammonium sulfate); and C) bath set
to 140◦C (partially externally mixed aerosols that have an overall composition of 81 wt% organic/19 wt% ammonium sulfate).

features of both pure ammonium sulfate and pure palmitic
acid. However, because of overlapping bands, only the C-H
stretch of palmitic acid (2937–2840 cm−1) is clearly visible
in the mixed aerosol system. While these IR spectra show
that both ammonium sulfate and palmitic acid are present
in the condensed phase, it cannot be determined from the
IR spectra if the two components are internally or externally
mixed.

Additional information on the mixing state of the parti-
cle was obtained using Transmission Electron Microscopy
(TEM). Example TEM images of pure palmitic acid, pure
ammonium sulfate and coated ammonium sulfate particles
are shown in Fig. 3. Pure ammonium sulfate particles are
extremely volatile in the TEM electron beam and thus diffi-
cult to image. Before they are destroyed in the beam, how-

ever, they are sub-micrometer in size, semi-round and have
distinct borders. In contrast, the pure palmitic aerosols are
larger than one micrometer, spherical and stable under the
electron beam. The large size of the pure palmitic acid par-
ticles is also evident in the IR spectrum in spectrum 2c by
the increased scattering signal for wavenumbers greater than
2000 cm−1. The mixed aerosols are more stable in the elec-
tron beam than the pure ammonium sulfate, although less
stable than the pure palmitic acid. They also appear to have
a clear coating surrounding a circular dense particle. Fig-
ures 3b and 3c illustrate the range of particle morphologies
observed in the TEM for the mixed particles. While these
particles look different from each other, they all exhibited
similar stability in the electron beam and all showed the pres-
ence of a coating. All samples were scanned using a lower

Atmos. Chem. Phys., 5, 1951–1961, 2005 www.atmos-chem-phys.org/acp/5/1951/
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Table 1. Characterization of palmitic acid (PA) coating.

Bath/oven temp Wt% organic* Thickness of # of monolayers PA assuming,
org. coating sphere cylinder

100/100◦C 18.8±5.0% 21.2 nm 129 9
120/120◦C 48.8±3.3% 89.1 nm 543 36
100–120/140◦C 43.5±6.7% 65.3 nm 398 26

*The remaining mass is ammonium sulfate

intensity of the electron beam before imaging to view the
whole sample for irregularities; at these intensities, the am-
monium sulfate particles were stable. This combination of
characteristics in the mixed aerosol leads us to believe that
most or all of the ammonium sulfate particles were indeed
coated with palmitic acid.

We also can gain information on the composition and mix-
ing state of the aerosol using the AMS. The AMS has a parti-
cle time of flight (PTOF) section and a quadrupole, allowing
for simultaneous measurement of size and chemical compo-
sition of aerosols. Figure 4a shows the mass spectrometer
trace for pure ammonium sulfate aerosols. The only peaks
visible are those that can be attributed to ammonium sulfate.
Figures 4b and 4c display mass spectrometer traces for the
mixed particles as a function of oven temperature. When
the bath temperature is 120◦C, Fig. 4b, the mass spectro-
graph contains both ammonium sulfate peaks and those at-
tributed to organics. The organic peaks increase when the
bath temperature reaches 140◦C as in Fig. 4c, illustrating
that the amount of palmitic acid in the particles can be con-
trolled by the bath temperature. The organic traces match
with the NIST reference spectrum for palmitic acid; includ-
ing the presence of the molecular ion atm/z256. The TOF
size distributions accompanying the mass spectra are shown
in Fig. 5. Main sulfate peaks (m/z48 and 64), ammonium
peaks (m/z16) and organic peaks (m/z43 and 55) were used
to measure the size distribution of the aerosols. It can be
seen that at the lower temperature, Fig. 5a, the coating pro-
cedure created particles where both the organic and the sul-
fate fragments covered the entire size distribution. This is
an indication of internally mixed particles. In contrast, at
higher bath temperatures, Fig. 5b, the bath created separate
populations where the smaller ammonium sulfate aerosols do
not appear to have a significant organic component and the
large palmitic acid particles contain a lower fraction of sul-
fate. In this case, a partially externally mixed aerosol is likely
present. Thus, bath temperatures used for this study were
120◦C and below to insure internally mixed aerosols.

Using the size distributions from the AMS, the average
organic weight percent for each temperature was calculated
and the values are shown in Table 1. The 100◦C bath creates
aerosols that are∼20 wt% palmitic acid and∼80 wt% am-
monium sulfate while the 120◦C bath creates particles that
are ∼49 wt% palmitic acid and∼51 wt% ammonium sul-
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Fig. 5. TOF size distributions of A) palmitic acid bath at 120◦C pro-
ducing internally mixed aerosols with a composition of 48.8 wt%
organic/51.2 wt% ammonium sulfate and B) bath at 140◦C produc-
ing a partially externally mixed aerosol population. The red is the
ammonium sulfate trace and the green line is the organic trace.

fate. Deliquescence experiments were performed on both
of these compositions. Efflorescence experiments were con-
ducted on∼44 wt% palmitic acid and∼56 wt% ammonium
sulfate aerosols.

The weight percent organic determined from the AMS
data was then converted into an average thickness of palmitic
acid, assuming the palmitic acid existed as a shell around the
ammonium sulfate. This is an approximate average thick-
ness, as the distributions are very polydisperse. The particle
volume was calculated by first converting the mean vacuum
aerodynamic diameter (dva) from the AMS mass distribution
to the volume equivalent diameter by dividing by the parti-
cle density and assuming spherical particles (DeCarlo et al.,
2004). Using this diameter, the volume of the particle was
calculated. This total volume was translated into a total mass
using the calculated density of the particle obtained from the
weight percent organic and ammonium sulfate assuming vol-
ume additivity of the inorganic and organic phases. The vol-
ume of the ammonium sulfate seed was calculated from this
total mass, using the density of ammonium sulfate and the
weight percent from the AMS. The difference between the
total volume and the ammonium sulfate volume was used

www.atmos-chem-phys.org/acp/5/1951/ Atmos. Chem. Phys., 5, 1951–1961, 2005
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Fig. 6. Deliquescence of mixed ammonium sulfate/palmitic acid
particles at 273 K. Red triangles are pure ammonium sulfate; line
indicates where pure ammonium sulfate deliquesces. A) 18.8 wt%
organic as green diamonds; B) 48.8 wt% organic as green circles; C)
expanded view of graph B to show early water uptake by 48.8 wt%
organic aerosols.

to estimate the radial thickness of the coating. The calcu-
lated coating thicknesses are summarized in Table 1. Deli-
quescence experiments were performed on aerosols with two
different thicknesses, 21 nm and 89 nm, while efflorescence
experiments were performed on aerosols with a palmitic acid
thickness of 65 nm. Finally, the number of monolayers of
palmitic acid for each case was estimated using the density
of palmitic acid (0.8527 g/cm3) to calculate a monolayer cov-

erage of 3.285×1013 molecules/cm2 assuming palmitic acid
acts as a sphere and 5.006×1014 molecules/cm2 if it acts as a
cylinder, where the length of the cylinder is the carbon chain
and the face of the cylinder is the carboxyl group. The lat-
ter method of calculating the monolayer coverage is in good
agreement with the values for stearic acid, an 18-carbon car-
boxylic acid that would be expected to have similar values
(Gilman et al., 2004). The number of monolayers was calcu-
lated using this monolayer coverage and the thickness cal-
culated above. In all three cases, it can be seen that the
palmitic acid coating was much greater than monolayer cov-
erage. Due to this, we inferred that the palmitic acid coating
would not be in a simple micelle arrangement, but rather a
more complex system with possible surface defects and both
hydrophobic and hydrophilic areas.

While none of the above techniques alone prove that we
have successfully coated the ammonium sulfate particles, the
techniques together all make a stronger case that the mixed
particles generated contain palmitic acid and ammonium sul-
fate, and that the palmitic acid forms a coating on the ammo-
nium sulfate.

3.2 Water uptake and loss

After characterizing the particles, studies were performed
to determine how ammonium sulfate particles coated with
palmitic acid responded to increases and decreases in wa-
ter vapor. In these studies, the liquid water content of
the aerosols was determined using FTIR transmission spec-
troscopy. For pure ammonium sulfate and the mixed aerosol
experiments, the ratio of a condensed phase water peak
(3586–3358 cm−1) to a sulfate peak (1180–999 cm−1) was
defined to be the liquid water content (LWC) of the aerosol.
These two IR peaks were ratioed to account for dilution of
the aerosols throughout the experiment. LWC, as a ratio, has
no units and is thus only a qualitative measure of the amount
of water in the aerosol and not a growth factor. Only ex-
periments ratioing the same peaks can be directly compared.
Figure 6a shows the deliquescence curves for pure ammo-
nium sulfate and∼20 wt% palmitic acid/80 wt% ammonium
sulfate as a function of relative humidity (RH). The solid line
indicates the deliquescence relative humidity (DRH) of pure
ammonium sulfate at 80% RH. Note that there is little differ-
ence between the curves as the mixed aerosol also has a DRH
of approximately 80%. At the deliquescence point, they both
acquire a similar liquid water content.

Figure 6b displays the deliquescence of pure ammonium
sulfate and∼50 wt% palmitic acid/50 wt% ammonium sul-
fate. With this thicker coating of palmitic acid, a change
in water uptake is noted. First, there is no clear deliques-
cence point with the mixed aerosol within the range of RH
probed. While ammonium sulfate has a clear vertical transi-
tion at 80% RH the mixed aerosol shows a more continuous
water uptake with increasing relative humidity. In addition,
above 80% RH water uptake after deliquescence for the pure
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Fig. 7. Deliquescence (blue circles) and efflorescence (purple
squares) experiments for pure palmitic acid at 273 K. Note there are
no clear transitions indicating that deliquescence or efflorescence
occurs.

ammonium sulfate can be seen by a change in growth with
relative humidity. In contrast, for the mixed case this change
in growth was not observed. Without seeing these signatures,
we are unable to clearly label a DRH for the 50 wt% organic
case. Finally, as illustrated in Fig. 6c, an expanded view
of the 50 wt% organic aerosol, there is water uptake before
80% RH in the mixed aerosol that is not seen in pure am-
monium sulfate. At∼69% RH the mixed aerosol particles
begin to show an increase in LWC that continues to 85% RH,
at which relative humidity the mixed aerosol has less than
40% the liquid water content than the pure ammonium sul-
fate. It cannot be determined if this decrease in water uptake
would still occur if the particles were exposed to the humid-
ified flow for more than∼3 minutes, which is the longest
residence time available in the flowtube apparatus.

Pure palmitic acid has a solubility of 0.0007 g/100 mL
H2O (Yaws, 1999) and thus would be considered a non-
deliquescent material. Figure 7 displays the results for del-
iquescence and efflorescence experiments of pure palmitic
acid. In the pure palmitic case, the liquid water band in-
tegrated was the same as above (3586–3358 cm−1). This
water peak, however, was ratioed to a palmitic acid ab-
sorbance band (2937–2861 cm−1). Thus, the y-axis of the
pure palmitic case and the rest of the experiments cannot
be directly compared. It does not appear that palmitic acid
actually deliquesces, as there is no hysterisis seen in the ef-
florescence experiments. Rather than deliquescence, we are
more likely measuring water adsorbing to the surface of the
particle. Figure 7 also shows the efflorescence results for
pure palmitic acid. Within experimental uncertainty, the ef-
florescence and deliquescence curves overlap and there is no
hysterisis. Again, this is consistent with a non-deliquescent
material that only takes up a small amount of water.

To crudely compare deliquescence experiments of the
mixed aerosols to the pure organic aerosols, the data for
50 wt% palmitic acid was reanalyzed by subtracting out the
ammonium sulfate peaks and then taking the ratio of the wa-
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Fig. 8. Mixed palmitic acid (50 wt%) and ammonium sulfate
(50 wt%) aerosols (green lines) and pure palmitic acid aerosols
(blue lines) using same palmitic acid and condensed water peaks
to calculate the liquid water content (LWC). The two lines repre-
sent the outer limits of the data; thus all the data lies between the
two lines.

ter peak to the palmitic acid peak used above. The compari-
son between the water uptake of the mixed and pure palmitic
acid aerosols can be seen in Fig. 8 on a logarithmic scale.
The outer limits of the data are represented by the two lines,
as the absolute numbers are difficult to compare because the
spectral subtraction produces significant noise. Compared to
the mixed aerosols, the pure palmitic acid particles are ob-
served to take up much less water. However, this figure illus-
trates that throughout a deliquescence experiment the mixed
aerosols tend to follow roughly the same uptake curve as the
palmitic acid. This suggests that the palmitic acid coating
dictates water uptake prior to deliquescence. The difference
in magnitude before 80% RH of the mixed aerosols to the
pure aerosols may be due to a difference in the surface struc-
tures of the two aerosol types. However, this cannot be elu-
cidated from our findings. Differences in magnitude after
80% RH are most likely due to the ammonium sulfate core.

Efflorescence experiments were also conducted on pure
ammonium sulfate and on the higher weight percent organic
mixed aerosol. Figure 9 displays the efflorescence data for
pure ammonium sulfate and∼45 wt% palmitic acid/55 wt%
ammonium sulfate aerosols. Ammonium sulfate has an efflo-
rescence relative humidity of∼31% RH (Cziczo and Abbatt,
1999; Onasch et al., 1999) and here we find that the mixed
case has an identical efflorescence relative humidity within
experimental error. Even this very large coating does not
seem to impact the efflorescence relative humidity. Thus, we
can assume that a coating of palmitic acid does not change
the crystallization of ammonium sulfate under most atmo-
spherically realistic loadings of insoluble organics.

4 Conclusions and Atmospheric Implications

The results of our FTIR water uptake study show that the ad-
dition of a coating that is∼50 wt% water insoluble organic
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Fig. 9. Efflorescence of pure ammonium sulfate (red triangles) and
43.5 wt% palmitic acid (green circles).

does not impact the efflorescence of ammonium sulfate and
only slightly changes the water uptake of the aerosol, while
a thinner coating appears to have no discernable effect. As
the concentration of fatty acids in atmospheric aerosols are
thought to be much lower than the particles generated here,
usually on the order of a monolayer of coverage on the
aerosols (Gill et al., 1983; Middlebrook et al., 1998; Ellison
et al., 1999; Fang et al., 1999; Mochida et al., 2002; Graham
et al., 2003; Tervahattu et al., 2005), this experiment indi-
cates that a thin coating will not change the water uptake of
ammonium sulfate particles greatly, although a thicker coat-
ing may.

Again, neither a DRH nor a water uptake curve can be de-
termined for the∼50 wt% organic/50 wt% ammonium sul-
fate particles from our data. If the particles have indeed
stopped growing, then the DRH changes little and the water
uptake changes greatly, while if the particles are still growing
they may still take up as much water as pure ammonium sul-
fate particles. This cannot be resolved in the flowtube appara-
tus as the residence time is fixed at<3 min. It has been sug-
gested that the deliquescence relative humidity (DRH) and
efflorescence relative humidity (ERH) will not change with
the addition of a coating, but rather the timescale for water
uptake will change (Barnes, 1986; Chuang, 2003). Many
studies have found that while the DRH did not change, the
growth rate decreased dramatically, with a particle taking up
to 90 min to fully deliquesce (Andrews and Larson, 1993;
Wagner et al., 1996; Chen and Lee, 1999). If a change in
growth rate were to occur in our experiment, it could have a
large impact on the aerosols ability to act as efficient cloud
condensation nuclei.

The efflorescence results suggest that the palmitic acid
coating is not acting as heterogeneous nuclei for the ammo-
nium sulfate. If palmitic acid were acting as a heterogeneous
nucleus we would expect to see an increase in efflorescence
relative humidity, similar to that of solid inclusions in ammo-
nium sulfate aerosols (Han and Martin, 1999; Martin et al.,
2001). Rather, the palmitic acid does not change the crystal-
lization of ammonium sulfate.

The adsorption of water at lower relative humidities indi-
cates that aerosols with a coating may contain water under a
wider range of relative humidities than pure inorganic salts.
Previous studies on the cloud condensation nuclei (CCN) ac-
tivation of ammonium sulfate coated with water insoluble
dioctylphthalate (Cruz and Pandis, 1998) as well as sodium
chloride and ammonium sulfate coated with water insoluble
hexadecane (Raymond and Pandis, 2003) have shown that
there is no observable effect on CCN ability by the coatings.
These water insoluble compounds themselves are not CCN
active, but apparently have no measurable impact on the salt
activation. This is similar to our observations that although
palmitic acid is not hygroscopic, a coating of it does not ap-
pear to hinder water uptake by the ammonium sulfate. How-
ever, further studies are needed to probe the impact of various
film forming compounds on CCN ability.

It is not clear why the coatings are ineffective in reducing
water uptake. It is likely due to either their structural arrange-
ment around the ammonium sulfate or that a full coating was
not formed. Molecules such as palmitic acid that normally
form reverse micelles around a hydrophilic core have been
shown to have the hydrophobic tails collapse onto each other
under vacuum (Tobias and Klein, 1996; Allen et al., 2000).
Such an arrangement would form many surface defects and
pockets. While we are not running experiments in vacuum,
we are producing an environment on the aerosol where sin-
gle monolayer coverage is not possible, and thus a simple mi-
celle is not possible either. In contrast, recent thermodynamic
modeling results suggest that compounds such as palmitic
acid do not form an inverted micelle that coats the aerosol,
but rather pockets of micelles within the aerosol (Tabazadeh,
2005). However, we were not able to characterize the sur-
face of our aerosols, and thus cannot determine what form
the palmitic acid took in the aerosol.

Experimental studies of water uptake by hydrophobic sur-
faces suggest that water uptake does indeed occur on these
surfaces, preferentially on the defect sites (Weingartner et al.,
1997; Thomas et al., 1999; Rudich et al., 2000; Linderoth
et al., 2003; Persiantseva et al., 2004). These studies sug-
gest the water adsorption on these irregularities of the surface
are reversible and adsorb through small water clusters. The
reversible nature of the water uptake was seen in the pure
palmitic acid aerosols, and while it is not possible to know
how the water adsorbed to the surface, the total amount of
water adsorbed is small. However, if a small amount of wa-
ter does adsorb to the surface, it can then diffuse through
the coating or through coating defects and activate the inor-
ganic core, leading to no difference in water uptake. In such
a case the water uptake and loss would be dictated by diffu-
sion through the coating layer only. In order for the water to
diffuse through a coating of 100 nm in the time allowed in
our flowtubes, the diffusion constant of water in the coating
would have to be at least 5×10−13 cm2/sec; similar to that
of a solid. As this diffusion constant is only a lower limit, it
suggests that even as an obstacle to water diffusion through
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to the inorganic core, a full coating would have little impact
on water uptake.
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