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1. Introduction 

2. Objectives 

4. Results 

• Measure forces of extension and separation of 
GNA relative to identical sequences of DNA 
• Explore structure, flexibility, and energetics of 
GNA and how these may relate to its stability 
• Explore the usefulness of Steered Molecular 
Dynamics simulations in investigations of GNA 

3. Methods 

5. Discussion 

• Force measurements appear to differ 
significantly between GNA and DNA, though 
further research is needed to clarify details 
• Molecular dynamics appears to be a promising 
method of study GNA 
• Since GNA appears to move randomly in a 
spring-like motion2, the GNA models in this 
simulation may not have been in their most 
compact conformations; more research is 
needed to see what effect this may have 
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Fig. 1- Left: side by side comparison of DNA 
and GNA nucleotides. Right: A different 
representation, DNA nucleotide on left and 
GNA nucleotide on right. 

6. Current & Future Research 

• Further pulling at much slower speeds for 
more accurate measurements 
• Adaptive biasing force simulations to collect 
data for free energy calculations 
• Extracting helicoidal parameters of GNA 

Fig. 3- DNA-8 (top left), GNA-8 (top right), 
DNA-16 (bottom left), and GNA-16 (bottom 
right) models in simulated water boxes. 
Green dots are sodium ions. The bottom 
halves of the boxes are not pictured. 

• Stretching simulations went mostly as planned 
• Molecules began to unwind as forces were 
applied 
• Hydrogen bonds broke, beginning near the end 
being pulled (Fig. 5) 

• After more pulling, strands fully separated 
• No hydrogen bonds were remade after 
separation had been completed (Fig. 6) 

• From preliminary stretches, force data was 
extracted from the output files of the 
simulations using a VMD script 
• For 8 base-pair duplexes, GNA stretched less 
and separated more quickly with a lower force 
peak than DNA (Fig. 7) 

• For 16 base-pair duplexes, the same 
relationship seems to occur as in the 8 base-
pair duplexes (Fig. 8) 
• Initial simulations were on too short of a time 
scale to fully separate strands, but it is expected 
that both curves will peak and fall similarly to 
the 8 base-pair duplexes once further data is 
collected 

• Models were prepared for simulation by 
addition of sodium ions to balance the negative 
charges of the phosphate backbones, as these 
charges can make simulations unstable (Fig. 3) 
• Charge-balanced models were then submerged 
in a water box slightly longer than twice the 
length of the molecule as determined from 
crystal structures (Fig. 3) 

• An oxygen atom at the 2’ end (equivalent to the 
5’ end of DNA) of one strand was fixed to 
remain stationary (Fig. 4) 
• An oxygen atom at the 2’ end of the other 
strand was set to be pulled (Fig. 4) 

• The atom set for pulling was pulled at a rate of 
1 angstrom/ps for 120 ps 
• Slower speeds are needed for more accurate 
data, but quicker pulls were done to gain a 
rough understanding of the behavior of GNA 
when stretched 

• Glycol nucleic acid (GNA) is a non-natural 
analog of DNA 
• In place of the deoxyribose unit of DNA, GNA 
has an acyclic ethylene glycol unit (Fig. 1) 1 

• The differences between DNA and GNA are 
evident in the duplex structure (Fig. 3) 1 
• Instead of a major and minor groove, GNA has 
one large groove (Fig. 3) 1 
• The base pairs of GNA wrap around the single 
groove like a ribbon on a spool (Fig. 3) 1 
• GNA has primarily intra-strand base stacking, 
with each base stacking on top of a base of the 
opposite strand, as opposed to the inter-strand 
base stacking of DNA (Fig. 2) 2 

• GNA has a higher stability than DNA, as 
shown by its melting point being, on average, 
20 degrees Celsius higher than DNA  2 
• The stability of GNA appears to be due to 
entropic factors, not enthalpic factors  2 
• Due to its stability and unique shape, GNA is 
of interest for its use in place of DNA as a 
molecular scaffold 
• Molecular dynamics (MD) uses classical laws 
of motion to follow the movement of atoms or 
molecules in computer simulations 3 
• MD can be used to explore the properties of 
nucleic acids 
• Studies comparing MD simulations to atomic 
force microscopy have found that the results of 
simulated pulling of nucleic acids are accurate 
and realistic 4 Fig. 4- GNA-8 prepared for pulling. 

Hydrogen bonds are shown in yellow. The 
atom that is fixed in place is highlighted in 
green; the atom to be pulled is in silver. 

Fig. 5- GNA-8 being stretched. Note broken 
hydrogen bonds between base pairs 
(yellow) relative to Fig. 5. 

Fig. 6- GNA-8 after pulling. All hydrogen 
bonds have been broken, and none are 
reformed after this point in the simulation. 

Fig. 7- DNA-8 and GNA-8 extension ratio 
(extended length/equilibrium length) vs. 
calculated pulling force. 

Fig. 8- DNA-16 and GNA-16 extension ratio 
(extended length/equilibrium length) vs. 
calculated pulling force. 

Fig. 2- Base pair stacking of DNA (left) and 
GNA (right). 
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