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Abstract: The manufacturing industry is eager to implement the advancements of the fourth industrial revolution (Industry 
4.0) due to the magnitude of the benefits it can provide. Hence, Industry 4.0 opens a wide avenue for researchers to explore 
possibilities in the field of the supply chain. This project focuses on building a decision framework for a supply chain system 
with disruptions. The impact of strategic decisions under the condition of unprecedented events for a vehicle routing problem 
(VRP) using simulation models is studied here. Those results help the supply chain managers in making sound decisions 
regarding different scenarios of disruption in VRP. To achieve this, multiple cases under different scenarios of facility 
disruption are considered. For all cases, the dependent parameter, namely, retailer service level and lost revenue, form the basis 
of the decision framework. The concept of live data is implemented by making retailer demand, current inventory at the depot, 
the position of the vehicle in the network and the current number of units in transit as the input data.     
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1. Introduction 
 

The fourth industrial revolution (Industry 4.0) is setting a new way of doing business. Many industries have identified 
their scope and are fast moving forward with its implementation. Putting Industry 4.0 into practice is a herculean task; it requires 
everyone adding value to the business to participate in the process. Real-time information access (Kagermann et al., 2013), 
optimization of production process through real-time feedback (Heloand et.al, 2017), improved collaboration between various 
machines and production systems due to efficient information sharing (Shamsuzzoha et.al, 2016), optimal decision framework 
for operation managers (Lang et al., 2014) etc. are some of the benefits of the fourth industrial revolution. This requires an 
efficient information and product flow throughout the business, especially in the supply chain. Thus, the ability of the supply 
chain system to stand against any disruption that hampers the flow of information or product is crucial. Hence, proactive 
decisions are to be framed for such disruptive scenarios which can help improve the level of customer service. The paper 
focuses on developing a decision framework for a vehicle routing problem under conditions of disruptions using live/real-time 
data. 

The benefits of the fourth industrial revolution will not be complete if the movement of goods from and into the factory 
is not set to pace with the rapid change caused by the technology components. This leads to the revolution in the logistics 
sectors called Logistic 4.0. According to (Bukova et.al, 2018) a logistic system which integrates the necessary level of 
automation and learning capability into a digital platform to make informed decisions based on readily available data is termed 
as Logistic 4.0. Today, many organizations such as GE, Bosch, Rockwell automation, XPO, and UPS etc., have already started 
focusing on implementing IoT where information/data from different nodes (i.e. retailer, distributor, vehicle, supplier, and 
manufacturing plant) collected and stored under one cloud-based network called the Digital Connected Network (DCN). In a 
digitally connected supply chain system, nodes outside the factory walls such as a retailer, distributor, vehicle, supplier, and all 
workstations inside the factory walls, always stay informed about the events happening in each part of the network, which 
further translates into good decisions. The benefits of connected systems cascade down to the end user in the form of better 
service in terms of reduced lead-time, better after sale service, reduced cost, better quality products, etc. Also, the increased 
data transparency and readily available information between the players in the network helps weed out the traditional 
operational delays in a supply chain network. Unlike a reactive approach where decisions are taken post-disruption, the potential 
downtime is eliminated by proactive preventive measures in a DCN due to the availability of the right information at the right 
time. And the data thus readily available is called live/real-time data. 

When dealing with disruption, it is important to know the type of disruption that is being dealt with in a supply chain 
network. Disruption can be any event, which will disturb the normal operation of the network. This includes failures in logistic 
activities, sourcing activities, weather-related disruption, human resource related disruption, facility disruption, network 
disruption, etc. The paper focuses on developing a decision framework for a supply chain network whose system state changes 
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dynamically. Live/real-time data (representing the dynamic system state change) is used to develop a decision framework for 
a multi-echelon supply chain network using qualitative parameter (Service level) under complete disruption facility/node using 
simulation. The various backup options to counter the effect of disruption in a multi-echelon multi-depot supply chain network 
are evaluated based on the qualitative parameter (service level). When designing a decision framework for a supply chain 
network, a planner’s options for improving resilience depends on the type of network, risk preference, available financial 
resource, and other factors. The two decision parameters along with the knowledge on the available financial resources are 
used to frame quick and informed decisions. In addition, different cases were built to evaluate the multiple backup options 
using the decision parameter and available financial resources. The remainder of the paper is organized as follows: Section 2 
explains about the previous research in vehicle routing problems in disruptive cases, parameters used to frame decisions under 
both deterministic and stochastic cases. Section 3 discusses the methodology of the model. Implementation of three case study 
model is developed in section 4. Finally, the report concludes by discussing the results and future work of this paper in section 
5.  
 
 

2. Literature review 
 

2.1 State of art of Industry 4.0 
 

Internet of things (IoT): In simple terms, IoT refers to an internet network where physical entities are connected to 
and exchange data or information seamlessly. This emerging and already existing networking technology opens a wide scope 
for industrial applications in various sectors of industries such as healthcare, firefighting, mining, production, transportation 
sector, etc. Kranenburg (2007) gave a definition for IoT as global and ever-changing network infrastructure which can 
automatically configure according to interoperable communication protocols and standards and where both virtual and physical 
things have identities and attributes and use intelligent interface to transfer information to the network. For effective 
implementation of this network technology, Kranenburg (2011) describes, the foundation of IoT lies in the efficient integration 
of communication technologies with data coming from sensors and RFID tags.  

Cyber-Physical Systems (CPS): One of the most important information technology parts of IoT is a cyber-physical 
system (CPS). Ivanov et al. (2016) states the adaptability of the factory network achieved by CPS. Aydin et al. (2017) gave a 
simple definition of CPS for a manufacturing environment as a system, which integrates various physical systems say lathe, 
CNC, etc. with a digital computing device such as a computer. The computing device handles all the imputed data and takes 
decisions, and the physical system connected to the network acts accordingly. The adaptive capability of the CPS system that 
makes IoT applicable to most industrial application.  

Cloud computing: The cloud computing technology provides a provision for storing data retrieved from the physical 
entities. This makes the storage capability very convenient for the industrial scale of operations where millions of data handled 
every second. Yu (2017) describes the massive operational scale, monetary benefits, easiness, and reliability of data access 
from cloud data. 

Logistic 4.0: Bukova (2018) defines Logistic 4.0, as a logistic system which integrates the necessary level of 
automation and learning capability into a digital platform to make informed decisions based on readily available data. The 
author adds to the definition by mentioning the fine balance between the intelligent autonomous system and human inputs in 
taking fast proactive decisions. In such a scenario the biggest challenge for the logistics industry is to keep up with the rapid 
changes and stay proactive to counteract the unexpected scenarios that can disrupt their physical movement. The vision of 
industry 4.0 for optimizing the whole value chain cannot be envisioned unless the logistics sector is smart enough to deal with 
the fast pace flow of information and need for physical entities between the manufacturer and end customer. For that, the 
network technology must prove its authenticity for efficient data communication without any security issues. The next section 
provides appropriate decision frameworks for vehicle routing problems under disruptions.  
 
 
2.2. Vehicle Routing Problem (VRP) under facility disruption 
 

While framing decisions for supply chain network it is important to know the best sequence/route for transferring 
goods from point of origin to the destination. In addition, the parameters selected for framing decisions for a supply chain 
network under disruption is crucial. Hence, reviews prioritize on literature in VRP under disruptive scenarios. Various methods 
for framing decisions to solve VRP under disruption for both deterministic and stochastic cases looked into. The objective for 
this review was to identify parameters to frame decision for VRP under facility disruption. 

Hadjiconstantinou and Baldacci (1998), discussed the Vehicle routing problem in the context of a multi-depot system 
for improving service level at a lower cost. Kleindorfer (2004) provided a framework for the design of a supply chain 
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management system for the implication of a natural disaster. This paper discusses about using simulation software for making 
probabilistic, vulnerability assessment and decision analysis for finding out the risk assessment and mitigation strategies. Ratick 
(2008), used a set cover, anticover and complimentary anticover distance for locating facilities as supplementary in the case 
for long-term natural calamity, which affects the storage facility. The method ensures that demand be safely served in any case 
and the locations between storage facilities are chosen in such a way that no two facilities be affected by the same natural 
calamity. The importance of getting prepared for facing the unexpected had greatly benefitted companies to recoup at the 
shortest possible time and with a minimum cost of damage by taking proper decisions on how many backup storage facilities 
needed and where to locate these storage facilities. This points to the importance of data collection and analysis, which helps 
in predicting future events with a reasonable degree of accuracy. Hence, it is important to know the various methods and 
parameters, which help in framing good decision. 
 
 

3. Methodology 
 
To find how proactive decisions can help reduce the loss of revenue and better functioning of a supply chain network 

is studied in this paper. For this, a multi-echelon supply chain network model is developed using simulation. Readily available 
relevant data (live data), in the form of demand/storage/ vehicle position data, is used as the input to the simulation model for 
making informed decisions. Later, facility disruptions are introduced in the network. Different disruptions are introduced in the 
network as what if scenarios i.e. for any type of similar disruption happening in the network, decisions must be framed.  

Once disruptions or any unprecedented events occur in a multi-depot network, multiple options are available such as 
increasing the storage or delivery capacity or addition of a new vehicle or different distribution strategies, etc. For both non-
disruptive and disruptive cases, qualitative parameter lost revenue and available resources are used for framing informed 
decisions. The qualitative parameter in the form of service level (in terms of the proportion of demand satisfied) and lost 
revenue (calculated based on per unit cost and a number of units not delivered are used. In addition, an analysis based on the 
various disruption frequency is done on possible cases for both disruption and non-disruption scenarios to justify the decision.  
Figure 1 shows the schematic diagram of the multi-echelon supply chain network used for building the decision-making 
process. In each echelon, there are home and target nodes. A home node is the starting point and the target node is the destination 
point for a vehicle. During the simulation, when demand arrives each vehicle carries the required number of products from 
their respective home node and after fulfilling demand at the target node, the vehicle returns to the home node. At zero demand 
conditions, all vehicles remain at their respective home nodes. The following section provides model assumptions and 
formulations respectively. 

 

 
 

Figure 1. Schematic of the network diagram 
 
 

3.1 Model Assumptions 
 

1. The manufacturing plant has finite production capacity 
2. Depot has infinite storage capacity 
3. Retailer’s storage capacity is known 
4. Vehicle capacity can be modified 
5.  Single product is considered 
6. When disruption happens to the node or to the link, the service level drops to zero 
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3.2 Model Formulations 
Indices 

• T  Trip index, T = 0, 1…n where ‘n’ is the total number of completed trips by the associated vehicle from 
depot  

• t   Demand arrival time index, t = 0, 1, 2…∞ 
• a  Manufacturing plant index, a =1, 2 
• j   Depot index, j = 1, 2, 3, 4 
• i   Retailer index, i = 1, 2...9 

Parameters 
• BiT   backlog at retailer i for trip T 
• Oi   Overage at retailer i during trip T  

Decision Variables 
• Current Demand (CiTt) – is the demand when vehicle is about to leave for retailer ‘i’ at a given time ‘t’ for 

trip ‘T’ 
• Actual Demand (AiTt) – is the demand at retailer ‘i’ at time ‘t’ when vehicle reaches the retailer i for trip ‘T’ 
• Expected Demand (EiTt) - Expected demand value when the vehicle reaches retailer ‘i’ consisting of the 

expected number of order arrivals at time ‘t’  
 

EiTt= Bi(T-1) +CiTt+ XiT * yiT                 (1) 
• XiT  =Expected # of order arrivals per unit time at retailer ‘i’ during the trip ‘T’ 
•  yiT = Time taken by the vehicle to reach retailer ‘i’ if retailer ‘i’ is served first in trip ‘T’ 
 
Service level, 𝐒𝐒𝐒𝐒𝐢𝐢𝐓𝐓 = 𝐄𝐄𝐢𝐢𝐓𝐓𝐢𝐢

𝐀𝐀𝐢𝐢𝐓𝐓𝐢𝐢 
                 (2) 

 
Demand data from the retailer is monitored and the instantaneous demand from the retailer is defined as the current 

demand (CiTt), where ‘i’ is the retailer index, ‘T’ represents trip index and ‘t’ represents the instantaneous time at which retailer 
demand arrives. The expected demand value when the vehicle reaches retailer ‘i’ consisting of the expected number of order 
arrivals at time ‘t’ is given in Equation 1.  Service level is calculated by dividing the expected demand by the actual demand at 
retailer ‘i’ as shown in Equation 2. For demonstration purpose, we present the implementation and results by considering three 
case studies which are explained below.  

 
 

4. Implementation 
 
The case study explained in this section is based on the above mentioned VRP formulation and is formulated to 

replicate the actual supply chain network. By leveraging live data, proactive decision framework is build using parameters 
service level and lost revenue. Further subcases are built by introducing facility/path/both disruption in the network. Multiple 
options available to mitigate the effects of disruption in the network will be analyzed. The decision framework can act as a 
useful guide for managers to take an informed decision in case of an unprecedented event like facility or path disruption. Figure 
2 shows the schematic of the network design of an operational supply chain system. It is a three-echelon supply chain network 
with multiple manufacturing plant (M), depot (D) and retailer (R). Each M and D are associated with a Vehicle (V) to transfer 
product between the echelons. The study uses a simulation software tool Simio10 to develop the network. Real-time/ live data 
in the form of retailer demand data, retail stores remaining storage capacity and inventory level at the depot are used as input 
for the simulation model. Table 1 shows the case studies developed. In all cases, simulation run time (SRT) is 100 days.  
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 Figure 2. Schematic of the 3-echelon supply chain network under study  
 
 

Table 1. Case study models   
 

# of Case studies Disruptions 
Case 1 No Disruptions 
Case 2  With Disruptions (Retailers not served) 
Case 3  With disruptions (Retailers served) 

 
 

For the operational supply chain network discussed, the manufacturing plant has a maximum production capacity of 
1000 units/day. For every 10-hour production cycle, the production at M (home node) begins with the information on the 
remaining storage capacity value and product demand at the D (target node). Quantity produced during the 10-hour cycle is 
based on the aggregated values of the remaining storage capacity and product demand from the respective target nodes. In 
addition, every 10 hours finished products will be shipped from the manufacturing plant to the depots. After products are 
delivered to the retailer from the concerned depot, the service level of the network is measured. The service level is the average 
value of service level measured at the end of the simulation. Based on the above assumptions the following case study models 
are developed.  
 
 
4.1 Case study model 1: No disruption 
 

Figure 3 shows a completed operational network involving two manufacturing plants (M = 2), four depots (D = 4), 
and eight retailers (R=9). N, number of vehicles are associated with each M and D where N= 1. Each M serves two D’s and 
each D serve two R’s represented by the solid lines. The network is designed such that each manufacturing plant serves the 
demand of four or five retailers through two depots each. The manufacturing plant, M1 serves demand from the four retailers 
R1, R2, R3, and R4, through depots D1 and D2 whereas M2 serves retailers R5, R6, R7, R8 & R9 through D3 and D4. Table 
2 shows the associated vehicles with the home and target nodes and their respective delivery capacity.  

In simulation terms, manufacturing plant is the source object, which produces the product (P) associated with each 
manufacturing plants M1 and M2. All depots (D1, D2, D3, and D4) and retailers (R1, R2, R3, R4, R5, R6, R7, R8, and R9) 
defined using server object, which provides the service function for product storing and demand execution. Sink object (not 
shown in the figure) is defined to support simulation functionality of preventing product accumulation. 
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Figure 3. Network design with no disruption 

 
 

Table 2. Respective home and target node with vehicle capacity 
 

Home 
node 

Target 
node 

Associated 
vehicle 

Vehicle 
capacity 

M1 D1, D2 V1 400 
M2 D3, D4 V4 550 
D1 R1, R2 V2 100 
D2 R3, R4 V3 120 
D3 R5, R6 V5 150 
D4 R7, R8, R9 V6 200 

 
 

4.2 Case study model 2: With disruption (Retailers not served) 
 
Figure 4 shows the disrupted case of an operational network involving two manufacturing plants (M = 2), three depots 

(D = 3), nine retailers (R=9), and N= 1. Case2 represents the condition of the operational network immediately after the 
disruption and where no backup options are considered. In this case, two retailers (R3 & R4) are not served when D2 and V3 
are disrupted. Disruption defined here is a complete node disruption. Table 3 shows the respective home and target node with 
vehicle capacity for case 2. 
 

 
Figure 4. Network design with disruption 
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Table 3. Respective home and target node with vehicle capacity 
 

Home 
node 

Target 
node 

Associated 
vehicle 

Vehicle 
capacity 

M1 D1, D2 V1 400 
M2 D3, D4 V4 550 
D1 R1, R2 V3 100 
D3 R5, R6 V5 150 
D4 R7, R8, R9 V6 200 

 
 
4.3 Case study model 3: With disruption (Retailers served) 
 

Figure 5 shows the case of a disrupted operational network involving two manufacturing plants (M = 2), three depots 
(D = 3), and nine retailers (R=9) and, N= 1. Here both facility (D2) and vehicle (V3) are disrupted. Table 4 shows the respective 
home and target node with vehicle capacity for case 3. The case considers vehicle V2 to serve all the four retailers R1, R2 & 
R3 using the existing delivery capacity of 100 units from D1 & R4 from depot D4 using vehicle V6. In this case, the quantity 
carried by the vehicle (V3) is split equally among the retailers (R1, R2 & R3) while quantity carried by vehicle V6 is split 
equally between retailers (R7, R8, R9 & R4). The decision to choose D1 to serve R4 and D to serve R based on the information 
of the current inventory level of the depots and the keeping in mind the shortest distance policy. 

 

  
Figure 5. Network design with disruption, R3 &R4 served 

 
 

Table 4. Respective home and target node with vehicle capacity 
 

Home 
node 

Target 
node 

Associated 
vehicle 

Vehicle 
capacity 

M1 D1, D2 V1 400 
M2 D3, D4 V4 550 
D1 R1, R2, R3 V3 100 
D3 R5, R6 V5 150 
D4 R7, R8, R9 & R4 V6 200 
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4.4 Simulation results and discussion 
 

The simulation run time (SRT) considered for the study is 100 days. To account for the variability, the model accuracy 
is improved by iterating the model 50 times. Table 5 shows the average service level of the affected retailers after a disruption. 
Table 6 shows the total value of lost revenue for Case 1, Case 2, and Case 3 based on the number of units not delivered. Per 
unit cost of $10 is considered for the calculation of lost revenue.  

The study excludes costs such as transportation cost, production cost in manufacturing plant, holding cost at the depot, 
operating cost in manufacturing plant and in the depot, penalty cost for unsatisfied demand at the retailer, etc. Based on the 
values of service level, lost revenue and cost of available resources feasible decision are taken. The decision considers the 
duration of the disruption and the revenue lost based on the frequency of disruption or number of times similar disruption 
happens in the network. Whereas average service level value gives insight into the proportion of demand satisfied, which 
substantiates the decision taken.  
 

Table 5. Average service level for case 1, case 2, and case 3 
 

Retailer Average Service Level 
Case 1 Case 2 Case 3 

R1 .91 .91 0.63 
R2 .90 .90 0.57 
R3 .90 0 0.55 
R4 .89 0 0.41 
R7 .99 .99 0.42 
R8 .93 .93 0.61 
R9 .97 .97 0.60 

 
 

Table 6. Lost revenue in $ based on unsatisfied demand for case 1, case 2 and case 3 
 

 
 
4.5 Decision framework 
 

Based on the type of disruption (node, link or node, and link disruption), information on lost revenue, service level, 
and available resources (financial resources) a decision framework can be developed. The best investment decision can be 
taken based on available financial resources. Each of the decisions enumerated in the table will be evaluated using the service 
level value and lost revenue along with the cost of implementing the available resource. Table 7 shows the decision framework 
for complete node disruption. Table 8 shows the respective values of lost revenue against various disruption frequencies for 
disruption durations for 10 days. 

 
 

Table 7. Decision framework 
 

Type of Disruption Available Resources Decision 

Node disruption 

Cost of adding a trailer Trailer added 
Cost of new vehicle New vehicle or alternate depot 

Cost of building a new depot New depot 
Cost of expansion of depot Depot capacity increased 

 

Case 
Total 

Demand  
(Quantity) 

Satisfied demand  
(Quantity) 

Total 
Revenue ($) 

 

Lost 
Revenue ($) 

 
1 22366 21756 217560 6100 
2 22360 13790 137900 85700 
3 22363 17886 178860 44770 
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Table 8. Disruption duration of 10 days 

 
Disruption frequency Lost Revenue ($) Disruption frequency Lost Revenue ($) 

1 8570 6 51420 
2 17140 7 59990 
3 25710 8 68560 
4 34280 9 77130 
5 42850 10 85700 

 
 

5. Conclusion and Future work 
 

The paper aimed at identifying the extent to which technology that can be leveraged to help make a proactive decision 
in supply chain network under conditions of uncertainty. Here live retailer demand data, the position of a truck in the network, 
the instantaneous capacity of the depot, etc, are used as input to calculate and make informed decisions.  Based on the retailer’s 
current demand, the number of units carried by the vehicle from the depot is calculated using the available depot capacity as 
input by the manufacturer at the beginning of each 10-hour production shift. Service level for each retailer and total revenue 
lost for the non-disruptive, disruptive and disruptive case after implementing mitigation strategy is analyzed against the 
available resource and disruption frequencies. This can be used as an informative framework for taking a proactive decision 
for a supply chain manager. Also, some of the benefits of having data readily available reduce conditions of stock outs in a 
non-disruptive situation. It improves investment decisions with the availability of right data at the right time. Prototyping the 
network using simulation helps visualize real problems better. Threats are easily identified, and changes can be made relatively 
easier compared to the analytical model. Finally, since the simulation model is compatible with another platform it is easier to 
run the model by using other analytical tools as well.  In future work, it would be interesting to investigate machine learning 
algorithms for vehicle routing problem by which the model can intelligently make informed decisions under uncertain 
situations. Another interesting direction is to investigate other possible decisions to be made regarding the vehicle to serve 
more customer locations. A cost comparison can be done using the proposed model to see whether to increase the number of 
vehicles or to increase the individual vehicle capacity to serve all the customers with the minimum cost.  
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