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The elastic properties and the phonon frequencies at the Brillouin zone centre have been investigated for the cubic 
cuprous oxide. The calculations under the framework of density functional theory have been carried out by deploying the 
periodic linear combination of atomic orbitals method. After settling the crystal structure the elastic constants have been 
determined. The absolute values of elastic constants are well in agreement with the experimental reports. The vibrational 
frequencies at the centre of the Brillouin zone are classified as the Raman and Infrared active modes and compared with the 
available experimental data. The contribution of vibrational modes to the Gibbs free energy, entropy and heat capacity has 
also been found.  

Keywords: LCAO method, Elastic properties, Vibration frequencies, Cuprous oxide 

1 Introduction 
The quantum mechanical studies using state of art 

first-principles methods enable to design and tune 
properties of materials. Especially the consistency and 
order of accuracy in calculations have evolved 
immensely in last few years which are mandatory for 
the elastic and vibrational properties. Cuprous oxide 
has received considerable attention because copper is 
very important in technological applications and 
readily available1. This is one of the oldest and very 
important semiconductor but its elastic, thermal and 
vibration properties are less well understood2,3. Elastic 
properties can give information in terms of acoustic 
behavior and a detailed picture of the chemical 
bonding. Earlier experimental studies of elastic 
properties revealed unusual temperature dependence4. 
A discrepancy in the compressibility is found and 
crystal instability, impending phase transformation at 
higher pressure are suggested5,6. The lattice dynamics 
of Cu2O has been studied experimentally by  
infrared (IR) and Raman spectroscopy, excitation 
luminescence, and inelastic neutron scattering7-10. On 
the theoretical side, first-principles calculations are 
reported11. Some discrepancies in the phonon bands 
are also pointed out by Linnera and Karttunen12. 
These studies helped to gain understanding of the 
nature of the electron-phonon interaction. Moreover, 
information about the spin−phonon interaction is also 
discussed13,14. The vibrational properties of solids are 

directly associated with the phonon dispersion which 
is very insightful in understanding the phase 
transition. In this work, we study elastic constants and 
give the phonon dispersion within the framework of 
density functional theory (DFT). For this, we have 
applied the periodic linear combination of atomic 
orbitals (LCAO) method embodied in the 
CRYSTAL14 package15.  
 

2 Crystal Structure and Computational Method 
The space group of cubic cuprous oxide is Pn3m. 

The unit cell of cuprous oxide consists of two formula 
units. The BCC sublattice is formed by two oxygen 
atoms and each oxygen atom is surrounded by a 
tetrahedron of copper atoms whereas an FCC 
sublattice is formed by copper atoms which are 
linearly coordinated with two oxygen atoms. In the 
pressure range 10-12 GPa, the experimental and 
theoretical studies show that, the cubic cuprite phase 
transforms into the hexagonal CdI2-like phase16-19.  

The first-principles periodic LCAO method is 
applied. The salient features can be found in our 
earlier work15,20. The Gaussian basis sets proposed for 
Cu and O are directly taken21,22. The Perdew-Burke-
Ernzerhof (PBE) ansatz based on the generalized 
gradient approximation (GGA) is applied to treat the 
exchange and correlation (XC) part of the Kohn-Sham 
Hamiltonian 23. The Monkhorst and Pack24 net  
of 16×16×16 is taken for the self - consistent 
calculations. The structure is optimized with an 
iterative method based on the total energy gradients 
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calculated analytically with respect to the nuclear 
coordinates and numerically with respect to the lattice 
constants. For exact treatment of the Coulomb and 
exchange terms of the total energy operator, 
computation of integrals over an infinite series is 
mandatory. To achieve it in practice, each infinite 
series needs to be truncated beyond preset threshold 
(T) values. These values ensure that beyond cutoff 
limits (10-T) the contribution to the total sum is 
neglected. In current calculations, five tolerances of 
the order of 10-7, 10-7, 10-7, 10-7 and 10-12 were set to 
truncate Coulomb and exchange sum. The SCF 
process is stopped when two successive cycles differ 
in energy by less than 10-8 Hartree in geometry 
optimization and 10-12 Hartree in force calculations. 
The convergence is checked from the root-mean-
square and absolute value of the largest component of 
the gradients and displacements. The thresholds  
(in a u) for the maximum and the root-mean-square 
forces were set to 4.5×10-4 and 3.0×10-4 and for 
displacements the thresholds were 1.8×10-3, 1.2×10-4, 
respectively. The complete optimization was ensured 
when the four conditions are simultaneously satisfied 
for the fractional coordinates and cell parameters.  
The elastic constants and strain dependence are 
determined by applying the Hellmann Feynman 
forces within 0.01𝑒𝑉 �̊�⁄  and the maximum stress with 
0.02 GPa15,25.  

As for crystals with cubic symmetry, the 21 
independent elements of the elastic tensor Cij reduce 
to 3, (i.e., C11, C12, and C44). An automated scheme 
for the calculation of C is used25. Using elastic 
constants a few mechanical constants can also be 
computed using the suitable formulae26. 

By diagonalising the mass weighted Hessian 
matrix, the phonon vibration frequencies at the centre 
of Brillouin zone (BZ) are calculated within the 
harmonic approximation25-28. For each k- point in the 

Brillouin zone, the mass weighted Hessian matrix can 
be written as: 
 

𝑊 𝑘 ∑ 𝑒𝑥𝑝 𝑖𝑘. 𝐺  ·… (1) 

 

where, 𝐺 represents the reciprocal lattice vectors 

and 𝐻  is the second derivative of V(x) at equilibrium 

with respect to displacement coordinates. In harmonic 
approximation V(x) takes the form: 
 

𝑉 0 ⟨𝑢|𝐻|𝑢⟩  ·… (2) 
 

where, |𝑢⟩ represents the displacement of ith  
Cartesian coordinate and H is the Hessian matrix.  
At the centre of Brillouin zone [Γ = (0, 0, 0)] above 
equation reduces to:  
 

𝑊 0 ∑ . ··… (3) 

 
Frequencies at the centre of Brillouin zone are 
evaluated using set of SCF calculations of the unit cell 
which are performed at the equilibrium geometry and 
improving each of the 3N nuclear coordinates in turn 
by u. These calculations are implemented deploying 
the crystalline-orbital program package CRYSTAL1415.  
 
3 Results and Discussion 
 
3.1 Elastic properties 

The mechanical properties of a material are closely 
related to the elastic constants. The mechanical 
constants are deduced from the elastic constants Cij 
following the formulation of Wu et al.26 Three elastic 
constants, bulk modulus (B), shear modulus (G) and 
Poisson’s ratio (σ) are listed in Table 1. The C12 and 
C44 show maximum deviation with the experiments. 
The bulk modulus calculated by us is slightly higher 

Table 1 – Comparison elastic constants and bulk properties of Cu2O. All quantities are in GPa except sigma and (B/G), which are 
dimensionless. The experimental data are taken from the inelastic neutron scattering (INS) and ultrasonic measurement (UM).  

The planewave pseudopotential (PW-PP) calculations are performed using CASTEP. 

Properties This work Experiment Theoretical 

 INS [34] UM [5] PW-PP [34] VASP [35] 
C11 125.78 116 121 127.46 127.2 
C12 135.19 105  105 107.07 105.4 
C44 17.32 11  10.9 9.21 6.3 
B 132.05 112  105.7 113.87 112.7 
G 8.43 -  10.3 9.59 - 

𝜎 0.469 - 0.454 0.459 - 

B/G 15.65 -   11.87 - 
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whereas the shear modulus is slightly smaller than the 
other two predicted values. All constant are overall in 
good agreement with the experimental values as well 
as other theoretical values. While studying the elastic 
properties of a substance, the role of ductility and 
brittleness becomes important. Ductile materials can 
be easily pressed into desirable shapes and are more 
resistant to catastrophic failure whereas brittle 
materials are susceptible to sudden failure under 
critical mechanical stress conditions. There is no 
standalone criterion to measure ductility or brittleness 
of a material purely on the basis of elastic constants 29. 
Nevertheless, the B/G ratio can reasonably predict 
such behavior30. A high B/G ratio is associated with 
ductility and the low value indicates brittleness. The 
critical value 1.75 separates ductile and brittle nature. 
The high value of B/G by all calculations shows the 
ductile nature of Cu2O.  

Using elastic constants the compressional (Vt), 
shear (Vl) and the mean wave velocity (Vm) in crystals 
can be calculated. The values of these quantities for 
Cu2O are 4.487, 1.665 and 1.89 km/s respectively. 
The corresponding experimental values reported by 
Manghnani et al.6 are 4.493, 1.418 and 1.485 km/s. 
The compressional wave velocity agrees very well 
with the experiment whereas, some deviation can be 
seen in the shear velocity. It may probably be due to 
the fact that calculations are done at 0 K while the 
measurements are at ~300 K. Fine et al. have given  
an empirical relation to calculate melting point  
(in Kelvin) of a crystal from elastic constant using the 
relation31,32:  
 

Tm = 553 + 5.91 C11 300 ··… (4) 
 

where, C11 is in GPa and 300 is the standard error 
with 68 % confidence level. It gives that the melting 
point of Cu2O is 1296.3 K. The experimental value of 
C11 is 1508 K33. The deviation, well within the 
suggested error, implies a good agreement.  

We note that the three born stability criteria of 
cubic phase viz C11 > 0, C44 > 0 and (C11 + 2C12) > 0 
are well satisfied26. However, the criterion (C11-C12) > 
0 is missed by 9 GPa. The low values of C44 and C/ = 
(C11 - C12)/2 emphasize weakness of the crystal to 
resist shear. This marginal instability is also 
mentioned by Kun et al.36 Moreover, the temperature 
dependent studies of C/ and C44 have also pointed out 
instability5 in Cu2O. Further, anomalous behavior in 
the pressure dependent elastic constants is found and 
instability in the crystal structure is suggested6. Some 

of the workers have ascribed it to the specific 
characteristic of the Cu-Cu metallic bond in Cu2O

37,38. 
The cations are close packed and suggest the metal–
metal bonding. Such a behavior despite the usual nd10 
configurations has been explained in terms of the 
participation of the higher s and p orbitals in bonding 
accompanied by the creation of d–orbitals holes  
on the metal atoms theoretically as well as 
experimentally37,39,40. Further, calculation of elastic 
constants requires very precise total energy 
calculations. The basis sets of the constituent atoms 
affect the total energy of the crystal. The basis sets 
used by us are slightly different from the TZVT basis 
sets describe by Linnera and Karttunen12. This may 
also be a reason for the residual difference. 
 
3.2 Zone centre phonon frequencies and thermodynamic 
functions 

On the basis of group theoretical symmetry 
analysis the vibration phonon modes can be classified 
in the irreducible Brillouin zone representations.  
The classification enables comparison with the  
Raman, infrared, and inelastic neutron scattering 
measurements. The symmetry decomposition of 
phonon branches at the Γ- point is:  
 

Г = 3F2g  Bu  2Eu  6F1u  3F2u ·… (5)  
 

Excluding the three translational acoustic modes 
belonging to the F1u representation, there are three 
Raman active (3F2g) modes vibrating at 548.76 cm-1. 
Out of the six IR active (6F1u) optic modes, three 
vibrate at 123.7 and other three at 662.27 cm-1. One 
Bu, two Eu and three F2u modes are both Raman and 
IR inactive originating from the Cu atoms. All these 
modes and corresponding frequencies at the Γ- point 
are listed in Table 2. Our results agree with the 
experiment better than that of Mittal et al. and 
Sanson8,41. However, low frequency modes show 
some deviation with the experimental results. Our 
results are nearly equal to the PBE calculations of 
Linnera and Karttunen12. The agreement improves for 
the high frequency modes. It is worth noticing that the 
PBE and PBE0 calculations mentioned in the Table 2 
are also done using LCAO method used in the current 
work. The results from PBE0 are closest to the 
experiment. The high frequency modes from current 
calculations and the PBE0 show nearly identical 
deviation from the experiment. The two calculations 
differ in one way. The basis sets of the Cu and O are 
different in the two calculations. The TZVT basis sets 
are undertaken by Linnera and Karttunen. These are 
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all-electron, triple-ζ –valence Gaussian-type basis sets 
optimized at the polarization level. It affects the total 
energy of the crystal and the dynamical matrix 
elements. The polarized basis sets affect the  
dipole moment on the atoms and hence the  
vibration frequencies. All these factors give rise  
to the difference in the calculated frequencies. In view 
of this current results are overall in agreement with 
other data.  

One can split the frequency spectrum of the 
vibration modes in two parts. One spans from 0 to  
365 cm-1 and other from 549 to 662 cm-1. There is a 
gap of 284 cm-1 between the two parts. Such a gap has 
also been reported by other workers42,43. It is also 
mentioned that the optical modes of oxygen constitute 
the high-frequency states while the acoustic modes 
and optical modes associated with Cu constitute the 
low-frequency states. 

The vibrational frequencies contribute to the total 
energy of the crystal and a few thermodynamic 
quantities like Gibbs free energy, entropy etc. can be 
calculated. Consequently, it is also possible to find 
entropy. To get enthalpy the PV contribution is added. 
The vibrational partition function enables to find its 
contribution to the free energy as:  
 

Fvib(T) = kBT∑ 𝑙𝑛 2𝑠𝑖𝑛ℎ
ℏ

  … (6) 
 

where, qλ designates a vibration mode. Values of 
these functions at the 298.15 K and 1.013 kPa are 
given in Table 3. In the Einstein model, the free 
energy is calculated taking the vibrational modes 
contribution only at the Γ-point. Calculations have 
shown that the Einstein model introduces errors of  
20 % and hence not a good approximation to study 
thermal expansion42 in Cu2O. We have included the 
phonon frequencies at a few other symmetry points 
and so the free energy is lower than that reported by 
other workers. The heat capacity 56.36 J/(mol.K) is 
very near to the experimental data46. 

Table 3 – A few thermodynamic functions of Cu2O. 

S (meV/(cell.K)) Fvib (meV/cell) Fvib+pV-TS (eV/cell) 

1.899 242.10 -323.91 

 
4 Conclusions 

In this paper, we have applied the periodic LCAO 
method to study elastic properties and the phonon 
frequencies at the Γ-point of the Brillouin zone of the 
cubic cuprous oxide. The absolute values of most of 
the elastic constants are well in agreement with other 
results. The instability features proposed by earlier 
workers are also seen in current calculations.  
The residual difference may probably be reduced by 
taking improved basis sets of the constituent atoms  
at the polarization level. We have reported the 
vibrational frequencies at the centre of the Brillouin 
zone with classifications as the Raman and Infrared 
active modes. These are compared with the available 
experimental data and overall a good agreement is 
found. The contribution of vibrational modes to the 
Gibbs free energy, entropy and heat capacity is 
determined including the contribution of the vibration 
frequencies at other symmetry points. The results 
follow the general trend.  
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