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Abstract: Sustainability and energy savings have attracted considerable attention in recent years. However, in the traditional 
location-routing problem (LRP), the objective function has yet to minimize the distance traveled regardless of the amount of 
energy consumed. Although, distance is one of the major factors determining the energy consumption of a distribution 
network, it is not the only factor. Therefore, this paper explains the development of a novel formulation of the LRP that 
considers energy minimization, which is called the energy-efficient location-routing problem (EELRP). The energy 
consumed by a vehicle to travel between two nodes in a system depends on many forces. Among those, rolling resistance 
(RR) and aerodynamic drag are considered in this paper to be the major contributing forces. The presented mixed-integer 
non-linear program (MINLP) finds the best location-allocation routing plan with the objective function of minimizing total 
costs, including energy, emissions, and depot establishment. The proposed model can also handle the vehicle-selection 
problem with respect to a vehicles’ capacity, source of energy, and aerodynamic characteristics. The formulation proposed 
can also solve the problems with hard and soft time window constraints. Also, the model is enhanced to handle the EELRP 
with dynamic customers’ demands. Some examples are presented to illustrate the formulations presented in this paper. 

 

 
1. Introduction 

 
The problem addressed in this paper is the energy-efficient location-routing problem (EELRP). The traditional 

location-routing problem (LRP) is a combination of the location-allocation problem (LAP) and the vehicle-routing problem 
(VRP) or energy-efficient vehicle-routing problem (EEVRP). The LAP involves finding a set of distribution centers (DCs) 
among potential DCs and assigning customers to them. The VRP originated from the traveling salesman problem (TPS) and 
is defined as the problem of finding a set of routes originating from depots to serve customers. Each customer must be visited 
only once, and all vehicles should return back to the same depot from which they departed. The demand of customers should 
not exceed the vehicle capacity. The objective of the VRP is usually minimization of transportation cost based on distance 
traveled. It has been vastly investigated by researchers (Laporte, 1992; Laporte, et al. 1988; Laporte et al., 2000; Eksioglu et 
al., 2009). 

The increase in fuel costs and other problems caused by fuel consumption, such as emissions, carbon footprint, 
global warming, etc., increases the importance of an energy-efficient and emission-efficient LRP. Although the number of 
research and methods developed for the LRP is significant, research is limited relative to the LRP with the objective function 
of minimizing emissions and energy consumption. Kara et al. (2007) present an energy minimization objective function for 
the VRP in which all vehicles are identical and have the same capacity, and the problem is separately investigated for 
symmetric and asymmetric distance matrix. Also, the formulation solves for both the collection problem and the delivery 
problem. Gusikhin et al. (2010) present a heuristic for solving a mixed-fleet VRP for minimizing fuel consumption and 
environmental emissions. This heuristic is a variation of the multi-label shortest-path problem, and they did not consider 
vehicle weight as one of the contributing factors for fuel consumption and emissions. Artmeier et al. (2010) present a generic 
shortest-path algorithm for battery-powered vehicles in which constraints such as limited cruising range, long recharge times, 
and energy recovery ability are considered. In that method, graph theory is applied for formulating and solving the problem.  

The increase in energy consumption also results in increased emissions. This is another important aspect of energy 
consumption that should not be ignored. The amount of emissions differs among vehicles based on their sources of energy. 
Some sources of energy, such as petroleum-based fuel, are the major source of emissions, while other sources, such as 
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electric power, have very few emissions. Hirashima et al. (2002) present a method for calculating the amount of emissions 
based on a road gradient factor. They compared the results when the objective is distance minimization and when it is 
emissions minimization. They show that their method provides a better result in terms of emissions. 

An EELRP in which each customer`s demand must be satisfied within a time interval is called an EELRP with a 
time window. The traditional location-routing problem with a time window (LRPTW) is a class of LRP in which each 
customer must be visited within a specific time window. It has been an interesting subject of research in the last three 
decades. Many heuristic and meta-heuristic methods have been developed for solving this problem under different conditions 
and constraints. Desrochers et al. (1987) provide an early survey on the solution methods of the VRP. The solution methods 
are classified based on mathematical formulations and models. Braysy and Gendreau (2005) present a comprehensive survey 
on the heuristic and meta-heuristic algorithms developed for solving the vehicle-routing problem with time window 
(VRPTW). Desrochers et al. (1987) provide an early survey of the VRP solution methods, which are developed based on 
existing mathematical formulations and models. Kallehauge (2008) reviews the formulation and exact algorithm of the 
VRPTW, and categorized the formulation and exact methods developed for VRPTW into four major categories: arc 
formulation, arc-node formulation, spanning tree formulation, and path formulation. In the arc formulation of the VRPTW, 
each arc of an underlying directed graph is associated with a binary variable. Dantzig et al. (1954), Kallehauge et al. (2007), 
and Mak and Ernst (2007) present an arc formulation of the VRPTW. In the arc-node formulation of the problem, binary 
variables are also associated with nodes of the directed graph. This method of formulating the VRPTW can be found in the 
work of Miller et al. (1960) and Bard et al. (2002). The spanning tree formulation, in brief, is “a method to find lower bounds 
for the VRPTW, with the help of time- and capacity-constrained shortest spanning trees and Lagrangian relaxation or 
Dantzig-Wolfe decomposition” (Held and Karp, 1970 and 1971). Several researchers have focused on solutions to the path 
formulation approach in the last two decades (Chabrier, 2006; Cook and Rich, 1999; Danna and Pape, 2005; Desrochers et 
al., 1992; Feillet et al., 2004; Fisher et al., 1997; Halse, 1992; Houck, 1978; Kohl and Madsen, 1997; Kolen et al., 1987; 
Larsen, 1999, 2004). Mirzaei and Krishnan (2011) present a node formulation of the LRP in which each node is represented 
by a set of binary variables. This formulation provides a generic optimization model, which handles the LRP with time-
dependent demand (LRPTD) as well as time windows. In this paper, the formulation presented by the LRP will be extended 
for application in the EELRP with a time window and with a time-dependent demand. 

In the traditional LRP/LRPTW formulation, the result obtained is link-based, i.e., each route is formed by a set of 
links.  The position (order) of customers on each route cannot be determined unless the links are connected in the right order. 
The interpretation of the sequence of visits in each route is thus obtained after the solution is obtained and hence cannot be 
used to formulate the problem. On the other hand, in the proposed model, the positions (order) of the customers in each route 
are presented by a set of binary variables, which can be used for the purpose of formulation and hence is called node 
formulation. The proposed node-based model can also be used wherever there is any constraint, cost, or risk associated with 
the sequence of customers in a route. When dealing with EELRP, the weight of the vehicle in each node in the system 
depends on the sequence of service; hence, node formulation is necessary.  

As already mentioned, vehicle energy consumption is considered a function of distance traveled (speed), vehicle 
weight, coefficient of rolling resistance, and aerodynamic characteristics of the vehicle. The node-based property of the 
model makes it flexible to involve many parameters in the model. With growing attention toward energy consumption and 
emission, it is essential to approach the LRP as a trade-off between energy and emission cost and profit. Hence, the proposed 
formulation in this paper approaches the LRP with such trade-offs. The main objective of this paper is summarized as 
follows: 

• If a formulation for EELRP that can solve problems with a symmetric or asymmetric distance matrix. 
• Development of a formulation for EELRP that can handle time-window restrictions for serving customers and also 

dynamic demands. 
 

The objective function presented in this paper is to minimize energy, emissions, and depot-establishment cost, while 
maximizing profit. The following questions are expected to be answered by solving the model: 

• What is the best strategy regarding the location of DCs? 
• How are customers allocated to DCs? 
• What is the routing plan of DCs to serve customers?  
• What vehicle type should be used in each route? 

Section 3 of this paper provides a detailed definition of the problem under investigation. A mathematical 
formulation of the problem and an extension of the problem for solving the EEVRP with a hard time window, a soft time 
window, and time-dependent demand is presented in section 4. Section 5 provides illustrative examples.  Sections 6 and 7 
provide a summary and conclusions as well as future work under investigation, respectively. 
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2. Problem Statement 
 

Notations used to formulate the problem are as follows: 
N Total number of customers 
M Total number of DCs 
K Total number of vehicles 
I Set of customers, I = {1, 2,…, N} 
J Set of DCs, J = {1,2,…, M} 
P Set of possible positions that a customer can take in a route, D = {1, 2,…, N} 
V Set of vehicles, V = {1,2,…,K} 
Vv v V∀ ∈ Speed of vehicle v,  
wv tare Mass of vehicle v when fully loaded( mass plus load  mass), v V∀ ∈  
λv v V∀ ∈Emission cost for producing 1 NM energy from vehicle v,  

γv v V∀ ∈ Cost of consuming 1 Newton meter  (NM) of energy in vehicle v,  
Av v V∀ ∈Frontal area of vehicle v,  
Cdv v V∀ ∈ Vehicle v coefficient of drag,  
ψgh { },g h I J∀ ∈ ∪ Density of air on the road that connect nodes g and h,  

Yv v V∀ ∈Capacity of vehicle v,  
g/h Index used for  all nodes  
Tgh { },g h I L∀ ∈ ∪Travel time between node g and h,  
Sg g I∀ ∈Service time at node g,  
Amv ,m I v V∀ ∈ ∀ ∈ Arrival time at position m of route v,  

Xmgv
1 if node  is in position  of the vehicle ;  

 
0 otherwise

g m v



  { } ; ;g m D v VI J∀ ∈ ∀ ∈ ∀ ∈∪
 

Crr
ghv 

{ }, ,v V g h I L∀ ∈ ∀ ∈ ∪
Coefficient of rolling resistance between vehicle v tires and the road that connects node g to node h, 

 

Lmv
1 if  is the last taken position of route ;
0 otherwise

m v



 
 ;m D v V∀ ∈ ∀ ∈  

Og
1 if there is any vehicle assigned to node ;
0 otherwise

g



 
 

g J∀ ∈  

zvh
1 If vehicle  is assigned to node h; 
0 otherwise

v



 
 

;h J v V∀ ∈ ∀ ∈  

Dgh { },g h I J∀ ∈ ∪ Distance between node g and h,  
Fg g J∀ ∈Fixed cost for establishing node g,  
dg g I∀ ∈ Demand of node g,  
fg g I∀ ∈(t)  Demand of node g at time t,  
Sg g J∀ ∈ Cost of departure from node g,  

αmv 
1 if earliest arrival at position  of route  is violated; 
0 otherwise

m v



;m D v V∀ ∈ ∀ ∈  

βmv 
1 if latest arrival at position  of route  is violated; 
0 otherwise

m v



;m D v V∀ ∈ ∀ ∈  

ag g I∀ ∈Earliest arrival time at customer g,  
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bg g I∀ ∈Latest arrival time at customer g,  
Δag g I∀ ∈Maximum deviation permitted from earliest arrival time at customer g,  
Δbg g I∀ ∈Maximum deviation permitted from latest arrival time at customer g,  
ρg g I∀ ∈ penalty costs associated to lower time limit violation at customer g,  
φg g I∀ ∈  Penalty costs associated with upper time limit violation at customer g,  
λ  
γ Percentage change in unit price of extra product delivered 

Lost-order cost 

Ω Profit obtained from selling a unit of product 
u Unit product mass 
gG Gravitational acceleration, 9.81 m/s
w

2 
1

g g I∀ ∈1 if demand has decreased at the delivery time to customer g; 0 otherwise,  
w2

g g I∀ ∈1 if demand has increased at the delivery time to customer g; 0 otherwise,  
The supply chain network for this problem consists of a set of customers, a set of potential distribution centers, a 

plant, and a set of available vehicles. The vehicles can consume different types of fuel, such as electricity, gasoline, diesel, 
coal, etc. Two costs are associated with the consumption of unit energy in a vehicle: energy cost and emissions cost. Other 
costs such as greenhouse gas emissions, etc., also can be simply added to the model. Vehicles depart DCs fully loaded and 
travel at a constant speed. There is only a single type of product in this problem. Each customer demand must be at most 
equal to the vehicle capacity, i.e., dg g I∀ ∈≤VC, . 

The total transportation cost includes the cost of departure from the DCs (Sg g L∀ ∈, ), energy cost, and emissions 
cost. The energy cost is equal to the total energy consumed by a vehicle times its energy unit cost, γv

 

. The amount of energy 
used (work) to travel between each pair of nodes in the network is presented by equation (1). 

 W = Force * Acceleration * Distance (1) 
 
Under a steady state of driving on flat ground at a constant speed, equation (1) can be rewritten as 
 
 Work = Force * Distance (2) 
 
where force is the steady-state force required to overcome friction and aerodynamic drag. The friction force is the rolling 
resistance, which is calculated using equation (3): 
 
 Rolling Resistance (RR) = Crr

ghv * Mass * gG 

 
(3) 

where Crr
ghv is the coefficient of rolling resistance and depends on the vehicle tire and road surface.  The gravitational 

acceleration is almost the same and equal to 9.81 m/s2

 

 for all objects. The aerodynamic drag force in the steady state is given 
by equation (4): 

 FA = ½ * Cdv * Av * ψgh * Vv
 

² (4) 

where Cdv and Av depend on the characteristics of the vehicle v. Hence, the EELRP is not only sensitive to vehicle capacity 
but also influenced by characteristics of vehicles with respect to energy consumption. The variable Cdv describes the 
smoothness of the vehicle shape. During the vehicle design stage, improving the drag coefficient is a high priority. In 
addition, the frontal area (Av) is just as important. The variable ψgh

By substituting equations (3) and (4) into equation (2), work can be presented by equation (5): 

 is the density of air in the road between nodes g and h, 
and is usually about 1.3 kg/m³ but can vary with temperature and barometric pressure. 

 
 Work = (Crr

ghv* Mass * gG+½ * Cdv * Av * ψgh * Vv
 

²)*Distance  (5) 

From equation (5), it is important to calculate the weight of vehicles at each node. The vehicle mass at each node 
depends on the previous customers’ demands on the same route; hence, the vehicle mass after delivering load dg 

 

at position m 
on route v is calculated by equation (6): 
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 1

,*
m

mv v g m gv mgv
m g I g I

w X X m P v Vu d ′
′= ∈ ∈

Γ = − ∀ ∈ ∈
 
  

∑∑ ∑
 

(6) 

 
Variables Lmv in equation (7) and zvh in equation (8) are defined to simplify the objective function and constraints. A 

binary variable, LSmv

 

, is used to identify the last customer on a route and is defined by the recursive equations presented in 
equation (7).  

 
{ }{ }

1

(1 ) /

mgv
g I

N

m v mgv
g Im m

mv

X m N

L v V
L X m P N

∈

′
′ ∈= +

=

∈

− ∀ ∈


= 



∑

∑∏
 

(7) 

 
Location 0 of each route is reserved for a DC. However, even if the related binary variable, 0 , ,gvX g L v V∀ ∈ ∀ ∈  

holds a value of 1, this does not mean that node g is selected to be the assigned DC for route v. Node g will not be route v’s 
DC unless there is a link between the depot and a customer in the network. Hence, zvh is introduced to specify whether there 
is a connection between a depot and a customer in the system. The variable zvh

 

 works like a connectivity between DCs and 
routes, and connects the location decision to the routing decision. 

 
0 1. ,hv gv

g I
vh X X h J v Vz

∈

∀ ∈ ∈=∑
 

(8) 

 
3. Mathematical Formulation of the Problem 

 
3.1 Formulation of EELRP 
 

The objective function of the problem is to minimize the total cost of the system while maximizing profit. The 
mathematical formulation for EELRP is as follows: 

 
Objective Function: 

 

( )1 0
{ } { }

2 ( )
1
2mv gh m gv mhv mgv hv mv v v

v V m P h I J g I J

vg g g g
g J v V g J

G rr
ghv mv v v gh v

Min

E D X X X X

z S F O

L g C cd A V γ λψ−
∈ ∈ ∈ ∪ ∈ ∪

∈ ∈ ∈

+

= + +

+

 Γ + 
 

∑∑ ∑ ∑

∑∑ ∑
  

  (9) 
 
Subject to: 

 
1mgv

v V m P

X g I
= ∈

= ∀ ∈∑∑  (10) 

 

 
1 ,mgv

g I

X m P v V
∈

≤ ∀ ∈ ∈∑  (11) 

 

 
mgv

g I m P
g vX VC v Vd

∈ ∈

≤ ∀ ∈∑∑  (12)
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0mgv

v V g J m P

X
∈ ∈ ∈

=∑∑∑  (13) 

 

 
0 0gv

v V g I

X
∈ ∈

=∑∑  (14) 

 

 { }
1 ,m gv mgv

g I J g I

X X m P v V−
∈ ∪ ∈

≥ ∀ ∈ ∈∑ ∑  (15) 

 

 
1vg

g J
z v V

∈
≤ ∀ ∈∑  (16) 

 

 
g gvg

v V
O z KO g J

∈
≤ ≤ ∀ ∈∑  (17) 

 

 
1 vg

v V g L

z K
∈ ∈

≤ ≤∑∑  (18) 

 
Equation (9) is the objective function, which minimizes the total cost of the network while maximizing profit. The 

first term in the objective function calculates energy and emission cost. The second term is the cost of dispatching vehicles 
from DCs. The third term is the DC’s fixed costs in case they are open.  

Equations (10) to (18) are constraints for this problem. Constraint (10) ensures that each customer appears in only 
one route. Constraint (11) guarantees that each position on a route is not taken by more than one customer. Constraint (12) 
ensures that the total demand of customers assigned to a route is less than the vehicle capacity. It is assumed that position 
zero of each route is reserved for DCs. This assumption implies that DCs cannot take any other position in routes and also 
that customers cannot take position 0 of their assigned route. The former is enforced by constraint (13), and the latter is 
enforced by constraint (14). Constraint (15) ensures that position m+1 on route v cannot be taken unless position m is taken. 
Constraint (16) guarantees that a route cannot be assigned to more than one DC. Constraint (17) determines if a DC is open 
or is closed. Constraint (18) keeps the total number of vehicles between one and the number of available vehicles.  

If there is any energy restriction for vehicle v, constraint (19) can be added to the model. For instance, for an electric 
vehicle v with power restriction, it might be of interest to enforce the vehicle to return to the depot from which it originated 
before its battery becomes discharged. 

 

 
( ) 2

1 0
{ }

1
2

G rr
gh mhv m gv gv mv ghv mv v v gh v v

m P h I g I J
D X X X L g C cd A V v Vπψ−

∈ ∈ ∈ ∪

≤
 + Γ + ∀ ∈ 
 

∑∑ ∑
 

(19) 

 
where the left side of the inequality is the energy consumed by vehicle v to travel its assigned route, and the right side of the 
inequality is the energy limit of vehicle v. 

It is also possible to enforce the tour duration constraint for all or some of the vehicles. Considering the fact that the 
arrival time at each customer depends on the arrival times at previous customers on the same route, the arrival time at 
position m on route v is calculated using equation (20): 

 

 { }
1

1

,( )
m

mv m gv m hv g gh mgv
m h I g I J g I

X X S T X m P v VA ′ ′−
′= ∈ ∈ ∪ ∈

= ∀ ∈ ∈
 +  
∑∑ ∑ ∑

 
(20) 
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where Tgh { },g h I J∀ ∈ ∪ is the travel time between nodes g and h , and Sg g I∀ ∈ represents the service time at node g, . By 
using the definition of Lmv 
 

presented in equation (7), the tour completion constraint will be 

 0 v
m P

mv mv gvgh mhv
h I g L

L v VA T X X χ
∈ ∈ ∈

 
  ≤ ∈
 
 

+∑ ∑∑  (21) 

 
where, the first term on the left side of the inequality is the time elapsed to meet the last customer on route v, and the second 
term on the left side of the inequality is the travel time from the last customer on route v to the originated DC. The 
summation of these two terms is the total tour duration imposed to be less than the tour duration, χv

Extension of the model to a multi-product case is straightforward. The following section presents an example to 
illustrate this problem. 

.  

 
3.2 Formulation of EELRP with Time Windows 
 

An EELRP in which each customer`s demand must be satisfied within a time interval is called an EELRP with a 
time window. The time window can be hard or soft. In a formulation with a “hard time window,” each customer has an 
associated time window during which the demand must be met. The vehicle cannot deliver products to the customer before 
the start of the time window or after the time window has elapsed, i.e., late or early arrival at a customer is not acceptable. In 
a VRPTW formulation with a “soft time window,” the customer can be served before and after the preferred time window, 
i.e., early or late arrival at a customer is acceptable up to a predefined limit. However, there is usually a penalty cost 
associated with the violation of the time window, which results in late or early service to the customer. In this section, the 
formulation proposed in section 3.1 is modified to tackle the LRP with hard and soft time windows. 

 
3.2.1 Formulation of EELRP with Hard Time Windows 
In the LRP with a hard window constraint, a customer’s demand does not dynamically change with time and is 

either equal to the initial demand or zero, depending on the arrival time. When the time window is hard, no violation from the 
time intervals is acceptable. Therefore, the time window can be easily represented in the model with a constraint that enforces 
the arrival time within the related time intervals.  

 

 
,g mgv mv g mgv

g I g I

a X A b X m P v V
∈ ∈

≤ ≤ ∀ ∈ ∈∑ ∑   (22) 

 
Constraint (22) must be added to the formulation presented in Section 3.1 to enforce the arrival time at customer to 

be within the related time interval. 
 
3.2.2 Formulation of EELRP with Soft Time Windows 
In addition to solving the EELRP with a hard time window, the model can handle EELRP with soft time window 

constraints, which allows the time interval violation for serving customers with related penalty costs. The modification will 
be adding a constraint to enforce the arrival time: 

 

 
,g mgv g mgv mv mv g mgv g mgv mv

g I g I g I g I

a X a X AT b X b X m P v Vα β
∈ ∈ ∈ ∈

   
− ∆ ≤ ≤ + ∆ ∀ ∈ ∈      
   

∑ ∑ ∑ ∑  (23) 

 
Constraint (23) is used to enforce the arrival time at each spot of a route to be within the related time interval with associated 
allowed deviations. 

The objective function also needs to be modified by adding a term related to the penalty costs associated with the 
time window violation. This term is presented in equation (24). 

 

 
( )mgv g mv g mv

g I v V m I
X ρ α ϕ β

∈ ∈ ∈

+∑∑∑

 

(24) 
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3.2.3  Formulation of EELRP with Time-Dependent Customer Demand  
The proposed model can also solve the EELRP with a time-dependent demand. In the EELRP with a time window, a 

customer’s demand does not dynamically change with time and is either equal to the initial demand or zero, depending on the 
arrival time. The node-based property of the proposed EELRP enables it to solve the problem when customers’ demands are 
any arbitrary function of time (Mirzaei and Krishnan, 2011). The objective function of the problem is to minimize the total 
cost of the system, including energy and emission cost, while maximizing profit. Each customer has an initial demand, dg, 
which will dynamically change with time after initiating, i.e., d'g=f (dg ,τg g I∀ ∈),  The special case of this problem is the 
EELRP with a time window, in which the demand function is defined by equation (25) (Mirzaei and Krishnan, 2011): 

 

 

0

(

0

)
g g

g g g g

g g

g g

if a

f if a b g I

if b

d
τ

τ τ

τ

≤

= ≤ ≤ ∀ ∈

≥





  

(25) 

 
where ag is the earliest arrival time at node g, and bg

, .gd VC g I′ ≤ ∀ ∈
 is the latest arrival time at node g. Based on the basic assumptions of 

vehicle-routing problems,  If instead of the function presented in equation (25) any other function is defined 
for a customer’s demand, the problem is no longer an LRP with a time window but rather an LRP with a time-dependent 
demand. 

To formulate the problem for the EELRP with the time-dependent demand, it is necessary to calculate arrival times 
at each customer g using equation (26): 

 

 
,g mgv mv

v V m N

X AT g Iτ
∈ ∈

= ∀ ∈∑∑
 

(26) 

 
For customers with a decreasing demand function, there is a “lost-order cost,” which is the cost resulting from not meeting a 
customer demand completely or partially, i.e., (Dg ( )g gf τ- )λ, where λ is the lost-order cost per unit of product. The profit is 
the product of the total quantity delivered to the customer, the profit per unit of product, and the customer-fulfillment level, 
i.e., DʹΩB in which B is the customer fulfillment level defined by equation (27): 
 

 

( )g g

g
g

f
E g I

d
τ

= ∀ ∈
 

(27) 

 
The value of Eg is dynamic and depends on the time of delivery. The value of Eg for customers with a monotonously 

increasing demand function is greater than one, and the value of Eg value for customers with a monotonously decreasing 
demand function is less than one.  The unit product price for the additional number of products delivered to customers with 
increasing demand can be different from the initial price. For example, the price can be cheaper due to a quantity discount. 
The constant γ represents the percentage of decrease or increase in price.    

The objective function for the TDLRP with a time-dependent demand is given by 
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In equation (28), the first term determines the energy and emission cost. The second term is the cost of dispatching 
vehicles from DCs. The third term is the DCs’ fixed establishment cost. The last term includes the lost-order cost, cost/profit 
of additional items requested by customers, and sales profit, respectively. 

Two modifications are required for the set of constraints presented in equations (10) to (18) in order to handle the 
TDLRP with a time-dependent demand, as opposed to the formulation in section 3.1. First, it is necessary to change the 
vehicle-capacity constraint of equation (12) by equation (29) to consider the demand variability. 
 

 
( )*g mgv

g I m D
g vf X Y v Vτ

∈ ∈

≤ ∀ ∈∑∑  (29) 

 
Second, the set of constraints presented in equation (30) should be added to the set of constraints: 
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This set of constraints is used to determine whether a customer’s demand at the time of delivery is higher or lower compared 
to the initial demand.  
 
3.3 Illustrative Examples 
 

3.3.1 Example of EELRP 
Figure 1 shows a three-layer network problem used to illustrate the proposed mathematical model. The problem 

consists of one plant, four customers, and two DCs. Nodes 1, 2, 3, and 4 represent the customers, and nodes 5 and 6 represent 
potential DCs. Coordinates of the nodes and their associated demand are presented in Table 1. No demand is associated with 
depots.  

 

 

Figure 1. Three-layer network problem with one plant (p), four customers (nodes 1–4), and two dcs (nodes 5–6) 
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Table 1. Node coordinates and associated demands 
 

Node Coordinate Demand 
1 (80,45) 100 
2 (70,15) 25 
3 (100,20) 65 
4 (90,10) 60 
5 (75,10) - 
6 (60,25) - 

 
 
Four vehicles are available. Information regarding the vehicle types, capacity, initial mass, drag coefficient, frontal 

area, cost of emissions, and energy cost are provided in Table 2. The coefficient of the rolling resistance for each of the four 
vehicles on each road is shown in Table 3, Table 4, and Table 5. Air density is considered to be the same and equal to 1.3 
kg/m³ for all roads. All vehicles travel at a constant speed of 40 kilometer per hour. The travel time between nodes is then 
calculated accordingly in Table 6. Distances are calculated as Euclidean and presented in Table 7.  

 
 

Table 2. Vehicle Information 
 

Vehicle 
Number Type 

VC  
(Unit of 
Product) 

Initial Mass (kg) 
(Tare Mass + Load Mass) 

Drag 
Coefficient 

Frontal 
Area 
(m2

Emissions 
Cost ($) ) 

Energy 
Cost ($) 

1 Gasoline 100 6000 = 4000+20×100 0.75 4.0 0.1×10 0.2×10-4 -4 
2 Electric 70 4200 = 2800+20×70 0.6 3.5 0 0.2×10-4 
3 Hybrid 70 4200 = 2800+20×70 0.6 3.5 0.5×10 2.7×10-4 -5 
4 Diesel 115 9600 = 7100+20×125 0.89 4.5 0.2×10 0.1×10-4 -4 

 
 

Table 3. Coefficient of rolling resistance for vehicle 1 
 

Node 1 2 3 4 5 6 
1 - 0.012 0.013 0.010 0.012 0.013 
2 0.012 - 0.013 0.013 0.010 0.015 
3 0.013 0.013 - 0.015 0.030 0.025 
4 0.010 0.013 0.015 - 0.030 0.025 
5 0.012 0.010 0.030 0.030 - 0.030 
6 0.013 0.015 0.025 0.025 0.030 - 

 
 

Table 4. Coefficient of rolling resistance for vehicles 2 and 3 
 

Node 1 2 3 4 5 6 
1 - 0.010 0.025 0.015 0.017 0.018 
2 0.010 - 0.010 0.015 0.080 0.010 
3 0.025 0.010 - 0.012 0.010 0.035 
4 0.015 0.015 0.012 - 0.020 0.015 
5 0.017 0.080 0.010 0.020 - 0.010 
6 0.018 0.010 0.035 0.015 0.010 - 
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Table 5. Coefficient of rolling resistance for vehicle 4 
 

Node 1 2 3 4 5 6 
1 - 0.011 0.022 0.016 0.014 0.010 
2 0.011 - 0.011 0.010 0.012 0.010 
3 0.022 0.011 - 0.013 0.022 0.030 
4 0.016 0.010 0.013 - 0.020 0.019 
5 0.014 0.012 0.022 0.020 - 0.011 
6 0.010 0.010 0.030 0.019 0.011 - 

 
 

Table 6.  Transportation time between nodes (hours) 
 

Node 1 2 3 4 5 6 
1 0.00 0.53 0.53 0.61 0.59 0.47 
2 0.53 0.00 0.51 0.34 0.12 0.24 
3 0.53 0.51 0.00 0.24 0.03 0.67 
4 0.61 0.34 0.24 0.00 0.25 0.56 
5 0.59 0.12 0.45 0.25 0.00 0.35 
6 0.47 0.24 0.67 0.56 0.35 0.00 

 
 

Table 7.  Distance between nodes (km) 
 

Node 1 2 3 4 5 6 
1 0 31.6 32 36.4 35.4 28.3 
2 31.6 0 30.4 20.6 7.1 14.1 
3 32 30.4 0 14.1 2 40.3 
4 36.4 20.6 14.1 0 15 33.5 
5 35.4 7.1 26.9 15 0 21.2 
6 28.3 14.1 40.3 33.5 21.2 0 

 
 
The cost of vehicle departure from node 5 is $45 and from node 6 is $50. The transportation cost (energy and 

emission cost) from the plant to the DCs is fixed in the planning horizon of the problem and is equal to $250 for node 5 and 
$200 for node 6. In addition, the fixed cost for establishing DC 1 is $40 and for DC 2 is $35. The profit obtained from selling 
each unit of product is $100. This problem is a single product with unit product mass of 20 kg.  

The mathematical formulation was solved using LINGO optimizer software, and results of the EELRP are shown in 
Table 8. Figure 2 shows the network configuration solution for the EELRP. Customers 1 and 4 are assigned to vehicles 1 and 
3, respectively, and customers 2 and 3 are assigned to vehicle 4. In this case, both DCs are selected to be open. Thus, 
customer 1 will be served through DC 1, and the other customers will be served through DC 2. The negative value of the 
objective function shows the network profit, which is $13,942. 
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Table 8. Results of EELRP 
 

Objective Value $-13941.9 
Computation Time 00:04:08 
Binary Variables with Value of 1 X111, X124, X143, X234, X052, X053, X054, X061, X062, O5, O6, z16, z35, z45, LS11, LS13, LS24 

 
 

 
 

Figure 2. Network configuration solution for EELRP 
 
 
The same problem is solved by traditional formulation of the LRP (Mirzaei and Krishnan, 2011). Results of the LRP 

are presented in Table 9. In this case, the transportation cost is assumed to be $1/km. Figure 3 shows the network 
configuration solution for the LRP in which the objective function is the trade-off between distance and profit. By comparing 
the distance and energy consumption between the two results, presented in Table 10, the distance traveled is increased by 
7.9%. However, the energy and emission cost has decreased more than 36%.  

 
 

Table 9. Results of LRP 
 

Objective Value $-24458.9 

Computation Time 00:0:53 
Binary Variables with Value of 1 X111, X122, X144, X234, X051, X052, X054, O5, z15, z25, z45, LS11, LS12, LS24 

 
 

 
 

Figure 3. Network Configuration Solution for LRP 
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Table 10. Comparison of EELRP and LRP results 

 
Formulation Distance Traveled (KM) Energy and Emission Cost ($) 
EELRP 126.10 1553.32 
LRP 116.10 2429.37 

 
 

3.3.2 Example of EELRP with Hard Time Windows 
This section illustrates the EELRP with a hard time window. The example is similar to the one presented in section 

3.4.1, except that all customers have a time window assigned to them, as shown in Table 11. The time interval implies that 
each customer’s demand is dg if it is served within the specified time window; otherwise, it is zero. 

 
 

Table 11. Time interval assigned to each customer for EELRP with hard time windows 
 

Customer Number 1 2 3 4 
Time Interval (Hours) [35,40] [50,58] [20,30] [14,16] 

 
 

The mathematical formulation was solved using LINGO optimizer software, and results for the EELRP with a hard 
time window are presented in Table 12. Figure 4 shows the network configuration solution for the EELRP with hard time 
window.  Customers 1 and 4 are assigned to vehicle 1 and 3, respectively, and customers 3 and 2 are assigned to vehicle.  In 
this case, only depot 1 is selected to serve the customers. The negative value of objective function shows a network profit of 
$7,037.6. 

 
 

Table 12. Results of EELRP with hard time windows 
 

Objective Value $-7037.6 
Computation Time 00:00:23 
Binary Variables with Value of 1 X111, X134, X143, X224, X051, X053, X054, O5, z15, z35, z45, LS11, LS13, LS24 

 
 

 

Figure 4. Network configuration solution for EELRP with hard time windows 
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By solving the same problem with a traditional LRP with a hard time window, the same network configuration is 
obtained, except that vehicle 2, instead of vehicle 3, is assigned to serve customer 4. Results for this configuration are shown 
in Table 13 and Figure 5. This happens because the traditional formulation of LRP does not distinguish between the vehicles 
in terms of energy and emissions, only with respect to their capacities. Thus, there is no difference between vehicles 2 or 3 
when using the traditional LRP because they have the same capacity. 
 
 

Table 13. Results of LRP with hard time windows 
 

Objective Value $-24409.8 
Computation Time 00:00:02 
Binary Variables with Value of 1 X111, X134, X142, X224, X051, X052, X053, X054, X063, O5, z15, z25, z45, LS11, LS12, LS24 

 
 

 

Figure 5. Network configuration solution for LRP  
with hard time windows 

 
 
Table 14 shows the comparison between results obtained from the LRP and the EELRP with hard time windows. 

From this table it can be concluded that the EELRP formulation results in more than 18% savings in energy and emission 
costs while the distance traveled remains the same.  

 
 

Table 14. Comparison of results of EELRP and LRP with hard time windows 
 

Formulation Distance Traveled (KM) Energy and Emission Cost ($) 
EELRP 165.2 $1717.15 
LRP 165.2 $2099.25 

 
 

In the next section, the formulation and an example of EELRP with a soft time window is presented. 
 
3.3.3 Example of EELRP with Soft Time Windows 
The example in this section is similar to the one presented in section 3.4.2 except for time intervals. In this example, 

violation from the time intervals is allowed up to a specified limit (Table 15). A penalty cost, associated with violating a 
lower or upper limit of a time interval, is also provided in this table.  
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Table 15.  Time interval, violation, and penalty cost assigned to each customer for EELRP with soft time windows 
 

Customer Number 1 2 3 4 
Time Interval (Hours) [36,40] [50,55] [25,30] [14,14.5] 
Lower Limit Violation Allowed (Hours) 1.5 0.5 2 1 
Upper Limit Violation Allowed (Hours) 0.5 2.3 0.5 1 
Penalty Cost ρg ($) 20 10 50 30 
Penalty Cost φg ($) 50 70 20 10 

 
 
The mathematical formulation was solved using LINGO optimizer software, and results for the EELRP with a soft 

time window are shown in Table 16. Figure 6 shows the network configuration solution. Customers 1 and 4 are assigned to 
vehicle 1 and 2, respectively, and customers 3 and 2 are assigned to vehicle 4. In this case, only one depot (node 5) is selected 
to serve the customers. The negative value of the objective function shows the network profit of $6,938. 

 
 

Table 16. Results of EELRP with soft time windows 
 

Objective Value $-6937.65 
Computation Time 00:1:38 
Binary Variables with Value of 1 X111, X134, X143, X224, X051, X053, X054,  O5, z15, z35, z45, LS11, LS13, LS24, α11, β13, β24 

 
 

 

Figure 6. Network configuration solution for EELRP with soft time windows 
 
 
By solving the same problem with the traditional LRP with soft time windows, the same network configuration is 

obtained except for a difference in vehicle assignments. Results are shown in Table 17 and Figure 7. As previously 
mentioned, this happens because the traditional formulation of the LRP does not differentiate among vehicles in terms of 
energy and emissions, only with respect to their capacities.  
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Table 17. Results of LRP with soft time windows 
 

Objective Value $-24309.8 
Computation Time 00:5:06 

Binary Variables with Value of 1 X114, X131, X142, X221, X051, X052, X054, O5, z15, z25, z45, LS12, LS14, LS21, α14, α31, 
α34, β12, β13, β21, β31, β34 

 

 

Figure 7. Network configuration solution for LRP with soft time windows 
 
 

By comparing the results, as shown in Table 18, it can be concluded that the proposed formulation will result in 
more than 26% savings in energy and emission cost, while the distance traveled remains the same as in the traditional 
formulation.  

 
 

Table 18. Comparison of results of EELRP and LRP with soft time windows 
 

Formulation Distance Traveled (KM) Energy and Emission Cost ($) 
EELRP 165.2 1717.15 
LRP 165.2 2320.61 

 
 
The following section presents a generic formulation of EELRP that can handle the dynamicity of customers’ 

demands. 
 
3.3.4 Example of EELRP with Time-Dependent Demand 
The example investigated in this section is similar to the example presented in section 3.4.1 However, in this case, it 

is assumed that each customer’s demand varies with time after initiation according to a function provided in Table 19. The 
mathematical formulation was solved using LINGO optimizer software, and results of the EELRP with a time-dependent 
demand are shown in Table 20. Figure 8 shows the network configuration solution. Customers 1 and 4 are assigned to vehicle 
4 and 3 respectively, and customers 2 and 3 are assigned to vehicle 1. In this case, both depots are selected to serve the 
customers. The negative value of the objective function shows the network profit of $11,791. 
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Table 19. Customers’ demand information for EELRP with time-dependent demand 
 

Node Coordinate Initial Demand Demand Function 
1 (80,45) 100 100-0.2τ1 
2 (70,15) 25 25-0.2τ1 
3 (100,20) 65 65-0.3τ1 
4 (90,10) 60 60-0.5τ1 
5 (75,10) - - 
6 (60,25) - - 

 
 

Table 20. Results of EELRP with time-dependent demand 
 

Objective Value $-11791.0 
Computation Time 00:04:14 
Binary Variables with Value of 1 X114, X121, X143, X231, X051, X053, X064, O5, O6, z15, z35, z46, LS13, LS14, LS21, Γ2, Γ4 

 

 

Figure 8. Network configuration solution for EELRP with time-dependent demand 
 
 

The same problem is solved using the traditional formulation of the LRP. Results are presented in Table 21, and 
Figure 9 shows the network configuration solution. 

 
 

Table 21. Results of LRP with time-dependent demand 
 

Objective Value $-24469.8 
Computation Time 00:01:15 
Binary Variables with Value of 1 X114, X121, X142, X231, X051, X052, X054, X063, O5, z15, z25, z45, LS12, LS14, LS21, Γ2, Γ4 
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Figure 9. Network configuration solution for LRP with time-dependent demand 
 
 

The distance traveled along with energy and emission cost obtained from the EELRP and LRP with a time-
dependent demand are compared in Table 22. It can be concluded that distance traveled to serve the customers from depots is 
reduced more than 10% (traveled distance does not include the distance from the plant to depots, because it is already 
considered a fixed cost of establishing the depots). In addition, the energy and emission cost has been reduced by more than 
37% in the routes obtained by the EELRP with the time-dependent demand. 

 
 

Table 22. Comparison of results of EELRP and LRP with time-dependent demand 
 

Formulation Distance Traveled in  
Tours Serving Customer (KM) Energy and Emission Cost ($) 

EELRP with Time-Dependent Demand 126.10 1447.01 
LRP with Time-Dependent Demand 140.30 2306.18 

 
 

4. Conclusions 
 

In this paper, the traditional LRP is approached with a novel perspective that considers energy and emission cost of 
a logistics problem. In the presented mathematical formulation, the objective function is the trade-off between energy and 
emission cost and profit. In addition, the model deals with the problem of vehicle selection when the available vehicles have 
different sources of energy, different aerodynamic structures, and consequently different costs of fuel and emission, while the 
traditional LRP is sensitive only to vehicle capacity. The node-based property of the presented model enhances the flexibility 
of the model. To illustrate the flexibility of the formulation, other possible scenarios of the EELRP, such as the EELRP with 
a soft or hard time window and the EELRP with a time-dependent demand are formulated. The mathematical formulations 
are illustrated with examples. The comparison of results between the EELRP and LRP shows that the model provides more 
economical solutions in terms of energy and emission cost. 

Since the problem is NP-hard, for networks with a high number of nodes, heuristic or meta-heuristic algorithms for 
solving the problem are required. A closer look at constraints (13) and (14) reveals that they can be decoupled from the 
route/vehicle, and hence, applying column generation or Benders decomposition for finding the exact solution of larger-size 
problems may be possible. Adopting heuristic methods to tackle large-size problems is currently under investigation. The 
node-based formulation is also critical for configuring supply networks under risk associated with the sequence of customer 
visits. This aspect of the problem also is currently under investigation. 
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