Concordia University - Portland

CU Commons

Exercise & Sport Science Faculty Research

Exercise and Sport Science

12-2018

Association between Psychosocial and Organizational Factors and Objectively Measured Sedentary Behavior in Desk-Dependent Office Workers

Andrew Lafrenz Concordia University - Portland, alafrenz@cu-portland.edu

Taryn Lust *Legacy Health*

Minot Cleveland Legacy Health

Alar Mirka Legacy Health

Andrew Downs University of Portland

Foffore the age of a condition of a with at: antipe://commons.cu-portland.edu/essfaculty

Part of the Occupational Health and Industrial Hygiene Commons, and the Sports Sciences Commons

CU Commons Citation

Lafrenz, Andrew; Lust, Taryn; Cleveland, Minot; Mirka, Alar; Downs, Andrew; Goodin, Bryan; and Van Hoomissen, Jacquie, "Association between Psychosocial and Organizational Factors and Objectively Measured Sedentary Behavior in Desk-Dependent Office Workers" (2018). *Exercise & Sport Science Faculty Research*. 1.

https://commons.cu-portland.edu/essfaculty/1

This Article is brought to you for free and open access by the Exercise and Sport Science at CU Commons. It has been accepted for inclusion in Exercise & Sport Science Faculty Research by an authorized administrator of CU Commons. For more information, please contact libraryadmin@cu-portland.edu.

Authors

Andrew Lafrenz, Taryn Lust, Minot Cleveland, Alar Mirka, Andrew Downs, Bryan Goodin, and Jacquie Van Hoomissen

1	
2	
3	Association Between Psychosocial and Organizational Factors and Objectively
4	Measured Sedentary Behavior in Desk-dependent Office Workers
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

32	Abstract
33	Cross-sectional analysis of data from the Recharge@Work study was used to assess
34	individual, interpersonal and organizational correlates of objectively- measured
35	sedentary time, in desk-dependent office workers at two U.S. hospitals. Analysis
36	included 65 participants (62 females and \sim 49.2 years old). Sedentary time was
37	assessed by accelerometry across five consecutive days and expressed as prolonged
38	sedentary bouts (60min \leq 150 cpm). Correlates measured a baseline included: age,
39	BMI, active break enjoyment, active break outcome expectancy, active break self-
40	efficacy, active break social support, direct supervisor support of active breaks and
41	senior manager support of active breaks. As expected, we found that the more
42	individuals perceived their supervisor as supportive of active breaks and the more
43	they enjoyed active breaks, the more likely they were to actually take active breaks
44	(i.e., to experience less sedentary time, OR=2.8, CI=1.1-7.1; OR=5.2, CI=1.4-19.2
45	respectively). However, contrary to our expectations, the more employees
46	perceived their senior managers as supportive of active breaks, the less likely they
47	were to take these breaks (OR=0.29, CI=0.09-0.93). No significant associations were
48	found between age, gender, BMI, outcome expectancy, or self-efficacy and active
49	breaks from sedentary behavior.
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	Keywords: occupational, sedentary, office workers, determinants, active breaks

05	
64	
65	Introduction
66	
67	Sedentary behavior has emerged as a focus in public health as an
68	independent risk factor for poor health and mortality (Bauman et al., 2011). High

69 volumes of sitting and sedentary behavior have been established as independent 70 risk factors for conditions such as type II diabetes and obesity (Katzmarzyk, Church, 71 Craig, & Bouchard, 2009; Patel et al., 2010). Even in individuals who accumulate 72 recommended levels of moderate-vigorous physical activity (MVPA), prolonged 73 sedentary behavior is associated with negative health outcomes (Owen, Sparling, 74 Healy, Dunstan, & Matthews, 2010). When measured objectively (accelerometers), 75 sedentary behavior is more closely associated with negative vascular and metabolic 76 risk factors (ie, glucose, HDL, LDL, triglycerides) than MVPA (Celis-Morales et al., 77 2012). Despite established risks associated with sedentary behavior, our 78 knowledge of the psychosocial and environmental determinants of sedentary 79 behavior is relatively sparse.

80 The majority of studies on sedentary behavior have primarily focused on 81 determinants of leisure time and TV viewing sedentary behavior. However, desk-82 dependent workers have been shown to spend approximately 81% of their workday 83 in sedentary behavior (Parry & Straker, 2013), contributing to a large proportion of 84 total sedentary time each day (Plotnikoff & Karunamuni, 2012). The workplace 85 remains a setting where many individuals accumulate the majority of their daily 86 sedentary time. Of particular concern are prolonged bouts of sedentary behavior 87 greater than 60min, which have been associated with all-cause mortality 88 independent of total sedentary time and MVPA (Van der Ploeg, Chey, Korda, Banks, 89 & Bauman, 2012). Current occupational health recommendations include breaking 90 up prolonged sedentary bouts with short activity breaks (Coenen, Gilson, Healy, 91 Dunstan, & Straker, 2017). Active breaks from prolonged sedentary behavior 92 generally include at least 2 minutes of light body movement while standing, 93 stretching, or taking short walks around the office (Plotnikoff & Karunamuni, 2012).

94 Understanding the correlates of sedentary behavior in specific settings and95 populations is an important step to developing effective interventions.

96 Current theoretical frameworks, such as the socio-ecological model, 97 hypothesize that a complex relationship between personal, environmental and 98 social factors determine sedentary behavior (Chastin, Fitzpatrick, Andrews, & 99 DiCroce, 2014). Research on the determinants of physical activity has shown that 100 factors at multiple levels (e.g., individual, social, environmental, and policy) are 101 important in behavior change and long-term maintenance (Owen, Leslie, Salmon, & 102 Fotheringham, 2000). Whether the same levels of influence are important in short 103 activity breaks that break up prolonged sedentary periods is unknown. In addition, 104 our understanding of determinants of physical activity has shown that determinants 105 may be population specific and shaped by the attributes of the settings in which 106 they occur, and the social context within those settings (Owen et al., 2011).

107 A few studies have explored correlates of sedentary behavior in specific 108 populations. In a small sample (31) of cancer patients, instrumental attitude (i.e., 109 perceived benefits) of physical activity and affective attitude (i.e., perceived 110 enjoyment) of physical activity were negatively correlated with median time spent sitting (Lowe et al., 2014). Other studies have indicated sedentary behavior is 111 112 negatively associated with self-efficacy for breaking up sedentary behavior and 113 locus of control (perceived control) in older adults (Chastin et al., 2014) and access 114 to digital media and socio-economic characteristics in children (Uitdewilligen et al., 115 2011). In a sample of 801 office workers in Australia, the barriers associated with 116 frequency of active breaks at work for men were perception of lack of time to take 117 breaks at work and for women were lack of information regarding taking short 118 breaks at work (Bennie, Timperio, Crawford, Dunstan, & Salmon, 2011). Another 119 study indicated that a lack of control to sit less was associated with higher 120 occupational sitting in part-time and full-time white-collar and professional workers 121 in Australia (De Cocker, Duncan, Short, Van Uffelen, & Vandelanotte, 2014). 122 With a large number of adults employed in desk-dependent occupations, 123 very little is known about the determinants of sedentary patterns at the workplace.

124 Establishing correlates of sedentary behavior in the workplace is needed in order to

125 develop effective, evidence-based interventions that target appropriate mediating 126 variables. This would provide important insight into whether strategies should 127 target individual-level factors, social-level factors, organizational-level factors (e.g., 128 policy and cultural change) or multiple levels of influence. The aim of this study was 129 to investigate associations between objectively measured sedentary behavior and 130 psychosocial and organizational factors of desk-dependent hospital workers prior to 131 the implementation of the Recharge@Work program. 132 133 134 135 136 Theoretical framework 137 138 The socio-ecological model was used as a framework in which to examine 139 whether workplace specific factors were associated with objectively measured 140 occupational sedentary behavior. Based on established research on physical activity 141 and sedentary determinants, it was hypothesized that individual level factors 142 (enjoyment, outcome expectancy, self-efficacy), interpersonal level factors (social 143 support) and organizational level factors (direct supervisor support, senior 144 manager support) would be important correlates of occupational sedentary 145 behavior in this study. More specifically, it was hypothesized that higher reported 146 levels of active break enjoyment, active break self-efficacy, higher outcome 147 expectancies around taking active breaks, higher perceived coworker social support 148 for taking active breaks, higher perceived direct manager support of active breaks 149 and higher perceived senior manager support of active breaks would be associated 150 with lower levels of sedentary behavior in the workplace. These hypothesized 151 correlates of sedentary behavior in the workplace are represented in multiple 152 theories and models, including Social Cognitive Theory (e.g., self-efficacy, outcome 153 expectancies), [Bandura, 2001] and Organizational Development Theory (direct 154 supervisor and senior manager support) [Glanz & Rimer, 1995]. Self-efficacy, 155 defined as "beliefs about personal ability to perform behaviors that bring desired

156	outcomes," is associated with both physical activity and sedentary behavior
157	(Bandura, 2001) (Owen et al., 2011). Outcome expectancy includes "beliefs about
158	the likelihood and value of the consequences of behavioral choices" and is positively
159	associated with higher levels of physical activity and sedentary behavior (Deci $\&$
160	Ryan, 2010; Koeneman, Verheijden, Chinapaw, & Hopman-Rock, 2011). From the
161	perspective of Social Cognitive Theory, "perceived enjoyment and social support
162	contribute to the self-regulation of exercise behavior" (Koeneman et al., 2011). The
163	role of both enjoyment and social support have been well established in predicting
164	physical activity behavior (Bauman et al., 2012; Koeneman et al., 2011), however
165	their role in sedentary behavior has not been established. Organizational climate is
166	defined as the mood or unique "personality" of an organization (Tagiuri, 1968).
167	Organizational climate characteristics such as leader support, participative
168	management and openness of communication are positively related to employee
169	satisfaction and implementation of action plans (Schneider, 1985). The role of
170	organizational climate characteristics has yet to be explored in occupational
171	sedentary behavior.
172	
173	
174	
175	
176	
177	
178	
179	Methods
180	
181	Participants
182	Participants were recruited from two hospitals located within the Portland-
183	Vancouver metropolitan area in the northwest region of the United States. The two
184	hospitals were chosen for similar characteristics (size, location, departments) and
185	were part of a large health system made up of six hospitals in northwest Oregon and
186	southwest Washington. The two hospital settings were separated by 12 miles, but

187 are part of a continuous metropolitan area that spans the border between the states 188 of Oregon and Washington. Participant recruitment was conducted hospital-wide 189 through an email advertisement sent to department managers and forwarded to 190 their respective employees. Inclusion criteria included individuals classified as 191 hospital administrative staff that self-reported spending \geq 75% of the workday 192 sitting at a desk. This cut off was used in order to capture the most sedentary 193 hospital employees and is in line with estimated sedentary behavior from large 194 epidemiological studies in office workers (Owen et al., 2011). Exclusion criteria 195 included known medical conditions or physical problems requiring special 196 attention. Informed consent was provided by all participants and the study protocol 197 was approved by the Institutional Review Boards of the primary author's university 198 and the health care organization. The final sample included 26 participants from 199 one hospital setting and 39 participants from the second hospital setting. The total 200 sample of 65 participants (62 female) averaged 49.2 ± 9.3 years of age and included 201 60 White, 3 Asian American, and 2 Hispanic participants. Overall characteristics of 202 the hospital employee population are as follows: average age of 44 years, 78% 203 female, and 82% White.

204

205 Outcome measure

206 Sedentary time

207 ActiGraph Model GT3X+ accelerometers (ActiGraph LLC, Fort Walton Beach, 208 FL) were used to objectively assess sedentary behavior in the participants. 209 Participants were asked to wear the accelerometers for 24hr a day on a belt 210 positioned over the right hip for five consecutive working days. Only work hours 211 were analyzed for this study, with work hours defined as self-recorded time in and 212 time out each day. Valid days included wearing the accelerometer for \geq 75 % of the 213 time at the workplace (Healy et al., 2013), with a minimum of 3 valid days per 214 subject required. Non-wear time was filtered as a period of \geq 120min of consecutive 215 zero counts, allowing for up to two consecutive, one-minute interruptions (count 216 values between 1-99 cpm) per non-wear period (Winkler et al., 2012). A cut-point 217 of ≤ 150 cpm from the vector magnitude was used to define sedentary time. Recent

218 studies have indicated that different cut-points should be used for the vertical axis 219 and vector magnitude (Sasaki, John & Freedson, 2011) and a cut-point of \leq 150 cpm 220 provides the highest accuracy (area under curve) for determining sedentary 221 behavior in adults (Aguilar-Farías, Brown, & Peeters, 2013). Prolonged sedentary 222 bouts were defined as a period of ≥ 60 min of consecutive counts between 1 and 150 223 cpm. For this study, "activity breaks" were operationalized as consisting of at least 2 224 minutes of light body movement while standing, stretching, or taking short walks 225 around the office. This type of movement for two minutes or more would record 226 accelerometer counts above 150 cpm and reset any cumulative prolonged sedentary 227 time occurring. Sedentary outcomes were converted to percentage of workday to 228 standardize for different work schedules and accelerometer wear time.

229

230 Correlates

231 Hypothesized correlates were assessed using six validated scales that were 232 modified for use in this study. Perceived social support for active breaks was 233 measured with the widely used 12-item Social Support and Exercise Scale (Sallis, 234 Grossman, Pinski, Patterson, & Nader, 1987). The scale was modified to measure 235 perceived social support of co-workers instead of friends and loved ones. Self-236 efficacy for active breaks was determined with a modified 7-item scale designed to 237 assess confidence in overcoming common barriers to exercise such as negative 238 affect, excuse making, resistance from others, inconvenience and bad weather 239 (McAuley, Lox, & Duncan, 1993). Enjoyment for active breaks was measured using a 240 modified version of the short form-Physical Activity Enjoyment Scale (S-PACES) (Paxton et al., 2008). Employee outcome expectations for active breaks were 241 242 assessed using a modified version of the multidimensional outcome expectations for 243 exercise scale (MOEES) (Wojcicki, White, & McAuley, 2009). Perceived direct 244 supervisor support and perceived senior management support for active breaks 245 were measured using a worksite health and culture audit adapted for this study 246 from previously used instruments (Dishman, DeJoy, Wilson, & Vandenberg, 2009). 247 Details of the measures used to assess the individual, social and organizational

- 248 mediators are provided in Table 1, along with internal consistency coefficients
- 249 (Cronbach's alpha).
- 250
- 251
- 252
- 253 Table 1 Measures used to assess individual, social and organizational factors

Variable	Items used to	Scale/response	Mean	Internal
	assess variable	options	(SD)	reliability (α)
Individual				
factors				
Self-efficacy (7-	I believe that I	10 point: 1=not	5.3	0.83
item)	could take	very confident,	(3.3)	
	regular	10=confident		
	standing breaks			
	if work was			
0.4	very busy	E	2.0	0.01
Outcome	Breaks from	5 point:	2.8	0.91
expectancy (14-	sitting will	1=strongly	(1.1)	
itemj	ability to	agree, 5-strongly		
	nerform daily	disagree		
	activities	uisagi ee		
Eniovment (16-	When Lam	5 point:	2.2	0.92
item)	taking breaks	1=strongly	(0.98)	0.72
,	from sitting it	agree,	C J	
	feels good	5=strongly		
	C	disagree		
Social factors				
Co-worker social	My coworkers	5 point:	1.6	0.93
support (12-	recently took	1=strongly	(1.1)	
item)	breaks from	agree,		
	sitting with me	5=strongly		
		disagree		0.00
Direct	My direct	5 point:	3.4	0.93
supervisor	supervisor	1=strongly	(0.98)	
support (5-item)	support makes	agree,		
	to take breaks	disagroo		
	from sitting on	uisagi ee		
	a regular basis			
Oraanizational	a regular bubib			
factors				
-				

Senior management support (5-item)	Our senior management support makes it easy for me to take breaks from sitting on a regular basis	5 point: 1=strongly agree, 5=strongly disagree	3.6 (0.85)	0.89	

255

256

257 Statistical analyses

258 Prior to running any models, statistical tests were performed to identify 259 outliers, test for normality, and variance inflation factors were used to check for 260 multicollinearity. No serious multicollinearity problems existed in the independent 261 variables. Outliers were present in the main sedentary behavior outcome of 262 workday prolonged sedentary behavior (bouts >60min). In addition, the same 263 outcome of interest showed a non-normal distribution with significant negative 264 skewness and positive kurtosis present. As a result, prolonged sedentary behavior 265 was converted to a dichotomous variable. Creating a dichotomous outcome variable 266 made sense in the context of this study since the main focus was to determine 267 correlates of individuals that were more sedentary at work compared to their less 268 sedentary counterparts.

269 To obtain the dichotomous outcome variable, high and low sedentary groups 270 were created using the median of percent of workday spent in sedentary bouts of 271 greater than 60 minutes for the sample. Participants were divided into the two 272 categories based on whether they fell above or below the sample median of 70 273 percent of workday spent in sedentary time. Dichotomizing the population sample 274 around the median of 70 percent of workday spent in sedentary time is also in line 275 with previous studies which showed similar sedentary averages in similar 276 populations in occupational settings (Thorp et al., 2012).

Initial exploratory analyses included bivariate analyses of each independent
variable with the dichotomous prolonged sedentary outcome variable to determine
unadjusted odds ratios. Next, logistic-regression models were built and estimated in

280	several steps. The first block of variables included in the model were demographic
281	variables including age, BMI, and hospital site. The second step included addition of
282	predictor variables with entry criteria set at $P \le .30$. Final model selection was
283	based on comparison of Akaike Information Criterion (AIC).
284	
285	Results
286	Descriptive analyses
287	Participant characteristics and sedentary behavior variables are listed in Table 2.
288	Approximately 97% of the overall sample was female with an average age of 49.2
289	years and BMI of 29.1. Compared to the less sedentary group, individuals that spent
290	over 70% of their workday in prolonged bouts (>60min) of sedentary behavior
291	spent a lower percent of their workday in light activity (12.8% vs 22.5%). Age and
292	BMI were not significantly different between the two sedentary groups.
293	
294	
295	
296	
297	
298	
299	Table 2 – Initial baseline and demographic information
	Percent of Workday Spent in Prolonged Sedentary Bouts

10	referred workday spent in Froinged Sedentary Bouts			
	(bouts >60min)			
	Over 70% of Workday	Under 70% of Workday		
	n=33	n=32		
Variables	Mean (SD)	Mean (SD)		
Age	49.1 (10.1)	49.4 (8.0)		
BMI	28.5 (6.6)	29.9 (5.6)		
% of workday sedentary	84.0 (3.6)	72.8 (5.5)		
activity				

% of workday light activity	12.8 (3.1)	22.5 (5.2)		
% of workday moderate-	3.5 (2.2)	4.6 (2.5)		
vigorous activity				
Sedentary (<1.5 METs); Ligh	nt (1.5-2.9 METs); Modera	te-vigorous (≥ 3.0 METs)		
Unadjusted relationships				
Bivariate analyses resulted in higher reported scores on enjoyment of breaks				
from sedentary behavior as the only statistically significant variable associated with				
lower prolonged sedentary behavior (Table 3). Outcome expectancy, perceived				
direct manager support and perceived senior manager support were related but not				
statistically significantly ass	ociated with prolonged se	edentary behavior.		
Table 3 – Unadjusted odds r	atios between lower sede	ntary behavior and		
independent variables				
Variable	Odds ratio	95% CI		
Age	1.0	0.95, 1.06		
BMI	1.03	0.95, 1.12		
Enjoyment	3.62	1.15, 11.36		

Variable	Odds ratio	95% CI
Age	1.0	0.95, 1.06
BMI	1.03	0.95, 1.12
Enjoyment	3.62	1.15, 11.36
Self-efficacy	0.99	0.97, 1.02
Outcome expectancy	1.43	0.57, 3.64

Perceived social support	0.81	0.38, 1.7
Perceived direct manager	1.30	0.68, 2.48
support		
Perceived senior manager	0.64	0.27, 1.50
support		

320 321 322 323 324 325 326 **Final Model** 327 Final model selection, as further described earlier, was based on comparison 328 of Akaike Information Criterion (AIC). The final multivariate logistic regression 329 model included active break enjoyment, perceived direct supervisor support of 330 active breaks and perceived senior manager support of active breaks as significant 331 correlates of prolonged sedentary bouts (Table 4). Higher levels of enjoyment of 332 breaks from sedentary behavior, and higher perceived direct supervisor support of 333 active breaks were associated with lower levels of percent of workday spent in 334 prolonged sedentary bouts. Conversely, lower levels of perceived senior manager 335 support were associated with lower levels of percent of workday spent in prolonged 336 sedentary bouts. The final model was adjusted for hospital site. 337

338 Table 4 – Final adjusted multivariate logistic regression model between lower

339 sedentary behavior and independent variables

Variable	Odds ratio	95% CI	
Enjoyment	5.2	1.4, 19.2	(p=.01)
Perceived direct	2.8	1.1, 7.1	(p=.03)
supervisor support			

manager support

*adjusted for hospital site

340	
341	
342	Discussion
343	In the current study, employees spent approximately 80% of their workday
344	in sedentary time, comparable to rates found in larger cross-sectional studies (Parry
345	& Straker, 2013). Enjoyment of breaks from sedentary behavior was the strongest
346	correlate in all of the partial and full models. The role of enjoyment in predicting
347	physical activity behavior has been well established (Salmon, Owen, Crawford,
348	Bauman, & Sallis, 2003), and the results of this study suggest that enjoyment of
349	active breaks from sedentary behavior has a similarly important role in lower levels
350	of prolonged sedentary behavior. Research from physical activity interventions
351	indicate that teaching or offering multiple forms of exercise types and modalities
352	lead to the highest adoption and adherence rates (Lewis, Napolitano, Buman,
353	Williams, & Nigg, 2017). This study supports these findings for occupational
354	sedentary behavior and suggests that individuals that find enjoyable activities which
355	they can perform in the office space may be more likely to take active breaks.
356	Having a variety of portable equipment such as therapy bands, exercise balls, or
357	simple walking routes around the office may prove to be an important strategy for
358	increasing active breaks in the workplace.
359	The negative relationship between perceived senior management support
360	and prolonged sedentary behavior (OR=0.29) was contrary to our hypothesized
361	relationship. The results suggest that those with low perceived senior management
362	support are less sedentary. The reason for this relationship is unknown but may
363	indicate that enjoyment and perceived direct supervisor support are more

364 important variables in predicting sedentary behavior, even in the presence of 365 perceived low senior management support. Large organizations such as hospitals 366 often include multiple levels of senior management. Employees may interpret 367 "senior management" to apply to different individuals even in the same hospital 368 which may further complicate the interpretation of these results. More clear and 369 specific measures that indicate specific levels of senior management and policy 370 structures is needed to investigate these findings further. Most likely, in large 371 organizations with complex departmental structuring, perceived supervisor support 372 from a direct, or immediate, supervisor may be a more important factor in 373 facilitating behavior changes. The final model supports the potential importance of 374 direct supervisor support of active breaks and lower levels of prolonged sedentary 375 behavior (OR=2.8). Since direct supervisors have more interaction with employees 376 on a daily basis, the support, positive feedback, and social support they provide may 377 be a more salient and meaningful determinant of whether employees take active 378 breaks. This is supported by previous research that showed positive associations 379 between direct supervisor support and occupational light physical activity in 380 employees (Dishman et al., 2009). The results suggest that even in an unsupportive 381 organizational climate (e.g., lack of organizational policy on supporting active 382 breaks), direct supervisor support may still be effective in promoting active breaks. 383 Further research is needed to understand the role and influence that multiple levels 384 of administrators have in workplace sedentary behavior.

385 Employee health at the workplace, particularly in large organizations, may 386 have complex interactions and determinants. Perhaps occupational public health 387 research could improve our understanding of occupational sedentary behavior by 388 using frameworks and models from the fields of performance management and 389 organizational behavior management. Behavioral systems analysis (Hayes, 390 Dubuque, Frving, & Pritchard, 2009: Diener, McGee, & Miguel, 2009: Brethower, 391 2000) and the Behavioral Engineering Model (Gilberts, 1978) may prove to be 392 appropriate models to narrow down our more broad public health frameworks such 393 as the socio-ecological model.

394 Behavioral Engineering Model (BEM) has traditionally been utilized in the 395 performance technology field and provides a systematic and systemic way to 396 identify person-related and environment-related barriers to individual performance 397 and behavior (Gilberts, 1978). While previous research on sedentary behavior has 398 yet to use the BEM, the model may provide an important perspective in which to 399 understand the conditions of sedentary behavior. The six conditions of behavior in 400 the BEM include data, instruments and incentives (i.e., supervisor and manager 401 support) at the environment level and knowledge (i.e., self-efficacy), capacity and 402 motives (i.e., outcome expectancy, enjoyment) at the individual level. The results of 403 this study suggest that the BEM might be useful in identifying barriers to movement 404 that increase occupational sedentary behavior. In addition, behavioral systems 405 analysis (BSA) may provide further understanding of occupational sedentary 406 behavior and the factors leading to productive performance as well as identifying 407 process and system changes necessary for improved performance (McGee & Diener, 408 2010; Diener et al., 2009; Redmon & Wilk, 1991). Further research should consider 409 using the BEM and incorporating BSA in order to further our understanding of the 410 complex organizational factors that influence sedentary behavior at the workplace. 411

412 The results of the present study suggest that active break outcome 413 expectancy, active break self-efficacy, and perceived social support for taking active 414 breaks were not significantly associated with prolonged sedentary behavior in the 415 study participants. The relatively small sample size may have contributed to the 416 lack of significant findings for those variables. Additionally, the measures used to 417 assess these variables were adapted from previously used instruments used in 418 physical activity research. While the measures did show strong internal consistency 419 in this study, whether these measures are appropriate to use when assessing 420 behavior related to taking short active breaks is unknown. Alternatively, self-421 efficacy and perceived social support for taking active breaks may not be important 422 in the context of taking short active breaks at the workplace like as they have been 423 shown to be in planned MVPA (Koeneman et al., 2011).

424 Direct supervisor support, senior manager support, and enjoyment all 425 provide realistic modifiable targets for programs and interventions aimed at 426 reducing sedentary behavior at the workplace. Indeed, our knowledge of physical 427 activity interventions suggests that the most effective interventions target multiple 428 levels within the socio-ecological model (Marshall & Ramirez, 2011). Previous 429 research has shown that sit-stand desks (Dutta, Koepp, Stovitz, Levine, & Pereira, 430 2014)) and point-of-choice prompts (Parry, Straker, Gilson, & Smith, 2013) may 431 decrease sedentary behavior in office workers, however, the social environment has 432 not been specifically investigated in the occupational sedentary behavior domain. In 433 a public health policy context, this includes the need to decrease sedentary behavior 434 not only through changes in individual-level variables but also through 435 environmental and organizational influences (Salmon et al., 2003). From these 436 findings, interventions could target multiple levels of influence to reduce sedentary 437 behavior in desk-dependent office workers. First, direct supervisors frequently 438 reminding employees of the importance of active breaks would provide a more 439 salient support of employees taking short active breaks. Secondly, providing 440 employees with multiple options of portable exercise equipment and walking routes around the office may improve enjoyment and self-efficacy of active breaks. In 441 442 addition, the oversight of an employee wellness committee would help ensure that 443 departmental managers and supervisors are adhering to organizational health 444 policies and providing adequate resources and support for taking active breaks. 445 Interventions aimed at enjoyment of active breaks (personal) and increasing direct 446 manager support (interpersonal) and organizational climate (organizational) may 447 have the greatest impact on changing sedentary behavior.

This study provides new insights into the correlates of sedentary behavior in
office-workers, however, several limitations exist. A larger sample size could
provide a stronger statistical analysis of the correlates. The choice of using 70% as
the cut-off for percent of day spent sedentary could be further supported by
additional research on specific thresholds of sedentary behavior related to negative
health outcomes. Lastly, with the sample consisting of predominantly white,

454	middle-aged females, future studies should look at other populations to investigate
455	generalizability.
456	
457	
458	
459	Conclusions
460	The results of this study indicate that direct manager support and enjoyment
461	of active breaks may be important determinants for breaking up prolonged
462	sedentary behavior in the workplace. Future interventions should aim to improve
463	direct manager support of active breaks, provide resources and equipment to
464	increase the enjoyment of active breaks and develop widespread organizational
465	policies supporting active breaks at the workplace. In addition, more studies within
466	the behavioral epidemiological framework of sedentary behavior are needed to
467	better understand both determinants of sedentary behavior and effective
468	interventions to reduce sedentary behavior.
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	
482	
483	
484	

485	
486	
487	
488	
489	
490	
491 492 493	Conflict of Interest Statement:
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509	On behalf of all authors, the corresponding author states that there is no conflict of interest.
510 511	References
512	
513	Aguilar-Farías, N., Brown, W. J., & Peeters, G. M. E. E. G. (2013). ActiGraph GT3X+ cut-
514	points for identifying sedentary behaviour in older adults in free-living
515	environments. Journal of Science and Medicine in Sport / Sports Medicine
516	Australia. doi:10.1016/j.jsams.2013.07.002
517	Bandura, A. (2001). Social cognitive theory: an agentic perspective. Annual Review of
518	<i>Psychology</i> , <i>52</i> , 1–26. doi:10.1146/annurev.psych.52.1.1
519	Bauman, A., Ainsworth, B. E., Sallis, J. F., Hagströmer, M., Craig, C. L., Bull, F. C.,

- 520 Sjöström, M. (2011). The Descriptive Epidemiology of Sitting: A 20-Country
- 521 Comparison Using the International Physical Activity Questionnaire (IPAQ).
- 522 *American Journal of Preventive Medicine*, 41(2), 228–235.
- 523 doi:10.1016/j.amepre.2011.05.003
- 524 Bauman, A. E., Reis, R. S., Sallis, J. F., Wells, J. C., Loos, R. J., & Martin, B. W. (2012).
- 525 Correlates of physical activity: why are some people physically active and 526 others not? *The Lancet*, *380*(9838), 258–271.
- 527 https://doi.org/10.1016/S0140-6736(12)60735-1
- 528 Bennie, J. A., Timperio, A. F., Crawford, D. A., Dunstan, D. W., & Salmon, J. L. (2011).
- 529 Associations between social ecological factors and self-reported short
- 530 physical activity breaks during work hours among desk-based employees.
- 531 *Preventive Medicine*, *53*(1-2), 44–47. doi:10.1016/j.ypmed.2011.05.015
- 532 Brethower, D.M. (2000). A systematic view of enterprise. Journal of Organizational
- 533 Behavioral Management, 20(3), 165-190. Doi:10.1300/j075v20n03_06
- 534 Celis-Morales, C. A., Perez-Bravo, F., Ibañez, L., Salas, C., Bailey, M. E. S., & Gill, J. M. R.
- 535 (2012). Objective vs. Self-Reported Physical Activity and Sedentary Time:
- 536 Effects of Measurement Method on Relationships with Risk Biomarkers. *PLoS*

537 *ONE*, *7*(5), e36345. doi:10.1371/journal.pone.0036345

- 538 Chastin, S. F. M., Fitzpatrick, N., Andrews, M., & DiCroce, N. (2014). Determinants of
- 539 Sedentary Behavior, Motivation, Barriers and Strategies to Reduce Sitting
- 540 Time in Older Women: A Qualitative Investigation. *International Journal of*
- 541 Environmental Research and Public Health, 11(1), 773–791.
- 542 doi:10.3390/ijerph110100773

543	Coenen, P., Gilson, N., Healy, G. N., Dunstan, D. W., & Straker, L. M. (2017). A
544	qualitative review of existing national and international occupational safety
545	and health policies relating to occupational sedentary behaviour. Applied
546	Ergonomics, 60, 320–333. https://doi.org/10.1016/j.apergo.2016.12.010
547	Deci, E. L., & Ryan, R. M. (2010). Self-Determination. In The Corsini Encyclopedia of
548	Psychology. John Wiley & Sons, Inc. Retrieved from
549	http://onlinelibrary.wiley.com.ezproxy.proxy.library.oregonstate.edu/doi/1
550	0.1002/9780470479216.corpsy0834/abstract
551	De Cocker, K., Duncan, M. J., Short, C., van Uffelen, J. G. Z., & Vandelanotte, C. (2014).
552	Understanding occupational sitting: prevalence, correlates and moderating
553	effects in Australian employees. Preventive Medicine, 67, 288–294.
554	https://doi.org/10.1016/j.ypmed.2014.07.031
555	Diener, L.H., McGee, H.M., & Miguel, C.F. (2009). An Integrated Approach for
556	Conducting a Behavioral Systems Analysis. Journal of Organizational
557	Behavioral Management, 29(2), 108-135. Doi: 10.1080/01608060902874534
558	Dishman, R. K., DeJoy, D. M., Wilson, M. G., & Vandenberg, R. J. (2009). Move to
559	Improve: a randomized workplace trial to increase physical activity.
560	American Journal of Preventive Medicine, 36(2), 133–141.
561	doi:10.1016/j.amepre.2008.09.038
562	Dutta, N., Koepp, G. A., Stovitz, S. D., Levine, J. A., & Pereira, M. A. (2014). Using sit-
563	stand workstations to decrease sedentary time in office workers: a
564	randomized crossover trial. International Journal of Environmental Research

565 and Public Health, 11(7), 6653–6665. 566 https://doi.org/10.3390/ijerph110706653 567 Gilbert, T. F. (1978). Human competence—engineering worthy performance. NSPI 568 Journal, 17(9), 19–27. https://doi.org/10.1002/pfi.4180170915 569 Glanz, K. Rimer B.K., (1995). Theory at a Glance: A Guide to Health Promotion 570 Practice. Bethesda MD: National Cancer Institute. 2nd edition 2005. 571 Hayes, L. J., Dubuque, E. M., Fryling, M. J., & Pritchard, J. K. (2009). A Behavioral 572 Systems Analysis of Behavior Analysis as a Scientific System. *Journal of* 573 Organizational Behavior Management, 29(3-4), 315–332. 574 https://doi.org/10.1080/01608060903092169 575 Healy, G. N., Eakin, E. G., Lamontagne, A. D., Owen, N., Winkler, E. A. H., Wiesner, G., ... 576 Dunstan, D. W. (2013). Reducing sitting time in office workers: short-term 577 efficacy of a multicomponent intervention. *Preventive Medicine*, 57(1), 43–48. 578 doi:10.1016/j.ypmed.2013.04.004 579 Katzmarzyk, P. T., Church, T. S., Craig, C. L., & Bouchard, C. (2009). Sitting time and 580 mortality from all causes, cardiovascular disease, and cancer. Medicine and 581 *Science in Sports and Exercise*, 41(5), 998–1005. 582 doi:10.1249/MSS.0b013e3181930355 583 Koeneman, M. A., Verheijden, M. W., Chinapaw, M. J. M., & Hopman-Rock, M. (2011). 584 Determinants of physical activity and exercise in healthy older adults: A 585 systematic review. International Journal of Behavioral Nutrition and Physical 586 Activity, 8(1), 142. doi:10.1186/1479-5868-8-142

587	Lewis, B. A., Napolitano, M. A., Buman, M. P., Williams, D. M., & Nigg, C. R. (2017).
588	Future directions in physical activity intervention research: expanding our
589	focus to sedentary behaviors, technology, and dissemination. Journal of
590	Behavioral Medicine, 40(1), 112–126. https://doi.org/10.1007/s10865-016-
591	9797-8
592	
593	Lowe, S. S., Danielson, B., Beaumont, C., Watanabe, S. M., Baracos, V. E., & Courneya,
594	K. S. (2014). Correlates of objectively measured sedentary behavior in cancer
595	patients with brain metastases: an application of the theory of planned
596	behavior. <i>Psycho-Oncology</i> , n/a–n/a. doi:10.1002/pon.3641
597	Marshall, S. J., & Ramirez, E. (2011). Reducing Sedentary Behavior A New Paradigm
598	in Physical Activity Promotion. American Journal of Lifestyle Medicine, 5(6),
599	518–530. doi:10.1177/1559827610395487
600	McAuley, E., Lox, C., & Duncan, T. E. (1993). Long-term Maintenance of Exercise, Self-
601	Efficacy, and Physiological Change in Older Adults. Journal of Gerontology,
602	48(4), P218–P224. doi:10.1093/geronj/48.4.P218
603	McGee, H. M., & Diener, L. H. (2010). Behavioral systems analysis in health and
604	human services. Behavior Modification, 34(5), 415–442.
605	https://doi.org/10.1177/0145445510383527
606	Owen, N., Leslie, E., Salmon, J., & Fotheringham, M. J. (2000). Environmental
607	determinants of physical activity and sedentary behavior. Exercise and Sport
608	Sciences Reviews, 28(4), 153–158.

609	Owen, N., Sparling, P. B., Healy, G. N., Dunstan, D. W., & Matthews, C. E. (2010).
610	Sedentary Behavior: Emerging Evidence for a New Health Risk. Mayo Clinic
611	Proceedings, 85(12), 1138–1141. doi:10.4065/mcp.2010.0444
612	Owen, N., Sugiyama, T., Eakin, E. E., Gardiner, P. A., Tremblay, M. S., & Sallis, J. F.
613	(2011). Adults' Sedentary Behavior: Determinants and Interventions.
614	American Journal of Preventive Medicine, 41(2), 189–196.
615	doi:10.1016/j.amepre.2011.05.013
616	Parry, S., & Straker, L. (2013). The contribution of office work to sedentary
617	behaviour associated risk. BMC Public Health, 13, 296. doi:10.1186/1471-
618	2458-13-296
619	Parry, S., Straker, L., Gilson, N. D., & Smith, A. J. (2013). Participatory workplace
620	interventions can reduce sedentary time for office workers-a randomised
621	controlled trial. <i>PloS One, 8</i> (11), e78957. doi:10.1371/journal.pone.0078957
622	Patel, A. V., Bernstein, L., Deka, A., Feigelson, H. S., Campbell, P. T., Gapstur, S. M.,
623	Thun, M. J. (2010). Leisure Time Spent Sitting in Relation to Total Mortality in
624	a Prospective Cohort of US Adults. American Journal of Epidemiology, 172(4),
625	419–429. doi:10.1093/aje/kwq155
626	Paxton, R. J., Nigg, C., Motl, R. W., Yamashita, M., Chung, R., Battista, J., & Chang, J.
627	(2008). Physical Activity Enjoyment Scale Short Form—Does It Fit for
628	Children? Research Quarterly for Exercise and Sport, 79(3), 423–427.
629	doi:10.1080/02701367.2008.10599508

- 630 Plotnikoff, R., & Karunamuni, N. (2012). Reducing Sitting Time: The New Workplace
- 631 Health Priority. Archives of Environmental & Occupational Health, 67(3), 125–
- 632 127. doi:10.1080/19338244.2012.697407
- 633 Redmon, W.K., & Wilk, L.A. (1991). Organizational behavioral analysis in the U.S.:
- 634 Public sector organizations. [Ch.6]
- 635 Sallis, J. F., Grossman, R. M., Pinski, R. B., Patterson, T. L., & Nader, P. R. (1987). The
- development of scales to measure social support for diet and exercise
 behaviors. *Preventive Medicine*, 16(6), 825–836.
- 638 Salmon, J., Owen, N., Crawford, D., Bauman, A., & Sallis, J. F. (2003). Physical activity
- and sedentary behavior: A population-based study of barriers, enjoyment,
- 640 and preference. *Health Psychology*, *22*(2), 178–188. doi:10.1037/0278-
- 641 6133.22.2.178
- 642 Sasaki, J. E., John, D., & Freedson, P. S. (2011). Validation and comparison of
- 643 ActiGraph activity monitors. *Journal of Science and Medicine in Sport*, 14(5),
- 644 411-416. doi:10.1016/j.jsams.2011.04.003
- 645 Schneider, B. (1985). Organizational Behavior. Annual Review of Psychology, 36(1),

646 573-611. doi:10.1146/annurev.ps.36.020185.003041

- 647 Tagiuri, R. (1968). *The concept of organizational climate*. Harvard University,
- 648 Division of Research, Graduate School of Business Administration.
- Thorp, A. A., Healy, G. N., Winkler, E., Clark, B. K., Gardiner, P. A., Owen, N., &
- Dunstan, D. W. (2012). Prolonged sedentary time and physical activity in
- 651 workplace and non-work contexts: a cross-sectional study of office, customer

652	service and call centre employees. The International Journal of Behavioral
653	Nutrition and Physical Activity, 9, 128. doi:10.1186/1479-5868-9-128
654	Uijtdewilligen, L., Nauta, J., Singh, A. S., van Mechelen, W., Twisk, J. W. R., van der
655	Horst, K., & Chinapaw, M. J. M. (2011). Determinants of physical activity and
656	sedentary behaviour in young people: a review and quality synthesis of
657	prospective studies. British Journal of Sports Medicine, 45(11), 896–905.
658	doi:10.1136/bjsports-2011-090197
659	Van der Ploeg HP, Chey T, Korda RJ, Banks E, & Bauman A. (2012). SItting time and
660	all-cause mortality risk in 222 497 australian adults. Archives of Internal
661	<i>Medicine</i> , 172(6), 494–500. doi:10.1001/archinternmed.2011.2174
662	Winkler, E. A. H., Gardiner, P. A., Clark, B. K., Matthews, C. E., Owen, N., & Healy, G. N.
663	(2012). Identifying sedentary time using automated estimates of
664	accelerometer wear time. British Journal of Sports Medicine, 46(6), 436–442.
665	doi:10.1136/bjsm.2010.079699
666	Wojcicki, T. R., White, S. M., & McAuley, E. (2009). Assessing Outcome Expectations
667	in Older Adults: The Multidimensional Outcome Expectations for Exercise
668	Scale. The Journals of Gerontology Series B: Psychological Sciences and Social
669	Sciences, 64B(1), 33–40. doi:10.1093/geronb