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Abstract. Sea-salt aerosol (SSA) particles are ubiquitous in
the marine boundary layer and over coastal areas. Therefore
SSA have ability to directly and indirectly affect the Earth’s
radiation balance. The influence SSA have on climate is re-
lated to their water uptake and ice nucleation characteristics.
In this study, optical microscopy coupled with Raman spec-
troscopy was used to detect the formation of a crystalline
NaCl hydrate that could form under atmospheric conditions.
NaCl(s) particles (∼1 to 10 µm in diameter) deliquesced at
75.7± 2.5 % RH which agrees well with values previously
established in the literature. NaCl(aq) particles effloresced to
a mixture of hydrated and non-hydrated particles at temper-
atures between 236 and 252 K. The aqueous particles efflo-
resced into the non-hydrated form at temperatures warmer
than 252 K. At temperatures colder than 236 K all particles
effloresced into the hydrated form. The deliquescence rela-
tive humidities (DRH) of hydrated NaCl(s) particles ranged
from 76.6 to 93.2 % RH. Based on the measured DRH and
efflorescence relative humidities (ERH), we estimate crys-
talline NaCl particles could be in the hydrated form 40–80 %
of the time in the troposphere. Additionally, the ice nucle-
ating abilities of NaCl(s) and hydrated NaCl(s) were deter-
mined at temperatures ranging from 221 to 238 K. Here, de-
positional ice nucleation is defined as the onset of ice nucle-
ation and represents the conditions at which the first parti-
cle on the substrate nucleated ice. Thus the values reported
here represent the lower limit of depositional ice nucleation.
NaCl(s) particles depositionally nucleated ice at an average
Sice value of 1.11± 0.07. Hydrated NaCl(s) particles deposi-
tionally nucleated ice at an averageSice value of 1.02± 0.04.
When a mixture of hydrated and anhydrous NaCl(s) particles

was present in the same sample, ice preferentially nucleated
on the hydrated particles 100 % of the time. While both types
of particles are efficient ice nuclei, hydrated NaCl(s) particles
are better ice nuclei than NaCl(s) particles.

1 Introduction

It is known that sea-salt aerosol (SSA) particles are ubiq-
uitous in the marine boundary layer and over coastal areas.
These particles are injected into the atmosphere due to wind
and wave action over oceans. It is estimated that approxi-
mately 17 Tg of SSA particles enter the atmosphere per year
(Textor et al., 2006). Of this amount 15 % is emitted as sub-
micron size particles. Therefore it is appropriate that studies
have been carried out to estimate the radiative effects of SSA
particles. Haywood et al. (1999) estimated the direct radia-
tive effect of SSA particles to be−1.5 W m−2 to −5 W m−2.
Vinoj and Satheesh (2003) estimated the indirect radiative
effect arising from the CCN activity of SSA over the Indian
Ocean to be−7± 4 W m−2.

SSA particles are made up of many different chemical
compounds. The ionic composition of dry, freshly emitted
SSA can be inferred from the composition of natural seawa-
ter. Natural seawater contains 55.40 % (w/w) Cl−, 30.61 %
Na+, 7.68 % SO2−

4 and 3.69 % Mg2+ (Pilson, 1998). It
is also known that natural SSA contains on the order of
10 % (w/w) organic compounds (Middlebrook et al., 1998).
O’Dowd et al. (2004) found that SSA can be enriched in
organic material relative to bulk seawater. This enrichment
increases with decreasing particle size. Once emitted into
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the atmosphere, SSA composition can change due to het-
erogeneous reactions in the atmosphere. For example, nitric
acid can react with SSA to form gaseous hydrogen chloride
and (depending on atmospheric conditions) aqueous or solid
sodium nitrate (i.e., De Haan and Finlayson-Pitts, 1997)

Although natural SSA are chemically complex (which can
affect water uptake properties) NaCl has been widely used as
a proxy for SSA. The use of NaCl as a proxy for SSA is ap-
propriate because many of the physical properties of SSA are
controlled by NaCl. For example, Tang et al. (1997) found
that for a specific dry particle size distribution, NaCl aerosol
scattered light as efficiently as freshly formed sea salt aerosol
(per unit mass). Therefore, several studies have been con-
ducted to determine the conditions under which NaCl parti-
cles take up water to form solution droplets (deliquescence)
and lose water to reform crystalline NaCl particles (efflores-
cence). It is widely accepted that, at room temperature, pure
NaCl particles deliquesce at approximately 75 % relative hu-
midity (DRH) and effloresce at approximately 45 % relative
humidity (ERH) (i.e., Cziczo and Abbatt, 2000; Koop et al.,
2000; Tang et al., 1977; Wise et al., 2005). Additionally, us-
ing a flow-tube apparatus, Cziczo and Abbatt (2000) found
that the DRH and ERH of NaCl particles did not change
substantially when temperature was decreased from 298 to
253 K. Koop et al. (2000) extended the temperature range at
which the DRH and ERH of NaCl particles were determined
using differential scanning calorimetry (DSC) measurements
and flow cell microscopy. In agreement with Cziczo and Ab-
batt (2000), Koop et al. (2000) found that the DRH of NaCl
particles did not change substantially at temperatures as low
as 239 K.

Because NaCl is a ubiquitous tropospheric particle, it is
important to elucidate the behavior of NaCl particles at even
lower temperatures found throughout the troposphere. Ac-
cording to the NaCl phase diagram (Linke, 1965), at maxi-
mum NaCl solubility, a brine solution and the crystalline di-
hydrate form of NaCl (NaCl· 2H2O(s)) are stable from 273 K
to the eutectic temperature of 252 K. At temperatures below
252 K, solid ice and NaCl· 2H2O(s) (sodium chloride dihy-
drate) are stable. Cziczo and Abbatt (2000) did not find
indications of NaCl· 2H2O(s) formation (at conditions pre-
dicted by the bulk phase diagram) during their NaCl wa-
ter uptake experiments. Similarly Koop et al. (2000) did
not find indications of NaCl· 2 H2O(s) formation in their low
temperature flow cell experiments because the DRH of the
solid particles did not agree with the predicted DRH for
NaCl· 2H2O(s). However, Koop et al. (2000) did find in-
dications of NaCl· 2H2O(s) in their DSC experiments which
was attributed to heterogeneous nucleation on available ice
surfaces after ice formation. Krepelova et al. (2010) studied
the surface of NaCl/H2O mixtures at temperatures warmer,
including and colder than the eutectic temperature. Depend-
ing on temperature of the frozen solution, the surface could
consist of ice, NaCl· 2H2O(s), and surface adsorbed water.

Cziczo et al. (2004) performed an in situ investigation of
the chemical composition of anvil cirrus cloud residue near
the Florida peninsula. They found that 26 % of the ice residue
in the Florida area was sea salt. Cziczo et al. (2004) en-
countered cirrus clouds that appeared to incorporate both het-
erogeneous and homogeneous ice nucleation simultaneously.
They inferred that sea salt likely nucleated ice via a homoge-
neous freezing mechanism and that insoluble particles (such
as mineral dust) nucleated ice via a heterogeneous freezing
mechanism. This inference was made due to the observation
that sea salt particles dominated the larger size mode. How-
ever, it is possible that ice nucleated on hydrated NaCl(s) par-
ticles which would also be larger than anhydrous NaCl.

In the present study we re-examine NaCl deliquescence,
efflorescence and ice nucleation at low temperatures. We
use a combination of optical microscopy and Raman spec-
troscopy to probe the phase transitions and ice nucleating
efficiency of sodium chloride particles under a range of tro-
pospheric conditions. Specifically, this combination of tech-
niques allows the visual and spectroscopic determination of
the conditions at which micron-sized NaCl(s), NaCl(aq), and
hydrated NaCl(s) particles are metastable or stable at tropo-
spheric temperature conditions. It also allows a comparison
of the depositional ice nucleating ability of NaCl(s) and hy-
drated NaCl(s).

2 Experimental

A Nicolet Almega XR Dispersive Raman spectrometer out-
fitted with a modified Linkham THMS600 environmental
cell, a Buck Research Instruments CR-1A chilled mirror hy-
grometer, and a Linkham automated temperature controller
was used to study deliquescence, efflorescence and deposi-
tional ice nucleation using pure NaCl(s) and hydrated NaCl(s)
particles. The Raman spectrometer was equipped with an
Olympus BX51 research-grade optical microscope which
had the capability to magnify particles 10X, 20X, 50X and
100X. The experimental setup and procedure is similar to
that used in Baustian et al. (2010) and Wise et al. (2010). Ad-
ditional details are provided when the current experiment dif-
fers from that of Baustian et al. (2010) and Wise et al. (2010).

NaCl particles were generated by feeding a 10 wt % NaCl
(Fisher Scientific, 99.9 % purity) solution at 2 ml min−1 into
an atomizer (TSI 3076) using a Harvard apparatus syringe
pump. Pre-purified nitrogen gas at a flow rate of 3000 ccm
was used to operate the atomizer. The particles exiting the
atomizer were then impacted onto a hydrophobic quartz disc
(silanized with RainX prior to experimentation) for analysis.
Each data point presented in this manuscript represents an
independently generated sample, i.e. in total about 150 sam-
ples were investigated. The diameters of the particles studied
ranged from approximately 1 to 10 µm with typical values
close to 5 µm.

Atmos. Chem. Phys., 12, 1121–1134, 2012 www.atmos-chem-phys.net/12/1121/2012/
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2.1 Deliquescence and efflorescence of NaCl(s) and
hydrated NaCl(s) particles

To begin a water uptake experiment, the silanized quartz disc
containing NaCl(s) particles was placed inside the environ-
mental cell at room temperature. The cell was sealed and
water vapor was purged from the cell using a flow of ultra-
high purity nitrogen. Once the frost point in the environ-
mental cell reached approximately 213 K, the temperature of
the particles was lowered to between 233 and 258 K using
a combination of liquid nitrogen cooling and resistive heat-
ing. After the temperature of the particles equilibrated, water
vapor was introduced into the cell until deliquescence was vi-
sually observed at 50X magnification. Raman spectra of the
particles were then taken for verification. The focal point of
the Raman laser can be adjusted. Thus, spectra representative
of the chemical constituents contained throughout the depth
of the particle can be obtained. Frost point measurements
(error±0.15 K) from the hygrometer allow determination of
the water partial pressure within the cell. The sample (par-
ticle) temperature is measured using a platinum resistance
sensor embedded in the sample block. Temperature calibra-
tions are performed as described in Baustian et al. (2010).
The average error in the temperature calibration is±0.2 K
for all experiments. The water partial pressure and sample
temperature are used together to determine the RH during ex-
perimentation. The uncertainty in water partial pressure and
temperature corresponds to an error of less than±5 % RH
over the range of experimental conditions studied. During
experimentation, the rate of RH change ranged from 1–10 %
RH per minute.

After deliquescence, water vapor was removed from the
cell until efflorescence of all particles was observed. As with
the deliquescence phase transition, efflorescence was moni-
tored both visually and spectroscopically. Depending on par-
ticle temperature, either NaCl(s), hydrated NaCl(s) or a mix-
ture of the two solid forms nucleated when the particles efflo-
resced. If hydrated NaCl(s) formation was observed, the par-
ticles were subjected to a second RH cycle to determine the
DRH and ERH of the hydrated particles. After each particle
effloresced following the second RH cycle, Raman spectra of
50 different particles were collected to determine the percent-
age of solid particles that were anhydrous NaCl(s). In order
to eliminate operator bias, 50 random particles were studied.
Specifically, the substrate was moved in a straight line and
each particle that was illuminated by the Raman laser was
studied.

2.2 Depositional ice nucleation on NaCl(s) and hydrated
NaCl(s) particles

To begin a depositional ice nucleation experiment on NaCl(s)
particles, a quartz disc containing NaCl(s) particles was
placed inside the environmental cell at room temperature.
The cell was sealed, water vapor purged and the tempera-

ture of the particles was lowered to between 221 and 238 K.
Water vapor was introduced into the cell continuously until
ice nucleation was visually observed (at 10X magnification)
andSice was recorded. The uncertainty in water partial pres-
sure and temperature corresponds to an error inSice of less
than 0.05 over the range of experimental conditions studied.
Ice was confirmed using Raman spectroscopy. After the con-
firmation of ice, the water vapor was shut off and the ice
was sublimed. A Raman spectrum of the ice nuclei (IN) was
taken.

Depositional ice nucleation on a sample containing both
NaCl(s) and hydrated NaCl(s) particles was also studied.
Hydrated NaCl(s) could not be made at room tempera-
ture. Therefore, the experiment was initiated by deliquesc-
ing NaCl(s) and then efflorescing the particles at approxi-
mately 239 K. This was accomplished using the deliques-
cence/efflorescence procedure described above. A temper-
ature of 239 K was chosen because it was experimentally de-
termined that (after efflorescence) the majority of the par-
ticles were hydrated NaCl(s). However, some anhydrous
NaCl(s) particles also formed. After the formation of the
hydrated particles, the temperature of the particles was low-
ered to between 221 and 238 K at a rate of 2 K min−1. As
the temperature of the particles decreased from 239 K, it was
important to maintain the RH in the environmental cell at
values between 25 and 45 %. This RH range was chosen
because at low RH values (6–25 %), the hydrated NaCl par-
ticles reverted to the anhydrous form and at high RH values
(75 %) the anhydrous particles deliquesced. Furthermore, the
cooling rate of 2 K/min was chosen so that anSice of greater
than 1 was not attained before the desired temperature was
reached. Once the solid particles reached the desired tem-
perature, water vapor was introduced into the cell until ice
nucleation was visually observed (at 10X magnification). Ice
was confirmed using Raman spectroscopy. After the confir-
mation of ice, the water vapor was shut off and the ice was
sublimed. A Raman spectrum of the IN was taken.

3 Results

Figure 1 presents images of NaCl particles (at 50X magni-
fication) recorded from the optical microscope as RH was
cycled from 0 to 76 % at 244 K. At 0.9 % RH, all of the par-
ticles on the quartz disc were NaCl(s). As RH was increased
to 69.0 %, the morphology of the particles did not change
and no water uptake was observed. At 69.0 % RH, the solid
NaCl particles visually took up a small amount of water. The
presence of water on particle (a) in Fig. 1 was confirmed us-
ing Raman spectroscopy. The spectrum is recorded in Fig. 2.
Although subtle, the Raman signal due to water uptake is
seen as a small increase in intensity over the broad range of
3000 to 3700 cm−1. The DRH of NaCl(s) particles is extrap-
olated from higher temperature data (Tang and Munkelwitz,
1993 and Koop et al., 2000) and is∼76.7 % RH at 244 K.

www.atmos-chem-phys.net/12/1121/2012/ Atmos. Chem. Phys., 12, 1121–1134, 2012



1124 M. E. Wise et al.: Depositional ice nucleation onto crystalline hydrated NaCl particles

0.9 % c. 45.3 % 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 m 
 
 

69.0 % 40.4 % 
 
 
 
 
 
 

a. 
 

d. 
 
 
 
 
 
 
 

75.4 % 
 
 
 
 
 
 

b. 

35.9 % 

 
 
 
 
 
 
 
 
 
 
Figure 1. NaCl particles at 244 K as RH is cycled. The up arrows indicate increasing water vapor in 

the environmental cell and the down arrows indicate decreasing water vapor in the environmental 

cell. The letters highlighting specific particles in Figure 1 correspond to the letters denoting specific 

Raman spectra in Figure 2. The red crosshairs, which indicate where the Raman laser is aimed, were 

moved so that the particles could be seen more easily. 

Fig. 1. NaCl particles at 244 K as RH is cycled. The up arrows indicate increasing water vapor in the environmental cell and the down
arrows indicate decreasing water vapor in the environmental cell. The letters highlighting specific particles in Fig. 1 correspond to the letters
denoting specific Raman spectra in Fig. 2. The red crosshairs, which indicate where the Raman laser is aimed, were moved so that the
particles could be seen more easily.

This value is higher than the RH observed here for the on-
set of water uptake. However, the NaCl(s) particles at 69.0 %
were not fully dissolved. At this point, if the water vapor in
the environmental cell were reduced, the particles would re-
vert to their fully crystalline state. Slight water uptake prior
to deliquescence was also observed on ammonium sulfate
particles using Raman microscopy (Wise et al., 2010) and
a variety of other soluble salt compounds using an environ-
mental transmission electron microscope (Wise et al., 2008).
Similar water uptake below the bulk DRH was also observed
for other particles using H-TDMA and may be interpreted
as water absorption into polycrystalline particles owing to
capillary effects (Mikhailov et al., 2009). While the NaCl
particles don’t appear polycrystalline, perhaps microscopic

cracks or fissures could cause similar water uptake. Further-
more, Ewing (2005) showed that at water vapor pressures of
∼20 mbar at 24◦C (67 % RH), water adsorbs to the surfaces
of NaCl crystallites with a surface coverage of∼4.5 mono-
layers (see Fig. 9 of Ewing 2005). At 75.4 % RH, the NaCl(s)
particles deliquesced in our experiment shown in Fig. 1. Del-
iquescence resulted in a notable increase in the Raman inten-
sity between 3000 to 3700 cm−1 (Fig. 2b) and was visually
confirmed by noting the RH at which the NaCl(s) core dis-
appeared. The DRH of the NaCl(s) particles found in this
experiment agrees well with the accepted value for NaCl(s).

After deliquescence, the RH in the environmental cell was
decreased to 45.3 % RH and the particles gradually lost wa-
ter resulting in decreasing size. At 45.3 % RH, one of the

Atmos. Chem. Phys., 12, 1121–1134, 2012 www.atmos-chem-phys.net/12/1121/2012/
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Figure 2. Raman spectra of the particles highlighted in Figure 1.
Fig. 2. Raman spectra of the particles highlighted in Fig. 1.

particles in the field of view effloresced (particle c). This
particle did not effloresce into morphology consistent with
that of NaCl(s). Particle (c) appeared round and bumpy
whereas NaCl(s) particles appeared cubic. The Raman spec-
trum taken of particle (c) is included in Fig. 2. The spectrum
has sharp Raman intensities at approximately 3530 cm−1 and
3410 cm−1. The Raman spectrum of particle (c) is markedly
different than that of NaCl(s) because NaCl(s) shows no fea-
tures in this region. As the RH in the environmental cell de-
creased to 40.4 %, a cubic NaCl(s) particle formed (particle
d). The Raman spectrum shown in Fig. 2 confirms that the
particle is NaCl(s) due to the lack of peaks in the spectrum.
When the RH decreased further to 35.9 % RH (Fig. 1), all the
particles reverted to their solid form. In this particular exper-
iment, the efflorescence of NaCl(aq) droplets occurred over
a range of 35.9 to 45.3 % RH. The range of ERH values is
not surprising given the stochastic nature of efflorescence and
lies within the range of previously observed values (43–50 %
RH; Martin, 2000). Further, particle size does not appear to
affect the ERH. Similarly, Wise et al. (2005) observed this
phenomenon with various salts (0.1–4 µm diameter) using a
transmission electron microscope with an environmental cell.

From the water uptake experiment described above, it is
apparent that two different forms of solid NaCl effloresced
at 244 K. According to the bulk NaCl phase diagram (Linke,
1965), aqueous NaCl droplets are not stable at 244 K. De-
pending on the wt % of NaCl, a mixture of NaCl(s) and
NaCl· 2H2O(s) is predicted to be present. Therefore, in the
current experiment, the aqueous droplets that nucleated solid

particles between 36 and 45 % RH were in a metastable state
prior to efflorescence. This result is not surprising as it is
well known that micron-sized aqueous droplets significantly
supercool and supersaturate before crystalline phases (salt or
ice) nucleate homogeneously (Martin, 2000; Koop, 2004).

A question arises concerning the identity of the sec-
ond form of solid NaCl. The logical choice for the iden-
tity of the solid is NaCl· 2H2O due to its presence in the
bulk NaCl phase diagram. Dubessy et al. (1982) used
the Raman microprobe MOLE to collect the Raman spec-
trum of a hydrated crystalline form of NaCl(s), supposedly
NaCl· 2H2O(s), at 103 K. The Raman spectrum collected by
Dubessy et al. (1982) had 8 sharp peaks. The positions of
those peaks are highlighted with solid lines on a Raman spec-
trum of the non-cubic form of NaCl(s) (collected in this ex-
periment at 244 K) in Fig. 3a. The Raman spectrum collected
at 244 K did not have 8 distinct peaks; however, the peaks
from the Dubessy et al. (1982) spectrum line up well with
the peaks that are present. Perhaps the differences between
the Dubessy et al. (1982) spectrum of NaCl· 2H2O(s) and the
spectrum collected here is not due to a difference in com-
position but to differences in the temperatures at which the
spectra were collected (103 K versus 244 K). To check this,
the temperature of the particles was lowered to the minimum
temperature attainable in the environmental cell (163 K). The
Raman spectrum of the non-cubic form of NaCl(s) collected
at 163 K is shown in Fig. 3b. Two peaks at∼3209 cm−1

and 3089 cm−1 appeared in the Raman spectrum when the
temperature was lowered to 163 K. These peaks match well

www.atmos-chem-phys.net/12/1121/2012/ Atmos. Chem. Phys., 12, 1121–1134, 2012
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Figure 3. A) Raman spectrum of the non-cubic form of solid NaCl collected at 244 K. B) Raman 
spectrum of the non-cubic form of solid NaCl collected at 163 K. The solid vertical lines 
highlight the peaks in the Raman spectrum collected by Dubessy et al. (1982) supposedly for solid sodium 
chloride dihydrate . The middle portion of the Raman spectrum has been removed because no peaks are present .
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Fig. 3. (A) Raman spectrum of the non-cubic form of solid NaCl
collected at 244 K.(B) Raman spectrum of the non-cubic form of
solid NaCl collected at 163 K. The solid vertical lines highlight the
peaks in the Raman spectrum collected by Dubessy et al. (1982)
supposedly for solid sodium chloride dihydrate. The middle portion
of the Raman spectrum has been removed because no peaks are
present.

with the peaks in the spectrum of NaCl· 2H2O(s) collected by
Dubessy et al. (1982) at 103 K. Therefore, the non-spherical,
solid particles present in Fig. 1 definitively contain water and
are possibly NaCl· 2H2O(s).

Assuming that particle size does not affect thermodynam-
ics, the DRH of NaCl(s) should correspond to its solubility
line in the bulk phase diagram. This is expected because par-
ticle size has been shown to affect ERH and DRH only below
100 nm in diameter (Biskos et al., 2006). Since the particles
used in this experiment are significantly greater than 100 nm,
the DRH of NaCl(s) and NaCl· 2H2O(s) should be predicted
well using the bulk phase diagram. In order to test this pre-
diction, a second water uptake experiment was conducted on
a sample of mixed NaCl(s) and hydrated NaCl(s) particles.
The results of a typical water uptake experiment with a sam-
ple of mixed phase particles are shown in Fig. 4. This water
uptake experiment was a continuation of the water uptake ex-

periment performed at 244 K shown in Fig. 1. Therefore all
the particles are the same.

At RH values less than 76.3 % all of the particles were
solid but some were hydrated and some were anhydrous. As
the RH in the environmental cell was increased to 76.3 %,
the NaCl(s) particles deliquesced (see circled particle) and
the hydrated NaCl(s) (see particle in the square) particles re-
mained in the solid phase. A DRH of 76.3 % for NaCl(s) par-
ticles is consistent with the theoretical DRH for NaCl(s) par-
ticles at this temperature. There is a slight difference in DRH
for the NaCl(s) particles shown in Fig. 4 compared to the par-
ticles shown in Fig. 1. This difference is due to normal ex-
perimental variation in the obtained DRH values. When the
RH was increased to 89.6 % RH, the hydrated NaCl(s) par-
ticles deliquesced. Once all the particles deliquesced, water
vapor was removed from the environmental cell until all the
particles effloresced. All particles effloresced by 32.5 % RH.
Interestingly, some of the particles effloresced into a phase
that they did not originally start in. For example, the particle
highlighted with the box started the RH cycle as a hydrated
particle and finished the RH cycle as an anhydrous particle.
The water in the crystal lattice of the hydrated NaCl(s) par-
ticles were removed when the RH in the environmental cell
was dropped to 19.8 %. This transformation was accompa-
nied by the cracking of the particle and the disappearance of
all peaks in the Raman spectrum. The cracking phenomenon,
which is the physical separation of a particle into multiple
pieces, is evident in the last panel of Fig. 4. A similar be-
havior of a hydrated crystalline solid losing hydration water
to form a less hydrated or dry crystalline form has also been
observed in single aerosol particles consisting of LiI (Kurtz
and Richardson, 1984).

Figure 5 shows the NaCl phase diagram adapted from
Koop et al. (2000) in temperature/RH space rather than tem-
perature/wt % space. Koop et al. (2000) described the con-
struction of the phase diagram; therefore, only descriptions
of the symbols are given here. The thick solid vertical line
represents the accepted DRH values for NaCl(s) particles and
the thick dotted vertical line represents the accepted ERH
values for NaCl(aq) particles. These values are based on
experimental measurements between 278 and 308 K (Tang
and Munkelwitz, 1993). The thin lines extending from the
accepted DRH and ERH lines are extrapolations to lower
temperatures. The open diamonds and crosses represent the
DRH and ERH of the NaCl particles studied here at tem-
peratures between 233 and 256 K. All DRH and ERH data
were put into bins that span two degrees Kelvin and averaged.
Each data point represents the average value for each tem-
perature bin. The error range is the high and low value for
each bin. The DRH of NaCl(s) and the ERH of NaCl(aq) par-
ticles measured here agree well with the extrapolated val-
ues of DRH and ERH. Furthermore, the measurements agree
with the DRH (filled circles) and ERH (filled squares) ob-
served by Koop et al. (2000) using a flow cell apparatus.
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Fig. 4. NaCl particles (at 50X magnification) at 244 K as RH is cycled a second time. The up arrows indicate that water is being added to
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Fig. 5. NaCl phase diagram adapted from Koop et al. (2000): NaCl ERH (solid blue squares), NaCl DRH (solid red circles), high temperature
NaCl DRH (solid black vertical line), high temperature NaCl ERH (dotted black vertical line), theoretical NaCl hydrate DRH (thick black
dashed line). Data collected from the present study: NaCl hydrate DRH (crossed green circles), NaCl DRH (open red diamonds), NaCl ERH
(blue crosses), region where mixed particles effloresce (light gray shade), region where hydrated particles effloresce (dark gray shade).
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Fig. 6. Percent anhydrous particles versus temperature (K).

Using a flow tube apparatus at temperatures between 253 and
283 K, Cziczo and Abbatt (2000) also studied the water up-
take properties of NaCl particles. The DRH and ERH mea-
surements made by Cziczo et al. (2000) also agree with the
measurements made here.

It was shown above (Fig. 1) that at 244 K a mixture of
NaCl(s) and hydrated NaCl(s) particles form upon efflores-
cence of solution droplets. It was found that at temperatures
warmer than 252 K, no hydrated NaCl(s) particles formed
upon efflorescence. However, at temperatures between 236
and 252 K, a mixture of hydrated and anhydrous particles ef-
floresced. The temperature region in which both hydrated
and anhydrous particles nucleated is denoted with light gray
shading in Fig. 5. Efflorescence experiments performed
at temperatures colder than 236 K produced only hydrated
NaCl(s). This temperature region is denoted with darker gray
shading in Fig. 5. Because a mixture of hydrated and anhy-
drous particles formed between 236 and 252 K, efflorescence
experiments were conducted to find the relationship between
particle temperature and the percentage of particles in the an-
hydrous form. The results of these experiments are shown in
Fig. 6. Between 239 and 249 K, there is a linear relationship
between the temperature of the particles at efflorescence and
the percentage of anhydrous NaCl(s) particles formed. Each
data point utilizes 50 different particles and the error bars
for each point represent the standard error assuming random
sampling.

Although hydrated particles form between 236 and 239 K,
the linear relationship between temperature and the percent-
age of anhydrous NaCl(s) particles formed breaks down.
Similarly, between 249 and 252 K, the linear relationship is
not valid. Therefore, between 239 and 249 K, the percentage
of anhydrous NaCl(s) particles can be predicted if particle
temperature is known.

Water uptake experiments were performed on hydrated
NaCl(s) particles at temperatures between 235 and 247 K to
determine their DRH. The results of these experiments are
denoted with green crossed circles in Fig. 5. As before, the
DRH data were put into bins that span two degrees Kelvin
and averaged. The DRH of the hydrated particles found in
this study do not agree well with the theoretical DRH of
NaCl· 2H2O(s) (thick dashed line). However, the experimen-
tal points are scattered around a value of 87 % RH. This value
is close to where NaCl· 2 H2O(s) would deliquesce at 240 K
(∼85 % RH; Koop et al., 2000). However, the scatter in the
DRH data for NaCl· 2H2O(s) is large when compared to the
scatter for NaCl(s) DRH. Therefore, we cannot definitively
confirm the identity of the hydrate. Additional water uptake
experiments were performed on samples containing only hy-
drated particles. The DRH values determined in these exper-
iments agreed well with the DRH values found in the mixed
particle experiments. The question then remains as to why
the hydrated particles do not deliquesce at the RH predicted
for NaCl· 2H2O(s).

We cannot exclude the formation of another type of hy-
drate that has not been observed previously in the literature.
While this could explain why the observed DRH values are
different from those predicted for the dihydrate from bulk
data, it appears to be inconsistent with the spectroscopic data.
However, whether the hydrate observed in our experiments is
identical to the dihydrate observed in bulk experiments, or is
a metastable form of the dihydrate, or is yet another higher
hydrate does not affect any of the conclusions drawn below.

Although the identity of the non-cubic, hydrated form of
the NaCl(s) particles is not fully understood, their ice nucleat-
ing ability can be probed and compared to NaCl(s). Figure 7
shows the results of a typical ice nucleating experiment on
a sample containing both anhydrous and hydrated NaCl(s)
particles. The mixed sample was created by deliquescing
NaCl(s) particles and then efflorescing them at∼239 K. After
efflorescence, particle temperature was decreased to 224 K
while the RH in the environmental cell was maintained at
RH values between 25 and 45 %. In this particular experi-
ment, when the RH in the environmental cell was increased
to ∼63 % (at 224 K), ice began to nucleate on top of one of
the hydrated particles. In order to confirm that ice was nu-
cleating on a hydrated particle, Raman spectra were taken of
the ice and the ice nuclei. The Raman spectrum (spectrum
(a) in Fig. 7) had peaks indicative of a hydrated NaCl(s) par-
ticle and ice. After the ice was sublimed from the sample,
a Raman spectrum was collected (spectrum (b) in Fig. 7) of
the ice nuclei. This spectrum again confirmed that the ice nu-
cleus was a hydrated particle. In this particular experiment,
ice formed on the hydrated particles atSice of 1.01.

Several ice nucleation experiments were performed on
mixed anhydrous and hydrated NaCl(s) samples at various
temperatures. The results of these experiments are plotted in
Fig. 8 in Sice/temperature space. AllSice data were put into
bins that span two degrees Kelvin and averaged. Each data
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Figure 7. Depositional ice nucleation experiment performed at 224 K on a mixed g p p p
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image is the ice nucleus after the ice was sublimed. Raman spectra of both particles were 
taken to confirm the presence of ice and the hydrated NaCl(s) particle.

Fig. 7. Depositional ice nucleation experiment performed at 224 K on a mixed hydrated/anhydrous NaCl(s) sample. Particle(a) in the top
left image is an ice particle which nucleated on a hydrated NaCl(s) particle at anSice value of 1.01. Particle(b) in the lower left image
is the ice nucleus after the ice was sublimed. Raman spectra of both particles were taken to confirm the presence of ice and the hydrated
NaCl(s) particle.

point represents the averageSice value for each temperature
bin. The error range (represented by the lines) is the high
and low value for each bin. Additionally, the grey error bars
represent the experimental error. Over the temperature range
studied, it can be seen that the hydrated NaCl(s) particles nu-
cleate ice atSice values between 0.98 and 1.06 (open circles
in Fig. 8). Additionally, there does not appear to be a tem-
perature or size dependence on the ice nucleating ability of
hydrated NaCl(s) particles. This result is similar to Baustian
et al. (2010). The averageSice value for the 21 experiments
is 1.02± 0.04.

Using the mixed samples, it was observed that the ice nu-
cleated preferentially on the hydrated NaCl(s) particles over
the anhydrous particles. In every case, the hydrated NaCl(s)
particles nucleated ice before the anhydrous NaCl(s) parti-
cles. In order to confirm this observation, ice nucleation ex-
periments were performed on samples containing only anhy-
drous NaCl(s) particles (filled squares in Fig. 8). Over the
same temperature range, anhydrous NaCl(s) particles nucle-
ated ice atSice values between 1.02 and 1.21. The average
Sice value for the 9 experiments performed on anhydrous

NaCl(s) particles is 1.11± 0.07. Student’st-test was per-
formed with the binned anhydrous NaCl(s) and binned hy-
drated NaCl(s) Sice data. For a two-tailedT -test, the P-value
is 0.0012. Therefore, there is a statistical difference between
the binnedSice values for the anhydrous and hydrated NaCl(s)
particles. Furthermore, ice nucleated preferentially on the
hydrated NaCl(s) particles in the mixed samples.

In the above experiments, hydrated NaCl(s) particles were
sometimes observed to undergo deliquescence and some-
times depositional ice nucleation occurred. To examine the
two processes, the depositional ice nucleation and deliques-
cence data for the hydrated NaCl(s) particles are plotted in
RH versus temperature space (Fig. 9).

Between 221 and 238 K, the RH at which depositional ice
nucleation occurs on the hydrated particles increases from 62
to 79 % (Sice = 1–1.11). Similarly, between 235 and 239 K,
the RH at which deliquescence occurs increases from 77 to
93 % (Sice = 1.11–1.30). In this temperature region (denoted
with the gray shading) both deliquescence and depositional
ice nucleation occurs. As the temperature is warmed from
239 K, only deliquescence occurs and the DRH decreases.
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Fig. 8. Sice versus temperature for the onset of depositional ice nu-
cleati on on NaCl (solid squares) and hydrated NaCl particles (open
circles). AnSice of 1 is denoted with the dotted line. Here, depo-
sitional ice nucleation is defined as the onset of ice nucleation and
represents the conditions at which the first particle on the substrate
nucleated ice. The error range (represented by the lines) is the high
and low value for each bin. Additionally, the grey error bars repre-
sent experimnetal error.
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Fig. 9. Relative humidity versus temperature for depositional ice
nucleation on hydrated NaCl(s) (open circles) and deliquescence
of hydrated NaCl(s) (crossed green circles). The grey shading de-
notes the temperatures at which both depositional ice nucleation and
deliquescence occur. The dashed-dotted line represents RH at an
Sice= 1.

The shapes of the depositional ice nucleation and deliques-
cence curves show that the data are consistent with one an-
other. At temperatures warmer than 239 K, the particles will
deliquesce and at temperatures below 235 K the particles will
depositionally nucleate ice.

The hydrated NaCl(s) particles prepared in this study ap-
pear to have a rougher surface than that of the dehydrated
NaCl(s) particles. This surface roughness might be one rea-
son for the very low ice nucleation threshold for such par-
ticles. It has been shown previously that ammonium sul-
fate crystals can act as IN in an immersion ice nucleation
process (Zuberi et al., 2001). In these experiments it was
observed that crystals with a polycrystalline structure, i.e.
a rougher surface, nucleated ice at very low supersaturation
(Sice ∼1.08–1.18) while smooth single crystals required sig-
nificant supersaturation (Sice∼1.64–1.67).

It has been suggested that heterogeneous ice nucleation is
initiated when an ice embryo forms at an ice-active surface
site. Sullivan et al. (2010) tested this hypothesis by “process-
ing” Arizona Test Dust with sulfuric acid. They found that
the processed dust had a decreased ice nucleation efficiency
compared to the unprocessed dust. This result was attributed
to the acid digestion of ice surface sites. Although we do
not have any direct evidence for hydrated NaCl(s) particles
having more ice-active surface sites than dehydrated NaCl(s)
particles, it is a plausible hypothesis given the morphology
of the particles. Another plausible hypothesis is that the hy-
dration waters may be good sites to adsorb further water and
nucleate ice

4 Atmospheric implications

The results of this study show that the hydrated form of
NaCl(s) is a very good IN. However, it is not known whether
or not hydrated NaCl(s) is present enough of the time in
the troposphere to affect ice nucleation. Therefore, the wa-
ter uptake and depositional ice nucleation data collected in
this study for NaCl(s) and hydrated NaCl(s) were used in a
trajectory model following the approach used by Jensen et
al. (2010).

The result of the model is shown graphically in Fig. 10.
Specifically, the temperature, relative humidity, and NaCl
phase was tracked along parcel trajectories after they were
detrained from deep convection (at 100 % RH). (See Jensen
et al., 2010 for details.) The particles were initially assumed
to be aqueous NaCl with 100 % relative humidity with re-
spect to ice. The RH in each parcel was tracked on its path
upward through the tropical upper troposphere. If the RH
dropped below 35 %, NaCl particles in the parcel were as-
sumed to effloresce. They remained NaCl(s) unless the RH
increased above the deliquescence point (80 %). By com-
bining results from 648 trajectories throughout the tropics,
statistics were generated of the time when NaCl particles
were in aqueous or solid states. It was calculated, at tempera-
tures below 220 K, that hydrated NaCl(s) is present 40–80 %
of the time in the troposphere.

The lowest efflorescence temperature utilized in the lab-
oratory studies presented in this manuscript was 239 K.
Figure 10 shows a scenario that uses temperatures from
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180–220 K. Thus a significant temperature extrapolation was
assumed. This could introduce error in the model, especially
at the lowest temperature. Between room temperature and
238 K, we did not observe significant temperature depen-
dence in the ERH. Thus it is reasonable to assume a similar
trend at lower temperatures.

In a similar study to model the deliquescence and efflores-
cence behavior of ammoniated sulfate particles, Colberg et
al. (2003) assumed a constant offset between the DRH and
ERH independently of temperature based on available data
for ammonium sulfate. We note that if the DRH of the hy-
drated form of NaCl increases slightly with decreasing tem-
perature similarly to that suggested for NaCl· 2H2O(s), one
would expect an increasing ERH at the lowest temperatures.
This would lead to a larger fraction of particles being in a
hydrated crystalline form. Hence, our approach of a constant
ERH is a conservative estimate of the fraction of crystalline
particles.

Further, the values ofSice did not change appreciably over
the experimental temperature range down to 225 K. However,
past work has shown thatSice values do increase at tempera-
tures below 180 K, (Trainer et al., 2009), so an extrapolation
would be needed for cirrus at the very lowest temperatures in
the atmosphere.

Because hydrated NaCl(s) particles could be frequently
present, they could play a role in cirrus cloud formation. Cz-
iczo et al. (2004) found that sea salt was often incorporated in
anvil cirrus clouds formed near the Florida peninsula. They
hypothesized that the ice crystals formed via a homogeneous
nucleation mechanism. However, the current study suggests
that a different pathway of ice formation for the anvil cirrus
clouds is possible. If the temperature and RH conditions are
right, hydrated NaCl(s) can compete with mineral dust for ice
nucleation via a heterogeneous mechanism.

In addition to impacting atmospheric ice, hydrated NaCl(s)
may also have a climatic impact. The ratio of the radiative
forcing, 1FR, of the hydrated NaCl particles (denoted with
a subscript “h”) with respect to the anhydrous particles (de-
noted with a subscript “dry”) is calculated using the equation

1FR =
Qext,hD

2
h(1−gh/2)

Qext,dryD
2
dry

(
1−gdry/2

) (1)

whereQext is the extinction efficiency,D is the particle di-
ameter, andg is the asymmetry parameter. This equation
is valid for an optically thin, non-absorbing layer of aerosol
particles in a clear sky (Chylek and Wong, 1995).

The raio of diameters for the hydrated to anhydrous NaCl
was determined experimentally. The ratio of diameters is
usually expressed as a growth factor,Gf ,

Gf =
Dh

Ddry
(2)

Using the optical microscope, anhydrous particle diameters
were first measured. Then particles were deliquesced and
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their sizes measured, followed by efflorescence at tempera-
tures between 239 and 249 K. Efflorescence resulted in hy-
drated particles. The same particles were thus measured
in the dry, deliquesced and hydrated state and growth fac-
tors on a particle by particle basis were determined. Us-
ing a population of 93 particles, an average growth factor
of 2.01± 0.22 was measured for the deliquesced particles at
an average RH of 81.6 %. Using a population of 52 parti-
cles, an average growth factor of 1.46± 0.13 was measured
for the hydrated NaCl(s) particles. The value obtained for
aqueous NaCl is in agreement with the prediction from the
E-AIM model of 1.98 at 81.6 % RH (Clegg et al., 1998,
http://www.aim.env.uea.ac.uk/aim/aim.php). This gives us
added confidence that the growth factor for the hydrated
NaCl particles is a reasonable approximation.

To use Eq. (1) to determine the radiative forcing ratio, it
is also necessary to estimate the extinction efficiencies and
asymmetry parameters. Both of these values were calcu-
lated using MATLAB versions of Mie codes adapted from
Bohren and Huffman (2004) and M̈atzler (2002). To account
for a range of different particle sizes, these values were calcu-
lated using particle diameters from 10 nm to 5.0 µm. Because
the solar spectrum includes ultraviolet, visible, and infrared
wavelengths, we have included wavelengths from 200 nm to
1.5 µm.

As input into the Mie calculations, the refractive indices
of the dry and hydrated NaCl are needed. The literature val-
ues for the complex refractive index of NaCl(s) were obtained
from Toon et al. (1976). The literature values for the complex
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refractive index of water were obtained from Seinfeld and
Pandis (2006). Refractive indices for NaCl(s) and water at
wavelengths that were not available from these sources were
linearly extrapolated over small wavelength ranges. Water
has several absorption bands in the near infrared (Curcio and
Petty, 1951). The real part of the refractive index has its
greatest sensitivity to frequency around the absorption band
(McHale, 1999). For the weaker water transitions in the near
infrared, changes in the imaginary part of the refractive in-
dex cause little visible change in the real part of the refrac-
tive index (Ray, 1972; Huibers, 1997). We have capped the
wavelength range for the calculation to 1.5 µm to avoid the
stronger absorption bands at 1.94 µm and higher wavelengths
(Curcio and Petty, 1951). The refractive index of the hydrate
was calculated for each wavelength using the experimentally
determined growth factor. The complex refractive index for
the hydrate is given by

nNaCl(aq) =
Vh−Vdry

Vh
nH2O+

Vdry

Vh
nNaCl(s)

=

(
1−G−3

f

)
nH2O+G−3

f nNaCl(s) (3)

whereVh andVdry are the volumes of the hydrated and dry
particles, respectively.1FR was calculated using Eq. (1) for
the hydrated relative to anhydrous NaCl particles (Fig. 11).
The oscillations observed in Fig. 11 are caused by the oscil-
lations observed in Mie scattering curves as a function of size
parameter. Because the hydrated and anhydrous particles do
not absorb over the wavelength range used in the calculation
besides a few weak transitions of water in the near infrared,
the particles scatter radiation. The value of1FR observed
over all sizes is greater than unity, indicating an enhance-
ment in cooling for the hydrates. The enhancement is largest
for the smallest particle sizes. The average1FR for particles

500 nm in diameter and larger is 1.94 for hydrated NaCl(s)
relative to NaCl(s). Thus neglect of hydration for NaCl par-
ticles could lead to a factor of two error in the calculated
radiative forcing. It is important to note that1FR is a ratio
of two negative numbers. Therefore, the result is a positive
number even though the particles do in fact lead to a cooling.

5 Conclusions

In this manuscript we have presented new laboratory exper-
iments showing the formation of a NaCl hydrate upon efflo-
rescence of small NaCl droplets at low temperatures. This
hydrate is a better ice nucleus than dry NaCl particles as it
does not require any significant supersaturation at tempera-
tures below about 235 K. Model calculations of the potential
occurrence of the hydrated NaCl particles in the upper tropo-
sphere together with radiative transfer calculations suggest a
significant impact on the radiative forcing of such particles.
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