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Abstract: This paper describes a software tool to introduce fundamental concepts of reliability and fault tree analysis to
engineering students. Students can fit common failure distributions to failure data. The data can be complete, singly
censored, or multiply censored. The software computes distribution and goodness-of-fit parameters. The students can use
the tool to validate hand calculations. Failure distributions and reliability values for various components can be identified
and stored in a database. Various components and sub-systems can be used to build series- parallel or complex systems. The
components data can also be used to build fault trees. The software tool can compute reliability of complex state independent
and state dependent systems. The tool can also be used to compute failure probability of the top node of a fault tree. The
software was implemented in Visual Basic with SQL as the database. It operates on the Windows 7 platform.
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1. Introduction

On March 11, 2011, Japan was hit by a magnitude 8.9 earthquake which occurred underwater at a depth of 20 miles,
about 40 miles east of Oshika Peninsula. The earthquake triggered tsunami waves up to 128 feet, resulting in massive
destruction and loss of over 14,000 lives and 10,000 missing. In addition to loss of life, at least three nuclear reactors
suffered explosions after their cooling systems failed. Radiation levels at the Fukushima No. 1 nuclear plant were reported to
be 1,000 times normal (Magnier, 2011). The U.S. Nuclear Regulatory Commission is now examining the safety and
reliability of its 104 nuclear plans.

There have been several other major disasters, such as the explosion of the space shuttle Challenger on January 28,
1986, caused by the failure of O-rings that were used to seal the four sections of the booster rocket. On March 28, 1979,
there was a partial core meltdown at the Three Mile Island nuclear power plant. It was caused by a stuck-open relief valve
which allowed nuclear reactor coolant to escape. On April 26, 1986, there was a complete core meltdown at the Chernobyl
nuclear plant (Schlager, 1994). Each accident was a result of unique circumstances, caused either by nature,
hardware/software malfunction, human error, or a combination.

In order to determine reliability and safety of a complex system, such as a nuclear power plant, one needs to identify
all of its critical sub-systems and components. Typically, it takes several software tools to analyze failure data, identify
failure distribution(s), parameter estimation, component reliability analysis, estimation of reliability of state independent and
state dependent systems, and fault tree analysis. This paper describes a software tool that integrates these tasks and can be
used to teach fundamental concepts of safety and reliability engineering.

The literature uses various terminology and techniques to estimate component and system reliability. This paper
defines a system to be made up of several sub-systems and components. A sub-system consists of other sub-systems and
components. A component is defined as an entity that cannot be further divided. A sub-system or a component is called an
item. A system and a sub-system are essentially the same. Scope of a given study defines a system, for example, the
electrical system of an automobile could be studied as a system or a sub-system.

The techniques for evaluating system reliability are based on conditional probability analysis, network reduction,
identification of tie-sets and cut-sets, logic diagrams, tree diagrams, and Markov analysis. These techniques can be applied
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for analysis of components, sub-systems, or systems. Probability based analysis is often used to estimate component
reliability. It deals with collecting failure data and fitting an appropriate distribution to it, from which the probability of
failure during a given time interval can be computed. However, when it comes to system reliability, different techniques are
used for different systems.

A series-parallel system is good for the application of network reduction because it does not require intensive
calculation. A complex system, which cannot be broken down to a series-parallel system, tie-set and cut-set approaches are
appropriate. Markov analysis is suitable for state dependent systems, where failure of an item is dependent on failure of
another item. Most commercially available software tools use the tie-set and cut-set approach to estimate system reliability.

2. Reliability Overview

If T is the life of a system, sub-system, or a component, then reliability (R) is defined as the probability that it will
not fail during time ¢, where ¢ < 7. Military handbook (1990) defines reliability as the probability, at a given confidence
level, that the an item will perform its intended function, for a specified mission time (t), without failure, when used for the
intended purpose under the intended operational conditions. The unreliability (F) is the probability that an item will fail
during time ¢. Failures can occur due to wear, corrosions, defects, etc. Reliability and unreliability can vary with time, R(?)
typically decreases with time and F(z) typically increases with time. At any time 7, the sum of R(z) and F(z) is 1. Hazard
function A(?) is defined as the limit of the failure rate as At approaches zero. That is, hazard function is the instantaneous
failure rate, it is a conditional probability that the item will fail during time interval [z, t+At], given that it did not fail until
time ¢. The cumulative hazard function H(#) is the conditional probability of failure during the time interval [0, #]. The
Equations (1), (2), and (3) describe the R(t), h(t), and H(t), respectively.

R(t) =1—-F(t) = [ f(Ddt (1)
h(t) — limAt—»O R(t)A—tI;((tgAt)_th)(R(t)—iet(HAt)) =ﬁ(—i}§(t))=% (2)

H(t) = [, h(t)dt )
where 0 < ¢<+o0, 0 <R(t), F(t) < 1, R(0) = 1, F(0) = 0, R(®),—.., = 0, and F(1),_.., = 1

The most commonly used failure distributions for reliability estimation are: The Exponential, the Weibull, the
Normal, and the Lognormal. Exponential distribution is used to estimate reliability of hardware items with constant failure
rate during their useful life (Ebling, 2005). Many electronic components, such as transistors, resistors, and integrated circuits
follow this distribution. Mean time between failures (MTBF) is the arithmetic mean (average) time between failures of a
system. It is typically part of a model that assumes that the failed item is immediately repaired (zero elapsed time), as part of
a renewal process. This is in contrast to the mean time to failure (MTTF), which measures average time between failures
with the modeling assumption that the failed item is not repaired. The scale parameter (1) of the Exponential distribution is
equal to the failure rate (1/ MTBF or I/MTTF). The Weibull distribution is an approximate model of time to failure if the
item is of a type in which a large number of flaws exist (Ebling, 2005). The two parameter Weibull distribution has shape
(f), and scale () as its parameters. The normal probability distribution function is used to model failures due to fatigue or
wear out. The parameters of the normal are its mean (x) and variance (¢%). The normal is not a true reliability distribution
since the random variable ranges from minus infinity to plus infinity. The positive portion of the normal does provide a
reasonable approximation to the failure process. The dispersion about the mean is dependent on the value of the variance or
standard deviation. The Lognormal distribution is a good model for times to failure when failures are caused by fatigue
cracks. The Lognormal is defined only for the positive values of t and is more appropriate than the Normal distribution as a
failure distribution. Like the Normal, it has x' as the scale parameter (or median) and ¢’ is the shape parameter. Table 1
shows f{(t), parameters, F(t), h(t), R(t) functions for the above failure distributions.

ISER © 2013 84
HTTP://ISER.SISENGR.ORG




INDUSTRIAL AND SYSTEMS ENGINEERING REVIEW, 1(2), 2013 ISSN (ONLINE): 2329-0188
AHLUWALIA

Table 1: Common Failure Distributions

Distribution f(t) Parameters F(t) h(t) R(t)
Exponential e~ A — Failure Rate 1—e M A e~ Mt
. B-1 B — Shape parameter 1- B /t\P 1
B(t ~(t/6)F pep P(L ~(t/6)F
Weibull 0 (5) € 0 — Scale parameter e~ (t/0)F o\o €

L [Leew? U —Mean t-p ¢ 1-

Normal Norrs e[ 2 o — Standard deviation q) (T) @ (-t) (o} (th‘u)
1 1,0t
' — —In— 1-
1 _;’( lni,)z u — Mean 1t (ta’) ¢ (U, #’)
Lognormal | =" el ol i) ] o'  Standard deviation | T (m n w) P (—_1 In 1) @ (t;’f’)
o ur

2.1 Failure Distribution Selection

The first step in identification of candidate failure distributions is collection of failure data. There are basically two
types of failure data, complete data and censored data. Complete data is when time to failure of all items is available.
Censored data can be single or multiply censored. Type I single censored data is when testing is terminated after a fixed
length of time. Type II single censored data is when testing is terminated after a fixed number of failures. In multiply
censored data test times differ among censored items. After failure data is collected one needs to identify candidate
distributions, estimate distribution parameters, and perform goodness-of-fit test. Least squares technique is often used to fit a
curve to the failure data. The least squares regression equation is given by (4). The coefficient of determination given by (5)
is used to measure the strength of fit. The square root, r, is the index of fit, its value is between -1 and 1; a value |r| of 1
indicates a perfect fit.

Vi =2 xB i=1,2,...,m (4)
Where, m = number of linear equations, » =number of unknown, m>n, and S, By, ..., p, are regression coefficients.
2 TR (yi—a-bx)?
ré=1-—-==-t_ -t 5
I i-)? ©)

Table 2 shows the transformation of failure data for the least squares model for the four common distributions,
where F(t;) = (i-0.3) / (n+0.4). This formula is used as an approximation of the median position. Once the distribution is
known, the next step is to determine its parameters. There are several approaches to parameter estimation. Table 3 shows the
Maximum Likelihood Estimation (MLE) equations for parameter estimation for the four common distributions. The final
step is to perform a statistical test for goodness-of-fit. This test compares the null hypothesis (Hy: The failure times come
from the specified distribution) to the alternative hypothesis (H;: The failure times do not come from the specified
distribution). The test consists of computing test statistic, which is compared to the critical value. The critical value is based
on the level of significance (o) of the test and the sample size. Different tests are available for different distributions. For
instance, Kolmogorov-Smirnov test is used for normal and lognormal distributions, Bartlett’s test is used for the exponential
distribution, and Mann’s test is used for the Weibull distribution. These specific tests are more powerful than the general
Chi-square test. The Goodness-of-fit test equations for the four basic distributions are shown in Table 4.
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Table 2: Least square approach for common distributions
Distribution X Y. Parameters
. 1
Exponential t; In [T(t)] A=b
Weibull Int, In [ln(1 F(m)] B =b; 0= exp(-alp)
Normal t; F(t;) o=1/b; u=-a/b
Lognormal Int; F(t;) o' = 1/b; ' =exp(-c'a)
Table 3: MLE approach for common distributions
Distribution Parameters
Exponential (1) = f/T
s Pmerm-piBines 1 3 me _
12{_1 Y -5 Zizi™ = 0 Solve for B
Weibull (6, p)
{ [Z tf 4 (n— f)tﬁ]}
Normal (u, 6) U=Xx; %
' ’ nt; ’ n nti—pul 2
Lognormal (¢,0) | 1= 31, "4y = on; o7 = ot
Table 4: Goodness-of-fit tests for common distributions
Distribution Formulas Accept H If
Bartlett’s Test (B) for 1 S ) [ g
(B) = gl "<(1m2‘=1t> (/1) Tiey tnt] Xf—a/z,f—1 <B< XCZI/Z,f—l

Exponential distribution

1+(f+1)/(61)

Mann’s Test (M) for Weibull
distribution

s alantig - /M)

k
ke 32, [(ntiyy—Int;) /M

M< Fcrit,a,2k2,2k1

ky =] i ky = |5 _
My=Zi,—2;,Z; = ln[— In(1- 1:;—(())255,)]

t_j = n ﬁ . 0"2 — zT’:l(ti_z)z
Kolmogorov-Smirnov Test =in N
(D) for Normal/Lognormal D, = max {<p (7) - T}

distribution i _F
D, = max {— - (t‘ t)}

1<isn (n al

Dn < Dcrit

2.2 State Independent Systems

State independent systems are a collection of items where failure of one item is independent of failure of other
items. A state independent system can have several configurations. Reliability of a system for a given configuration can be
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determined by applying the combinational rules of probability. Figure 1 shows a series system consisting of # items. System
reliability (R) of a series system is given by equation (6), where R; = Reliability of the i item.

Rs= Ry *Ry... *R; ... *R,, (6)

Start | x, X, f------> X, f------>| X, [—>End

Figure 1: An n item series system

Figure 2 shows an #n item parallel system. Reliability (R;) of a parallel system is given by (7).

Ry=1-[(1-R)*(1=Ry)... *(1 =Ry ...*(1 = Ry)] ™
X
X3
Start —> ) > End
X;
Xa

Figure 2: An n item parallel system

A k-out-of-n system is similar to a parallel system where the system survives only if k-out-of-n items survive. The
reliability (R;) of a k-out-of-n system is given by equation (8).
n!

R, = Z?:k[m* RY * 1- R)n_j] fork<n (8)

Items of a system can also be configured in series and parallel. Such systems are referred to as series-parallel
systems. A five item series-parallel system is shown in Figure 3, with reliability value of each item shown in parentheses. A
series-parallel system can be reduced to a series or a parallel system by repeatedly applying equations (6) and (7). Figure 4
shows formation of item X34 from items X; and X,. Figures 5 shows formations of item X 34. Figure 6 shows the reduction
of the series-parallel system to a simple series system.

ISER © 2013 87
HTTP://ISER.SISENGR.ORG




INDUSTRIAL AND SYSTEMS ENGINEERING REVIEW, 1(2), 2013 ISSN (ONLINE): 2329-0188
AHLUWALIA

X
(0.8934)

Start —>(D X; O (098 [>@N
(0.6985)

(0.93)

X4
(0.993)

Figure 3: A five item series-parallel system

X
(0.8934)

Start —0 G— (0.98) %End

X X
©093) @ (0.99789)

Figure 4: Formation of item X34

X
(0.8934)

Start —(1) G— (0.98) %End

Xl,34
(0.928037)

Figure 5: Formation of item X 34

X134 —>()
Start —>(7) (0.992329) O (0.98) ind

Figure 6: Reduction to a simple series system

A complex system is a system that cannot be reduced to a simple series or a parallel system. A five item complex
system is shown in Figure 7. Reliability of such systems is computed by using techniques such as: tie-sets and cut-sets, event
trees, or fault trees. A tie-set is defined as a set of items whose functioning ensures that the system will function. A minimal
tie-set (path) is one in which all of the items in a tie-set must function in order for the system to function. A cut-set is a set of
items which when fail, result in system failure. A minimal cut-set is one in which all of the items of a cut-set must fail in
order for the system to fail. An event tree is a pictorial representation of all the events that can occur in a system. Tie-sets
and cut-sets and can be developed from event trees (Singh, 1977). Fault tree is a top-down, deductive analysis technique to
identify scenarios for which a particular fault or an undesired event may occur.
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X Xz

Y

Start —(1) X3 @—» End

x34(l)—>x4

Figure 7: Five item complex system

Y

Users often have to use a variety of tools for: a) Analysis of failure data, b) selection of failure distributions, c)
Estimation of distribution parameter, d) Network reduction, e) Tie-set/cut-set identification, f) Markov analysis for state
dependent systems, and g) Fault tree analysis. Before utilizing any of the tools, the user must identify all of the items of the
system and their interconnections. Item interconnections or the Reliability Block Diagram (RBD) can be expressed in a
verity of ways for computer based analysis. The most common approach is to use a connection matrix. Table 5 shows a
connection matrix for the five item complex system shown in Figure 7. The rows and columns of the connection matrix refer
to the begin node and end node of an item. A "1" in the connection matrix indicates that begin node and end node are the
same. A “0” value indicates there is no item between the begin node and the end node. Given the connection matrix,

minimal tie-sets and cut-sets have to be computed. The minimal tie-sets for the system shown in Figure 7 are shown in Table
6.

Table 5: Connection matrix for the five item complex system

End Nodes
1 2 3
1 1 X X3
Begin | 2 0 1 Xs X,
Nodes | 3 0 Xs 1 X,
4 0 0 0 1

Table 6: Tie-sets for the five item complex system

NO. Tie-set
T, X, X
T, [X; Xy
T, X, X5, Xy
T, |X5, Xs, X,

Reliability of the system can be computed by summing the probability of each tie-set as shown in equations (9) and
(10). If the reliability values of individual items in Figure 7 were assumed to be .9, then equations (11)-(14) show the values
of the intermediate terms. Table 7 shows the reliability values of various combinations of tie-sets. The overall reliability of
the system shown in Figure 7 is given by equation (15).

RSZP(T1+T2+T3+T4) (9)
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4 3 4 2 3 4
=P =Y Y PaT)+Y YN (T
i=1 i=1 j=i+1 i=1 j=i+1 k=j+1

Y Y Zre i1 Dieksr P(Ty # Ty % Ty + Ty)

4 P(T,) = P(Ty) + P(T,) + P(Ts) + P(T,)=0.81 + 0.81 + 0.729 + 0.729 = 3.078

S1 it P(Ty# Tj) = P(Ty * Tp) + P(Ty % T3) + P(Ty * Ty) + P(T, % T3) + P(Ty % Ty) + P(T3 * T,)
=0.6561 * 5 +0.59049 = 3.87099

Y Y i1 ke jur P(Ty# Ty # Ty ) = P(Ty x Ty x To) + P(Ty  Tp # Ty) + P(Ty % T3+ T) + P(T, x T3 + Ty)

b1 Zimis1 Zimjur Zieesr P(Tix Ty x Ty x 1) = P(Ty % Ty + Ty + T,) = 0.59049

Table 7: Reliability of various tie-set combinations for the five component complex system

=4*0.59049 =2.36196

Ry=3.078 - 3.87099 + 2.36196 - 0.59049 = 0.97848

(10)
an

(12)

(13)

(14)
(15)

X3*X5*X0)}

Probability of
tie-set Break down tie-set to components | Apply Boolean Algebra Reliability Value

combination
P(T)) PLX, X)) PIX*X) R/*R; 0.81
P(Ty) PLX*X,) PIX*X,) Ry*R, 0.81
P(Ty) PLXX5%X )] PLX X %X R/*Rs*R, 0.729
P(T,) PLXX5%X)] PLX X %X Ry*R5*R, 0.729
P(T;*T,) P{X1*X5) *(X3*X )} P{XEXGEXGHX ) R/*R,*R3*Ry 0.6561
P(T;*Ts) P{X1*X0) (X1 *X5%Xy)} P{XEXGHX* X, R/*R,*R4*Rs 0.6561
P(T;*Ty) P{X X)) *(X5*X5% X))} P{X*X X5 X5} R;*Ry*R3*R; 0.6561
P(T,*T3) P{(X3*X)*( X1*X5%X,)} P{X*X5*X X5} R *R3*R,*R;s 0.6561
P(T>*Ty) P{(X5*X) *( X5*X5%X5)) P{Xo*X5% X X5} Ry*R3*Ry*Rs 0.6561
P(T5*Ty) P (XXX ) *( X5 *X5*X5)) P{X X% X5 X * X5/ Ri*Ry*R;*Ry*Rs - |0.59049
P(T*T>*Ts) PYX*X0)*(X57X,) *(X*X5*X )} P{X X% X5 X * X5/ Ri*Ry*R;*Ry*Rs - |0.59049
P(T;*T,*T,) P{X X)) *(X3%Xy) *( X3*X5*X0)} P{X X% XX X5} RI*Ry*R;*R*Rs 10.59049
PT*T*T)  |P{(XX0)* (XX 5 X)X X5 X)) | PAX XXX %X | R*Ro*Ry*RRs  |0.59049
PTy*TS*T) | P{(XoX)* (XX 5 X)X X5 X0)) | PIX XXX %X | R*Ro*Ry*RRs  |0.59049
P(T*Ty*Ty+T,) | PO X" (GEX)* (XXX p oy swyosx o, 5xy) |RAR*R*RARs |0.59049

2.3 System Representation and Simplification

A slightly more complex system with eleven items and nine nodes is shown in Figure 8. The corresponding
connection matrix is shown in Table 8. Tie-sets for this system are shown in Table 9. If reliability values of individual items
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in Figure 8 were assumed to be .9, then the reliability of this system will be 0.99765. In Figure 8, nodes 7, 8, and 9 were
added to in order to represent the system via the connection matrix.

X, O X (O X
X (7 » X
— X5 (® B_’
X ¢
X MO
X Xo L] xn L

Figure 8: Eleven item complex system

Table 8: Connection matrix for the eleven item complex system

End Nodes
1 2 3 7 8
1 1 X Xy 0 X X3
2 0 1 Xs Xe 0 Xs 1 1 0
2 3 0 Xs 1 0 Xio 0 0 0 Xy
E 4 0 0 0 1 0 X 0 0 0
g | 5o o] o o0 1 | Xy | 0] 0 1
2 6 0 0 0 0 0 1 0 0 0
7 0 1 0 0 0 0 1 1 0
8 0 1 0 0 0 0 1 1 0
9 0 0 0 0 1 0 0 0 1
Table 9: Tie-sets for eleven item complex system
NO. Tie-set NO. Tie-set
T | X, Xe, X5 Ty X3, Xs, Xo, X11
T, [ Xs, X6, X5 Tio [ X1, Xs, Xio, X1
T [ X5 X6, X5 T [ Xy Xs, Xio, X1
T, X1, Xs T X5 Xs, Xio, X1
Ts | Xo, Xs T [ X4, Xo, X1
Ts X5, Xs Ty | X4, X0, X11
T; | X1, Xs, Xo, X1 Tis [ X4, Xs, X6, X7
Ty | X, Xs, Xo, Xi Tis | X4, X5, X
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It can be seen that the connection matrix shown in Table 8 is sparsely populated; with sixty nine of the eighty-one
cells having a value of "0" or a "1". A better approach to representing the system in Figure 8 is shown in Figure 9, with a
corresponding connection matrix shown in Table 10. The revised connection matrix has only thirty-six cells with no “0” or
“1”. Identification of tie-sets is difficult for large complex systems, especially if they have a large number of parallel sub-
systems. The tie-set algorithm described by Foutuhi-Firuzabad et al. (2004) resulted in a large number of tie-sets because
every added parallel item dramatically increased the number of tie-sets. For example, a system having ten items in series and
each item having ten different items in parallel will have 10 billion (10'°) tie-sets. Identifying tie-sets and cut-sets prior to
simplifying the network adds unnecessary computational complexity. The authors presented an efficient approach to
representation and simplification of complex networks in (Ahluwalia, 2011).

X] /2\ > X6 K : > X7
X2 — Xg
X; |
—0 X; ©—

Xy

X4 Xio ]97 X

Figure 9: Revised eleven item complex system

A4

Table 10: Revised connection matrix for the eleven item complex system

Begin End Component

Node Node
1 2 X
1 2 X,
1 2 X3
1 3 X4
2 3 Xs
3 2 X5
2 4 X
2 6 Xs
4 6 X7
3 5 X
3 5 X0
5 6 X

3. State Dependent Systems
State independent systems make an assumption that item failures are independent of each other. This assumption
does not hold true for many physical systems, such as a standby system. Several approaches are used to analyze state
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dependent systems, Markov analysis being the most common. Let us consider a two item power generator standby system
describe in (Ebling, 2005). Item X is an active generator with a failure rate of 0.01 failures per day and item X, is an older
standby generator with a failure rate of 0.001 failures per day when idle, and 0.10 failures per day when active. The standby
generator becomes active when the active generator fails. The block diagram of this system is shown in Figure 10. This
system has four states as shown in Table 11. The state diagram of the system is shown in Figure 11, where the A’s are
transition probabilities from state i to state j.

X,

ol

Figure 10: Block diagram of a two item standby system

Table 11: Four states of the two item standby system

State Description
1 Both generators functioning
2 Generator X; fails (failure rate A; =0.01)
3 Generator X, fails when idle (failure rate A,; = 0.001)
4 Both generators fail. X fails (failure rate A,) or X, fails when functioning (failure rate A,z = 0.1)

A Lﬂt A > FQT

Figure 11: State diagram of a two item standby system

Equations (16) - (19) define the state equations of this system.

Py (t+ A =Py(0) [ 1 - (hia(t) At + Ais(t) AD) |

Py (t+ At) = Py(t) Aio(t) At + Pa(t) [1 - Aay(t) Ab)]

P3 (t+ At) = Py(t) Ai3(t) At + P3(t) [1 - Asq(t) At)]

Py (t+ At) = Pa(t) Aog(t) At + P3(t) Aag(t) At + Py(t)
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The reliability of a general N state system, over time t, is given by (20).

R(O=3 P

(20)
P;i(t) values are a solution to the following differential equations:
P1(t) =1, B0+ 1, P (1) + 15, B (1) + - + 1y Py (1)
Py(t) = =1, () + 15, Py (1) + 13, By (1) + -+ + 1y, Py (1)
: @1
Py(t) = =ryP() + 1oy Py () + 1y P (1) + - + 1y Py (1)
where, P,(0)=1.0 and P(0)=0 foralli=#]l
Where, r; (i#) represents failure rate A from state i to state j, r; represent the sum of all transition rates out of state i:
Py = Z Tik
allk+i 22)
The above differential equations can be solved numerically by approximating them by difference equations with a
sufficiently small 4¢, that is,
P+ 4y ="Y P@lr,at]+ Pl - r,41] (3)
all j#i
If n=t/At then, P(t)=P(n At) and P(t+4t)= R([n + 1] At) 24)
The set of N difference equations can be written as:
P(In+11A0) = 3 P (nAO[r;;A]+ B (nAD[1 - ry; At]
all j#i
(25)
where i =1,2,3---, N
The probability vector 77(¢) and the [A] matrix are defined as:
P
| B0
: (26)
Reva
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The difference equations can then be written in the matrix form as:
I(n+1]A1) = [4]T (nAr) (28)
or I (nAt) =[A]([(n-11A1) = [AF T ([n - 2]1A0) = --- = [4] 11(0) (29)
The solution to 77(?) is given by: I (t) = [A ]n 171 (0) (30)
Where [A] is the coefficient matrix of the set of difference equations and I1(0) are known initial conditions (at t = 0).
Py
P®| |0
moy= - |=|. (31
| Pv@®] 0]
The above general form when applied to the two item standby system results in a 4x4 [A] matrix as shown below:
(1-1,A1) 1Al 1Al At
[A] Y (1-r,Al) 1At Y
1AL 1At (1-r3;A0) 1At
n4At 1At EWAY (1-r,Ar)
- (32)
If we divide the given mission time of 3 days into 1000 arbitrary time unit, then At = 3/1000 = 0.003 days. Substituting
values of 4 and At we have:
ri At = 2; At =0.01(0.003) = 0.00003
ri; At = Ay At =0.001(0.003) = 0.000003
rag At = Ayp At =0.1(0.003) = 0.0003
r3g At = 4; At=0.01(0.003) = 0.00003
71 At = (A1 +A)4=0.011(0.003) = 0.000033
7o At = Aop At =0.1(0.003) = 0.0003
r33 4t = 4; At=0.01(0.003) = 0.00003
17 At=04t=0
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0.999967 0 0 P, (1)
| 0.00003  0.9997 0 0 my=| 2O 41 o)
o 4]=1 ) 000003 0.99997 0 Py (1)
0 0.0003  0.00003 1 Pi (@)
0.967538 0 0 017 [0.967538
0.025478  0.740785 0 ollo] |0.025478
= 10.002907 0 0.970445 0|0 | |0.002907
0.004077  0.002996  0.029555 10| |0.004077

That is, the probability of being in state 1 (both generators operating) is P;(?) = 0.967538, the probability of being in
state 2 (generator X, failed, X, is operating) is P,(?) = 0.025478, the probability of being in state 3 (generator X, failed while
idle, X, is operating) is P3(¢) = 0.002907, and the probability of being in state 4 (both generators failed) is P,(?) = 0.004077.

4. Fault Tree Analysis

| S1: System failure |

S3: Station C
unsupplied

[
S2: Station B

unsupplied

1
S4: Stations B and C
supplied by a single line

S7: Supply || S8: Supply
by cct 1 only||[by cct 2 only

@ And And And

B6bE

Figure 12: Revised fault tree for the system described by McCalley (2005)

S6: No supply
from B

S9: Supply
by cct 3 only

S5: No supply|
from C

S12: AB
Tie out
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Fault tree analysis is one of the most widely used technique for estimating system reliability and safety. Fault tree is
a logic diagram that displays the interrelationships between a potential fault (accident) and its causes (Rausand, 2004).
Causes may be due to environmental conditions, human errors, or a specific hardware/software failure. The basic operators
used for building fault trees are AND (*) gates and OR (+) gates. An AND gate describes the logical operation that requires
the coexistence of all input events to produce an output event. The OR gate describes that an output event occurs if any of
the input events occur. Three basic types of events occur in a fault tree; 1) Top event, 2) Intermediate events, and 3)
Terminal events. Typically, the undesirable event appears at the top of the fault tree and is placed within a rectangle. An
intermediate event is any event within the fault tree that is further resolved into events that could cause it. These are
represented by rectangles. A terminal or a sink event is an event that cannot be resolved into further causes and is
represented by either circles or diamonds. The three event types are similar in concept to our notion of systems, sub-systems,
and components. A power generator fault tree example adapted from (McCalley, 2005) is shown in Figure 12.

5. The Software Tool

Currently, several software tools are required to conduct failure data analysis, parameter estimation, tie-set/cut-set
identification, reliability block diagram analysis, analysis of state independent systems, analysis of state dependent systems,
and fault tree analysis. Some of the tools are commercially available, while others are described in the literature by
Semanderes (1971) — ReliaSoft (2009). This paper presents a revised Software Tool for Reliability Estimation (STORE)
which was initially developed by Parekh (1999) and later revised by Li (2009). The revised tool, described here, not only
integrates all of the above tasks, but is based on an efficient approach for representation and simplification of complex
networks. The details of which were described by Ahluwalia (2011). The revised tool also utilizes a database to store and
retrieve system, sub-system, and component data. The database enables users to build a library of sub-systems and
components, which can be used to build new systems. The software was implemented in Microsoft Visual Basic 2008 with
Microsoft SQL server as the database. It is not a commercial package, but can be obtained from the authors free of charge.
A brief comparison of this software with the four (Isograph, Relex, Item, and ReliaSoft) commercial reliability software
packages is provided in Table 12.

The software tool described above was applied to a variety of reliability problems described in open literature. The
applications deal with component reliability estimation, estimation of reliability of state independent systems, estimation of
reliability of state dependent systems, and fault tree analysis. The applications are intended to illustrate capabilities of the
software from a practitioner’s point of view. The computational aspects of these tasks were described in sections 1-4.
System simplification and enhanced computational efficiency are described in (Ahluwalia, 2011).

Table 12: Comparison of STORE with commercial software

STORE Isograph Relex Item ReliaSoft
Li (2009) (2009) (2009) (2009) (2009)
1. |Failure Data Analysis \ x X x x
2. |Parameter Estimation \ x X X X
3. |Cut-set Identification \ \/ \ N x
4. |Tie-set Identification Y x ~ x N
5. |Reliability Block Diagram \ \ \ \ \
6.  |Fault Tree Analysis v v v v v
7. |State Dependent Systems \ \ \ \ \

5.1 Component Reliability Estimation

Let’s say component X1 has a known reliability value of 0.93 and we wish to compute reliability of components X2-
X6 from failure data. Let’s say failure data for component X2 was collected by testing fifteen units until they all failed
(complete failure data). Time of each failure of component X2 is shown in Table 13. Twenty units of component X3 were
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tested for 90 days (Type I single censored data). Time to failure of each unit is shown in Table 14. Fifty units of component
X4 were tested till thirty five of them failed (Type II single censored). Failure times of component X4 are shown in Table
15. Fifteen units of component X5 were tested for 500 days. Failure times and censored (unit removed) times are shown in
Table 16 (Type I multi censored data). A “+” next to the failure time indicates removal. Thirty units of component X6 were
tested. Failure times are shown in Table 17 (Type II multi censored data). The data for these components was obtained from
Ebeling (2005) in order to validate STORE. Screen shots of failure data analysis for components X2-X6 are shown in
Figures 13-17, respectively. The “Analyze Distribution” button when clicked fits the four distributions (Exponential,
Weibull, Normal, and Lognormal) to the failure data and displays distribution parameters. Results of the least squares
method, MLE, and goodness-of-fit are also displayed for each distribution. The user can let the software pick the best
distribution or select a distribution. The user can enter mission time of a given component and click “Calculate Reliability”.
The reliability of the component is then displayed and saved in the database. The user can thus build a library of components
with known distribution and reliability values, which can later be used to build a series, parallel, series-parallel, or a complex
system.

Table 13: Complete failure data for component X,

Failure
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number
Time
(days) 25.1173.9|755(88.51955|112.2|113.6|138.5|139.8|150.3|151.9|156.8|164.5|218 |403.1
RI=ET
Fie Edit View Too Help
Component | Reliability Block Diagram | Fault Tree Analysis I Markow System | Tools |
Component Information Component Failure Data Analysis
— Component Failure Data — Failure Data Infomation
[ Comp_ID_| Comp_Name | Reliabiity || Failure_Data Selected Comporert I0: [ 7] ' Complets Data
X1 A 0.92 € Type | Single Censor Data
e " Type Il Singls Censor Data
X3 C 0.993725 € Type | Muttiply Censor Data
# o 0857208  Type Il Mutiply Censor Data
X5 E 0.953583
XE F 0.999758 Test Time:
Total NO. of units at risk
Analyze Distribution | Level of Signficance: [0.05
 Resutt
Exponential Weibull Nomal Lognomal
A=00 B=18 =140.48 Med, = 119.85
Least Square 8=16141 o-105.07 o-0E8
r=032 r=095 r=088 r=034
A=0.01 B=18 p=14048 Med. = 119.85
S 5-15256 =827 c=053
B=405 M=1.1 D=0.25 D=0.16
Goodnsssof it OUT[657.2368) N[0, 248] OUT[0.0.22) IN[0.0.22)
P-Value = 0.5352 P-Value = 0.3824
Rejected Accepted Rejected Accepted
Mission
Time (t): Unit Distribution Parameters Reliability R{t):
New Data [50 [pay =] [webur  =][B 1.8/ [0.882271 E:;"m;_flﬂe
g [Tz EL
sibu Upd
pds | Doets | Rekad | subme s | Add Delete oDtz |50 [eer = E 1531; o8a2zn e
Figure 13: Analysis of complete failure data for component X,
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Table 14: Type I single censored failure data for component X;
Unit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number
Time
(days) 61.6) 70 | 784|753 |83.5| 723 | 65.1 | 77.1 | 83.2 | 63.4 | 72.7 | 72.5 | 843 | 73 | 655
[ C:\DOCUMENTS AND SETTINGS\SIMON\DESKTOP\DATABASE EXAMPLE\EXAMPLEG(SERIES PARALLEL MY EXAMPLE).MDF o [=1 S|
File Edit View Tool Help
Component | Religbility Block Diagram | Fault Tree Analysis | Marcov System | Tools |
Component Information Component Failure Data Analysis
— Component Failure Data — Failure Data Infomation
Comp_ID | Comp_Name Reliability Failure_Data Selected Component ID: (X3 - ¢ Complete Data
*1 A 093 » 1 = Type | Single Censor Data
¥2 B 0.882211 2 Deseription: ¢ Type Il Single Censor Data
X3 c 0993725 B £ Type | Mutiply Censor Data
Ha D 0.657206 8 " Type Il Muttiply Caneor Data
5 E 0.953583 B
& F 0535758 & Test Time: [50
7 Total NO. of units at risk: IZD
2 Analtyze Distribition | Level of Significance: ID 05
il
— Result
Exponential Weibull Momal Lognormal
A=0.01 B=5972 p=77.46 Med. = 77.22
Least Square B=28055 o=10.72 oc=015
r=0.51 r=096 r=0457 r=098
MLE h=0.01 S : gj‘?ﬂ
B=012 M=212
OUT [6.57. 2368]  IN [0, 2.48]
Goodnessof Ftp yoye - 1 P-Value = 0.0862
Rejected Accepted
Mission
Time {t): Unit Distribution Parameters Religbility R t):
New Data |50 Jpay [zl webul =] B | 572 [0.983725
-] I 8422
Old Data |50 Day 'Weibull B 572 |n.583?25 Update
Add | Delete | Reload Submit Edits Add Delste I I I s ,ﬁ Data |

Figure 14: Analysis of Type I single censored data for component X3

Table 15: Type II single censored failure data for component X4

Failure Number 1 2 3 4 5 6 7 8 9 10 11 12
Time (days) 131 73 78| 133 | 139 | 194 | 19.7 223 | 22.8 | 26.7 | 29.7 | 30.2
Failure Number 13 14 15 16 17 18 19 20 21 22 23 24
Time (days) 3191322 | 33 | 36.8 | 37 | 41.7 | 46.7 504 | 514 | 60 | 613 | 614
Failure Number | 25 26 | 27 28 29 30 31 32 33 34 35
Time (days) 65.6 | 65.8 |72.6| 78.4 | 100.4 | 110.6 | 111.4 | 118.2 | 119.4 | 132.1 | 139.7
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File  Edit View Tool Help
Companent | Reliability Block Diagram | Fault Tree Analysis I Markov System | Tools |
Component Information Component Failure Data Analysis
— Componert Failure Data r— Failure Data Infomation
Comp_ID | Comp_Name Reliability Failure_Datz + | Selected Component ID: Im " Complete Data
1 A 0.93 p 1 " Type | Single Cansor Data
®2 B 0.882271 2 173 Tz & Type Il Single Censor Data
%3 c 0.993725 3 |78  Type | Multiply Censor Data
» x4 0 0657206 4 {3 € Type Il Multiply Censor Data
X5 E 0.953583 5 [13s
%6 0.339758 6 152 Test Time: |
I 197 Total NO. of units at risk: IED
g a3 Analyze Distribution | Level of Signficance: ID 05
9 |
10 (27 — Result
11 9.7 Exponential Weibull Momal Lognormal
12 122 | A=0.00 p=107 u=2327 Med, = 77.51
13 Least Square 8=107.1 o=62.79 o=146
B r=098 r=038 r=09 r=038
LNEE h=0.01 =107
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15 a7
R Mission
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Figure 15: Analysis of Type II single censored data for component X4
Table 16: Type I multi censored failure data for component X
Failure
1 2 3 4 5 6 7 8 9 10 11
Number
Time (days) | 34 | 136 |145+| 154 | 189 [200+| 286 | 287 | 334 | 353 | 380+
Table 17: Type II multi censored failure data component Xg
Failure
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number
Time 141 | 391 | 399 [410+| 463 | 465 | 497 |501+| 559 | 563 | 579 |580+| 586 | 616
Failure
15 16 17 18 19 20
Number
Time 683 | 707 | 713 | 742+ | 755+ | 764
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5.2 Reliability of State Independent Systems

Let’s say the six components (X1-X6) described above were organized to form a system as shown in Figure 18. The
user can define the reliability block diagram of this system by entering component IDs under “Begin Node” and “End Node”
and selecting the components from the database. The user can either assign reliability values to the components or use the
values from the database. The software displays the system structure along with the reliability values of the system, sub-
systems, and components. The software also displays all of the tie-sets associated with the system as shown in Figure 19.

X2
Start 9915 X, @— Xs H™H X¢ H—>OEnd
Xi
(0.93)
X4

Figure 18: Six component series-parallel system
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Figure 19: Reliability of five component complex system

Nelson et al. (1970) analyzed a sixteen component complex system shown in Figure 20. They identified 55 tie-sets
for this system. Figure 21 shows application of STORE to Nelson’s example. The various sub-system reliability values of
the Nelson example are shown in Table 18. STORE's simplification algorithm when applied to this example reduced the
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number of tie-set from 55 to 1. The system when simplified turned out to be a simple series-parallel system and not a
complex system as reported in (Ahluwalia, 2011).

(o>.§310) E (0>.(845) g (0>.(872) © (3.%2‘) i
Start (D> (0%0) (0?(755) @3 (0);89) (0).;98) O (3.(55) ~® End
(0).(930) Oy (0>.(862) @2 (5.%%) K
@ (075 o0 [
(3.(716) >

Figure 20: Nelson's Example
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Figure 21: Application of software to Nelson's example
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Table 18: Sub-system reliability values for the Nelson example

Sub-system Reliability
Xi+X, 0.96
X5*Xe 0.738
X4+X5 0.9625
X7+X8 0.9802
X15+X16 0.91
(X7+X8)*X9 0.862576
X11+X12+X13 0.9955
X14*(X15+X16) 0.6825
(X1+X2)*(X4+X5) 0.924
(X7+X8)*X9)+X10 0.979386
((X1+X2)*(X4+X5))+H(X3*X6) 0.980088
(X7+X8)*X9)+X10)*(X11+X12+X13) 0.974979
((XT+X8)*X9)+X10)*(X1 1+X12+X13)+H(X14*(X15+X16)) 0.992056
(X1+X2)*(X4+X5)HX3*X0)) *(X7+X8)*X9)+X10)*(X11+X12+X13)) 0.972302
+HX14*(X15+X16))) ’

The STORE tool was also tested on other complex networks. These networks were reported by Gebre (2007), Fotuhi-
Firuzabad et al. (2004), Ramirez-Marquez et al. (2006), and Lin et al. (2003). Table 19 shows number of cut-sets before and
after application of simplification algorithm to the networks shown in Figure 22. The table also shows reduction of minimal
cut-set for each network, in count and percent.

Table 19: Simplification of other complex networks

Minimal cut-sets | Minimal cut-sets Reduction in Reduction in
Network Source before after minimal cut-sets | minimal cut-sets
simplification | simplification (count) (%)
1 Ramirez- Marquez (2006) 111 86 25 22.52%
2 Nelson (2007) 6441 4530 1911 29.67%
3 Nelson (2007) 330 214 116 35.15%
4 Nelson (2007) 615 191 424 68.94%
5 Nelson (2007) 888 250 638 71.85%
6 Nelson (2007) 222 23 199 89.64%
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Figure 22: Other Complex Networks

5.3 Reliability of State Dependent Systems

Figure 23 shows the application of STORE to state dependent systems using the Markov model. The figure shows
system reliability and each state’s reliability values for the two component standby system described in section 3.
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Figure 23: Reliability of a state dependent system

5.4 Fault Trees

Figure 24 shows results of fault tree analysis for the system describe in Figure 12. STORE identified four minimal cut-
set, {X3, X4, X5}, {X2, X3}, {XI1, X3}, and {X1, X2}. If the unreliability values of components X1, X2, X3, X4, X5 were
assumed to be R;'=0.1, R,'=0.2, R;'=0.3, R,=0.4, R5'=0.5 respectively, then system survival probability (reliability) is equal to
0.85880 and system failure probability is equal to 0.1412.
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Figure 24: Fault tree of a system from McCalley (2005)

6. Conclusions

This paper presented a software tool to computer reliability of components and sub-systems, and to store these
values in a database. The component and sub-system data can be retrieved from the database to build new sub-systems and
systems. A system can be a simple series-parallel system or a complex network. The software tool can identify failure
distribution and associated parameters, for each component. It utilizes a novel approach to store and simplify complex
networks. Components and sub-systems from the database can also be used to build and analyze fault trees.

The software tool was applied to various previously published case studies. In each case it identified either the same
number or fewer tie-sets and cut-sets. The software tool is intended to introduce fundamental concepts of reliability to
engineering student. Students should use the tool to verify hand calculations.
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8. Appendix
Notations
R System reliability
R; Reliability of component Xi.
R() Reliability cumulative distribution function
S Unreliability probability density function
F@) Unreliability cumulative distribution function
h(t) Hazard rate probability density function
H() Hazard rate cumulative distribution function
A Scale parameter of Exponential distribution
o Significance of hypothesis or probability of rejecting the correct hypothesis
s Shape parameter of Weibull distribution
0 Scale parameter of Weibull distribution
U Mean of Normal distribution
7 Standard deviation of Normal distribution
o Median of Lognormal distribution
o' Standard deviation of Lognormal distribution
a Intercept of a straight line
b Slope of a straight line
Y Coefficient of determination
f Number of failures
Aii(t) Failure rate from state i to state j
I1(t) Markov state probability vector
[A] Transition probability matrix
r; (i#/)  The rate (failure rate A or repair rate u) from state 7 to state j
G ith Cut-set
T; ith Tie-set
B Bartlett’s test statistic
M Mann’s test statistic
D Kolmogorov Smirnov’s test statistic
CMV; Connection matrix element in row i and column j
RA;; Reliability array element in row i and column j
PDF Probability Density function
CDF Cumulative Distribution Function
MTTF Mean Time To Failure
MTBF  Mean Time Between Failures
RBD Reliability Block Diagram
MLE Maximum likelihood estimation
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