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Abstract: In experiments on product lifetime and reliability testing, there are many practical situations in which researchers 
terminate the experiment and report the results before all items of the experiment fail because of time or cost consideration. 
The most common and popular censoring schemes are type-I and type-II censoring. In type-I censoring scheme, the termination 
time  is pre-fixed, but the number of observed failures is a random variable. However, if the mean lifetime of experimental 
units is somewhat larger than the pre-fixed termination time, then far fewer failures would be observed and this is a significant 
disadvantage on the efficiency of inferential procedures. In type-II censoring scheme, however, the number of observed failures 
is pre-fixed, but the experiment time is a random variable. In this case, at least pre-specified R number of failure are obtained, 
but the termination time is clearly a disadvantage from the experimenter’s point of view. To overcome some of the drawbacks 
in those schemes, the hybrid censoring scheme, which is a mixture of the conventional type-I and type-II censoring schemes, 
has received much attention in recent years. In this paper, we consider the analysis of type-I and type-II hybrid censored data 
where the lifetimes of items follow two-parameter log-logistic distribution. We present the maximum likelihood estimators of 
unknown parameters and asymptotic confidence intervals, and a simulation study is conducted to evaluate the proposed 
methods. 
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1. Introduction 
 
There has been a high demand in improving quality, productivity, and reliability of manufactured products over the 

last several decades. To meet this demand, manufacturers conduct appropriate designed experiments. In many cases when 
reliability or lifetime data are collected, all items in the experiment may not fail. Because of time or cost consideration, the 
practitioners terminate the experiment and report the results before all items realize their failures. The two most common 
censoring schemes are type-I and type-II censoring. In conventional type-I censoring, the failure is observed only if it occurs 
prior to some pre-specified time  . In this instance, any failure that occurs after time  is not observed. This type-I censored 
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data are usually obtained when censoring time is fixed and the number of failures in that fixed time is a random variable. Such 
an experiment may save time and money because it could take a very long time for all items to fail. Another censoring often 
used in testing of equipment is type-II censoring where all items are put on test at the same time and the test is terminated when 
the pre-determined R number of the items have failed. In type-II censoring, the number of observed failures is fixed and the 
terminating time is random. It is true that the statistical treatment of type-II censored data is simpler because the data consists 
of the R smallest lifetimes in a random sample of lifetimes so that the theory of order statistics is directly applicable to 
determining the likelihood and any inferential technique employed. 

 Epstein (1954) first introduced the hybrid censoring scheme which is a mixture of type-I and type-II censoring 
schemes. Two types of hybrid censoring have been introduced. Let us consider n  items and denote the ordered failure times 

of the items as )()2()1( nxxx   . In type-I hybrid censoring, the experiment continues until a pre-determined time  has 

been reached or a pre-specified number nR  , out of  n  items has failed. Thus the experiment is terminated at the random 

time ),min( )( RxT  . The termination time here is at mostT . Motivated by the work of Bartholomew (1963) and Barlow 

et al. (1968), Chen and Bhattacharya (1988) considered type-I hybrid censored data from an exponential distribution and 
provided an exact lower confidence band for a parameter. For more results on type-I hybrid censoring, one may refer to 
Ebrahimi (1992), Jeong et al. (1996), and Gupta and Kundu (1998) among others. Like conventional type-I censoring, the main 
disadvantage of the type-I hybrid censoring is that there may be few failures occurring up to the pre-determined time. In the 
type-II hybrid censoring, the termination time of experiment is ),max( )( RxT  which provides at least R failures observed 

up to the termination time. It may be noted that the complete, type-I and type-II censoring are special cases of hybrid censoring 
scheme by taking nR  and  . Hybrid censoring has become more popular and many authors have discussed statistical 
inference for various distributions under hybrid censoring scheme in the reliability literature; for example, Draper and Guttman 
(1987), Childs et al. (2003), Kundu (2007), Banerjee and Kundu (2008), Kundu and Pradhan (2009), Dube et al. (2010), and 
Balakrishnan and Kundu (2013), Asgharzadeh et al. (2013) among others.  

Even though hybrid censored data have been discussed under some parametric lifetime distribution, two parameter 
hybrid censored log-logistic distribution has not been studied before. The log-logistic distribution is a good reliability model 
as it fits well in many practical situations of reliability data analyses. For example, Chiodo and Mazzanti (2004) discussed the 
log-logistic distribution for describing the degradation rate for highly reliable products, Kantam et al. (2006) used the log-
logistic distribution for the basic probability model of the life of the product, and Akhtar and Khan (2014) utilized log-logistic 
distribution as a reliability model using a Bayesian method. Another important feature with the log-logistic distribution is that 
its reliability and hazard functions can be written in closed forms. Thus the log-logistic distribution is convenient in handling 
censored data. Hence, in this paper we consider the analysis of the hybrid censored data where the lifetime of items follows the 
log-logistic distribution.  

The rest of this paper is organized as follows. Section 2 introduces the model assumptions and the maximum likelihood 
estimators of underlying parameters from hybrid censored log-logistic distribution. Section 3 contains simulation results to 
evaluate the performance of the estimators based on the proposed censoring schemes. Finally, we conclude the paper in Section 
4.              
 
 

2. Model and Maximum Likelihood Estimation 
 
2.1 Model 

 
Suppose that the lifetime X of a test item follows a log-logistic distribution of a shape parameter  and a scale 

parameter with the probability density function  
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Its corresponding cumulative density function, reliability function, and hazard function are given, respectively, by 
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 As described, the log-logistic distribution has closed forms of reliability and hazard functions. The following is an 

example of log-logistic distribution with 1  and various values. 
 

 
 

Figure 1. Reliability and Hazard Functions of Log-Logistic Distribution with 1 and Various  Values 
 
 
The log-logistic distribution is the probability distribution of a non-negative random variable whose logarithm has a 

logistic distribution. Its shape is similar to the log-normal distribution, but has heavier tails. The most commonly used 
distribution in the modelling of reliability and failure time data is the Weibull distribution. However, its use is limited by the 
fact that its hazard function must be monotonic while it may be increasing or decreasing. This may be inappropriate in a 
situation when failure reaches a peak after some finite period and then declines slowly. The log-logistic distribution can be 
used in such a case. 
 
2.2 Maximum Likelihood Estimator 
 

Let nxxx ,, 21  be n  independent and identically distributed sample from two parameter log-logistic random 

variable X . Suppose )()2()1( nxxx    denote the ordered nxxx ,, 21 .  First, we will study type-II hybrid censoring 

scheme. Under the type-II hybrid censoring scheme, R and  are known in advance and the termination time of experiment is

),max( )( RxT  . As mentioned in Childs et al. (2003), type-II hybrid censoring may arise in a situation when R number of 

failure occur before the pre-specified time  then the experiment can continue to make full use of the testing facility up to time 
 . If the R failures do not occur before time , then the experiment continues until R failures. So we have one of the two 
following types of observations. 
 

Case I:  )()2()1( Rxxx     when )(Rx and pre-specified R number of failure occurred after the pre-

specified censoring time . 
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Case II:  )()2()1( kxxx     when )1()(,  kk xxnkR  and pre-specified R  number of failure 

occurred and experiment continues until the censoring time . Here k is the number of failures observed before time .  

To simplify the notations, we use ix  in place of )(ix  hereafter. Then, the likelihood function for Case I is  

 




















R

i

Rn

Ri

i

xx

x
L

1
2

1

1

1

)1(
),( 




         (5) 

 
and the likelihood function for Case II is 
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 To obtain the maximum likelihood estimates (MLE), the natural logarithm of the likelihood function is usually 
considered. Combining the two cases, the log likelihood function can be written as 
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where Rkxc R  ,  for Case I and nkRc  ,  for Case II. Then the maximum likelihood estimates of the parameters 

 and  are solutions to the system of likelihood equations obtained by 
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 Here, it is difficult to obtain a closed form solution to nonlinear score equations, so an iterative method such as the 
Newton-Raphson method is used to solve the equations to obtain MLEs. The MLE has asymptotic variance of the inverse of 
Fisher information matrix. Since the MLEs of parameters are not obtained in closed forms, it is not possible to obtain the Fisher 
information matrix and construct asymptotic confidence intervals. So the Fisher information will be approximated by the 
observed Fisher information evaluated at the MLE. The asymptotic confidence intervals based on the asymptotic normal 
distribution of MLEs are approximated by the inverse of observed Fisher information matrix evaluated at the MLE 
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where the elements of the observed Fisher information matrix are as follows: 
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 Thus, an asymptotic confidence intervals for  and  are obtained by  
 

112/
ˆˆ  cz and 222/

ˆˆ  cz          (14) 

 

where 2/cz  is the c100  upper percentage point of the standard normal distribution and jĵ  is the  jj,   component of  
evaluated with the MLE. 
 Now, let us consider type-I hybrid censored data, where the experiment is terminated at the random time

),min( )( RxT  . Similarly, we have one of the two following types of observations:   

Case I:  )()2()1( Rxxx     when )(Rx  and pre-specified R number of failure occurred before the pre-

specified censoring time . 

Case II:  )()2()1( dxxx     when )1()(  dd xx   and only Rd   number of failure occurred before the 

pre-specified censoring time .  

To simplify the notations, we use ix  in place of )(ix  as before. Then, the likelihood function for Case I is  
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and the likelihood function for Case II is 
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 Combining the two cases, thee log likelihood function can be written as 
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where Rrxc R  , for Case I and drc  , for Case II. It must be noted that when 0d  the maximum likelihood 

estimates do not exist. Because the log likelihood function is similar to in type-I hybrid censored data, the maximum likelihood 
estimates are obtained similarly by the method described in type-II hybrid censored data. Hyun et al. (2015) discussed this 
type-I hybrid censored data and the maximum likelihood estimators. For the work, one may refer to Hyun et al. (2015). 
 
 

3. Simulation Study 
 
 The simulation study is performed for different choices of n  and R . We take 2  and 1 in all cases. We set

1 . For given parameters, we generate type-I and type-II hybrid censored samples from the log-logistic distribution. The 
results give the average failure percent, mean of the estimates (MLE), standard error of the estimates (SE), mean of the standard 
error estimates (SEE), and coverage probability (CP) of the proposed 95% confidence interval based on 1000 replications. For 
type-II hybrid censored data, the maximum follow-up time is provided in the parenthesis in Tables 3-6. We see that as the pre-
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specified number of failure increase, the follow-up increase to obtain the R failures. The MLEs of the parameters are obtained 
by solving the nonlinear equations through the Newton-Raphson iteration algorithm. Table 1 through Table 3 are summary 
statistics from type-I hybrid censored data, and Table 4 through Table 6 are from type-II censored data. From Tables 1-6, we 
observe that the biases and SEs decreases as the sample size increases and the failure rate increases. The standard error estimates 
provide a fairly accurate as SE and SSE are close. The standard error estimates provides a fairly accurate of true variance of 
the estimates, and the corresponding confidence intervals have reasonable coverage probabilities. 
 
 

Table 1. Summary Statistics of Type-I Hybrid Censored Data with 30n  
 

 Failure  % Parameters MLE SE SEE CP 

15R  46.5% 
  2.2207 0.5920 0.5262 94.8% 

  1.2007 0.6596 0.4845 94.1% 

 

20R  50.1% 
  2.1325 0.5158 0.4884 95.1% 

  1.0978 0.4314 0.3998 94.1% 

 

30R  50.2% 
  2.1288 0.5110 0.4872 95.1% 

  1.0917 0.4101 0.3962 94.1% 

 

Table 2. Summary Statistics of Type-I Hybrid Censored Data with 50n  
 

 Failure % Parameters MLE SE SEE CP 

20R  39.8% 
  2.1792 0.4772 0.4420 95.4% 

  1.1862 0.5353 0.4146 95.3% 

 

30R  49.9% 
  2.0771 0.3798 0.3683 95.0% 

  1.0607 0.3186 0.2978 95.0% 

 

50R  50.2% 
  2.0724 0.3747 0.3667 95.2% 

  1.0546 0.3015 0.2945 94.7% 

 

Table 3. Summary Statistics of Type-I Hybrid Censored Data with 100n  
 

 Failure % Parameters MLE SE SEE CP 

30R  30.0% 
  2.1238 0.3798 0.3595 95.4% 

  1.1495 0.4512 0.3516 96.1% 

 

50R  48.0% 
  2.0499 0.2733 0.2627 94.9% 

  1.0394 0.2312 0.2107 94.8% 

 

75R  50.0% 
  2.0320 0.2587 0.2544 95.0% 

  1.0228 0.2069 0.2011 94.5% 

 

100R  50.0% 
  2.0320 0.2587 0.2544 95.0% 

  1.0228 0.2069 0.2011 94.5% 
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Table 4. Summary Statistics of Type-II Hybrid Censored Data with 30n  
 

 Failure % Parameters MLE SE SEE CP 

15R  
53.7% 
(1.062) 

  2.1589 0.4931 0.4713 95.8% 

  1.1049 0.3986 0.3941 95.0% 

 

20R  
66.8% 
(1.386) 

  2.1492 0.4351 0.4093 95.4% 

  1.0988 0.3989 0.3696 94.3% 

 

30R  
100% 

(9.625) 
  2.0883 0.3350 0.3186 94.9% 

  1.0656 0.3628 0.3447 93.8% 

  

Table 5. Summary Statistics of Type-II Hybrid Censored Data with 50n  
 

 Failure % Parameters MLE SE SEE CP 

20R  
50.4% 
(1.004) 

  2.0761 0.3721 0.3660 95.4% 

  1.0560 0.2993 0.2945 95.2% 

 

30R  
50.3% 
(1.217) 

  2.0941 0.3399 0.3924 95.5% 

  1.0657 0.2943 0.2814 94.9% 

 

50R  
100% 

(12.384) 
  2.0521 0.2509 0.2426 94.9% 

  1.0411 0.2670 0.2575 94.7% 

 

Table 6. Summary Statistics of Type-II Hybrid Censored Data with 100n  
 

 Failure % Parameters MLE SE SEE CP 

30R  
50.0% 
(1.0) 

  2.0320 0.2587 0.2544 95.0% 

  1.0227 0.2069 0.2011 94.5% 

 

50R  
52.0% 
(1.038) 

  2.0440 0.2516 0.2493 95.1% 

  1.0289 0.2006 0.1995 95.0% 

 

75R  
75.0% 
(1.720) 

  2.0362 0.2040 0.1981 94.6% 

  1.0213 0.1863 0.1800 94.6% 

 

100R  
100% 

(18.214) 
  2.0257 0.1715 0.1694 95.0% 

  1.0171 0.1813 0.1770 94.5% 

 

 
4. Conclusions 

 
 In this paper we considered the maximum likelihood estimators for the unknown parameters for type-I and type-II 
hybrid censored log-logistic distribution. From the simulation results it is found that the maximum likelihood estimates have 
good statistical properties. Although the lifetime distribution is assumed to follow log-logistic distribution, most of the methods 
in this paper can be applied to other lifetime distribution with hybrid censoring schemes. In type-I hybrid censoring model 
under which the experiment terminates as soon as either the first R  failure or pre-specified censoring time   occurs, the 
experiment can be terminated resulting in very few failures. For this reason, Childs et al. (2003), Chandrasekar et al. (2004), 



Industrial and Systems Engineering Review, 4(1), 2016 ISSN (Online): 2329-0188 
Hyun et al. 

ISER © 2016 44 
http://iser.sisengr.org 

and Kundu and Joarder (2006) have focused on type-II hybrid censoring scheme under which the experiment terminate at the 

random time ),max( )( RxT   . This type-II hybrid censoring scheme has the advantage of guaranteeing that at least R  

failures are observed. Extensive work has been performed on many variation of hybrid censoring as well. For some related 
work, one may refer to the work of Fairbanks et al. (1982), and progressive type-II censoring introduced by Cohen (1963). 
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